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Abstract—Music alignment is the process of matching two 

versions of a musical performance. We present an adaptation of 

a real-time music alignment algorithm to integrate within 

opera.guru, a mobile software solution to enhance the 

experience of attending an opera performance. Our algorithm is 

a proof-of-concept and is based on On-line Time Warping, a 

derivative of the well-studied Dynamic Time Warping, and 

offers effective improvements. Among those is a novel technique 

of cost matrix pre-processing called the Axes method. The 

enhanced solution was tested in simulated settings to measure 

the alignment precision of different methods. These tests showed 

good results in terms of computational performance and 

alignment error rate. However, our test dataset is of a limited 

scope and more thorough verification is required.  Finally, we 

conducted user experience tests to study the applicability of our 

solution within the mobile solution in a real-world setting. 

According to these user tests, the alignment miscalculations 

proved to be mostly unnoticeable to the audience. 

Keywords—music alignment, On-line Time Warping (OLTW), 

opera performance 

I. INTRODUCTION 

Digital innovations can be seen across all possible fields 
including rather traditional ones such as opera. Even though 
live performances of classical music or operas are especially 
cherished for their authenticity, the fact that performers play 
or sing naturally and in front of the audience, modern 
technologies have found their application in this area as well. 
Music alignment counts as one such technology. It can serve 
as a helpful aid to both performers and audience [1, 2]. 

Music alignment refers to the process of matching two 
versions of a musical performance – typically note by note. 
This is a challenging and non-trivial task, as the tempo can 
constantly vary throughout the piece. We distinguish various 
types of alignment. In audio-to-score alignment, the audible 
performance is continuously matched with the corresponding 
score to “track” the current position. One of the possible 
utilities is to automatically turn the pages of a digital score 
during a performance [3] or the playback of digital 
accompaniment adapting to the pace of the performer [2, 4]. 
Audio-to-audio alignment can be further subdivided in 
alignment of simply two recordings and of a live performance 
to its prior recording. While matching two recordings their full 
length can be utilized, whereas no helpful “future” information 
is available during a live performance. This paper focuses on 
alignment of live polyphonic music, particularly operas, which 

                                                           
1 http://opera.guru (last access 31.07.2023) 

imposes additional challenges compared with monophonic 
non-live music alignment.  

In this paper, we analyse the current development in music 
alignment, as well as present a demonstrative example of 
applying and enhancing existing techniques based on 
Dynamic Time Warping in the context of opera.guru, a mobile 
software solution to enhance the experience of opera audience. 

opera.guru 1  is a research project that enriches the 
experience of opera attenders. It offers them a mobile client 
application, which delivers aid, primarily in the form of text, 
to opera listeners and helps them to better follow the plot 
during a live opera performance. Following the plot of an 
opera can be challenging especially for those not regularly 
attending opera performances. At the same time, it is not 
necessary (or required by everyone) to follow an opera 
performance word by word to understand the plot (especially 
of someone focuses more on the music). With opera.guru, 
opera houses can decide whether they want to provide subtitles 
or plot summaries, and users can choose among different 
languages, on a mobile device during an ongoing opera 
performance. Optionally, media such as images or videos are 
supported. Not only does it help to overcome the language 
barrier, but it also makes operas more comprehensible for non-
regular opera goers. 

Though it mainly targets operas, opera.guru can be used 
during any live event. Along with the mobile applications for 
end-users, opera.guru offers a web-based content management 
system for administrators and operators. 

During the recent developments of opera.guru, an 
automatic music alignment solution has been implemented, 
allowing the content to be delivered to the mobile clients in 
real-time fully automatically. It eliminates the need for the 
human operator to manually push the content, as it was 
necessary before.  

In the remainder we present the implemented alignment 
algorithm, its integration into opera.guru, as well as the 
evaluation results from a technical and user experience point 
of view. 

II. STATE OF THE ART 

Some of the first developments in music alignment were 
introduced by Dannenberg [4] and Vercoe [5] who proposed 
live audio-to-score alignment algorithms in the context of 
digital accompaniment. These early approaches tracked 
specific monophonic instruments in symbolic form based on 
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string-matching techniques. Puckette [6] describes an 
algorithm based on an ordered note list where the notes played 
are detected using pitch tracking. Grubb & Dannenberg [7] 
were pioneers in tracking ensembles – polyphonic music. 
Their solution was based on separately tracking each 
individual musician using multiple microphones combined 
with a pitch-to-MIDI converter, however this approach proved 
not to be well scalable. 

In 1998, Grubb presented a probabilistic framework for 
audio tracking [8, 9]. Later various stochastic models, 
introduced among others by Raphael [10] and Cano et al. [11] 
started adopting the so-called Hidden Markov Models 
(HMM). According to Rabiner & Juang [12], an HMM 
describes a system in a probabilistic fashion using a state-
model. Different variations of these probabilistic methods 
have emerged, utilizing various techniques such as Specialised 
State Space [13], Segmental Conditional Random Fields [2], 
Dynamic Bayesian Networks and Particle Filtering [14], as 
well as Linear Dynamic Systems [15], however none of those 
seem to have achieved significant scientific resonance so far.  

HMM-based solutions have been continuously improved 
over the years and current models are rather hybrid ones based 
on semi-Markov states instead, allowing explicit modelling of 
secondary factors such as tempo. Prominent and successful 
commercial systems based on hybrid HMM are Metronaut 
(Antescofo)2 and Tonara3. 

On-line Time Warping (OLTW), introduced by Dixon, is 
a variant of Dynamic Time Warping (DTM) [16] for 
processing audio in real-time. DTW and HMM are not so 
different as it may appear at first glance; as argued by Fang, 
DTW can be modelled using an HMM [17]. The OLTW-based 
solutions for music alignment also saw several improvements, 
mostly related to additional systems to intervene in the case of 
common tracking issues. OLTW is particularly well suited for 
live audio-to-audio alignment and thus constitutes the 
cornerstone of our solution’s implementation. 

III. CONCEPTUAL DESIGN AND BASIC ALGORITHM 

Hereafter we examine the design of the proposed solution 
and highlight its main characteristics. To minimize the 
preparation time, the system has only two prerequisites:  

A reference recording of the target performance as 
“compare-to” data. This can be a recording of a rehearsal or a 
previous performance which should ideally be coming from 
the production4. We are aware of possible major structural 
differences caused by improvisations such as secco recitative, 
handling of which is considered out of scope. 

Timecodes, corresponding to the reference recording, must 
be set beforehand, meaning the system should know at what 
time to push data, e.g., textual aid, to the users.  

Further we distinguish following important design 
characteristics:  

• As opera.guru is primarily designed to deliver plot 
descriptions and not subtitles, the deliveries can 
tolerate a reasonable deviation within a few seconds. 

• The target audio performance is deliverable as live 
microphone input.  

                                                           
2 https://www.metronautapp.com (last access 31.07.2023) 
3 https://www.tonara.com (last access 31.07.2023) 

• The software’s architecture and interface allow easy 
integration with other software solutions and is 
independently deployable. 

The solution is implemented based on the OLTW 
algorithm introduced earlier and is centred around a so-called 
cost matrix. Its axes represent the frames of the target and 
reference audio streams respectively, and the cells show the 
calculated cost of alignment between them. The cost is 
determined based on the selected audio feature using the Mel 
Frequency Cepstral Coefficients (MFCC) which turned out to 
be effective for our purposes, in line with findings from the 
literature [22]. 

The algorithm chooses the least expensive path throughout 
the matrix. We denote it as the alignment path.  The audio 
features, i.e., cost, of each audio frame captured by the 
microphone are appended to the target buffer. Alongside 
which a pre-calculated reference buffer exists. Since our focus 
lies on the improvements of OLTW, and its application, its 
basic implementation is not discussed in further detail. 

The technological stack comprises of Python 
programming language, Librosa library version 0.9.1 for 
calculating MFCC audio features and ffmpeg [18] for pre-
processing audio files. The solution is a standalone application 
and communicates with opera.guru via a REST interface, 
which allows seamless integration with any other software 
system. 

IV. ALGORITHM IMPROVEMENTS 

Taking the OLTW algorithm as the basis we (1) improved 
heuristics for finding the most optimal cost path, and (2) 
developed a novel method to pre-process, i.e., optimize, the 
cost matrix. 

A. Cost-path-finding heuristics 

In the base implementation the algorithm always follows 
the cells in the cost matrix with the lowest cost. If there are 
significant differences between the target and reference 
streams, the lowest cost path may not be the actual correct 
alignment path. As shown in Figure 1, choosing only cells 
with the lowest cost can steer the alignment path in the wrong 
direction. At frame 500 the alignment is roughly correct, but 
at frame 820 the alignment path is completely wrong. To 
combat this problem, we introduce the following three 
heuristics for algorithm advancement. 

 

Fig. 1. Cost matrices showing how the single lowest cost point may lead to 

inaccurate alignment. 

The Minimum mean heuristic calculates the average 
position of n adjacent lowest cost cells. A side effect of this 
approach is that the minimum mean point can lay further back 

4 By “production” we mean the same musicians, singers, conductor, etc. 
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from the current position, thus, not in the final row or column, 
as shown in Figure 2, frame 812.  The Figure depicts the 
algorithm’s behaviour using minimum mean with n = 5 
compared to the standard implementation demonstrated 
previously on Figure 2. Even though frame 812 shows success 
by turning the alignment path towards the right one, other 
frames nearby, demonstrate that this approach is not always 
effective. 

 

Fig. 2. Example demonstrating 5 minimal points and mean. 

The Rolling mean averages across frames, rather than 
within a single frame. It takes the average position of the last 
n frames. Figure 3 shows the effect of applying rolling mean 
with n = 100. One of disadvantages of rolling mean is that it 
uses historic data and is therefore slow to react to changes in 
tempo. Additionally, fine details in alignment are smoothed 
out, affecting not only errors, but also useful information. 

 

Fig. 3. Example demonstrating Rolling mean. 

 

Fig. 4. Pre-calculation steps of Weighted mean. 

The Weighted mean takes the cost-weighted average 
position of all cells in the last frame. The intuition for why the 
weighted mean should be an effective heuristic is that even 
when the alignment path is not clearly present, the cost matrix 
is largely symmetric around the correct alignment. Taking the 
weighted mean allows us to find this point of symmetry and 

find the alignment no matter how far the lowest cost points are 
removed from this alignment path. As a first step, the 
algorithm takes the cost values of the last column and the last 
row representing the last frame. The upper row on Figure 4 
shows the result of this operation for three example frames. 
The vertical line denotes the current position; the lefthand side 
represents the final row and the righthand side the final 
column. In the next step the values are inverted so that the cells 
with the lowest cost get the highest weight. Additionally, the 
values are raised to the 8th power to highlight the low-cost 
values. Finally, the weighted mean position is calculated, as 
indicated by the red dot on the lower row in Figure 4. The 
position is projected back onto the cost matrix and taken as the 
advancement direction. Figure 5 shows the result of the 
Weighted mean. 

 

Fig. 5.  Example demonstrating Weighted mean. 

B. Cost Matrix Pre-processing 

In music alignment, it is typical for a cost matrix to reveal 
distinguishable “lines” of low-cost values parallel to the axes, 
as can be seen on Figure 6 (see lefthand side matrix). These 
lines often cross the correct alignment path and therefore can 
steer the alignment path in the wrong direction. Next, we 
introduce two pre-processing methods to reduce the 
mentioned low-cost lines. 

 

Fig. 6. Cost matrix before and after pre-processing. 

The Axes method, developed fully by us, aims to eliminate 
the axis-parallel lines by raising the costs. It is achieved by 
using previous values along the axes. The processing is 
performed on every frame after the cost matrix is filled. It is 
comprised of three steps; the first two are described hereafter 
using the formulas and in Table 1: 
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TABLE I.  EXPLANATION OF FOMULAS (1) AND (2) 

Table Head Explanations 

M More table copy 

M´ Modified cost matrix 

t 

Target frame index. The indices are spaced by 

powers of 2 to increase coverage and reduce 
processing time 

u Reference frame index 

offset 
Constant to keep the result of the consecutive 

subtraction operation positive 

a, b, c, d, e The used values are 0.1, 0.25, 0.2, 0.15, 0.1 

 

Finally, the costs are squared and divided by a constant to 
reduce the values. This helps to increase the weight of value 
differences and prevents the values from ending up negative. 
The Axes method is designed to satisfy the following rules 
shown in Table 2 which should be read as “if current cost is x 
and preceding costs are y, then resulting cost will be z”. 

TABLE II.  RULES FOR AXES METHOD 

Case Current Preceding Resulting 

1 Low High Low 

2 High High Average 

3 Low Low Average 

4 High Low High 

 

Consequently, after the pre-processing the resulting cost is 
low only in case 1, which occurs mostly on diagonal lines such 
as the alignment path.  

Because the algorithm requires historic data, which are 
unavailable in the beginning, the first n rows and columns, in 
our case 16, are prefilled with value 1000, except for the 
diagonal, where the values are set to 0. We are aware that it 
results in incorrectly high costs around the diagonal due to 
applied squaring, but it proved to have no negative impact on 
the alignment correctness. 

Müller and Kurt [19] introduced a pre-processing method we 
refer to as the Diagonal method. Though this method is 
designed for offline music alignment and is difficult to 
efficiently use in real-time, we included it for comparison 
purposes. The diagonal method consists of two steps: 

����,�� � �
�∑ �!��� � "�, ��� � "�#�$��%&                      (3) 

��'()��,�� � �*�+ ��∑ � ,��� � "�, -+ .'+ � "/0�$��%&     

(4) 

L is a length parameter, t and u are the target and reference 
audio streams; n and m are the indices. The second step 
accounts for tempo variability. This is done by explicitly 
calculating cost values for different simulated tempo ratios 
and choosing the lowest cost option. The tempo is simulated 
by changing the hop length, i.e., the index frequency. The 
variable w, used in the second step, is a set of reference 
streams at different simulated ratios r. 

In our implementation of this method, we used 7 ratio choices 
in the range from 0.76 to 1.24 in equal steps of 0.08. The 
length parameter was set to 16. Figure 7 shows the result of 
applying the diagonal method to a similarity matrix. 

 

Fig. 7. Cost matrix before and after pre-processing. 

V. EVALUATION 

To evaluate the proposed solution, we have conducted two 
types of tests: 

• Simulation: simulating recordings as live input, thus, 
without audience. 

• User-centred: studying the user experience with a live 
audience. 

As opera test data, recordings of Giuseppe Verdi’s 
Rigoletto were chosen, originating from different productions 
(see Table 3), which makes the alignment process more 
challenging. During the transition between the first two scenes 
the recordings revealed significant discrepancy. Since 
handling applause, silence, etc. is out of scope of our solution, 
the reference recording was modified by cutting out a section 
35 seconds long. 

TABLE III.  OPERA TEST DATA 

Opera House Director Year Start 

Semperoper Dresden Nikolaus Lehnhoff 2008 3:32 

Vienna State Opera Pierre Audi 2016 6:30 

 

 
Additionally, tests were conducted using western classical 

music as a less challenging alternative to testing with opera 
performances. The test pair was Beethoven’s ninth symphony, 
first movement, from years 1962 and 1983, both performed by 
Berlin Philharmonic Orchestra, conducted by H. von Karajan. 
We used annotation time stamps provided by Gadermaier & 
Widmer [22] as reference data for our evaluation. 

A. The simulation of advancement heuristics 

Figure 8 shows the deviation from manual alignment of the 
four previously discussed advancement heuristics in the 
simulated setting of Beethoven’s ninth symphony. On the 
visualization the vertical axis represents the deviation, in 
seconds, from manual alignment. The horizontal axis shows 
the progression throughout the piece, again in seconds. Except 
for three sections with larger error spikes, all variants perform 
similarly well. At the start, the fluctuation seems to affect all 
variants. The spike in the middle, around the 300th second, 
shows the superiority of rolling mean and weighted mean. 
After the avoided upward spike, the rolling mean variant does 
show a prolonged downward error which is also avoided by 
the weighted mean variant. Just beyond the 500th second, all 
variants show a significant error spike, however the weighed 
mean variant demonstrates the smallest deviation. According 
to the results, the weighted mean heuristic showed the best 
precision. 
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Fig. 8. Deviation from human-set alignment. 

B. Simulation of similarity matrix pre-processing 

The opera test data was used for testing the pre-processing 
methods to create more challenging conditions. Figure 9 
demonstrates the accuracy of the two previously introduced 
diagonal and axes pre-processing methods, as well as no pre-
processing, denoted as control, based on the standard OLTW 
advancement algorithm. Both the control and the diagonal 
methods lost the alignment path completely and were unable 
to recover, even though the diagonal method could perform 
correctly longer than the control one. The axes method proved 
to be able to follow the correct alignment until the end. 

 

Fig. 9. Showing difference after applying pre-processing steps.  

Another test of the same pre-processing methods, depicted 
on Figure 10, was conducted based on the weighted mean 
advancement heuristic. The axes method performed slightly 
worse compared to the previous test. The total deviation is 
11.3 seconds, compared to 7.7 seconds before, although the 
accuracy decline is not particularly noteworthy. The 
performance of the diagonal method improved markedly. 

 
Fig. 10. Pre-processing steps combined with Weighted mean. 

Figure 11 shows the cost matrices in the point in time when 
the diagonal method temporarily loses the correct alignment 
path. Even though the correct alignment path is strengthened 
in the “diagonal” matrix, vertical and especially horizontal 
lines of low-cost cells are still present. This steers the 

                                                           
5 https://www.bluemic.com/en-gb/products/yeti/ (last access 31.07.2023) 

alignment in a wrong direction resulting in major deviation 
errors as seen before. 

Overall, the results clearly show that matrix pre-
processing, especially the axes method, can significantly 
improve the alignment accuracy.  

 

Fig. 11. Axes and Diagonal pre-processing method comparison. 

C. User experience tests 

A user experience test was held with a total of 93 students 
within a lecture at the University of Vienna, Austria. The 
audience was secretly divided into two groups. Following a 
random assignment, one group received content on their 
phones pushed by the automatic alignment solution, another 
one by a human operator. The audience was shown a section 
of the pre-recorded Rigoletto performance using the projector 
and the speakers of the lecture hall. The microphone, a Blue 
Yeti5, used for the automatic alignment was placed in front of 
the room. After the test the students filled out a survey 
counting 38 responses for automated tracking and 44 
responses for the manual tracking. 11 responses were 
discarded due to connectivity issues, connections from 
multiple devices, unserious answers, etc.  

Table 4 shows the results of the survey conducted after the 
trial sessions. A scale from 1 to 5 was chosen; higher number 
represents higher satisfaction.  Overall, according to the 
results, there is no difference in perceived subjective user 
experience between the two versions of audio alignment. Both 
methods perform well enough to keep the users’ average 
satisfaction high, i.e., above 4.1. 

TABLE IV.  SURVEY RESPONSES 

Nr Question 
Manual Automated 

Avg. Sd. Avg. Sd. 

1 
How did you enjoy 

using the app? 
4.2 0.9 4.1 0.9 

2 

Did you find the app 

helpful for following 

the plot of the opera 
scene? 

4.8 0.7 4.7 0.6 

3 

Did you find it easy 

to keep track of both 
the projected opera 

scene 

and the app? 

4.2 1.1 4.1 0.9 

4 

Overall, how good 

was the timing of 

messages shown in 
the app? 

4.2 0.8 4.3 0.8 

5 

Overall, how 

consistent was the 

timing of messages 
shown in the app? 

4.2 0.9 4.4 0.7 
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When the students were asked to determine which group 
they were in, respondents from both groups answered virtually 
identically. Although, we have to mention that while the 
solution worked well on the section tested, this is not 
guaranteed to be the case for the whole opera performance. 
Our simulated performance of the whole opera showed that a 
few short sections still produced large deviations of over 30 
seconds, partially due to the mismatched recordings, but also 
partially due to shortcomings in the algorithm. Nevertheless, 
as a proof-of-concept of the user experience in relation to 
automatically show subtitles our algorithm worked well. 

VI. CONCLUSIONS 

In this paper we discussed the problem of real-time 
automated music alignment and developed an algorithmic 
solution to combat it. The solution utilizes MFCC audio 
feature extraction to make audio pieces comparable. 
Moreover, it is based on a well-known technique for audio-to-
audio alignment called OLTW, which required further 
development to achieve the desired level of accuracy. Thus, 
we introduced and tested some new and some already known 
extensions to it. The evaluation showed that the Weighted 
mean method for the algorithm’s advancement can provide a 
reasonably high alignment accuracy compared to other 
techniques. It calculates a weighted mean position over the 
cells in the final row and column of the cost matrix, thus, 
trading effectively a higher median error for a lower maximal 
one, which is preferrable in most cases. 

Additionally, we have dived deep into increasing the 
alignment accuracy also by pre-processing the similarity 
matrix – the heart of the alignment algorithm. Among the 
tested approaches, the so-called Axes method yielded overall 
the best results by reducing the influence of lines parallel to 
the axes caused by repeated structures in the music. 

According to the user experience trials, no major 
differences were reported using either manual or automated 
alignment. This proves, at least subjectively, that the 
introduced solution is suitable for real-world applications. 
Nonetheless, a thorough quantitative analysis using a richer 
dataset is required to be able to draw conclusion on general 
applicability of the solution.  

VII. FUTURE WORK 

We conducted tests on only one opera performance, which 
has more in common with polyphonic music. Therefore, the 
future work should yield in testing the solution with a larger 
dataset and with opera performances in their original form.   
Ideally, the opera pieces from various periods and styles 
should be tested to build a clear picture of the overall 
effectiveness and applicability of the automated system. 

Previously mentioned research [20, 21] in automatic 
handling of applause and silence would be a meaningful 
extension to our solution, eliminating the need to manually 
edit the audio reference recording. Moreover, it makes the 
alignment robust in case either of those suddenly appears in 
the live performance. 

Apart from the possibility to generally improve the 
alignment algorithm by introducing new techniques and 
approaches, another idea is to take advantage of the constraint 
that accuracy is only relevant at the synchronization points, 
meaning, when content should be pushed to the user devices. 
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