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We develop a Fokker-Planck theory of tissue growth with three types of cells (symmetrically dividing,
asymmetrically dividing, and nondividing) as main agents to study the growth dynamics of human cerebral
organoids. Fitting the theory to lineage tracing data obtained in next generation sequencing experiments,
we show that the growth of cerebral organoids is a critical process. We derive analytical expressions
describing the time evolution of clonal lineage sizes and show how power-law distributions arise in the limit
of long times due to the vanishing of a characteristic growth scale. We discuss that the independence of
critical growth on initial conditions could be biologically advantageous.
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Introduction.—The mechanisms of tissue growth and
renewal are a core topic of stem-cell research [1,2]. In
particular, the role of stochasticity in cell differentiation is
discussed [3–8]. Single cell sequencing [9], combined with
the labeling of cells with inheritable DNA sequences,
enables large scale, quantitative studies of cell populations
in biological tissues, where offspring populations can be
traced back to their individual ancestral cells [10,11]. Such
lineage tracing experiments have revealed that offspring
numbers in mammalian cerebral tissue can vary by several
orders of magnitude [6,12], which supports the hypothesis
that stochasticity is an important property of cell prolifer-
ation and differentiation in the developing cerebral cortex.
This Letter presents a study of lineage tracing data

obtained by sequencing 15 cerebral organoids at different
stages of their development [12]. Cerebral organoids are
highly controllable, self-organized in vitro models of the
human cerebral cortex grown from stem cells. Organoids
are unique because they model human tissues which cannot
be studied in vivo. They have therefore become important
biological tools to study neural development and brain
diseases [13–15]. We take a physics point of view on the
population dynamics of cell lineages in cerebral organoids,
show that organoid growth is a critical process, and discuss
the biological implications.
Model.—Our study begins with the observation that the

numbers of descendants of an individual stem cell in the

organoid (lineage sizes) are roughly distributed according
to a 3=2 power law. This behavior becomes more and more
pronounced at late stages of the organoid development. To
model the growth process mathematically, we build upon
the theory of continuous state branching processes [16,17],
pioneered by Feller [18]. These processes are known to lead
to power-law distributed population sizes [19–21].
We thus introduce the SAN model. It consists of three

agents: symmetrically dividing S-cells that represent stem
cells, asymmetrically dividing A-cells, and nondividing
N-cells (fully developed cells, e.g., neurons). S-cells under-
go symmetric division (S → 2S) at rate gS, differentiation
(S → A) at rate gA, and death (S → 0) at rate g0. A-cells
have committed to a developmental trajectory and produce

FIG. 1. The SAN model of dividing and differentiating
cells. Stem cells (green, S) either divide at rate gS (S → 2S),
differentiate at rate gA (S → A) or die at a rate g0 (S → ø).
Differentiated cells (orange, A) that committed to a develop-
mental trajectory either divide asymmetrically (A → Aþ N) at a
rate gA, or differentiate directly into nondividing N-cells (rate gF).
On average, each A-cell produces N̄ N-cells until it loses the
ability to divide. At criticality, the rates gS (division) and gA
(differentiation) are equal.
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N-cells through asymmetric divisions (A → Aþ N) at a
rate gN until the process is terminated by direct differ-
entiation (A → N) (rate gF). The branching process of
symmetric division and differentiation of S-cells with rates
gS and gA are at the heart of the SAN model. Criticality is
reached, when the two rates are equal: gS ¼ gA. The model
is illustrated in Fig. 1. We solve the SANmodel analytically
in the continuum limit and show how, at long times, 3=2-
power-law distributions of cell populations asymptotically
arise near criticality. Fitting the model predictions to the
empirical data of Ref. [12], we show that cerebral organoid
growth is indeed critical (see Fig. 2 and Table I).
In experiments, organoids are grown for 40 days. As we

will demonstrate, our model can describe tissue growth as a
dynamical process with a limited number of parameters—
three rates and one initial condition.
Fokker-Planck description of lineage dynamics.—We

start with a master equation for the SAN process. Individual
populations of S, A, and N-cells are not accessible in
experiments, since all descendants of a stem cell inherit the
same lineage identifier. We therefore need to calculate
the probability distribution of the total lineage size xtot ¼
sþ aþ n. This calls for a slight simplification. We replace
the processes A → Aþ N and A → N by the assumption
that each A-cell produces N̄ ¼ 1þ gN=gF N-cells over the
course of its existence (where the þ1 stems from the final
A → N conversion) (Fig. 1). Since the N-cell output per
A-cell varies by multiple orders of magnitude less than the
total offspring of an S-cell [22], this simplification does not
affect the model’s main predictions, making it analytically
tractable. N̄ is a fitting parameter in our theory. The total
lineage size becomes xtot ¼ sþ n. The master equation for
the probability distribution f of S- and N-cell numbers s, n
at time t then reads as

∂tfðs; n; tÞ ¼ gSðs − 1Þfðs − 1; n; tÞ
þ gAðsþ 1Þfðsþ 1; n − N̄; tÞ
þ g0ðsþ 1Þfðsþ 1; n; tÞ
− ðgSsþ gAsþ g0sÞfðs; n; tÞ: ð1Þ

The right-hand side terms of Eq. (1) correspond to the
different processes that the cells undergo: S-celll death at
rate g0, S-cell division at rate gS, and differentiation into N̄
N-cells at rate gA. Focusing on large cell counts, we
translate the discrete process of Eq. (1) into a continuous
version given by the Fokker-Planck equation [23]:

∂tfðx; tÞ ¼ Lfðx; tÞ ð2Þ

with the differential operator

L¼
�
−α∂sþ

β

2
∂
2
s−gAN̄∂s∂n−N̄gA∂nþ

gAN̄2

2
∂
2
n

�
s: ð3Þ

Here, x ¼ ðs; nÞ is a vector with continuous cell numbers as
components, α ¼ gS − gA − g0 and β ¼ gS þ gA þ g0.
Regimes of growth: Power laws and avalanches.—Next,

we want to examine the implications of the Fokker-Planck
Eq. (2) for the lineage sizes within a tissue sample. We
solve Eq. (2) with the initial condition fðx; t ¼ 0Þ ¼
δðs − s0ÞδðnÞ. s0 corresponds to the initial number of stem
cells of a lineage—not necessarily unity, since stem cells
proliferate at initial stages of organoid preparation, which
are not considered here otherwise. Using the Fourier
transform of Eqs. (2) and (3) with respect to x and the
method of characteristics to solve the resulting first
order partial differential equation (see the Supplemental

FIG. 2. (a) Histograms of lineage sizes of two organoids sequenced at t ¼ 16 days (blue) and t ¼ 40 days (orange) and the
corresponding probability densities of the SAN model ftotðxtot; tÞ (thick solid lines). Parameter values are given in Table I. Shaded areas
indicate error margins. (b) Theoretical SAN model probability densities and the analytical approximations ft→∞

tot ðxtotÞ (dashed, green
line) and favtotðxtot; tÞ (dashed, dotted lines) of Eqs. (5) and (6) for the parameter estimates of Table I (α < 0—subcritical regime). For
t → ∞ the distribution approaches the weakly truncated 3=2-power-law Lévy distribution ft→∞

tot ðxtotÞ everywhere. (c) SAN model
predictions for small α > 0 (supercritical regime). ftotðxtot; tÞ still approaches ft→∞

tot ðxtotÞ, except for very large lineage sizes, where the
avalanche of active S-cell proliferation dominates. We used α ¼ 0.2, β ¼ 10, s0 ¼ 1, and N ¼ 1.
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Material [24]), we find the characteristic function of
fðx; tÞ, f̃ðq; tÞ ¼ R

∞
−∞ e−iq·xfðx; tÞ.

The distribution of total lineage sizes xtot is given by an
integral of fðx; tÞ over all states with equal xtot:

ftotðxtot; tÞ ¼
Z

xtot

0

fðs; xtot − s; tÞds: ð4Þ

The presence of a critical point can be clearly seen from
the expectation value of the stem-cell population: for finite
α, hsi ¼ s0eαt, whereas for the critical α ¼ 0, hsi ¼ s0.
For t → ∞, ftotðxtot; tÞ approaches a limiting distribution
ft→∞
tot ðxtotÞ—a truncated 3=2-power-law Lévy distribution

[25–27]:

ft→∞
tot ðxtotÞ ≈

s0βe
−α2xtot

β2N̄

2
ffiffiffiffiffiffi
2π

p
N̄ðxtot=N̄Þ3=2 : ð5Þ

This formula holds for α ≪ β. For a more general expres-
sion see Eq. (S 28) in the Supplemental Material [24]. At
criticality the distribution becomes a true 3=2 power law.
The way in which ftotðxtot; tÞ approaches the limit of

Eq. (5) is very different for α > 0 and α < 0. For positive α
and large enough lineage size xtot > x�tot ∼ eαt, there is a
region where ftotðxtot; tÞ is not approximated by Eq. (5).
This is the avalanche region illustrated in Fig. 2(c). Here,
lineages have a high percentage of proliferating S-cells
which are driving the system’s growth. The lineage sizes
are very large, but the probability of their occurrence is very
small. For xtot < x�tot most lineages are fully differentiated
and have stopped growing. In the avalanche regime,
ftotðxtot; tÞ can be approximated by

favtotðxtot; tÞ ≈
ffiffiffi
a

p
exp

�
− a

q�tot
− xtot

q�totN

�
q�tot

ffiffiffiffiffiffiffiffiffiffi
xtotN̄

p I1

�
2

ffiffiffiffiffiffiffiffiffiffi
axtot
q�2totN̄

r �
ð6Þ

where I1ðzÞ is the modified Bessel function of the first kind
and q�totðtÞ and aðtÞ are defined in Eqs. (S 37) and (S 42) in
the Supplemental Material [24].
For α < 0, we also find an avalanche region with an

active S-cell population approximately described by Eq. (6)
(even though the avalanche will stop eventually). As
pointed out in the Supplemental Material [24], the approxi-
mation breaks down for αt > 1, but is still reasonable for
the data at hand. This region is located at large xtot, for
which ftotðxtot; tÞ > ft→∞

tot ðxtotÞ, followed by a rapid trun-
cation at even larger xtot [Fig. 2(b)]. In contrast to the
behavior at α > 0, ftotðxtot; tÞ converges to ft→∞

tot ðxtotÞ
uniformly: the avalanches becomes less and less pro-
nounced as t → ∞, because the S-cells of all lineages
eventually fully differentiate if α ≤ 0 [18]. Our analysis
of the data shows that α≲ 0 holds in experiments (see
Table I).

Dynamics and criticality in experiments.—The exper-
imental data consist of lineage identifier counts for 15
organoids that were sequenced on days 16, 21, 25, 32, and
40—three copies for each day [12]. Accounting for
statistical and readout errors, they can be related to lineage
sizes [22]. Each organoid consists of ∼104 lineages, while
total cell counts evolve from ∼105 at day 16 to ∼106 at day
40. The organoids grow undisturbed from day 11 onward,
when they are not subjected to intrusive procedures any-
more. Four parameters are determined from experimental
data: α, β, s0, and N̄. The data at day 40 is very roughly
distributed according to an x−3=2 power law (see Fig. 2),
indicating near critical growth with α ≪ β.
To determine the parameters precisely, we use the

empirical characteristic function of the data

f̃expðqtotÞ ¼
X
k

eiqtotx
ðkÞ
tot : ð7Þ

Here xðiÞtot are the experimentally determined lineage
sizes. The characteristic function of our model f̃ðqtot; tÞ
[Eq. (S 33)] is then least squares fitted to f̃expðqtotÞ. Moving
the fitting procedure to Fourier space has several advan-
tages: f̃expðqtotÞ is less noisy than the empirical probability
distribution, and no smoothing procedures such as kernel
density estimates need to be used. Approximations needed
when transforming f̃ðqtot; tÞ to real space are avoided.
Model fitting via the characteristic function has been
considered, e.g., in Refs. [28,29]. Our estimates for the
model parameters are shown in Table I. In Fig. 2(a) we
show a comparison between the probability densities of the
SANmodel ftotðxtot; tÞ and binned histograms of the data at
days 16 and 40. We used 500 bins for the data at day 40,
and 80 bins for day 16. In the Supplemental Material [24],
we show that the agreement is independent of bin size.
Small lineages (< 20 cells) were excluded since these
lineages, with a high probability, died out at preparatory
stages. ftotðxtot; tÞ is found using a fast Fourier transform
of f̃ðqtot; tÞ.
The estimates of Table I show that organoid growth is

indeed a critical process with jαj ≪ β. It also shows that
even at day 40 the process is far from its t → ∞ limit

TABLE I. Parameters of the SAN model estimated from
experimental data with 1 standard deviation error. α is the net
growth rate of the stem-cell population, and β characterizes the
stochasticity of the system. s0 and N̄ are the average initial
number of stem cells and the average number of N-cells produced
by each stem cell, respectively.

α (day−1) −0.018� 0.004
β (day−1) 4� 1

s0 9� 3

N̄ 2� 1
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(αt ≈ 0.8) and the organoids maintain an avalanchelike
population of S-cells at large xtot.
The SAN model is only a minimal model of biological

reality and as such cannot account for the full spread of the
experimental data. It does, for example, not account for the
data at small xtot (see Fig. 2). Many small lineages have
died out in the early stages of the organoid development
and are obviously not described by SAN dynamics. We
assumed that all lineages consist of s0 stem cells at day 11.
This is only an average. While for large lineages the initial
number of stem cells is unimportant since the growth is
stochastic, it matters for lineages that differentiated quickly.
Other neglected aspects are the time dependence of rates,
and the non-Markovian nature of division and differentia-
tion. Despite these caveats, the SAN model proves to be
surprisingly robust and fits the experimental data well. In
the Supplemental Material [24], Sec. D, we perform
Kolmogorov-Smirnov (KS) tests on different intervals
for the data at day 40. KS tests are a sensitive tool to test
the power-law behavior of empirical data [30–32]. We find
that the test produces high p-values (up to p ≈ 0.8) in the
region between xtot ≈ 200 and xtot ≈ 2000, where the power
law is most pronounced.
Extinction trajectories.—We now turn to the influence of

criticality on the dynamics of single lineages. We focus on
α ¼ 0 and restrict ourselves to S-cells as the only dynami-
cal component. Neglecting the dynamics of the n variable,
we drop all but the first two terms in L in Eq. (3). The
reduced Fokker-Planck equation is equivalent to the sto-
chastic differential equation

ds ¼
ffiffiffiffiffi
βs

p
dwðtÞ: ð8Þ

wðtÞ is the standard Brownian motion. It is known that any
sðtÞ described by Eq. (8), at some time τ, reaches sðτÞ ¼ 0
[18], i.e., the S-cell population of the lineage goes extinct
due to differentiation. Using the Onsager-Machlup formal-
ism [33], we find the extinction trajectory

sτðtÞ ¼ s0

�
1 −

1

τ

��
1þ

�
τ

τ̂
− 1

�
t
τ

�
: ð9Þ

It describes the most probable path between sð0Þ ¼ s0 and
sðτÞ ¼ 0 (see Fig. 3). Here, τ̂ ¼ 4s0=

� ffiffiffi
3

p
β
�
. Details of the

calculation are given in the Supplemental Material [24].
Equation (9) and Fig. 3 show that at criticality, the cells lose
memory of the initial condition s0, since for τ̂ ≪ t < τ

sτðtÞ ∼
ffiffiffi
3

p
βtð1 − t=τÞ=4: ð10Þ

This is not the case for α ≷ 0.
Most importantly, since the lineage sizes are power-law

distributed, an overwhelming majority of organoid cells
will belong to a few very large lineages. For these lineages,
τ ≫ τ̂ will hold, meaning that their development will be
largely independent of the initial condition s0 [Eq. (10)].
This is an essential feature of critical growth: it is inde-
pendent of the initial conditions.
Discussion.—Finally, we discuss possible implications

of critical tissue growth. Tuning itself to the critical point,
the organoid maximizes the stochasticity of the growth
process. We are not dealing with stochastic growth at a
given rate. Instead, the characteristic timescale of growth
vanishes (α ¼ 0), and growth is fully determined by the
stochasticity of the process. This is in contrast to many
other examples of organ growth and regeneration [34–36]
where the growth process is arrested in a coordinated
manner. In critical growth, the long term dynamics of large
lineages, which make up most of the organoid, does not
depend on initial conditions. Stochastic fluctuations have
erased all memory of the lineage’s initial size. This might
hint at a biological advantage of the critical regime: the
outcome of the growth process is less influenced by
perturbations in its initial stages, when the tissue is most
susceptible to disturbances.
Second, the critical nature of the process implies a

mechanism balancing the rates of division and differ-
entiation of stem cells. Such balancing mechanisms are
known from homeostatic stem-cell renewal [37]. One
distinguishes between mechanisms based on asymmetric
division (only one daughter cell is a stem cell while the
other differentiates) and population asymmetry (the rates of
stem-cell loss and division are balanced on the population
level). The first strategy cannot produce critical lineage

� �̂ 4

� �̂ 2 � �̂ � 2�̂ � 4�̂
0

5

10

0.0 1.3 2.6 5.2 10.4 20.8

t [days]

s �
�t �
�[c

el
ls

] s0 � 1

s0 � 9

FIG. 3. Single lineage stem-cell populations for initial sizes s0 ¼ 1 (solid lines) and s0 ¼ 9 (dotted lines) and different extinction times
τ [see Eq. (9)]. For large extinction times τ, the trajectories for s0 ¼ 1 and s0 ¼ 9 become equal for large times: In the critical state the
population dynamics is dominated by stochasticity, and hence obtains a universal form independent of the initial conditions.
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dynamics because it is strictly deterministic. On the
population level, stem-cell niches are a well-known regu-
latory mechanism for homeostatic tissues [7,38,39] found
in intestinal crypts [38] and the adult human brain [40]. The
available niche space limits the number of possible divi-
sions. For growing tissues, the competition for a scarce
resource, e.g., space or nutrients, can provide a feedback
loop that limits the stem cells’ ability for division at the
population level. Such a feedback loop is often encountered
in models of self-organized criticality (SOC) [19], where
the event probabilities are balanced and tuned to the critical
point, e.g., by energy conservation. For cerebral tissue, the
currently available data give no clues to the nature of the
balancing mechanism. The search, however, could inspire
future experimental research. Recent advances in lineage
tracing allow one to study the spatial distribution of
lineages in cerebral organoids using light-sheet microscopy
and spatial transcriptome sequencing [41]. Inferring the
spatial dynamics of the growth process could help to
identify the mechanism behind organoid SOC. Quanti-
tative lineage tracing experiments with other organoid types
such as intestinal [42,43], retinal [44,45], or cardiac
organoids [46,47] could reveal whether critical growth is
specific to cerebral tissue, or whether it is a more general
organizing principle.
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