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Abstract

Multivariate Hawkes processes (MHPs) are versatile probabilistic tools used to model
various real-life phenomena: earthquakes, operations on stock markets, neuronal activity,
virus propagation and many others. In this paper, we focus on MHPs with exponential de-
cay kernels and estimate connectivity graphs, which represent the Granger causal relations
between their components. We approach this inference problem by proposing an optimiza-
tion criterion and model selection algorithm based on the minimum message length (MML)
principle. MML compares Granger causal models using the Occam’s razor principle in the
following way: even when models have a comparable goodness-of-fit to the observed data,
the one generating the most concise explanation of the data is preferred. While most of
the state-of-art methods using lasso-type penalization tend to overfitting in scenarios with
short time horizons, the proposed MML-based method achieves high F1 scores in these set-
tings. We conduct a numerical study comparing the proposed algorithm to other related
classical and state-of-art methods, where we achieve the highest F1 scores in specific sparse
graph settings. We illustrate the proposed method also on G7 sovereign bond data and
obtain causal connections, which are in agreement with the expert knowledge available in
the literature.

Keywords: Granger causal inference, multivariate Hawkes processes, minimum message
length, model selection

1. Introduction

Many practical applications deal with a large amount of irregular and asynchronous se-
quential data observed within a fixed time horizon. One can interpret such data as event
sequences containing stereotypic events, which can be modeled via multidimensional point
processes. These events can be, e.g. user viewing records, patient records in hospitals (in
which times, diagnoses or treatments are provided), various levels of earthquakes, high-
frequency financial transactions or neuronal activity.

In this paper, we focus on a special type of point processes, known as Hawkes processes
(Hawkes, 1971). Their main advantage over other point processes (such as the classical
Poisson processes) is that they permit to model the influence of past events, thanks to
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their “memory” property, as well as possible interactions between different components
of the process. In particular, a multivariate Hawkes process (MHP) X = (Xt)t∈[0,T ] =
(X1

t , . . . , X
p
t )t∈[0,T ] is a p-dimensional temporal point process representing a system of p ≥ 2

interacting units. One can interpret each component of a MHP as a “particle” or “node”
in some given system, e.g. a neuron in a brain, an account in a social network, or a certain
type of financial transaction. Here, we consider MHPs with conditional intensity function,
at each dimension i ∈ {1, . . . , p} following

λi(t) = µi +

p∑
j=1

∫ t

0
αij exp(−βij(t− τ))dXj

τ , (1)

where the µi > 0 are positive parameters also known as background intensities, βij > 0 are
positive decay constants, and αij ≥ 0 are non-negative influence parameters, which model
the interaction between different components of the process X. The conditional intensity
function gives an expected number of events on each infinitely small interval of time, i.e.

λi(t) = E[dXi
t |Ft] = lim

∆t→0
E[Xi

t+∆t −Xi
t |Ft], (2)

where Ft is a filtration which contains all the information of the process prior to time t. A
realization of the process corresponds to a list of event occurrence times within the time
interval [0, T ] at which the counts are carried out. In particular, for each i ∈ {1, . . . , p}, the
vector of observed event times of the i-th particle (Xi

t)t∈[0,T ] is given by xi := (ti1, . . . , t
i
ni
)⊤,

where ni ∈ N and 0 < ti1 < · · · < tini
≤ T , and a realization of the entire process X is given

by x = {xi}pi=1. The value T is called the time horizon of a MHP. The case when T is of
order at most a hundred times the dimension p is referred to as a “short” time horizon. If T
is of order at least a thousands times the dimension p, we talk about a “long” time horizon.

Since we focus on interaction functions given by an exponential kernel, in the following
we will refer to X as exp-MHP. The main objective of this paper is to infer the connectivity
graph, which describes the Granger-causal relationships between the components of exp-
MHPs. We use the notion of Granger causality among Hawkes processes based on the
definition from Eichler et al. (2017) and say that the component Xj does not Granger-
cause Xi if and only if the corresponding interaction function is equal to 0 for all t ∈ [0, T ].
Since our interaction function is given by αij exp(−βij(t − τ)) this holds if and only if the
influence parameter αij = 0. In this case, there is no edge leading from j to i in the
corresponding graph, otherwise an edge j → i is present in the graph. In other words, we
study the problem of estimating the connections in a directed graph when the underlying
model is an exp-MHP.

We approach this inference problem by proposing a model selection algorithm called
MMLH for exp-MHPs based on the so called minimum message length (MML) principle.
Methods using MML learn through a data compression perspective and are sometimes
described as mathematical applications of Occam’s razor, see e.g. Grünwald and Roos
(2019). The minimum message length principle for statistical and inductive inference as
well as machine learning was originally introduced by Wallace and Boulton (1968). It is
a formal information-theoretic restatement of Occam’s razor: This means that even when
models have a comparable goodness-of-fit accuracy to the observed data, the one generating
the shortest overall message is more likely to be correct. In this context, a message consists
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of a statement of the model, followed by a statement of the data encoded concisely using
that model. The MML method considers the model which compresses the data most (i.e.,
the one with the “shortest message length”) as most descriptive for the data.

As the proposed MMLH algorithm to recover causal connections in exp-MHPs is a
model selection method, it allows to incorporate possible expert knowledge about the un-
derlying structure. For example, this may be knowledge about the maximum number m
of possible causal connections to each node, such as the maximum number of debtors for
every trustee in a financial connectivity graph. If such knowledge is available, the algorithm
searches over a reduced set of possible structures (those indicating at most m connections),
decreasing the number of parameters which have to be simultaneously estimated under a
given structure. Parametric inference methods on the contrary, e.g. maximum-likelihood
estimation (MLE), require all parameters to be estimated simultaneously, which can result
in a poor performance. In contrast to other model selection methods, such as the classical
one obtained via the Bayesian information criterion (BIC) or the recent method proposed
by Jalaldoust et al. (2022) based on the data compression technique “minimum descrip-
tion length” (MDL), MMLH incorporates prior distributions of relevant model parameters,
making the method more flexible in terms of structure-related penalty.

We compare the proposed MMLH algorithm to two state-of-the-art methods (the related
MDL-based method from Jalaldoust et al. (2022) and the method ADM4 from Zhou et al.
(2013)), as well as to three standard reference methods, namely BIC, AIC (Akaike informa-
tion criterion), and MLE. We focus on data with short time horizons and consider graphs
of dimension seven, ten, and twenty, respectively. MMLH shows the highest F1 accuracy
with respect to all considered methods for specific sparse graph settings. We complete the
numerical study by applying our approach on a real-world data base, which describes the
return volatility of sovereign bonds of seven large economies (see e.g. Demirer et al. (2018);
Jalaldoust et al. (2022)). Most discovered causal connections are in accordance with the
expert knowledge from the literature.

Notations. Regarding terminology, we use both terms “causal structure” and “connec-
tivity graph”, depending on which is more appropriate in the respective context. Regarding
notation, scalar variables are denoted by regular letters and vectors and matrices by bold
letters. Stochastic processes are denoted by capital letters (e.g. X) and any realization
or point by a lower-case letter (e.g. x). Matrices are denoted by Greek or capital regular
letters. Let α be a generic matrix. Then αi denotes the i-th row of the matrix α and αij

the j-th entry in the i-th row. Moreover, α⊤ and |α| denote the transpose and determinant
of the matrix α, respectively.

This paper is organized as follows. Section 2 discusses related work. Section 3 recalls
the general idea of MML as a criterion for model selection and parameter estimation. In
Section 4, we apply the MML approach to exp-MHPs. The proposed algorithm MMLH is
described in Section 5. In Section 6, we illustrate the performance of the proposed algorithm
in comparison to benchmark methods on both synthetic data as well as real-world data.
Section 7 concludes the study and outlines perspectives for possible future work. MMLH is
coded in R, using the package Rcpp (Eddelbuettel and François (2011)). A sample code is
available at: https://github.com/IreneTubikanec/MMLH
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2. Related Work

Related work can be categorized into the work on discovery of Granger causal networks in
MHPs and on applying compression based methods (such as MML and MDL) to Granger
causal inference.

The problem of inferring the Granger causal structure is relatively new in the context
of MHPs, however, it has attracted a lot of attention in recent years, see e.g. Hansen et al.
(2015), Xu et al. (2016) and Sulem et al. (2021). Didelez (2008) studied causal connectivity
graphs for discrete time events and extended them to marked point processes. Most of
the related work deals with variable selection in sparse causal graphs. The recovery of the
Granger causal structure is directly linked to the problem of (parametric or nonparametric)
estimation of the interaction function, which is studied in the literature, e.g. by Eichler
et al. (2017). The most common approach to reconstruct the network is to apply maximum
likelihood estimation, see e.g. Ogata (1988), Veen and Schoenberg (2008), Juditsky et al.
(2020). Maximum likelihood estimation reveals favorable theoretical properties and is not
computationally expensive. However, it does not lead to good scores in practice, especially
on small datasets. Some improvement can be achieved when the estimation is done via
confidence intervals (as in Wang et al. (2020)), however, they are difficult to compute for
a general class of models. Xu et al. (2016) applied an expectation maximization (EM)
algorithm based on a penalized likelihood objective leading to temporal and group sparsity
to infer a Granger graph in MHPs.

The method ADM4 in Zhou et al. (2013) performs variable selection by using lasso and
nuclear norm regularization simultaneously on the parameters to cluster variables as well
as to obtain a sparse connectivity graph. The method NPHC (Achab et al. 2017) takes
a non-parametric approach in learning the norm of the kernel functions to find the causal
connectivity graph. The method uses a moment-matching approach to fit the second-order
and third-order integrated cumulants of the process.

To infer a causal connectivity graph, Bacry et al. (2020) optimize a least-square based
objective function with lasso and trace norm of the interaction tensor for the intensity
process. Trouleau et al. (2021) investigated stability of cumulant-based estimators for causal
inference in MHPs with respect to noise. Wei et al. (2023b) recover a Granger causal graph
for Hawkes processes coupled with the so-called ReLU link function; It was tested on long
time horizons T and, in comparison to other mentioned methods, it considers both exciting
and inhibiting effects. Idé et al. (2021) introduced a causal learning framework based on a
cardinality-regularized Hawkes process. Hansen et al. (2015) use lasso penalization to infer
sparse connectivity graphs in MHPs. Most of the above mentioned methods using lasso-
type penalization demonstrated good performance in scenarios with long time horizons T .
It is however known that lasso-type penalization methods often suffer from overfitting in the
opposite case of short time horizons, see e.g. Reid et al. (2016). To overcome the drawbacks
of these methods, we approach penalization based on the MML principle.

MML-based model selection as an inductive inference method based on data compres-
sion was first introduced in Wallace and Boulton (1968). Intuitively, the recovery of a
connectivity graph using the MML principle is equivalent to selecting an optimal model
for the observed data, where “optimal” means “the one which permits to encode the data
in a binary string of the shortest length” in terms of coding theory. There exist papers
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on the recovery of Granger connectivity graphs by MML for processes having distributions
from exponential families, see Hlaváčková-Schindler and Plant (2020a,b), but to the best of
our knowledge, not for MHPs. Another compression scheme using Occam’s razor in terms
of coding representations is the minimum description length (Rissanen (1998)), which was
more recently developed in Grünwald (2007) and Grünwald and Roos (2019). In comparison
to MML, the MDL principle does not use any knowledge of priors. MDL-based Granger-
causal inference has been recently applied to exp-MHPs in Jalaldoust et al. (2022) and to
Gaussian processes in Hlaváčková-Schindler and Plant (2020b).

3. Minimum Message Length Criterion and Its Approximation

Methods based on the MML principle consider the model which compresses the data the
most (i.e., the one with the “shortest message length”). To be able to decompress this
representation of the data, the details of the statistical model used to encode the data must
also be a part of the compressed data string. The calculation of the exact message is an
NP-hard problem, since it corresponds to the Kolmogorov complexity (see Wallace and
Dowe (1999)), which is in general not computable due to the halting problem (see Li and
Vitányi (2008)). However, there exist computable approximations of MML, the most used
one is the Wallace–Freeman approximation (Wallace and Freeman, 1987), which we will use
in this paper (see Section 3.2).

Before we recall the general idea behind MML and outline the aforementioned approxi-
mation approach, we define statistical models. Statistical models are families of probability
distributions of the form

M = {p(·|θ) : θ ∈ Θ}, (3)

parametrized by a set Θ (usually a subset of a Euclidean space). They are represented by
families of probability distributions

{Mγ : γ ∈ Γ}, (4)

where Γ is a countable set of so-called “structures” and, for each structure γ ∈ Γ,

Mγ = {pγ(·|θ) : θ ∈ Θγ} (5)

is a statistical model, parameterized by the space Θγ .
In our setting, the set of structures Γ can be interpreted as a countable set of binary

vectors, i.e. Γ = {0, 1}q with q > 0. Each element γ ∈ Γ is then a q-dimensional vector
of zeros and ones, where the number of ones is given by k, and where γj = 1 denotes the
presence of the j-th variable in the subset of k variables, and γj = 0 means that the j-th
variable is not present. The parameters θ ∈ Θγ ⊂ Rk then define the ”weights” (which can
be interpreted as importance measures) with respect to the variables in γ. In the graph
context, a structure set Γ = {0, 1}q corresponds to a given node, which can have at most q
causes. An element γj , j ∈ {1, . . . , q}, of a structure γ ∈ Γ indicates the presence (γj = 1)
or absence (γj = 0) of an incoming edge from node j into the given node. For example,
for a graph with q = 3 nodes, the corresponding structure set for each node is given by
Γ = {0, 1}3 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}. If Γ
corresponds to node 1, then the element γ = (0, 1, 0) ∈ Γ indicates that node 1 is not
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self-excitatory (since γ1 = 0), has an incoming edge from node 2 (since γ2 = 1), and has no
incoming edge from node 3 (since γ3 = 0).

3.1 Idea Behind the Minimum Message Length Method

The MML principle is a formal information theory restatement of Occam’s razor: even
when models have a comparable goodness-of-fit to the observed data, the one generating
the shortest overall message is more likely to be correct (where the message consists of
a statement of the model, followed by a statement of data encoded concisely using that
model). Let us describe the idea of the MML method more formally.

Consider some data y = (y1, . . . , yn)
⊤ ∈ Rn that we would like to send to a receiver

by encoding it into a message (e.g. a binary string). The key idea in MML inference is to
interpret this message as consisting of the following parts: an encoding (called assertion)
of the model structure γ ∈ Γ and associated parameters θ ∈ Θγ , a description (called
detail) of the data y using the model pγ(y|θ) specified in the assertion, and a preamble
code describing which structure is used. The total message length of the data y, model
structure γ ∈ Γ, and parameterization θ ∈ Θγ is then given by

I(y;θ;γ) = I(θ;γ) + I(y|θ;γ) + I(γ), (6)

where I(θ;γ), I(y|θ;γ), and I(γ) denote the length of the assertion, detail, and structure
preamble code, respectively. Equation (6) is also called refined total message length in the
literature.

The length of the assertion I(θ;γ) is a measure of the model complexity, while the
length of the detail I(y|θ;γ) is a measure of the goodness-of-fit of the model to the data
(model capability). Moreover, for γ ∈ Γ = {0, 1}q, the set of all possible structures, we set

I(γ) = log

(
q

k

)
+ log(q + 1), (7)

as recommended by Roos et al. (2009). MML seeks the model structure and corresponding
parameters that minimize this trade off between model complexity and model capability, i.e.

{γ̂, θ̂} = argminγ∈Γ,θ∈Θγ
I(y;θ;γ). (8)

3.2 Wallace-Freeman Approximation

In the following, we recall a well-known approximation of the total message length intro-
duced in (6), originally proposed by Wallace and Freeman (1987). A detailed presentation
of this approximation can be also found in Chapter 5 of Wallace (2005), including a list
of required assumptions given in Section 5.1.1. Similar to Bayesian selection methods, this
procedure utilizes prior probability distributions for parameters.

According to the Wallace-Freeman approximation, the codelength of data y for a given
model parametrization θ ∈ Θγ under a fixed structure γ ∈ Γ = {0, 1}q (i.e., the detail
w.r.t. γ) is given by

I(y|θ;γ) ≈ − log pγ(y|θ) +
k

2
. (9)
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Figure 1: Blue dotted line: Upper bound for κk. Black solid line: Lower bound for κk.
Red dashed line: Limit of the bounds for k →∞. Grey dots: Known values of κk.

Moreover, the codelength of the assertion w.r.t. γ is given by

I(θ; γ) ≈ − log πγ(θ) +
1

2
log |Jγ(θ)|+

k

2
log κk, (10)

where πγ(θ) is a prior probability distribution over Θγ , Jγ(θ) is the expected Fisher in-
formation matrix and κk is a quantizing lattice constant, which depends on the number of
parameters k that is determined by the structure γ.

While an optimal value for κk is not available in general, in Wallace and Freeman (1987)
the following upper and lower bounds were proposed for k > 1:

Γ(k/2 + 1)2/k

π(k + 2)
< κk <

Γ(k/2 + 1)2/kΓ(2/k + 1)

πk
, (11)

where in this case Γ denotes the gamma function. These bounds are reported as function of
k (black solid and blue dotted lines) in Figure 1. They both converge to 1/(2πe) (red dashed
line) for k → ∞. Some values of κk (for small k) are known explicitly, see e.g. Conway
and Sloane (1984), Makalic and Schmidt (2021). Those reported in Table 1 of Conway and
Sloane (1984) are added as gray dots to Figure 1. For k = 1, it is known that κk = 1/12,
and thus the lower bound in (11) is achieved, see Makalic and Schmidt (2021). The choice of
approximation for κk influences the penalty term with respect to the number of parameters
k determined by the structure γ. Following again Wallace and Freeman (1987) and Wallace
(2005), pp. 257–258, we focus on the approximation

k

2
(log κk + 1) ≈ −k

2
log(2π) +

1

2
log(kπ) + ψ(1), (12)

where ψ denotes the digamma function and ψ(1) ≈ −0.5772.
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Using (7) and the approximations (9), (10) and (12), the total message length (6) can
be approximated as follows:

I(y;θ;γ) ≈− log pγ(y|θ)− log πγ(θ) +
1

2
log |Jγ(θ)|

− k

2
log(2π) +

1

2
log(kπ) + ψ(1)

+ log

(
q

k

)
+ log(q + 1).

(13)

4. Granger Causal Structure Recovery in Multivariate Hawkes Processes
by Minimum Message Length

In this section, we present the proposed MML-based procedure for causal inference in exp-
MHPs defined via intensity (1). First, we define the corresponding parameter space Θ.
Second, we introduce the components required to define the total message length (13) for
exp-MHPs over the parameter spaceΘ. In particular, we report an explicit expression of the
the log-likelihood, derive an approximation for the Fisher information matrix, and choose
appropriate prior distributions. Finally, we introduce suitable structures, include them in
the aforementioned expressions, and propose a criterion for the total message length in
exp-MHPs.

4.1 Parameter Space for Exp-MHPs

Consider an exp-MHP X, i.e. a MHP defined via intensity (1). Throughout, we assume for
all i, j ∈ {1, . . . , p} that the decay constants βij are known. This is a common practice in
the literature (see, e.g. Juditsky et al. (2020), Wang et al. (2020), Jalaldoust et al. (2022)),
since these constants are considered to be part of the model itself (such as the memory
kernel which is here exponential). Moreover, we assume that the background intensities
µi of the i-th particle Xi and the influence vector αi = (αi1, . . . , αip)

⊤ on Xi are not
known. Considering the entire process X, we also introduce the unknown baseline vector
µ = (µ1, . . . , µp)

⊤ and influence matrix α, whose i-th row corresponds to the influence
vector αi. Recall that by the definition of Granger causality an entry αij is non-zero if and
only if there is an incoming edge from node j to node i. The parameter vector of X is then
defined as

θ = [θ⊤
1 ,θ

⊤
2 , . . . ,θ

⊤
p ]

⊤ ∈ Θ = (R+
0 )

p+p2 , (14)

where
θi = (µi,α

⊤
i )

⊤ ∈ Θi = (R+
0 )

p+1 (15)

is the parameter vector of the i-th component Xi, for i ∈ {1, . . . , p}.

4.2 Log-Likelihood for Exp-MHPs

In the following, we recall the log-likelihood of an exp-MHP, see, e.g. Ozaki (1979) (uni-
variate case) and Shlomovich et al. (2022) (multivariate case). Consider an observation x
of an exp-MHP X and the parameter vector θ ∈ Θ (14). Then, the log-likelihood can be
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decomposed as

log p(x|θ) = −
p∑

i=1

∫ T

0
λi(s)ds−

ni∑
j=0

log λi(t
i
j)

 . (16)

Since each summand of this function depends only on the i-th dimension θi (15) of the
parameter vector θ (14), the negative log-likelihood function can be written as the sum:

− log p(x|θ) = −
p∑

i=1

log pi(x|θi), (17)

where each summand represents the marginal negative log-likelihood of the corresponding
node. To ease the notations, define l(x|θ) := − log p(x|θ) and li(x|θi) := − log pi(x|θi).
The explicit expression for each li(x|θi) can be derived using (1) and is given by

li(x|θi) = µit
max +

p∑
j=1

αij

βij

nj∑
k=1

[
1− exp(−βij(tmax − tjk))

]

−
ni∑
l=1

log

µi + p∑
j=1

αij

∑
k:tjk<til

exp(−βij(til − t
j
k))

 , (18)

where tmax ≤ T is the largest jump time recorded over all nodes.

Remark 1 The function li(x|θi) from (18) is convex in αi and µi. Thus, the maximum
likelihood estimate (MLE) can be computed using convex optimization. The proof of con-
vexity can be found, e.g. in Ogata (1981).

4.3 Hessian Matrix for Exp-MHPs

In this section, we derive an explicit expression for the Hessian matrix H(θ) of the negative
log-likelihood l(x|θ) based on formula (18), see Shlomovich et al. (2022). Note that the
Fisher information matrix J , required in the total message length criterion (13), is defined
as the expected Hessian. In general, this expectation is difficult to compute and it is often
replaced by the observed Fisher information. The observed Fisher information, in turn, is
given by the Hessian, evaluated at an estimate θ̂ of θ.

To obtain the Hessian, we first need to compute the gradient of the negative log-
likelihood l(x|θ). The required first-order derivatives can be computed explicitly and are
given by

∂l(x|θ)
∂µi

= tmax −
ni∑
l=1

1

µi +
∑p

k=1 αikAik(t
i
l)
,

∂l(x|θ)
∂αij

=
1

βij

nj∑
k=1

[
1− exp

(
−βij(tmax − tjk)

)]
−

ni∑
l=1

Aij(t
i
l)

µi +
∑p

k=1 αikAik(t
i
l)
, (19)
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where
Aij(t) =

∑
k:tjk<t

exp
(
−βij(t− tjk)

)
, for t ∈ [0, T ]. (20)

Intuitively, the term Aij(t) summarizes the “weighted” history of events on node j up to
time t: since the βij are positive, “new” events will always have more importance than the
“old” ones.

Furthermore, the second order partial derivatives w.r.t. the parameters µi and αij are
given by

∂2l(x|θ)
∂µ2i

=

ni∑
r=1

1(
µi +

∑p
k=1 αikAik(tir)

)2 ,
∂2l(x|θ)
∂µi∂αij

=

ni∑
r=1

Aij(t
i
r)(

µi +
∑p

k=1 αikAik(tir)
)2 ,

∂2l(x|θ)
∂αij∂αij′

=

ni∑
r=1

Aij(t
i
r)Aij′(t

i
r)(

µi +
∑p

k=1 αikAik(tir)
)2 .

(21)

Note that all derivatives ∂2l(x|θ)
∂µi∂αi′j

, ∂2l(x|θ)
∂αij∂αi′j′

for i′ ̸= i are equal to 0. Therefore, the

Hessian of l(x|θ) can be written as a block-diagonal matrix of the form

H(θ) =

H1(θ1)
. . .

Hp(θp)

 , (22)

where, for each i ∈ {1, . . . , p}, Hi(θi) is given by the (p+ 1)× (p+ 1)-dimensional matrix

Hi(θi) =



∂2l(x|θ)
∂µ2

i

∂2l(x|θ)
∂µi∂αi1

. . . ∂2l(x|θ)
∂µi∂αip

∂2l(x|θ)
∂αi1∂µi

∂2l(x|θ)
∂α2

i1
. . . ∂2l(x|θ)

∂αi1∂αip

...
...

. . .
...

∂2l(x|θ)
∂αip∂µi

∂2l(x|θ)
∂αip∂αi1

. . . ∂2l(x|θ)
∂α2

ip

 , (23)

with entries as in (21). Since the determinant of a block-diagonal matrix is equal to the
product of the determinants of the diagonal blocks, we have that

log |H(θ)| =
p∑

i=1

log |Hi(θi)|. (24)

Note that, in the case when the vector of intensities µ is known, it is possible to use a
more computationally efficient approximation of the Hessian, see Wang et al. (2020). We
consider the intensities µ to be unknown, thus we will rely on the analytical expression for
the Hessian, with entries defined via (21).
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4.4 Choice of Priors for Exp-MHPs

In this section, we define two possible prior distributions π(θ) for the parameter vector
θ ∈ Θ (14), which is now considered to be a random quantity.

First, we assume that two parameter vectors θi and θj as in (15), corresponding to
different nodes i ̸= j, are independent. Therefore, the negative log-prior function can be
expressed as

− log π(θ) = −
p∑

i=1

log πi(θi), (25)

where πi(θi) is a prior distribution for the parameter vector θi ∈ Θi (15), corresponding to
the i-th node.

Throughout, we further assume that µi and all entries αij of a parameter vector θi (15)
are independent and identically distributed (iid), yielding

πi(θi) = π(µi)

p∏
j=1

π(αij). (26)

In the following, we consider two different prior distributions for the entries µi and
αij of a parameter vector θi ∈ (R+

0 )
p+1 as in (15), which both allow to incorporate the

prior knowledge that the parameters to be estimated are all non-negative: the uniform
distribution U[0, b], with b > 0, and the exponential distribution Exp(c), with c > 0, having
support [0,∞).

Uniform prior. Assuming that µi and the αij are iid as U [0, b], b > 0, the prior (26) for
the i-th node becomes

πi(θi) =

p+1∏
j=1

1

b
=

1

bp+1
. (27)

Thus, the negative log-prior for the i-th node is given by

− log πi(θi) = (p+ 1) log(b). (28)

Note that, to obtain a flat prior with a non-restrictive domain, one may consider a large
value for the hyperparameter b (see e.g. Oliver et al. (1996) for the use of uniform priors in
the context of MML).

Exponential prior. Assuming that µi and the αij are iid as Exp(c), c > 0, the prior (26)
for the i-th node becomes

πi(θi) = c exp(−cµi)
p∏

j=1

c exp(−cαij) = cp+1 exp

−cµi − c p∑
j=1

αij

 . (29)

Thus, the negative log-prior for the i-th node is given by

− log πi(θi) = cµi + c

p∑
j=1

αij − (p+ 1) log(c). (30)

In this case, to obtain a flat prior, one may choose a small value for the hyperparameter c.

11



Remark 2 The negative log-priors in (28) are constant in θi and those in (30) are linear
in θi. Thus, they are convex in both cases.

4.5 MML Criterion for Granger Causal Inference in Exp-MHPs

From formulas (17) and (25), it becomes evident that the optimization of the function
log p(x|θ) + log π(θ) w.r.t. θ ∈ Θ can be done independently for each node i. Therefore,
to perform causal inference in exp-MHPs, for each i ∈ {1, . . . , p}, we introduce a structure
set Γi = {0, 1}p, whose elements γi = (γi1, . . . , γip)

⊤ are p-dimensional vectors of zeros and
ones with ki > 0 corresponding to the number of ones. It holds then that γij = 1 if and only
if events in the j-th node Granger-cause events in the i-th node, and γij = 0 if and only if
αij = 0, i.e. there is no impact of node j on node i. This means that causal discovery in
exp-MHPs is equivalent to identifying the sparsity pattern in the influence vector αi, for
each i ∈ {1, . . . , p}.

According to the definition of Granger-causality in exp-MHPs, for a given structure
γi ∈ Γi = {0, 1}p, the corresponding restricted parameter space Θγi

contains parameter
vectors representing µi and αi such that αij is present in αi if and only if γij = 1. Thus, for
any γi containing ki non-zero entries, the vector αi has ki non-zero entries to be estimated.
Moreover, the baseline intensity µi, which has no influence on causal discovery, has to
be estimated as well. Hence, under a given structure γi, a total of ki + 1 non-negative
parameters are to be estimated and the restricted parameter space Θγi

= (R+
0 )

ki+1.
Recall that the formulas (18), (23), (28) and (30) are formulated for θi ∈ Θi = (R+

0 )
p+1

from (15). For a given structure γi ∈ Γi = {0, 1}p and parameter vector θi ∈ Θγi
=

(R+
0 )

ki+1 with αi having ki ≤ p entries, the log-likelihood log pγi
(x|θi), the Hessian Hγi

(θi)
and log-priors log πγi

(θi) are obtained from the aforementioned formulas, replacing p by ki
and adjusting all indices properly.

Finally, for each node i ∈ {1, . . . , p}, we can now propose the following refined message
length criterion for causal inference in exp-MHPs:

I(x;θi;γi) =− log pγi
(x|θi)− log πγi

(θi) +
1

2
log |Hγi

(θ̂i)|

− ki
2
log(2π) +

1

2
log(kiπ) + ψ(1)

+ log

(
p

ki

)
+ log(p+ 1),

(31)

where, for a given structure γi ∈ Γi = {0, 1}p, the Hessian matrix is evaluated at the
estimate θ̂i given by

θ̂i = argminθi∈Θγi

(
− log pγi

(x|θi)− log πγi
(θi)

)
.

Remark 3 i) Note that under the uniform prior (28) the estimate θ̂i coincides with the
MLE. ii) One may either remove the p-dimensional zero vector from the structure set Γi

or allow for ki = 0 (node i does not receive any input connections) by setting the term
ki(log κki + 1)/2 (cf. formula (12)) to zero in that case. Criterion (31) for ki = 0 then
results into the form, where the second line is not present.
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5. Algorithm MMLH for Granger Causal Inference in Exp-MHPs and its
Complexity

The form of the MML criterion (31) leads to the following algorithm, denoted as MMLH,
which we propose for causal inference in exp-MHPs.

Algorithm 1 MMLH: Causal inference in exp-MHPs by MML
Input: Dimension p, data x
Output: Estimate γ̂ = [γ̂⊤

1 , . . . , γ̂
⊤
p ]

⊤ ∈ Γ := Γ1 × . . .× Γp

1: for each i ∈ {1, . . . , p } do
2: for each γi ∈ Γi = {0, 1}p do
3: θ̂i ←− argminθi∈Θγi

(
− log pγi

(x|θi)− log πγi
(θi)

)
4: ĉγi

←− I(x; θ̂i;γi) (31)
5: end for
6: γ̂i ←− argminγi∈Γi

ĉγi

7: end for
8: return γ̂ = [γ̂⊤

1 , . . . , γ̂
⊤
p ]

⊤

Remark 4 Recall that the decay constants βij are assumed to be known (see Section 4.1).
However, adding more unknown parameters would be possible and would require small modi-
fications in Algorithm 1. The estimation procedure in lines 3 and 4 would have to be adjusted
accordingly, by extending the parameter space and setting priors for the βij. Moreover, the
Hessian matrix would include double derivatives with respect to βij, which are available as
closed-form expressions in the literature (see Ozaki (1979)).

We now address the computational complexity of the proposed method. Algorithm 1
consists of p optimizations, each requiring 2p evaluations of the MML criterion (31). Each
such evaluation relies on a parameter learning procedure for the observed data x (line 3 of
Algorithm 1) and a function evaluation (line 4 of Algorithm 1), which includes a computation
of the corresponding Hessian matrix and its determinant.

The computational complexity of a parameter learning procedure (line 3) depends on
the number of parameters to be estimated (for a given structure γi ∈ Γi = {0, 1}p with ki
non-zero entries, ki + 1 parameters have to be estimated and ki ≤ p) and the size of x, i.e.
the number of observed events (which in turn depends on T ). In our R-implementation, we
apply the Nelder-Mead search method (NM), which relies on a user-defined termination.
There is no convergence theory providing an estimate for the number of iterations required
to satisfy a reasonable accuracy constraint given in the termination test, see Singer and
Singer (1999). Thus, to the best of our knowledge, an upper bound on the complexity of
the NM method with a fixed termination rule is not available in the literature.

The complexity of computing the determinant of the symmetric Hessian matrix (line 4)
also depends on the “size” of γi, the dimension of Hγi

being (ki + 1) × (ki + 1). In our
R-implementation, we use a LU decomposition procedure, typically having a complexity of
order (ki + 1)3 (note that Aho and Hopcroft (1974) showed, however, that the exponent 3
may be reduced to 2.373 via a fast matrix multiplication method).
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In scenarios where the expert knowledge suggests an upper bound on the number of
causes for each node i ∈ {1, . . . , p}, the computational complexity of MMLH can be reduced.
Concretely, assume that for each node i the structure space Γi = {0, 1}p only contains p-
dimensional binary vectors with at most m < p non-zero entries. In this case, for the
cardinality of Γi it holds that

|Γi| =
m∑
k=0

(
p

k

)
< m

(
p

m

)
= O(pm).

Therefore, the number of required evaluations of the MML criterion (31) reduces from p2p

to less than ppm = pm+1, which may be beneficial especially for large dimensions p and
upper bounds m ≪ p. Moreover, since now ki ≤ m < p, also the computational cost of
each parameter learning procedure (line 3) and determinant computation (line 4) reduces.
Note that the upper bound m may be given as input parameter to Algorithm 1 and the
corresponding reduction of the structure set (from p-dim. binary vectors with at most p non-
zero entries to those with at most m < p non-zero entries) is straight-forward to implement.

Note also that, in the general framework of a non-reduced structure space, the related
state-of-the-art MDLH method (Jalaldoust et al. (2022)) also requires to solve p optimiza-
tion problems, each relying on 2p evaluations of their MDL function. Such an evaluation also
contains a parameter estimation procedure for the observed data x. In addition, while this
function does not include Hessian matrix and determinant computations, it requires a large
number N of Monte Carlo simulations for additional parameter learning (integral estima-
tion). This results in a total of (N+1)p2p parameter learning procedures required by MDLH.

Remark 5 In order to optimize the performance of the MMLH method, especially in high-
dimensional setups, it is recommended to carry out the p independent optimizations (lines
2–6 of Algorithm 1) in parallel. Additionally, note that when the number of nodes is large,
it is possible to replace the exhaustive search algorithm by a genetic algorithm, which can be
parallelized as well, see e.g. Hlaváčková-Schindler and Plant (2020a).

6. Numerical Experiments

In this section, we illustrate the performance of the proposed MMLH algorithm on both
simulated synthetic data (with known ground-truth connectivity matrices) and real G7
sovereign bond data.

In all our experiments, we consider both MMLH with uniform prior (28) (denoted by
MMLH-u) and with exponential prior (30) (denoted by MMLH-e). These proposed proce-
dures are compared with the related state-of-the-art MDL-based method for causal inference
in exp-MHPs (denoted by MDLH) introduced in Jalaldoust et al. (2022). As a representative
of the lasso-based procedures we consider the method ADM4 from Zhou et al. (2013). Note
that this method has been also considered in the experiments reported in Jalaldoust et al.
(2022) and shown to outperform e.g. the method NPHC from Achab et al. (2017). More-
over, we consider two classical related model selection methods, namely the one obtained
via the BIC and the one obtained via the AIC (i.e. Algorithm 1 where the criterion (31) is
replaced by the BIC and AIC, respectively). Further, we investigate Algorithm 1 where the
criterion (31) is reduced to the first term only (the negative log-likelihood). This method
is denoted by MLE-ms, where “ms” stands for model selection. We also consider standard
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maximum likelihood estimation, where node j is assumed to cause node i if and only if
the estimated αij-value is larger than a pre-set threshold (here 0.1). This method is de-
noted by MLE-thr. The following results for MDLH and ADM4 are based on the code
provided by Jalaldoust et al. (2022), the respective algorithms of the other methods are
newly implemented.

6.1 Experiments with Synthetic Data

In our synthetic experiments, we choose different setups inspired by those reported in Jalal-
doust et al. (2022). In particular, we investigate exp-MHPs of dimension p = 7, 10 and 20,
respectively, and focus on short time horizons T , i.e. T ≤ 100p. Moreover, we use the F1
score to evaluate the accuracy of our inferred connectivity matrices (in comparison to the
respective ground truth). The F1 score is defined as the harmonic mean of the precision
and recall measures:

F1 score =
2 · precision · recall
precision + recall

,

where

precision =
number of correctly predicted edges (ones)

total number of predicted edges (ones)
,

recall =
number of correctly predicted edges (ones)

number of edges (ones) present in the ground truth
.

In all considered settings, the experiments are repeated N (here, N = 100) times,
yielding N estimates γ̂1, . . . , γ̂N from Algorithm 1. An average F1 score over the N trials,
along with the corresponding standard deviation (put in parenthesis), is reported. The
reported computing times are also averaged over trials and correspond to an implementation
of Algorithm 1, which is parallelized at the level of nodes (see Remark 5). The code was
run on p parallel cores of a HPC architecture located at the University of Klagenfurt (AMD
EPYC 7532, 2.4 GHz, 32-core processor).

We focus on sparse connectivity graphs (two different settings) and investigate also the
mid-dense setting considered in Jalaldoust et al. (2022).

Sparse settings We consider two different sparse settings. In the first one, the causal
structure corresponds to a unidirectional (cascade) coupling structure with self-excitation
in the first component. This means that all entries αij of the influence matrix α are zero,
except for α11 and those in the lower diagonal (i.e., the entries α(i+1),i, i = 1, . . . , p− 1). In
the second setting, each node is influenced either by itself or by one of the other components
(single input structure). This means that the influence matrix α has exactly one non-zero
entry per row, which (in contrast to the cascade setting) is randomly placed.

Both settings have p connections (out of a total of p2 possible connections), correspond-
ing to 14.3%, 10% and 5% of edges for p = 7, 10, and 20, respectively. For p = 10 and
p = 20, we assume to have some prior expert knowledge on the maximum number of
causes per node and reduce the model search to structure sets Γi = {0, 1}p, i ∈ {1, . . . , p},
which contain binary vectors with at most m = 5 and m = 3 non-zero entries, respec-
tively. Moreover, in both settings we set all non-zero αij-parameters to 0.55, and consider
µi = 0.5 and βij = 1. Furthermore, we set the parameter of the uniform prior (28) and
exponential prior (30) to b = 105 and c = 10−5, respectively, choosing thus very flat and
little-informative prior distributions.
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The results for the two sparse settings are reported in Table 1 and Table 2, respectively,
and also compared to those obtained by randomly assigning one connection per row in the
desired connectivity matrix, a procedure denoted by RAND. We observe that both variants
of the proposed algorithm MMLH-u and MMLH-e yield F1 scores higher than those of
the other methods and that there is no tangible difference between these two variants.
Moreover, the results obtained with MMLH are comparable to those obtained with BIC.
This may be explained by the fact that a large value of b (resp. small value of c) leads to a
stronger penalty of structures γi ∈ Γi = {0, 1}p with large number of non-zero entries ki, as
it happens in BIC. Another observation is the poor performance of the classical maximum
likelihood approach MLE-thr, especially for large dimensions p. This may result from the
fact that, when p is large, a lot of parameters have to be estimated simultaneously under
this method, while the model selection approach reduces the amount of parameters to be
estimated, taking different structures into account. Moreover, especially in sparse settings,
the limited time horizon may not allow for enough observations to ensure the convergence
of the maximum likelihood estimator to the true parameter vector in practice.

The impact of the choice of b (resp. c) for MMLH-u (resp. MMLH-e) on the F1 score is
illustrated in Figure 2 (blue lines), where we focus on the cascade scenario with p = 7 and
T = 200. Decreasing b (resp. increasing c) leads to a decrease in the F1 accuracy. However,
we observe that the “true positive” (TP) score (red lines) is not strongly influenced by the
choice of b (resp. c). This means that when decreasing b (resp. c), MMLH still identifies
the correct connections with a high precision, but also proposes connections which are not
present in the underlying ground truth graph. Similar observations can be made for the
second sparse setting (figures not shown).

F1 score

p = 7 10 (red. Γi, m=5) 20 (red. Γi, m=3)

T = 200 400 700 200 400 700 200

Runtime 12.7 s 40.4 s 116.4 s 78.0 s 277.4 s 821.3 s 521.5 s

MMLH-u 0.948 (0.089) 0.979 (0.053) 0.985 (0.046) 0.953 (0.072) 0.968 (0.062) 0.982 (0.039) 0.933 (0.067)
MMLH-e 0.948 (0.089) 0.979 (0.053) 0.985 (0.046) 0.953 (0.072) 0.968 (0.062) 0.982 (0.039) 0.933 (0.067)
MLE-ms 0.572 (0.048) 0.603 (0.038) 0.623 (0.035) 0.540 (0.034) 0.577 (0.038) 0.602 (0.032) 0.505 (0.022)
MLE-thr 0.410 (0.082) 0.416 (0.069) 0.413 (0.078) 0.231 (0.052) 0.240 (0.052) 0.236 (0.051) 0.099 (0.017)

BIC 0.943 (0.090) 0.977 (0.055) 0.983 (0.046) 0.943 (0.080) 0.964 (0.063) 0.977 (0.042) 0.927 (0.068)
AIC 0.850 (0.094) 0.862 (0.079) 0.896 (0.076) 0.804 (0.086) 0.833 (0.074) 0.860 (0.064) 0.719 (0.047)

RAND 0.130 (0.117) 0.159 (0.150) 0.159 (0.131) 0.102 (0.096) 0.095 (0.097) 0.084 (0.093) 0.045 (0.045)
ADM4 0.773 (0.063) 0.782 (0.055) 0.807 (0.049) 0.733 (0.039) 0.759 (0.034) 0.784 (0.050) 0.694 (0.051)
MDLH 0.566 (0.062) 0.533 (0.062) 0.556 (0.061) 0.431 (0.056) 0.421 (0.041) 0.429 (0.060) 0.398 (0.046)

Table 1: Sparse setting 1: Cascade structure. The values for the uniform and exponential
priors are b = 105 and c = 10−5, respectively. Moreover, red. Γi denotes a reduced
structure set.
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Figure 2: Cascade structure for p = 7 and T = 200. F1 score (blue lines) and TP-score (red
lines) as functions of the uniform prior parameter b (left panel) and exponential
prior parameter c (right panel). The x-axes are reported in log-scale.

F1 score

p = 7 10 (red. Γi, m=5) 20 (red. Γi, m=3)

T = 200 400 700 200 400 700 200

Runtime 13.0 s 41.2 s 115.1 s 79.5 s 278.9 s 836.1 s 522.2 s

MMLH-u 0.956 (0.074) 0.967 (0.068) 0.978 (0.051) 0.944 (0.084) 0.960 (0.070) 0.958 (0.066) 0.929 (0.072)
MMLH-e 0.956 (0.074) 0.967 (0.068) 0.978 (0.051) 0.944 (0.084) 0.960 (0.070) 0.958 (0.066) 0.929 (0.072)
MLE-ms 0.571 (0.043) 0.599 (0.039) 0.617 (0.032) 0.536 (0.037) 0.569 (0.040) 0.592 (0.035) 0.502 (0.025)
MLE-thr 0.414 (0.061) 0.404 (0.081) 0.401 (0.077) 0.243 (0.052) 0.237 (0.054) 0.234 (0.059) 0.096 (0.021)

BIC 0.954 (0.075) 0.961 (0.072) 0.975 (0.056) 0.936 (0.085) 0.954 (0.073) 0.955 (0.068) 0.922 (0.073)
AIC 0.849 (0.082) 0.863 (0.089) 0.875 (0.080) 0.794 (0.075) 0.820 (0.081) 0.837 (0.070)) 0.710 (0.053)

RAND 0.127 (0.128) 0.154 (0.149) 0.144 (0.131) 0.093 (0.082) 0.091 (0.090) 0.104 (0.096) 0.052 (0.047)
ADM4 0.471 (0.068) 0.528 (0.043) 0.555 (0.059) 0.519 (0.073) 0.516 (0.063) 0.529 (0.067) 0.353 (0.042)
MDLH 0.768 (0.066) 0.828 (0.076) 0.872 (0.060) 0.742 (0.070) 0.780 (0.071) 0.835 (0.047) 0.686 (0.041)

Table 2: Sparse setting 2: Single input structure. The values for the uniform and exponen-
tial priors are b = 105 and c = 10−5, respectively. Moreover, red. Γi denotes a
reduced structure set.

Mid-dense setting Now, we investigate a default scenario considered in Jalaldoust et al.
(2022). In this setting, all diagonal entries of the influence matrix α are non-zero, i.e. all
nodes are self-excitatory. All non-diagonal entries of the adjacency matrix of the underlying
connectivity graph are randomly drawn from a Bernoulli distribution with success probabil-
ity 0.3. In the case of a success (one), the corresponding αij is drawn from U([0.1, 0.2]) (and
so are the αii). Moreover, each entry µi of the baseline vector µ is drawn from U([0.5, 1.0])
and all βij are again set to 1. Here, we further set the prior parameters b and c to 4 and 0.3,
respectively, reducing the penalty strength on structures γi with a larger number of non-zero
entries. This is motivated by the fact that this scenario may be considered as a mid-dense
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F1 score

p = 7

T = 200 400 700 1000 1200 1400

Runtime 54.3 s 149.4 s 472.4 s 882.2 s 1818.2 s 2354.5 s

MMLH-u 0.567 (0.106) 0.692 (0.084) 0.787 (0.070) 0.833 (0.059) 0.857 (0.054) 0.872 (0.049)
MMLH-e 0.579 (0.096) 0.692 (0.085) 0.772 (0.068) 0.812 (0.060) 0.841 (0.059) 0.847 (0.050)
MLE-ms 0.597 (0.080) 0.670 (0.087) 0.797 (0.081) 0.767 (0.065) 0.795 (0.070) 0.804 (0.052)
MLE-thr 0.623 (0.096) 0.729 (0.097) 0.786 (0.096) 0.824 (0.075) 0.836 (0.079) 0.863 (0.065)

BIC 0.399 (0.080) 0.471 (0.086) 0.537 (0.075) 0.613 (0.071) 0.645 (0.074) 0.707 (0.070)
AIC 0.490 (0.099) 0.660 (0.103) 0.802 (0.081) 0.877 (0.065) 0.901 (0.059) 0.920 (0.040)

ADM4 0.695 (0.072) 0.748 (0.066) 0.761 (0.067) 0.786 (0.059) 0.784 (0.056) 0.786 (0.063)
MDLH 0.767 (0.062) 0.841 (0.058) 0.900 (0.052) 0.927 (0.041) 0.936 (0.046) 0.942 (0.035)

Table 3: Mid-dense setting 3: Bernoulli random structure. The values for the uniform and
exponential priors are b = 4 and c = 0.3, respectively.

setting, since the ground truth connectivity matrices contain on average p + 0.3p(p − 1)
connections. In the case of p = 7, this corresponds to an average of 40% of edges.

The results are reported in Table 3 for different values of T . We observe that the method
with the highest F1-accuracy is MDLH. Moreover, on shorter time horizons T , MMLH is
also outperformed by ADM4 and MLE-thr. For T ≥ 1000, the two rivals are MDLH
and AIC, which give a score close to 0.95 and 0.92, respectively (MMLH, in comparison, is
approaching 0.9). For the chosen prior parameters, we observe a slightly better performance
for MMLH-u than for MMLH-e, except for the cases T = 200 and T = 400.

In Figure 3, we report again the impact of b (left panel) and c (right panel) on the F1
score (blue lines) and TP score (red lines) for the case T = 200. The previously considered
values b = 4 and c = 0.3 are marked as vertical grey dashed lines. Remarkably, while in
the sparse scenarios BIC almost reached the performance of MMLH, both MMLH-u and
MMLH-e outperform BIC in this mid-dense setting for all considered values of b and c
(though only slightly for large b and small c).

Impact of the choice of the decay constants Now we study how the choice of the
decay constants βij influences the performance of the considered methods. We focus on the
first sparse setting (cascade structure) and note that similar observations are made also for
the other previously investigated scenarios. In particular, we consider the left column of
Table 1 (where T = 200 and βij = 1) and analyse how the results reported there change for
other choices of T and βij , see Table 4. Note that, the larger the decay constants βij , the
fewer event occurrence times are observed on a fixed time horizon T . Thus, in the first and
third columns of Table 4 fewer data points are observed on average, while in the second and
fourth column of Table 4 the average number of observed data points is approximately the
same as in the left column of Table 1.

It is observed that all methods perform worse for larger values of the decay constants
βij , except for MDLH whose performance seems not to be strongly influenced by the choice
of the decay constants. However, there are no changes in the ranking of the considered
methods (except for MDLH slightly outperforming ADM4 when βij = 1.5). Moreover, we
find that larger values of the time horizon T , to adjust for the decrease in the average
number of observed data points caused by larger values of the decay constants βij , do not
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Figure 3: Bernoulli random structure for p = 7 and T = 200. F1 score (blue lines) and
TP score (red lines) as functions of the uniform prior parameter b (left panel)
and exponential prior parameter c (right panel). The vertical grey dashed lines
indicate the investigated values b = 4 and c = 0.3, and the horizontal black dotted
lines correspond to the F1 score for BIC. The x-axes are reported in log-scale.

fully compensate for the loss in performance. Note that these relationships can be also
observed for other values of the βij .

F1 score

p = 7, T 200 280 200 324

βij 1.5 1.5 2 2

MMLH-u 0.837 (0.155) 0.857 (0.132) 0.715 (0.158) 0.798 (0.148)
MMLH-e 0.837 (0.155) 0.857 (0.132) 0.715 (0.158) 0.798 (0.148)
MLE-ms 0.542 (0.068) 0.552 (0.063) 0.484 (0.071) 0.529 (0.064)
MLE-thr 0.342 (0.048) 0.347 (0.052) 0.352 (0.051) 0.359 (0.044)

BIC 0.834 (0.149) 0.852 (0.133) 0.709 (0.155) 0.790 (0.145)
AIC 0.762 (0.134) 0.769 (0.112) 0.664 (0.137) 0.723 (0.132)

ADM4 0.597 (0.060) 0.612 (0.050) 0.620 (0.051) 0.642 (0.049)
MDLH 0.617 (0.073) 0.615 (0.080) 0.608 (0.082) 0.624 (0.074)

Table 4: Sparse setting 1: Cascade structure. Different values for the decay constants βij
and time horizon T are considered. The values for the uniform and exponential
priors are b = 105 and c = 10−5, respectively.

6.2 Experiments with Real-World Data

The goal of this subsection is to illustrate how the proposed MMLH approach performs
on real-world data. In particular, we consider 10-year (2003-2014) sovereign bond yield
volatilities of seven large economies called the Group of Seven (G7), being composed of the
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US, Canada, Germany, France, Japan, UK and Italy. This dataset has been investigated in
Demirer et al. (2018) and also analysed in Jalaldoust et al. (2022). It is publicly available
at: http://qed.econ.queensu.ca/jae/2018-v33.1/demirer-et-al/

US

UK
GER

FRA

ITA

JPA
CAN

Figure 4: Connectivity graph derived from Umar et al. (2022) (an edge is drawn if it appears
in at least one of the three graphs shown in their Figure 1).

As this dataset corresponds to time series data, we pre-process it to identify shocks (i.e.
events able to be reproduced by a point process) in the return volatilities. In particular,
following Jalaldoust et al. (2022), for each country we roll a one-year window over the
respective data and register an event if the latest value of the window is among the top 20%
of values in the rolling window. The resulting number of events registered for each country
is roughly 500. Following Jalaldoust et al. (2022), we assume that this data is observed
within a time horizon of T = 400 of the investigated exp-MHP, i.e. an instance of a short
time horizon.

Our study is conducted as follows: We compare MMLH with comparable methods
designed for MHPs (in particular, MDLH, ADM4, BIC, and AIC) as well as with available
expert knowledge. For MMLH, ADM4, BIC, and AIC, we prepare the data as described
above and launch the respective causal discovery algorithm. For MDLH, we rely on the
results reported in Jalaldoust et al. (2022). Moreover, as “expert knowledge” we consider
the conclusions reported in Umar et al. (2022), where the network connectedness between
sovereign bond yield curve components of the G7 countries is discussed, without using MHPs
as a basis. The connectivity graph derived from Umar et al. (2022) is shown in Figure 4.
The results of the investigated methods are presented in Figure 5, with the graphs in the
top panels corresponding to ADM4 (left) and MDLH (right) and the graphs in the middle
panels corresponding to BIC (left) and AIC (right). In the bottom panels, we report the
results for MMLH-e with c = 10−5 (left), c = 0.3 (central), and c = 2.5 (right). As expected,
similar results are obtained for MMLH-u. For example, using b = 105 we obtain the same
graph as reported in the bottom left panel, and for b = 4 the same as shown in the bottom
central panel, except for the connection “ITA to FRA” not being present. Note that the
red connections in the graphs visualized in Figure 5 are those that are in agreement with
the expert knowledge graph of Figure 4.
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Figure 5: Connectivity graph for ADM4 (top left panel), MDLH (top right panel), BIC
(middle left panel), AIC (middle right panel), MMLH-e with c = 10−5 (bottom
left panel), c = 0.3 (bottom central panel), and c = 2.5 (bottom right panel).
The red connections are those that are in agreement with Umar et al. (2022).

We observe that ADM4 yields the most connections in agreement with Umar et al.
(2022), however it also suggests 6 connections that are not present in Figure 4. As expected
from the synthetic experiments, for small c (resp. large b) (i.e., when we have a strong
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penalty on structures γi ∈ Γi = {0, 1}p with many non-zero entries), MMLH performs
similar to BIC, which only suggests one connection not present in Figure 4 (“US to GER”).
Increasing c to 0.3 (resp. decreasing b to 4) adds further connections to the graph (bottom
central panel), of which all are reported in Umar et al. (2022). In particular, for c = 0.3
MMLH-e yields 9 connections present in Figure 4 (and a single one that is not reported
there). In comparison, MDLH and AIC only capture 7 (resp. 6) connections of Figure 4 (and
also report one connection that is not reported there). Thus, the proposed MMLH algorithm
not only outperforms the classical BIC and AIC methods, but also reports more connections
that are in agreement with the literature than the related state-of-the-art MDLH method.
Note also that 6 out of 8 connections detected by MDLH and all connections obtained by
AIC are in agreement with MMLH-e for c = 0.3.

Moreover, we observe that many outgoing connections from France are captured well by
ADM4, MDLH, AIC and MMLH. Note, however, that for MMLH-e the connection “FRA
to US” disappears when c is increased from 0.3 (bottom central panel) to 2.5 (bottom
right panel). This may be explained by the newly discovered edges now dominating the
connection “FRA to US”, in the sense that the chosen structure shown in the bottom right
panel yields a slightly smaller value of criterion (31) than the same structure including the
connection “FRA to US”. A similar effect is observed for MMLH-u. Further, the outgoing
connections from Germany are only (partially) captured by ADM4. However, this improves
for MMLH under large values of c (resp. small values of b). In particular, using c = 2.5 and
b = 0.25, we obtain the connections “GER to ITA” and “GER to JPA”. We also observe
that Japan is isolated from the other countries, except under ADM4 and MMLH, which
report an ingoing connection from the US, in agreement with Umar et al. (2022). Only
MMLH-e (for c = 2.5) reports a second ingoing connection (from Germany), which is also
present in Figure 4. These observations also suggest a solid performance of the proposed
MMLH procedure.

7. Conclusion and Discussion

In this paper, we estimated Granger causal relations between components of multivariate
Hawkes processes with exponential decay kernels. These relations are described by a con-
nectivity graph, which can be estimated from observations of the process. We approached
this problem by proposing an optimization criterion and a model selection algorithm MMLH
based on the minimum message length principle.

In contrast to other model selection algorithms, MMLH incorporates prior distributions
of the underlying model parameters. While classical model selection criteria (e.g. BIC) are
designed to penalize models with a lot of parameters (i.e. structures with many non-zero
entries) and thus do not take into account other descriptions of the model, MMLH offers
more flexibility in terms of structure-related penalty. This may be particularly beneficial,
if some a-priori expert knowledge on the structure of the underlying graph exists. Given
the fact that all model parameters to be estimated are non-negative, we investigated both
a uniform prior and an exponential prior and observed a similar performance for both of
them in all our experiments.

We conducted synthetic experiments in which we compared the proposed algorithm
to other related classical and state-of-art methods, focusing on short time horizons. In
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the considered sparse graph scenarios, MMLH achieved the highest F1 scores among all
comparison methods. Concerning the investigated mid-dense scenario, MMLH showed an
F1 score comparable to MLE-ms, MLE-thr, AIC and ADM4. However, the performance of
MMLH improved with increasing time horizons, the only rivals being the state-of-art MDLH
and the classical AIC. The superior F1 score of MMLH on sparse connectivity graphs may
be explained by the fact that the minimum message length principle prefers short encodings
of the model (i.e. sparse graphs) over longer encodings (i.e. non-sparse graphs) together
with a short description of the data using the model.

Finally, we illustrated the proposed method on G7 sovereign bond data and compared
the inferred causal connections to those of MDLH, ADM4, BIC, and AIC. We demonstrated
that the connectivity graphs obtained via MMLH (with three different parameterizations of
the prior function) are in agreement with the expert knowledge extracted from the literature.

As a possible future work one may investigate connectivity graphs in multivariate
Hawkes processes with other kernels or intensities given by non-linear functional relation-
ships (e.g., ReLU or sigmoid functions). Another research direction is a modification of the
algorithm which allows to increase the performance on non-sparse structures. Moreover, one
may study if/how the presented method benefits from considering directed acyclic graph
structures. For recent approaches in this regard, we refer to Zheng et al. (2018), Zhang
et al. (2022), and Wei et al. (2023a).
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paper was written while I.T. was member of the Institute of Stochastics, Johannes Kepler
University Linz, 4040 Linz, Austria. During this time, I.T. was supported by the Austrian
Science Fund (FWF): W1214-N15, project DK14.

References

Massil Achab, Emmanuel Bacry, Stephane Gaiffas, Iacopo Mastromatteo, and Jean-Francois
Muzy. Uncovering causality from multivariate Hawkes integrated cumulants. In Interna-
tional Conference on Machine Learning, pages 1–10. PMLR, 2017.

Alfred V. Aho and John E. Hopcroft. The Design and Analysis of Computer Algorithms.
Pearson Education India, 1974.

Emmanuel Bacry, Martin Bompaire, Stephane Gäıffas, and Jean-Francois Muzy. Sparse
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Kateřina Hlaváčková-Schindler and Claudia Plant. Heterogeneous graphical Granger causal-
ity by minimum message length. Entropy, 22(12):1400, 2020a.
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