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1 Introduction

Current large language models (LLMs) demon-
strate impressive NLP performance, but they re-
quire massive amounts of training data. RoBERTa
(Liu et al., 2019), for instance, sees 30 billion words
during pre-training, which amounts to roughly
300x as many words as a human child hears until
the age of 12 (Warstadt and Bowman, 2022). It
is one of the explicit aims of the BabyLM chal-
lenge (Warstadt et al., 2023) to address this issue
by training models on developmentally-plausible
quantities and types of data (for similar approaches,
see Hosseini et al., 2022; Huebner et al., 2021), in
order to ultimately develop more cognitively plau-
sible models that can inform research into human
language acquisition (Keller, 2010; Dupoux, 2018).

In the present contribution to the BabyLM
STRICT track, we take a threefold approach: firstly,
we implement a simple curriculum learning ap-
proach and split the provided BabyLM dataset
into four sub-datasets by increasing complexity, to
broadly structure the data such that it better reflects
what kind of input is available to infants and chil-
dren throughout development (see 2.1). Secondly,
we simulate a memory-based vocabulary learning
inspired by psycholinguistic work (Perruchet and
Vinter, 1998). Starting with a set of single charac-
ters, larger linguistics units (sub-words, words, and
multi-words) are created based on the core mem-
ory mechanisms activation and forgetting. Possible
units are limited in size, imitating working-memory
constraints, but become larger across development
(see 2.2). Thirdly, we implement redundant text
representations to make the compositional aspect
of language more salient: The lexicons that emerge
from our curriculum learning steps, respectively,
shape the (token) encoding of the given input text
(see 2.3).

We pre-trained a RoBERTa-base architec-
ture with masked language modeling and our

CogMemLM-s model achieves improved results
compared to the BabyLM RoBERTa baseline
model in 27 out of 39 evaluation tasks. Although
the so far integrated mechanisms have been imple-
mented in a simplified form with regard to cogni-
tive plausibility, it is intriguing that our pre-training
method already improved performance consider-
ably.

2 Methodology

2.1 Curriculum Learning

Child-directed speech typically consists of shorter
and less syntactically complex sentences, more rep-
etitions and limited vocabulary compared to adult-
directed speech (Foushee et al., 2016; Kirchhoff
and Schimmel, 2005). As the child’s language
competence increases, the linguistic input received
from the environment becomes both more complex
and diverse (Kunert et al., 2011). In an attempt
to reflect this trajectory, we subdivided the pro-
vided 98M word corpus into four approximately
equally-sized datasets of increasing linguistic com-
plexity and lexical diversity (for details see Ap-
pendix A Table 1). The division was based mainly
on the domains which the original corpora stem
from and a subjective rating of their linguistic com-
plexity and diversity; i.e. Dataset 1 (least complex)
included materials mainly from child-speech con-
texts, whereas Dataset 4 (most complex) comprised
the Wikipedia and Written English corpora. Al-
though this split is rather coarse, it is only a first
attempt at a curriculum learning approach, which
may be followed-up by more fine-grained analyses
and sub-divisions of the available materials.

2.2 Lexicon Creation

Because of computational and memory limitations
in humans, any type of input, including language
input, has to be “chunked” into units that can be
stored and further manipulated (Archibald, 2017;
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Baddeley, 2003). For infants, the additional chal-
lenge consists in learning to chunk the perceived
language input such that the resulting memorized
chunks align with word boundaries, which allows
for words to be stored in and retrieved from the lex-
icon. Inspired by the PARSER model for word seg-
mentation (Perruchet and Vinter, 1998), we used a
memory-based, variable parsing algorithm for lexi-
con creation. We start with a set of single characters
and from these, larger linguistics units (sub-words,
words, and multi-words) are created based on the
core memory mechanisms activation and forget-
ting. The text data is processed sentence by sen-
tence. Sentences are split into linguistic sub-units
(percepts), which vary in size (see Appendix A).
If a percept already exists, its activation value is
increased by 1, strengthening its representation, if
not, an entry is created and receives an activation
of 1. After each processed sentence, forgetting is
applied by subtracting 1/1000 from all activations.
Any percept that is not re-activated within 1000 sen-
tences (activation = 0) is removed from the lexicon.
In curriculum 1 (C 1), lexicon creation starts with
an empty lexicon, C 2 builds upon the lexicon of
C 1 and so on. A 10 % sample of each data set was
processed to create the lexicons which resulted in
the following number of percepts: 13,444 after C 1,
22,740 after C 2, 25,887 after C 3 and 39,126 after
C 4. We used the lexicon information to roughly
dimension the vocabulary size of the respective cur-
riculum tokenizers (see A.3) and to re-represent the
training data for the perception shaping (see 2.3).

2.3 Perception Shaping

The BabyLM dataset was given in three different
representations during pre-training: original text,
coarse re-representation, and fine re-representation.
For the coarse re-representation, text was processed
left-to-right and the lexicon was searched for the
longest fitting percept. Following this percept, an
additional whitespace was added. For the fine re-
representation, the identified percepts were split
up further based on smaller units in the lexicon.
The representation with the highest activation on
average was used to split the coarse percept. Again,
whitespaces were added after identified percepts.
In the final step, whitespaces were normalized (mul-
tiple spaces to one). Usually, an existing token for
e.g., the word “ended” would always be encoded
with the corresponding token ID. In our training,
however, linguistic units would also be encoded in

two alternative representations, which increases the
likelihood of “ended” also being encoded as “end”
and “ed”.

3 Results and Conclusion

Building on psycholinguistic work on memory-
based word learning, we simulated lexicon cre-
ation given the BabyLM dataset as input. We used
this information in a four step curriculum learning
approach to guide the encoding of text, thereby
increasing the cognitive plausibility in the follow-
ing aspects: the language acquisition trajectory is
reflected in the (increasing) number and quality
of available linguistic units (percepts), which are
not static, as usual in modern NLP, but change
over time in our pre-training method. These per-
cepts are further used to create redundant repre-
sentations of text, based on the assumption that
elements in memory shape perception in humans.
Our CogMemLM-s model shows increased per-
formance in 27 out of 39 tasks compared to the
BabyLM RoBERTa baseline model, which is a sig-
nificant result (p = 0.0071, for details see Ap-
pendix A, all results are based on the BabyLM
Evaluation Pipeline Warstadt et al. (2023); Gao
et al. (2021)). The most striking improvement was
archived in the BLiMP and BLiMP Supplement
task sets, for which the relative change is 54 % and
46 %, respectively (better performance in 16/17
tasks).

Although these results suggest that implement-
ing human-like cognitive mechanisms in LLMs is
a promising avenue for future research and can re-
sult in substantial gains in performance also for
small training datasets, a few limitations should
be addressed. The memory processes as imple-
mented here are relatively simplistic and do not
yet consider that forgetting, as observed in humans,
is non-linear (Ebbinghaus, 1885; Vlach and Sand-
hofer, 2012). Nor have we considered interference,
which may have a substantial impact in lexicon cre-
ation (James et al., 2023). Furthermore, the chunk
size of units that infants segment from language
input and that subsequently enter the lexicon re-
mains a topic of considerable debate (Grimm et al.,
2017). Finally, many aspects of our approach are
so far only integrated at text level, however, the
lexical information could also be directly imple-
mented in the tokenizer. Planned ablation studies
will allow a more detailed evaluation of these first
results and provide direction for future extensions
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of the present implementations.
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A Appendix

A.1 Schematic Overview of CogMemLM-s

Figure 1 shows the basic concept of our approach:
Based on the RoBERTa architecture, CogMemLM-
s is first trained on the Curriculum 1 Data Set.
In the Tokenizer C 1 only 10 000 elements of
the (final) Tokenizer are available, a number
that is influenced by the size of the Lexicon
C 1. Also based on Lexicon C 1 two alternative
representations are created for every original
sample in the Curriculum 1 Data Set: a coarse
and a fine re-representation, as for the following
example sentence:
Original: She was a beautiful girl.
Coarse: She was a be aut if ul girl .
Fine: She was a be au t if ul gi rl .

For curriculum 2, the RoBERTa architecture is
initialized based on the resulting ComMemLM-
s_c1, and the process descried for C 1 is repeated.
The same applies to C 3 and C 4. The number
of available elements in the respective tokenizers
grows for each curriculum and in C 4 the full model
vocabulary is available (see A.3 for further details).

A.2 Percept Lengths in Lexicon Creation

We assume that the mean length of sub-units is
three and that initially, there are four working mem-
ory slots available for these sub-units. In order to
account for cognitive growth throughout infancy
and childhood (Cowan, 2016), we increase the num-
ber of available working memory slots and thereby
the possible length of percepts across curriculum
training steps: curriculum 1 (C 1): 4 slots, percepts
of length 2-12 characters; C 2: 5, 2-15; C 3: 6,
2-18; C 4: 7, 2-21.

A.3 Tokenizer

We trained byte-level BPE tokenizers on the cur-
riculum datasets as follows: Tokenizer C1 (model
vocabulary 10 000) on C 1 dataset, tokenizer C 2
(model vocabulary 20 000) on datasets C 1 and
C 2, tokenizer C 3 (model vocabulary 30 000) on
datasets C 1, C 2, and C 3, and tokenizer C 4 (model
vocabulary 40 000) on the full BabyLM dataset.
The intersection of all model vocabularies was used
as the final tokenizer (vocabulary size 41 130). In
the curriculum training, however, only the tokens of
the respective curriculum tokenizer were available
(using the IDs of the final tokenizer).

A.4 Model Training
We used the same RoBERTa base model provided
by the BabyML organizers for all model instances
that we trained. The detailed model parameters
are specified at Liu et al. (2019). The training data
were organized in four sets of growing complexity,
as illustrated in Table 1. The vocabulary size of the
full training data is 41130. For each curriculum,
the models were trained for 100 epochs, with max-
imal sequence length 512, learning rate 0.0001 and
batch size 256.

A.5 BabyLM Leaderboard Results
Table 2-5 show the results of the official BabyLM
model leader board https://dynabench.org/
tasks/baby_strict for our model and the com-
parable BabyLM RoBERTa baseline model.
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Figure 1: Schematic overview of CogMemLM-s.

Corpus Domain # Words

C
1

CHILDES (MacWhinney, 2000) Child-directed speech 4.21 M

Children’s Book Test (Hill et al., 2016) Children’s books 5.55 M

Children’s Stories Text Corpus Children’s books 3.22 M

OpenSubtitles (Lison and Tiedemann, 2016) Movie subtitles 31.28 M/4

C
2

Switchboard Dialog Act Corpus (Stolcke et al., 2000) Dialogue 1.18 M

British National Corpus (BNC), dialogue portion Dialogue 8.16 M

Simple Wikipedia Wikipedia (Simple EN) 14.66 M/2

OpenSubtitles (Lison and Tiedemann, 2016) Movie subtitles 31.28 M/4

C
3

QCRI Educational Domain Corpus (QED; Abdelali et al., 2014) Educational video subtitles 10.24 M

Simple Wikipedia Wikipedia (Simple EN) 14.66 M/2

OpenSubtitles (Lison and Tiedemann, 2016) Movie subtitles 31.28 M/4

C
4

Wikipedia Wikipedia (English) 10.08 M

Standardized Project Gutenberg Corpus (Gerlach and Font-Clos, 2018) Written English 9.46 M

OpenSubtitles (Lison and Tiedemann, 2016) Movie subtitles 31.28 M/4

Table 1: Split of the BabyLM-STRICT dataset into curriculum subsets (C 1–C 4). The open subtitles corpus is
represented in all curricula, as this type of language input is assumed to be constant across all developmental stages.
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BLM RoBERTa 59.2 62.05 48.03 54.90 49.76 41.05 56.26 51.76 40.21 38.79 49.10 51.49
CogMemLM-s 88.75 73.31 73.24 71.06 93.65 89.09 73.09 85.24 61.81 70.15 69.65 78.28
change 49.92 18.15 52.49 29.44 88.20 117.03 29.91 64.68 53.72 80.85 41.85 52.03

Table 2: Results of our model compared with BabyLM RoBERTa-base on the BLiMP benchmark. The accuracy of
the two models and the relative change between them are reported in percent.
Avg. BLiMP: baseline 50.22, ours 77.27.
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BabyLM RoBERTa 50.81 34.38 34.55 45.60 46.79
CogMemLM-s 50.12 67.19 46.06 80.63 65.71
change -1.36 95.43 33.31 76.82 40.44

Table 3: Results of our model compared with BabyLM RoBERTa-base on the BLiMP Supplement benchmark. The
accuracy of the two models and the relative change between them are reported in percent.
Avg. BLiMP Suppl.: baseline 42.43, ours 61.94.
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BabyLM RoBERTa 45.30 87.80 82.00 84.54 77.10 77.94 84.08 54.55 59.89 67.58 61.45
CogMemLM-s 44.93 89.57 82.52 85.84 78.16 79.34 85.39 53.54 68.33 66.59 60.24
change -0.82 2.02 0.63 1.54 1.37 1.80 1.56 -1.85 14.09 -1.46 -1.97

Table 4: Results of our model compared with BabyLM RoBERTa-base on the SuperGLUE benchmark. The
accuracy and F1 score of the two models and the relative change between them are reported in percent.
Avg. (Super)GLUE: baseline 71.11, ours 72.22.
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BabyLM RoBERTa 74.68 100.00 99.93 99.98 59.23 -89.04 -91.24 -99.84 -15.30 -57.74 -39.17
CogMemLM-s 91.30 100.00 99.88 86.84 65.81 -68.19 -75.12 -99.97 -86.83 -65.29 -49.54
change 22.25 0.00 -0.05 -13.14 11.11 23.42 17.67 -0.13 -467.52 -13.08 -26.47

Table 5: Results of our model compared with BabyLM RoBERTa-base on the MSGS benchmark. The Matthew
correlation coefficients of the two models and the relative change between them are reported in percent (negative
correlation scores indicate surface generalisations, positive correlation scores linguistic generalizations).
Avg. MSGS: baseline 3.77, ours -0.10.
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