
On the Complexity of Algorithms with Predictions
for Dynamic Graph Problems
Monika Henzinger #

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Barna Saha #

University of California San Diego, La Jolla, CA, USA

Martin P. Seybold #

University of Vienna, Austria

Christopher Ye #

University of California San Diego, La Jolla, CA, USA

Abstract
Algorithms with predictions is a new research direction that leverages machine learned predictions
for algorithm design. So far a plethora of recent works have incorporated predictions to improve on
worst-case bounds for online problems. In this paper, we initiate the study of complexity of dynamic
data structures with predictions, including dynamic graph algorithms. Unlike online algorithms, the
goal in dynamic data structures is to maintain the solution efficiently with every update.

We investigate three natural models of prediction: (1) δ-accurate predictions where each predicted
request matches the true request with probability δ, (2) list-accurate predictions where a true request
comes from a list of possible requests, and (3) bounded delay predictions where the true requests
are a permutation of the predicted requests. We give general reductions among the prediction
models, showing that bounded delay is the strongest prediction model, followed by list-accurate,
and δ-accurate.

Further, we identify two broad problem classes based on lower bounds due to the Online Matrix
Vector (OMv) conjecture. Specifically, we show that locally correctable dynamic problems have
strong conditional lower bounds for list-accurate predictions that are equivalent to the non-prediction
setting, unless list-accurate predictions are perfect. Moreover, we show that locally reducible dynamic
problems have time complexity that degrades gracefully with the quality of bounded delay predictions.
We categorize problems with known OMv lower bounds accordingly and give several upper bounds
in the delay model that show that our lower bounds are almost tight.

We note that concurrent work by v.d.Brand et al. [SODA ’24] and Liu and Srinivas [arXiv:2307.08890]
independently study dynamic graph algorithms with predictions, but their work is mostly focused
on showing upper bounds.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases Dynamic Graph Algorithms, Algorithms with Predictions

Digital Object Identifier 10.4230/LIPIcs.ITCS.2024.62

Related Version Full Version: https://arxiv.org/abs/2307.16771 [32]

Funding Monika Henzinger : This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant
agreement No. 101019564) and the Austrian Science Fund (FWF) project Z 422-N, project I 5982-N,
and project P 33775-N, with additional funding from the netidee SCIENCE Stiftung, 2020–2024.
Barna Saha: This project is partially supported by NSF grants 1652303, 1909046, 2112533, and
HDR TRIPODS Phase II grant 2217058.

Acknowledgements We would like to thank Andrea Lincoln for many helpful discussions and
insightful comments.

© Monika Henzinger, Barna Saha, Martin P. Seybold, and Christopher Ye;
licensed under Creative Commons License CC-BY 4.0

15th Innovations in Theoretical Computer Science Conference (ITCS 2024).
Editor: Venkatesan Guruswami; Article No. 62; pp. 62:1–62:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:monika.henzinger@ista.ac.at
https://orcid.org/0000-0002-5008-6530
mailto:bsaha@ucsd.edu
https://orcid.org/0000-0002-6494-3839
mailto:mpseybold@gmail.com
https://orcid.org/0000-0001-6901-3035
mailto:czye@ucsd.edu
https://orcid.org/0009-0004-0528-5639
https://doi.org/10.4230/LIPIcs.ITCS.2024.62
https://arxiv.org/abs/2307.16771
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

62:2 On the Complexity of Algorithms with Predictions for Dynamic Graph Problems

1 Introduction

Modern Machine Learning predictions models are surprisingly accurate in practice and
exploiting their, seemingly ever improving, accuracy is a novel direction in theory. Algorithms
with predictions provide a framework to study whether machine-learned advice can improve
algorithmic performance. Ideally, an algorithm with predictions should improve significantly
over a worst-case algorithm if the given predictions are perfect while never performing
worse than a worst-case algorithm, regardless of prediction quality. The performance of the
algorithm should improve with the quality of the predictions and the performance guarantees
of the algorithm should hold without knowledge of prediction quality.

In online problems1, various prediction models (e.g. [8, 27]) have been studied extensively.
There are a wide range of problems where predictions allow to improve quality over worst-
case optimal competitive ratios, such as counting sketches [34, 1, 21], bloom filters [38],
caching/paging [50, 43, 10, 35, 4], ski rental [47, 9, 5, 51], correlation clustering [52], among
many others.2 The standard assumption is that the algorithm is given access to the predictions
for the whole sequence of operations (or requests) before the algorithm has to produce its
first output, i.e, during preprocessing. Dependent on the quality of the prediction, algorithms
with prediction should provide a smooth transition between the online and offline problems.

In this paper, we initiate the study of complexity of dynamic data structures and
algorithms with predictions. Unlike in online algorithms, the main goal in the dynamic
setting is to maintain the solution efficiently with every update. To the best of our knowledge,
investigating the potential of algorithms with prediction in the dynamic setting has only
just started with our present work, and the independent, concurrent work of van den Brand,
Forster, Nazari, and Polak [54] and Liu and Srinivas [42]. Borrowing terminology from
online algorithms with prediction, we have the following three goals in designing dynamic
algorithms with prediction. 1) The algorithm should be consistent, achieving the performance
of an optimal offline algorithm when the prediction quality is high. 2) The algorithm
should be robust, matching the performance of an (online) dynamic algorithm regardless
of prediction quality. 3) The algorithm’s performance should degrade gracefully between
the two extremes as prediction quality deteriorates. Given the predictions, we can allow
polynomial preprocessing time. When the actual updates arrive, the dynamic data structure
must process them fast provided the available information from preprocessing.

As an example, consider the Online Matrix Vector (OMv) problem which has been
instrumental in developing lower bounds for dynamic data structures [29]. In this problem,
given a Boolean matrix M of size n× n, and an online sequence of n vectors v⃗1, . . . , v⃗n, the
algorithm must compute Mv⃗t before seeing v⃗t+1. While the OMv conjecture states that
the total time needed to process these n vectors cannot be sub-cubic, if these vectors are
given apriori as part of predictions, then one could have preprocessed them in O(nω) time
using fast matrix multiplication where ω < 2.373, and output the results in O(n) time per
vector. This is often called the offline-online gap. Of course, it is unrealistic to assume that
predictions are completely accurate. But this already showcases ample room for potential
improvements in dynamic data structures due to algorithms with predictions.

For dynamic graph problems, a line of work initiated by [29] establishes conditional
lower bounds on the time trade-offs between updates and queries for a large number of
dynamic problems, based on the OMv conjecture (see e.g., [16, 26, 12, 30, 31]). However,

1 We use online to denote problems where the input consists of a sequence of operations, which can
modify the input or ask a query about the input, and offline to denote that all input is given at once.

2 See, for example, https://algorithms-with-predictions.github.io or the survey [45].

https://algorithms-with-predictions.github.io

M. Henzinger, B. Saha, M. P. Seybold, and C. Ye 62:3

these reductions typically consist of update sequences that present repetitive behaviour, e.g.
repeatedly requesting certain updates, asking a query, and then reverting the updates again.
Algorithms with predictions might have a tremendous potential for improving the running
time bounds on such sequences. The central question that we investigate in this work is:

Can predictions lead to provably faster dynamic graph algorithms?

1.1 Contribution and Paper Outline
Warm Up: OMv with Predictions. Given the central importance of the OMv Problem,
we start by investigating if algorithms with predictions can bypass the bounds of the OMv
Conjecture (Section 2.2). The OMv problem consists of an n×n Boolean matrix M which can
be preprocessed in polynomial time. Then a sequence of n Boolean vectors v1, v2, . . . arrives
and the Boolean product Mv⃗t needs to be output before v⃗t+1 arrives. Suppose the algorithm
is given prediction (v̂1, . . . , v̂n). A natural measure to quantify prediction errors could be the
maximum ℓ1 distance or Hamming distance between v̂t and v⃗t for t = 1, 2, . . . , n. We show a
smooth transition in complexity across the offline-online gap for OMv that uses predictions
with bounded Hamming distance (Theorem 7). Moreover, our lower bound (Theorem 8) shows
that the algorithm is essentially optimal under the OMv conjecture.

Our study then turns to analyzing conditions that allow or prevent obtaining similar
positive results for more general dynamic data structures and graph problems with appropriate
prediction models.

Prediction Models for Dynamic Problems and General Lower Bounds. We propose and
analyze three quality measures for predictions for dynamic problems. These are (1) δ-accurate
predictions, where each predicted request matches the true request with probability at least δ,
(2) list-accurate predictions, where the prediction consists of a list of possible requests for each
time step, and (3) bounded-delay predictions, where the true requests are some (unknown)
permutations of the predicted requests.

The δ-accurate predictions [27] and bounded-delay predictions [47, 50, 43, 7, 41] have
already been studied in the online algorithms literature. The list-accurate predictions are
similar to the multi-prediction model [3, 17, 6] where the best prediction from a list needs to
be selected at every step. It can also be seen as a generalization of δ-accurate predictions by
providing a list of possibilities, out of which one is the correct update. For algorithms with
δ-accurate predictions, where δ ∈ (0, 1), we show that any lower bound on the time complexity
from the non-prediction setting carries over, reduced by a factor of 1− δ (Proposition 10).
Then we give general reductions between the prediction models, showing that lower bounds
for bounded delay predictions imply lower bounds for list-accurate predictions (Lemma 17),
which imply lower bounds for δ-accurate predictions (Lemma 12). This provides a natural
hierarchy in the power of prediction models. Furthermore, we hope our “Alternating Parallel
Simulation” technique (Lemma 17) is of interest for analyzing further prediction models.

Locally Correctable Problems: Hardness for List-Accurate Predictions. In Section 5, we
introduce a class of locally correctable dynamic problems (defined informally below), and
show that OuMv lower bounds for these problems continue to hold for any algorithm with
list accurate predictions, unless the predictions are perfect (i.e. the list of each time step has
size 1). The OuMv problem is a modification of the OMv problem where we are given two
sequences of n vectors u⃗1, u⃗2, . . . , u⃗n and v⃗1, v⃗2, . . . , v⃗n along with the matrix M of n × n

ITCS 2024

62:4 On the Complexity of Algorithms with Predictions for Dynamic Graph Problems

s

u1 u2 u3 u4

v1 v2 v3 v4
v⃗ =< 1, 0, 0, 1 >

u⃗ =< 1, 0, 1, 0 >

M=

1 1 0 0
1 0 1 0
0 1 0 1
0 1 1 0

Figure 1 A small example of the OuMv lower bound construction for the #s-△ problem. The
diagram shows that a 1 in the matrix or in vectors corresponds to an edge existing in the graph.

dimensions. The product u⃗⊤
t Mv⃗t needs to be computed before seeing u⃗t+1, v⃗t+1. The OuMv

conjecture excludes algorithms with total update and query time that is subcubic in n, and
follows from the OMv conjecture (see Theorem 6).

An L-list accurate prediction (Definition 11) for a request sequence of length T consists
of T lists of size ≤ L, such that the t-th list must contain the true request at time t.

▶ Theorem 1 (Informal, cf. Theorem 27). Suppose P is a locally correctable problem. Then,
the conditional lower bound from OuMv holds for P even if the algorithm is given 2-list
accurate predictions.

We will illustrate our lower bounds using the simple #s-△ problem: counting the number
of triangles containing a special vertex s. The #s-△ problem has a simple lower bound from
the OuMv conjecture, as shown in Figure 1. Specifically, for a given n× n matrix M , we let
GM be a bipartite graph with vertex sets U, V each of size n. In GM , connect (ui, vj) if and
only if M [i][j] = 1. Our underlying graph is GM with an additional special vertex s. Given
a vector update (u⃗t, v⃗t), connect (s, ui) whenever u⃗t[i] = 1 and (s, vi) whenever v⃗t[i] = 1.
Then, #s-△ exactly computes u⃗⊤

t Mv⃗t.
To construct an adversarial request sequence for an algorithm with 2-list accurate

predictions, we add an additional vertex so that the underlying graph is GM ∪ {s, t}. The
2-list accurate prediction is

Bt = ({(s, ui), (t, ui)})n
i=1 ◦ ({(s, vi), (t, vi)})n

i=1 ◦ {q}

for each vector (u⃗t, v⃗t), where ◦ is the concatenation operation. Given the vector update, the
adversary can ensure (s, ui) (resp. (s, vi)) is an edge if and only u⃗t[i] = 1 (resp. v⃗t[i] = 1).
Whenever the graph already satisfies the condition, the adversary flips (t, ui) (resp. (t, vi))
so that on query q, #s-△ computes u⃗⊤

t Mv⃗t.
We now discuss the general lower bound for locally correctable problems. Our lower

bound follows from a reduction from OuMv such that the set of request sequences admit
efficiently computable 2-list accurate predictions. The basic idea is that for this class of
problems a generic “universal list prediction sequence” can be efficiently created (without
knowledge of the exact reduction sequence arising in the hardness reduction). In the #s-△
problem, this is the sequence B1 ◦ . . . ◦ Bn defined above. Now any dynamic algorithm
(without prediction) can efficiently construct this universal prediction in the preprocessing
phase and then execute an algorithm with prediction using the universal prediction. Thus,
no efficient dynamic algorithm with predictions can exist unless the OuMv conjecture is false.

Roughly speaking, a locally correctable problem P satisfies the following three properties:
1) any OuMv instance can be simulated by choosing some subsequence of a universal request
sequence, containing updates needed for answering the query as well as updates that will
not be useful for answering the queries, called “junk” updates, 2) any P instance can be

M. Henzinger, B. Saha, M. P. Seybold, and C. Ye 62:5

augmented efficiently into an instance containing both useful and useless updates, and 3)
the answer to any query in the augmented instance can be corrected efficiently to answer
the corresponding query in the original instance. For the #s-△ problem, we satisfy 1) any
vector update can be simulated by choosing a subsequence of the requests

B∗ = ((s, ui))n
i=1 ◦ ((s, vi))n

i=1 ◦ q

2) we can augment the instance GM ∪ {s} with the extra vertex t to obtain GM ∪ {s, t}, and
3) since (s, t) is never an edge, #s-△(GM ∪ {s}) = #s-△(GM ∪ {s, t}) so that any query in
the augmented instance in fact answers the query in the original instance.

We can then construct the following reduction from an OuMv instance. Typically, an
OuMv based reduction encodes the round’s query into the problem instance using some
subsequence of possible updates to modify the data of P only where necessary. Instead,
our reductions perform the specified update where necessary and otherwise insert a “junk”
update. As a result, obtaining a 2-list accurate prediction is simple: The list contains the
update itself and an arbitrary “junk” update. For the #s-△ problem, the true update is
(s, ui) while the “junk” update is (t, ui), exactly the 2-list accurate prediction given by Bt.

Locally Reducible Problems: Hardness for Bounded Delay Predictions. In Section 6, we
introduce a class of locally reducible dynamic problems, where proving lower bounds against
algorithms with bounded delay predictions is possible. As with list accurate predictions,
our lower bounds rely on constructing an OuMv-based reduction such that a bounded delay
prediction for the set of resulting sequences can be constructed efficiently.

Again, we will use #s-△ as a concrete example to guide the ideas behind the general
reduction. Informally, a prediction has bounded delay d (Definition 15) if the prediction
ρ̂ = π(ρ) where π is d-close to the identity permutation and ρ is the true request sequence.

Roughly speaking, a locally reducible problem satisfies two properties: 1) any OuMv
instance can be simulated by choosing some subsequence of a universal request sequence and
2) each update, if repeated often enough, say ord times, leaves the dynamic data structure
unchanged.3 Inspired by algebra, we call such operations cyclic. For the #s-△ problem, 1)
any vector update is simulated by some subsequence of B∗ as in the locally correctable case,
and 2) flipping an edge twice leaves the graph unchanged.

As before, a typical OuMv reduction proceeds by choosing a subset of possible updates in
the problem instance in order to encode a vector update. Our prediction then simply predicts
that in each query vector, every possible update will be necessary. For #s-△, this consists
of one copy of sequence B∗ for each update vector. Denote each set of updates required to
encode one vector update a block. P is (u, q)-locally reducible if each block contains u(n)
updates and q(n) queries. Note #s-△ is (2n, 1)-locally reducible.

Since each block consists of some subset of the universal update set, an update will not
occur before its predicted block, but it is possible an update occurs after its predicted block.
To ensure that a request does not occur too long after its expected block (say a request has
not occurred in ord blocks but it was contained in the universal request sequence already ord

times), we perform the update ord times, using property 2) to show that the underlying data
structure does not change. It follows that an update cannot occur more than ord blocks after
its predicted block. Since this sequence has small delay relative to the predicted sequence,
the universal request sequence is a prediction with small delay. Our lower bound then follows,
as any dynamic algorithm can construct this prediction during the preprocessing phase.

3 Alternatively, we could model this by giving each update operation a corresponding “undo” operation.

ITCS 2024

62:6 On the Complexity of Algorithms with Predictions for Dynamic Graph Problems

Table 1 List of algorithms with predictions with d bounded delay. Each algorithm has polynomial
preprocessing time. A running time involving k states that the algorithm can handle predictions
that are d delayed with k outliers. The lower bounds state that no algorithm with polynomial
preprocessing time exists for any constant ε > 0 that attains the stated update and query times
simultaneously, unless the OMv-conjecture fails.

Problem Upper Bounds Lower Bounds
Update Query Reference Update Query Reference

#s-△ d + k 1 [32] d1−ε d2−ε Thm. 41
#s-△ 1 (d + k)2 [32] d1−ε d2−ε Thm. 41

Subgraph Connectivity 1 d2 [32] d1−ε d2−ε Thm. 41
Transitive Closure 1 d2 [32] d1−ε d2−ε Thm. 41

All Pairs Shortest Path 1 d2 [32] d1−ε d2−ε Thm. 41
Erickson’s Problem d + k 1 [32] d1−ε d2−ε Thm. 41
Erickson’s Problem 1 (d + k)2 [32] d1−ε d2−ε Thm. 41

For the #s-△ problem, suppose an edge (s, ui) has been flipped less than j − 1 times
by the j-th vector update. Then, the adversary flips edge (s, ui) twice. In particular, the
j-th occurrence of any edge flip must occur between the (j − 1)-th and (j + 2)-th queries.
Since our constraints also ensure that there are roughly 2n edge flips between each query,
this bounds the overall delay to O(n). In particular, for the #s-△ problem, this implies that
O(n)-delayed predictions cannot offer any improvement over a worst-case algorithm.

▶ Theorem 2 (Informal, cf. Theorem 33 and Theorem 40). Suppose P is (u, q)-locally reducible
from OuMv. Then, the conditional lower bound from OuMv holds for P even if the algorithm
is given O(u(n) + q(n))-bounded delay predictions.

Using similar techniques, we show that the lower bound degrades gracefully as the delay
error of the prediction decreases (Theorem 41).

Examples of Locally Correctable and Locally Reducible Problems. We use our frameworks
to provide lower bounds against algorithms with predictions for the following problems:
Subgraph Connectivity [24, 19, 14, 36, 2, 29], Reachability [2, 29], Shortest Path
[23, 18, 48, 49], Distance Spanners/Emulators [12], Maximum Matching [28, 11, 53,
16, 37], Maximum Flow [44, 29, 16], Triangle Detection [29], Densest Subgraph
[29], d-Failure Connectivity [20, 37], Vertex Color Distance Oracle [33, 15, 39,
22], Weighted Diameter [25, 29], Strong Connectivity [2, 29], Electrical Flows
[26], Erickson’s Maximum Value Problem [46, 29], Langerman’s Zero Prefix Sum
Problem [46, 29]. All turn out to be Locally Reducible Problems. Additionally, all are
Locally Correctable Problems as well, with exception of Erickson’s Maximum Value Problem.

Dynamic Algorithms with Predictions. Finally, we give several algorithms in the fully
dynamic edge update model with bounded delay predictions for the problems #s-△, Subgraph
Connectivity, Transitive Closure, All Pairs Shortest Path, and Erickson’s Maximum Value
Problem. Some of them can even handle outliers, which are updates that were not at all
in the predicted set (Table 1). These algorithms with predictions are conditionally optimal
with respect to the prediction quality, matching our conditional lower bounds for d-delayed
predictions in either the update or query time. Moreover, none of these algorithms need to
know the prediction quality (the error parameter d).

M. Henzinger, B. Saha, M. P. Seybold, and C. Ye 62:7

To design our algorithms, we show that the difference between the state of the predicted
data and the actual data scales with the delay error of the prediction. Furthermore, this
difference can be maintained efficiently. In the preprocessing phase, we compute the predicted
data structures, extracting useful intermediate values we require from the predicted data
structure. Now, given the online request sequence up to some time step t, we show that by
making small changes to the predicted data structure (on the order of the predictions delay)
we can recover the result of the query on the actual data structure from precomputed values
on the predicted data structure. Details are deferred to the full version [32].

Concurrent Work. Independent work of van den Brand, Forster, Nazari, and Polak [54] and
Liu and Srinivas [42] jointly initiate the study of dynamic graph algorithms with predictions,
focusing on upper bounds. [54] gives (among many other things) partially dynamic algorithms
with bounded delay predictions for transitive closure and all pairs shortest path, and show
that these algorithms are optimal with a lower bound giving the same result as Theorem 40.
[42] considers the prediction model where a deletion time is predicted for every inserted
edge, which is different from our proposed models. To the best of our knowledge, the above
summarizes any overlapping contribution with [54] and [42].

2 Preliminaries and OMv with Predictions

We define dynamic data structures in general.

▶ Definition 3 (Dynamic Data Structure). Let P be a dynamic problem. For any instance x

of P, let X (x) be the set of possible updates on x and let Q(x) be the set of possible queries.
When the instance is clear, we omit the subscripts and write X ,Q. In the pre-processing
step, the algorithm receives as input an initial data structure x0. At each time step t, the
algorithm receives a request ρt ∈ X ∪Q. Given a query ρt ∈ Q, the algorithm must answer
the query correctly on the current structure xt, where xt is obtained by applying request
sequence (ρ1, ρ2, . . . , ρt−1) to x0. The query must be answered before ρt+1 is revealed.

If the updates X do not allow element deletions or do not allow element insertions, the
data structure is called partially dynamic, otherwise it is fully dynamic.

For a given request sequence ρ, let ρ[a,b] = (ρa, . . . , ρb) denote the sub-sequence between
the a-th and b-th time step. Let ρ≤t = ρ[1,t] denote the prefix of the first t requests in ρ and
let ρ<t denote ρ≤t−1.

2.1 The Online Matrix Vector Problem
Our hardness results are built on the OMv Conjecture of [29].

▶ Definition 4 (OMv and OuMv [29, Def. 2.6]). The OMv (resp. OuMv) problem with
parameter n consists of a n × n Boolean matrix M that can be preprocessed in time p(n).
This is followed by n-rounds of processing online input vectors.

The OMv problem consists of n vectors v⃗1, . . . , v⃗n. For all t, the algorithm must output
Mv⃗t before v⃗t+1 arrives.

The OuMv problem consists of n vector pairs (u⃗1, v⃗1), . . . , (u⃗n, v⃗n). For all t, the al-
gorithm must output u⃗⊤

t Mv̂t before (u⃗t+1, v⃗t+1) arrives.

We call the processing of each individual input vector a round. Clearly, every OMv round
can be solved in O(n2) time, yielding a trivial O(n3) algorithm. The OMv conjecture claims
that this is basically optimal (cf. [29, Conj. 1.1]):

ITCS 2024

62:8 On the Complexity of Algorithms with Predictions for Dynamic Graph Problems

▶ Conjecture 5. For any constant ε > 0, there is no algorithm with polynomial preprocessing
time and O(n3−ε) total update time that solves OMv with an error probability at most 1/3.

This conjecture leads to the following result for the OuMv problem (cf. [29, Thm. 2.7].).
We simply call this the OuMv conjecture even though it is just a consequence of the OMv
conjecture and not a different conjecture.

▶ Theorem 6. For any constant ε > 0, the OMv conjecture implies that there is no algorithm
with polynomial preprocessing time and total update time O(n3−ε) that solves OuMv with an
error probability at most 1/3.

2.2 Upper and Lower Bounds for OMv with Predictions
We begin by discussing how predictions affect the complexity of the OMv Problem, leading to
bounds that have a smooth transition across the offline-online gap in terms of the prediction
quality. We also give conditional lower bounds, showing that this result is optimal.

The extended Hamming distance EH(s, t) of two bit-strings s, t ∈ {0, 1}n is defined as
follows. Let ℓ ≥ 1 be the largest index with s1 = s2 = . . . = sℓ and t1 = t2 = . . . = tℓ, then

EH(s1 . . . sn, t1 . . . tn) := (s1 + t1 mod 2) + EH(sℓ+1 . . . sn, tℓ+1 . . . tn) .

Since each block-difference is only counted once, the EH-distance is at most the Hamming
distance, where the latter is equal to the L1-distance on {0, 1}n. As a result, upper bounds
that are sensitive to EH-distance are stronger than bounds sensitive to L1.

▶ Theorem 7 (OMv with Predictions). Let M ∈ {0, 1}n×n and ∆ ∈ [0, n]. Given predictions
(v̂1, . . . , v̂n) that have EH(v̂t, v⃗t) ≤ ∆ for all t, each arithmetic product Mv⃗t can be computed
in time Q(n, ∆) = O(n∆), after preprocessing of M and (v̂1, . . . v̂n) in O(nω) time.

Proof. In the preprocessing phase, compute (ŷ1, . . . , ŷn) = M(v̂1, . . . , v̂n) using fast matrix
multiplication. Compute a Prefix-Sum array Di for each row i of M . That is, Di when
queried with range [a, b] of column indices, returns the value

∑
k∈[a,b] Mi,k = Di(b)−Di(a−1)

in O(1) time. Each Di can be computed in O(n) time, so preprocessing takes O(nω) time.
To compute the arithmetic result y⃗ = Mv⃗ for the online input v⃗ ∈ {0, 1}n of some OMv

round, we determine in O(n) time the blocks b1, . . . , b∆ of index-ranges that contribute to
the extended Hamming distance EH(v̂, v⃗). Next, we initialize the result vector y⃗ with the
precomputed vector ŷ. Then we iterate, over each row j ∈ [n] and each block bi = [b−

i , b+
i],

and add to the j-th entry in y⃗ the value (v⃗b+
i
− v̂b+

i
)
∑

k∈bi
Mi,k, where (v⃗b+

i
− v̂b+

i
) ∈ {−1, +1}

since v⃗ and v̂ are bit-vectors. This requires time O(n∆). ◀

Note that, after preprocessing, our algorithm with prediction requires time O(n∆) per
round. This upper bound is also nearly the best possible that can be achieved for algorithms
with predictions that have extended Hamming distance at most ∆, unless the OMv-conjecture
is false. Specifically, we show a conditional lower bound stating that no algorithm can achieve
query time O(n1−c∆ + n∆1−c) for any c > 0.4

▶ Theorem 8. Let ε ∈ (0, 1) be a constant and ∆ ∈ [1, nε]. There is no algorithm with
predictions of EH-distance at most ∆ for the OMv problem with amortized time Q(n, ∆) =
O(n2−c∆ + n2∆1−c) for any c > 0, if the OMv-conjecture is true.

4 This is captured by ˜̃o(n∆) with Definition 19.

M. Henzinger, B. Saha, M. P. Seybold, and C. Ye 62:9

3 Dynamic Prediction Models with General Lower Bounds

The first question to ask is how to define algorithms with predictions in the dynamic setting.
In this section, we propose several prediction models for dynamic problems and show that
some definitions of predictions are so weak that almost the same lower bounds on time
complexity can be shown as in the setting without prediction.

3.1 δ-Accurate Predictions

We begin with the simplest, very general formulation that lead to improved algorithms (see
e.g. [27]). Informally, a predicted request sequence ρ̂ is δ-accurate if each predicted request
matches the respective online request with probability at least δ.

▶ Definition 9 (δ-Accurate Predictions). Let δ ∈ [0, 1]. Consider a dynamic problem with
update set X and query set Q. Let D be a distribution over sequences of T requests, i.e. over
(X ∪Q)T , and ρ̂ = (ρ̂1, ρ̂2, . . . , ρ̂T) be a sequence of T predicted requests.

Then ρ̂ is an δ-accurate prediction for D, if each ρ̂t in ρ̂ has Pr
ρ∼D

[ρt = ρ̂t] ≥ δ .

This is a natural model of prediction as accuracy is one of the most common metrics to
evaluate the performance of a machine learning model. However, we show that it is too weak
of a notion to design efficient dynamic algorithms with prediction. The following proposition
shows that for any constant δ < 1, a dynamic problem that is hard in the online setting
remains hard even if an δ-accurate prediction is available in advance. For example, even if a
dynamic algorithm has a prediction that is correct for 99.9% of future requests, known lower
bounds for the online problem still hold.

▶ Proposition 10 (Request Amplification). Let δ ∈ (0, 1) be a constant and f a non-constant,
non-decreasing function in n. Suppose there is a dynamic problem P with queries Q ̸= ∅
such that any algorithm processing T requests on instances of size n requires time Ω(Tf(n)).
Then there exists a distribution D of request sequences from P such that any algorithm with
δ-accurate predictions for D requires time Ω(T (1− δ)f(n)).

Thus, for any constant δ < 1, the amortized time per request is at least Ω (f(n)). This
shows that δ-accurate predictions are not particularly powerful for dynamic problems with
known lower bounds. This motivates the search for alternative stronger models of prediction
under which it may be possible to harness the power of efficient offline algorithms.

One shortcoming of δ-accurate predictions are their generality. Regardless of the predic-
tion, the support of the distribution D can be every possible request sequence of length T , if
we assign small enough probability to request sequences that do not match well with the
prediction. We thus investigate also more restrictive models that restrict the possible input
sequences S ⊂ (X ∪Q)T for a given prediction.

3.2 List Accurate Predictions

Next we investigate a deterministic model for predictions that does not require a prediction
to exactly specify the t-th request, but only to reveal “some information” about it. If each
request is represented by a bit-string of O(log |X ∪ Q|) bits, the following prediction model
can be thought of as revealing a subset of these bits, i.e. the prediction ρ̂t for step t is a set,
of size at most L, of possible requests such that the t-th request ρt ∈ ρ̂t.

ITCS 2024

62:10 On the Complexity of Algorithms with Predictions for Dynamic Graph Problems

▶ Definition 11 (L-List Accurate Predictions). In a dynamic problem with update set X and
query set Q, let S ⊆ (X ∪Q)T be a set of sequences with T requests.

A sequence of T sets ρ̂ = (ρ̂1, ρ̂2, . . . , ρ̂T), where each ρ̂t ⊆ X ∪ Q, is called an L-list
accurate prediction for S, if each set ρ̂t contains at most L elements and we have for each
sequence ρ ∈ S and all t ∈ [T] that ρt ∈ ρ̂t.

Clearly, having an L-list accurate prediction with L = 1 is a perfect prediction. Also note
that there is always a |X ∪ Q|-list accurate prediction for all inputs, i.e. S = (X ∪Q)T . In
the OMv-problem for example, we have that the queries are from Q = {0, 1}n and having an
L-list accurate prediction for preprocessing allows to solve each OMv round in O(n) time,
after spending O(Lnω) time for preprocessing.

▶ Lemma 12. Given an L-list accurate prediction ρ̂ = (ρ̂1, . . . , ρ̂T) for S, one can compute
in O(

∑
t |ρ̂t|) = O(LT) time an 1

L -accurate prediction ρ̂′ for the uniform distribution on S.

Thus, lower bounds against algorithms with L-list accurate predictions also yield lower
bounds against algorithms with δ-accurate predictions for a problem whenever δ ≤ 1

L .
Though L-list predictions are stronger than δ-accurate predictions, we show that for a

wide range of locally correctable problems, strong lower bounds (similar to Proposition 10)
hold: Any algorithm using L-list accurate predictions is subject to the same conditional
lower bounds as a prediction-less online algorithm, unless the list accurate predictions are
perfect, i.e. L = 1.

We thus seek to investigate even more powerful prediction models in the following.

3.3 Bounded Delay Predictions
Unlike δ-accurate and L-list accurate predictions that aimed at predicting every individual
time step t ∈ [T], we further investigate predictions that know all T requests in advance,
though the actual order of a request sequence may have various “small deviations” from the
predicted sequence of requests. That is, we will measure prediction accuracy by a notion
of closeness for permutations. We consider a permutation π ∈ Perm(T) as a bijective map
π : [T]→ [T] on the integers [T], e.g. π(1) is the first element of the permutation.

▶ Definition 13. Let d ≥ 0 and π, σ ∈ Perm(T). We call π and σ d-close, denoted
|π − σ|∞ ≤ d, if

∣∣π−1(t)− σ−1(t)
∣∣ ≤ d for all t ∈ [T].

To simplify exposition, we overload the notation of a permutation π ∈ Perm(T) to yield a
reordering of a request sequence of length T .

▶ Definition 14. For a request sequence ρ ∈ (X ∪ Q)T and π ∈ Perm(T), let π(ρ) =(
ρπ(1), . . . , ρπ(T)

)
be the request sequence obtained by reordering ρ according to π.

Next we formalize what it means for predicted request sequence ρ̂ ∈ (X ∪Q)T to be a
bounded delay prediction for a set of input request sequences.

▶ Definition 15 (Bounded Delay Predictions). Let S ⊆ (X ∪Q)T be a set of request sequences
of length T and ρ̂ = (ρ̂1, ρ̂2, . . . , ρ̂T) a given sequence of T predicted requests.

Then ρ̂ is d-delayed for S, if for all ρ ∈ S, there exists some permutation π with
π(ρ) = ρ̂, and π is d-close |π − id|∞ ≤ d to the identity permutation id.

Next, we show that bounded delay predictions are a stronger notion than list-accurate
predictions, which were a stronger notion than δ-accurate predictions (see Lemma 12).

M. Henzinger, B. Saha, M. P. Seybold, and C. Ye 62:11

▶ Lemma 16. Given an integer d ≥ 0 and a request sequence ρ̂ ∈ (X ∪ Q)T , one can
compute in Θ((d + 1)T) time a (2d + 1)-list accurate prediction ρ̂′ = (ρ̂′

1, . . . , ρ̂′
T) for all

request sequence sets S ⊆ (X ∪Q)T for which ρ̂ is d-delayed.

Though the lemma requires that integer d ≥ 0 is given as input, as opposed to the
reduction in Lemma 12, we can still reduce, from bounded delay to L-list accurate algorithms,
using an “Alternating Parallel Simulation” that searches for a 2-approximation of a minimum
d value for a request sequence ρ.

▶ Lemma 17 (Alternating Parallel Simulation). Let ρ, ρ̂ ∈ (X ∪Q)T and d∗ ∈ [0, T] be minimal
such that prediction ρ̂ is d∗-delayed for the request sequence ρ. Suppose there is an algorithm
A′ that given an L-list accurate prediction for request sequences of length T solves P in time
O(Tf ′(n, L)) after at most P ′(n, L) preprocessing time. If LT + P ′(n, L) = O(Tf ′(n, L)),
then there is an algorithm A that solves ρ, given prediction ρ̂, in O(f ′(n, 4d∗ + 1) log T)
amortized time, after O(T) time for preprocessing of ρ̂.

Note that the LT + P ′(n, L) = O(Tf ′(n, L)) condition on A′ is very mild, i.e. its
preprocessing of a list prediction of size O(LT) takes not more time than solving a request
sequence for which the prediction is L-list accurate.

Note that the “alternating parallel simulation” technique to show the reduction in the
previous lemma is quite general, though we only use it to reduce from algorithms with
bounded delay to algorithms with list-prediction (i.e. taking Lemma 16). The reduction in
the previous lemma immediately yields the following general lower bounds.

▶ Corollary 18. Suppose there is a dynamic problem P such that any algorithm with d-delayed
prediction requires time Ω(Tf(n, d)) to processes T requests on instances of size n . Then
any algorithm with L-list predictions for P requires time Ω

(
T

log T f(n, (d− 1)/4)
)

.

Clearly, there are sets of request sequences that do not admit delay predictions with
small d. In Section 6, we will however show that for many problems with OMv-based
lower bounds, it is possible to construct sets of request sequences S admitting bounded
predictions while being simultaneously powerful enough to express an arbitrary OMv instance.
Concretely, for the class of locally reducible dynamic problems (Definitions 30 and 32) we
will show lower bounds for bounded delay predictions (even with no outliers) in Section 6.1.

4 Extensions of the OMv Conjecture

Before discussing our lower bounds against general dynamic problems, we revisit generaliza-
tions and extensions of the OMv conjecture. The OMv and OuMv conjectures generalize
to non-square dimensions (i.e. Definition 2.1 and 2.6 in [29]). To state this, we need to
introduce the ˜̃o-notation for multivariate functions (cf. [29, Definition 1.2]).

▶ Definition 19 (polynomially lower ˜̃o-notation). For f : N3 → N and any constants c1, c2, c3 ≥
0, we write f(n1, n2, n3) = ˜̃o(nc1

1 nc2
2 nc3

3) if and only if there exist constants ε, N, C > 0 such
that f(n1, n2, n3) ≤ C(nc1−ε

1 nc2
2 nc3

3 + nc1
1 nc2−ε

2 nc3
3 + nc1

1 nc2
2 nc3−ε

3) for all n1, n2, n3 > N .
We use the analogous definition for functions with one or two parameters.

Recall that the standard Õ and õ-notation suppresses polylogarithmic factors.

▶ Definition 20 (Rectangular γ-OMv and γ-OuMv). Let γ > 0 be a fixed constant. The
γ-OMv (resp. γ-OuMv) problem with parameters n2, n3 consists of n1 × n2 matrix M given
during preprocessing, where n1 := ⌊nγ

2⌋. This is followed by n3 online vector updates.

ITCS 2024

62:12 On the Complexity of Algorithms with Predictions for Dynamic Graph Problems

The γ-OMv problem consists of n3 vectors v⃗1, . . . , v⃗n3 , and the algorithm must output
Mv⃗t before v⃗t+1 arrives.

The γ-OMv problem consists of n3 vector pairs (u⃗1, v⃗1), . . . , (u⃗n3 , v⃗n3), and the algorithm
must output Mv⃗t before v⃗t+1 arrives. The γ-uMv problem is the special case of γ-OuMv
with n3 = 1.

Clearly, the OMv and OuMv problems are the special cases of γ-OMv and γ-OuMv with
γ = 1 and n1 = n2 = n3 = n. The OMv conjecture implies an analogous lower bound for the
γ-OuMv problem (cf. Theorem 2.2 and 2.7 in [29]).

▶ Theorem 21 (Hardness of γ-OMv and γ-OuMv). For any constant γ > 0, the OMv conjecture
implies that there is no algorithm for γ-OMv with parameters n2, n3 that has preprocessing
time P (n2) = poly(n2), total running time for all requests of ˜̃o(n1n2n3) = ˜̃o(nγ+1

2 n3), where
n1 = ⌊nγ

2⌋, and error probability at most 1/3.
For any constant γ, the OuMv conjecture implies that there is no algorithm for γ-OuMv

with parameters n2, n3 that has preprocessing time P (n2) = poly(n2), total running time for
all requests of ˜̃o(n1n2n3) = ˜̃o(nγ+1

2 n3), and error probability at most 1/3.

It is possible to solve the OMv problem faster than Θ(n3). Green Larsen and Williams [40]
gave a non-combinatorial OMv algorithm that runs in O(n3/2Ω(

√
log n)) time. Williams [55]

gave a combinatorial algorithm that, after O(n2+ε) preprocessing, solves any OMv round in
O(n2/ log2 n) time. Chakraborty, Kamma and Larsen [13] settled the cell probe complexity,
showing that any data structure storing r ∈ (n, n2) bits must have a query time t, i.e. the
number of reads from memory cells, with r · t = Ω(n3) and that this lower bound is tight, by
giving an algorithm with r = t = Õ(n3/2) cell probes.

4.1 Sparse OMv Conjecture
We show in this section that the difficulty of the OMv and OuMv problem degrades gracefully
with increased sparsity of query vectors. For any integer n, let [n] = {1, 2, . . . , n}.

The support of a vector v⃗ is the set of non-zero indices, i.e. supp(v⃗) = {i s.t. v⃗[i] ̸= 0},

and the restriction v⃗ |S of v⃗ to an index-subset S is the vector (v⃗ |S) [k] =
{

v⃗[k] k ∈ S

0 k ̸∈ S
.

Next we define the problem variants that have sparse input vectors, with respect to fixed
sets of indices.

▶ Definition 22 (Sparse S-γ-OMv and S-γ-OuMv). The S-γ-OMv problem differs from the
γ-OMv problem only by having an additional input S2 ⊆ [n2] of size |S2| ≤ nt

2 for some
t ∈ (0, 1], which is given during the preprocessing phase. In the online phase, each of the n3
query vectors v⃗i must fulfill support supp(v⃗i) ⊆ S2.

The S-γ-OuMv problem differs from the γ-OuMv problem only by having an additional
input S1 ⊆ [n1] and S2 ⊆ [n2] of size |S1| ≤ nt

1 and |S2| ≤ nt
2 for some t ∈ (0, 1], which

are given during the preprocessing phase. In the online phase, each of the n3 pairs of query
vectors (u⃗i, v⃗i) has support supp(u⃗i) ⊆ S1 and supp(v⃗i) ⊆ S2.

Clearly, each S-γ-OMv query round can be answered in O(nγ+t
2) time and each S-γ-OuMv

query round can be answered in O(nγt+t
2) time. Under OMv, this is essentially optimal.

▶ Conjecture 23 (S-γ-OMv and S-γ-OuMv). Let n2, n3, t, γ be parameters for the S-γ-OMv
and S-γ-OuMv problem.

M. Henzinger, B. Saha, M. P. Seybold, and C. Ye 62:13

There is no ˜̃o(nγ+t
2 n3)-time algorithm that solves the S-γ-OMv problem with an error

probability of at most 1/3 after preprocessing in time polynomial in n2.
There is no ˜̃o(nγt+t

2 n3)-time algorithm that solves the S-γ-OuMv problem with an error
probability of at most 1/3 after preprocessing in time polynomial in n2.

For the S-OMv and S-OuMv problems setting n1 = n2 = n3 = n, the above conjecture is
equivalent to saying there is no ˜̃o(n2+t) algorithm for the S-OMv problem and no ˜̃o(n1+2t)
algorithm for the S-OuMv problem. We observe that Conjecture 23 is a consequence of
Conjecture 5.

▶ Theorem 24. Conjecture 23 follows from Conjecture 5.

5 Locally Correctable Problems: Lower Bounds for List-accurate
Predictions

We show in this section that certain problems, which we formally define in Definition 26,
allow for remarkably strong lower bounds, in contrast to our general reductions in Section 3.

5.1 Preliminaries: Edge Updates in Dynamic Graphs
We will primarily focus on dynamic graphs with edge updates.

▶ Definition 25 (Edge-Updates and Queries in Dynamic Graphs). Let P be a dynamic graph
problem. Let V be a set of n vertices. Let X (V) = {(u, v) ∈ V × V s.t. u ̸= v} denote the
set of possible edge flip updates. In an undirected graph, X contains all unordered pairs of
vertices, while in a directed graph X contains all ordered pairs. Q(V) denotes the set of
queries that are possible for P. When the underlying graph is clear, we omit V and write
X ,Q. In the pre-processing step, the algorithm receives as input an initial graph G0 on
vertices V . At each time step t, the algorithm receives some request ρt ∈ X ∪ Q. When
given a query ρt ∈ Q, the algorithm must answer the query correctly on the current graph Gt,
obtained by applying request sequence (ρ1, ρ2, . . . , ρt−1) to the initial graph G0. The query
must be answered before the following request ρt+1 is revealed.

In the Maximum Matching problem for example, the query set Q consists of a single
element q: “What is the size of a maximum matching in the current graph?”. Our updates
are edge flips: An edge flip inserts e if it is currently not in the graph and removes it
otherwise. In the edge update model of dynamic graphs, a sequence of T requests (updates
or queries) arrive online. In our prediction models, we assume that the algorithm is given in
preprocessing, some form of prediction for the T requests in the online phase.

For a dynamic graph G on n vertices and an update sequence ρ = (ρ1, ρ2, . . . , ρT), we
denote with G0 = (V, E0) the initial graph and with Gt(ρ) = (V, Et(ρ)) the graph after
applying the t-th request of ρ, i.e. Et(ρ) is the edge set after applying all updates in the first
t requests to E0. When the request sequence is clear, we omit ρ and write Gt = (V, Et).

5.2 Locally Correctable Dynamic Problems
Next, we formalize our approach of OuMv lower bounds for algorithms with list accurate
predictions in our definition of locally correctable problems.

In the toy problem for #s-△, we observed that every pair of query vectors
can be simulated by taking a subsequence of a universal update request sequence
(s, u1), . . . , (s, un), (s, v1), . . . , (s, vn), followed by one query, where we only flip the edges

ITCS 2024

62:14 On the Complexity of Algorithms with Predictions for Dynamic Graph Problems

necessary to ensure the edges (s, ui) (resp. (s, vi)) correctly encode u⃗ (resp. v⃗). However,
in the general reduction (Figure 1), the actual subsequence depends heavily on the specific
instance. By augmenting the graph with one dummy vertex t that remains non-adjacent to
s, we restricted the number of edge flips needed at any one time step, without affecting the
query result, to a list of two update requests. That is flipping (t, ui) or (s, ui) for the bits in
u⃗ and flipping (t, vi) or (s, vi) for the bits in v⃗. In our #s-△ example, the query computation
in the augmented instance immediately yields the correct answer for the non-augmented
instance, without further computations needed for correcting the query results.

Next, we formally define locally correctable problems and then prove the generalization
of the technique in our reduction below.

▶ Definition 26 (Locally Correctable Dynamic Problem). Let P be a dynamic problem.
Suppose there is no algorithm for P with update time U(n) and query time Q(n) satisfying

n3

(
u(n1, n2)U(n) + q(n1, n2)Q(n)

)
= ˜̃o(n1n2n3) if the OuMv conjecture is true, where

n1, n2, n3 are integers with n1 = ⌊nγ
2⌋ for some constant γ > 0, functions u, q : N× N→ N,

and n = n(n1, n2) is the size of the P instance in the reduction.
Then, P is locally correctable if there exists a universal sequence ρ̄ = ρ̄(n1, n2) of

requests from X ∪Q, an augmentation function f for pre-processing, and a correction function
g, satisfying:
1. The sequence ρ̄ can be partitioned into n3 subsequences ρ̄ = B1 ◦ . . . ◦ Bn3 , where block

Bk contains u(n1, n2) updates and q(n1, n2) queries.
2. For any γ-OuMv instance with n1 × n2 matrix M and query vector pairs {(u⃗k, v⃗k)}n3

k=1
the reduction constructs initial data D0 of problem P and a request sequence ρ satisfying:
a. ρ is the concatenation of request sequences B′

1 ◦ B′
2 ◦ . . . ◦ B′

n3
, where each B′

k is a
subsequence of Bk.

b. For each γ-OuMv request (u⃗k, v⃗k), the result bit u⃗⊤
k Mv⃗k can be computed in O(q(n1, n2))

time based on the answers given to the queries in B′
1 ◦B′

2 ◦ . . . ◦B′
k.

3. Augmentability: f(D0) is an instance of size O(n) and X (D0) ⊂ X (f(D0)).
4. Correctability: There is a non-empty subset X ∗ ⊆ X (f(D0)) \ X (D0) such that, for

all time steps t and queries q, the function g yields g(q(Y), Y) = q(Dt), where Dt is the
data structure after request sequence ρ≤t, and Y is the result of request sequence ρ≤t with
arbitrary requests from X ∗ inserted, applied to f(D0).

5. f is computable in polynomial time and g is computable in Õ(1) time.

The request sequence ρ̄ is universal in the sense that it does not depend on any specific
γ-OuMv instance. However, the sequence ρ̄ depends on the dynamic problem P and the
reduction from γ-OuMv to P. Specifically, ρ̄ consists of all updates that might be necessary
in the reduction from γ-OuMv to encode a vector update (u⃗k, v⃗k) into a P instance.

The following theorem shows that all problems P, that have a reduction from OuMv
satisfying Definition 26, 2-list accurate predictions offer no improvement over a dynamic
algorithm with no predictions.

▶ Theorem 27. Suppose P is a locally correctable problem. Then there is no algorithm solving
P with 2-list accurate predictions with update time U(n) and query time Q(n) satisfying
n3

(
u(n1, n2)U(n) + q(n1, n2)Q(n)

)
= ˜̃o(n1n2n3) if the OuMv conjecture is true.

Proof. We begin by constructing a reduction from γ-OuMv to P that admits efficiently
computable 2-list accurate predictions. If an efficient algorithm with predictions exists,
then we can design a dynamic algorithm without predictions as follows. First, we compute
the efficiently computable predictions, and then run the algorithm with predictions as a
sub-routine, violating the lower bound based on the OuMv conjecture.

M. Henzinger, B. Saha, M. P. Seybold, and C. Ye 62:15

Consider a γ-OuMv instance with n1×n2 matrix M and vector updates {(u⃗k, v⃗k)}n3
k=1. By

assumption, there is an initial data structure D0 and request sequence ρ′ = B′
1 ◦B′

2 ◦ . . .◦B′
n3

such that each γ-OuMv request (u⃗k, v⃗k) can be computed in O(q(n1, n2)) time given the
answers to the queries in B′

1 ◦ B′
2 ◦ . . . ◦ B′

k. We construct a new request sequence ρ∗ =
B∗

1 ◦B∗
2 ◦ . . . ◦B∗

n3
on the augmented initial data structure f(D0). Fix an arbitrary update

x∗ ∈ X ∗. For each update in Bk, B∗
k will contain ρ̄t if ρ̄t ∈ B′

k and x∗ otherwise. Consider a
query at time step t. Let Yt be the current state of the data structure, that is f(D0) with
request sequence ρ∗

≤t applied. By assumption, g(q(Yt), Yt) = q(Dt′) where Dt′ is D0 with
ρ′

≤t′ applied and ρ′
≤t′ ⊂ ρ′ is the longest prefix such that ρ′

≤t′ ⊆ ρ∗
≤t. Then, given the query

computations after B∗
1 ◦B∗

2 ◦ . . . ◦B∗
k , we can compute u⃗⊤

k Mv⃗k in Õ(q(n1, n2)) time as g is
efficiently computable and B′

1 ◦ B′
2 ◦ . . . ◦ B′

k ⊆ B∗
1 ◦ B∗

2 ◦ . . . ◦ B∗
k contains all the queries

required to compute u⃗T
k Mv⃗k.

Next, we claim that there is an efficient prediction for the above reduction. That is,
consider the prediction ρ̂ = {(ρ̄t, x∗)}t∈[T]. Since ρ∗ contains either ρ̄t or x∗ at the t-th
position, this is a 2-list accurate prediction. Furthermore ρ̂ is efficiently computable.

Therefore, suppose there is an efficient algorithm with 2-list accurate predictions. Then,
given a γ-OuMv instance, we compute f(D0) and ρ̂ in the preprocessing phase in polynomial
time, providing this as the initial input to the algorithm with predictions. Then, we compute
each vector update using the appropriate query computations from ρ∗, therefore obtaining a
dynamic algorithm for the γ-OuMv instance. Thus, the update and query times must not
satisfy n3

(
u(n1, n2)U(n) + q(n1, n2)Q(n)

)
= ˜̃o(n1n2n3), if the OuMv conjecture is true. ◀

We conclude with a simple argument showing that #s-△ is locally correctable. Note that
this immediately implies that no algorithm solving #s-△ can have total work subcubic in n

using Theorem 27.

▶ Theorem 28. The #s-△ problem is locally correctable.

Proof. The universal sequence is n3 copies of the block, Bk = ((s, ui))n
i=1 ◦ ((s, vi))n

i=1 ◦ (q)
for all blocks Bk, i.e. ρ̄ = B1 ◦ . . . ◦Bn3 . Then augmentation function f takes GM ∪ {s} and
outputs GM ∪ {s, t} while the correction function g is the identity. It is easy to check that
the reduction of Figure 1 uses a subsequence of ρ̄ and that #s-△ after each block computes
u⃗⊤

k Mv⃗k. Clearly, f increases the size instance by 1 and we have argued that #s-△ on the
augmented graph is exactly #s-△ on the original graph, since s, t are not adjacent. ◀

6 Locally Reducible Problems: Lower Bounds for Delay Predictions

In this section, we will provide a framework for proving trade-off conditional lower bounds
against algorithms with bounded delay predictions given a conditional lower bound against
online algorithms (without predictions). To do so, we introduce the notion of locally reducible
dynamic problems (Definitions 30 and 32) and show that for this large class of problems,
the OuMv-based lower bounds carry through to the setting of algorithms with d-delayed
predictions. For each problem, we show that there is a delay threshold (roughly the number of
updates and queries used to process one round in the OuMv problem) below which predictions
offer no benefit over a generic online algorithm. The basic idea is that, when allowed sufficient
delay, every OuMv request sequence can be generated by simply reordering one generic
request sequence. Thus, even with prediction, a locally reducible dynamic problem is still
powerful enough to solve any γ-OuMv instance, and is, thus, still difficult to compute. This
implies that a prediction algorithm does not only need to know what operations will happen,
but also when the operations will happen. We also show that the lower bound degrades
gracefully as the prediction quality surpasses this threshold.

ITCS 2024

62:16 On the Complexity of Algorithms with Predictions for Dynamic Graph Problems

6.1 Locally Reducible Dynamic Problems
We now define the class of locally reducible dynamic problems. Then we show in Theorems 33
and 40 that for any locally reducible problem, OuMv-based lower bounds extend to dynamic
algorithms with bounded delay predictions. For a multi-set S, let set(S) denote the set of
elements that occur in S at least once. For two request sequences ρ1, ρ2, let ρ1 ◦ ρ2 denote
the concatenation of the two request sequences. We define also the notion of a cyclic update.

▶ Definition 29. Consider a dynamic problem P with updates X and queries Q. An update
x ∈ X has cyclic order ord(x) if for any request sequence ρ, inserting or removing exactly
ord(x) identical copies of x into the sequence ρ between indices i0, i1 does not change the
results of any queries that are not part of ρ between the indices i0 and i1. We say x is cyclic
if 1 ≤ ord(x) = O(1).

For example, consider edge insertion and edge deletion not as two separate operations,
but as one operation called (edge) flipping (which inserts the edge if it exists and deletes it if
it does not exist). Edge flipping has cyclic order 2. In order to place strong bounds on the
positions of each individual update and query, we will insert redundant updates so that the
positions of requests are more predictable. For example, if at the current time, an edge was
predicted to be flipped 2 more times than it has already been flipped, we can flip the edge
twice without changing the dynamic graph to correct this prediction error. Having updates
of small cyclic order therefore allow us to insert redundant updates without significantly
blowing up the size of the problem instance and therefore weakening our lower bounds.

In a bit more detail, consider a typical OMv-based lower bound. Let P be a dynamic
problem for which there is an OuMv lower bound. First, for some fixed γ, there is a generic
reduction from any arbitrary γ-OuMv instance with arbitrary parameters n1, n2, n3 to an
instance of P of size n = n(n1, n2). In this reduction, each of the n3 rounds of the γ-OuMv
instance is simulated separately, i.e. for each round there are u(n1, n2) updates and q(n1, n2)
queries for the problem instance P . To simulate a single OuMv round, we choose some subset
of necessary updates from a universal request block to correctly encode the γ-OuMv instance
into the P instance. To construct our prediction, we predict for each block that the whole
universal request set occurs. Since the request sequence is a subset of the universal set, an
update cannot occur in a block before it is predicted to. However, this prediction could very
well predict a request to occur in a block long after it is predicted to. For example, in the
reduction of Figure 1 if there is an index i0 such that u⃗k[i0] = 0 for all k, then the edge
(s, ui0) will never be flipped in the original request sequence. To solve this, we add (after the
query for the vector update (u⃗k, v⃗k) has arrived and before the next vector update arrives)
ord(x) copies of update x whenever an update x has occurred in fewer than k − ord(x)
request blocks when simulating the vector update (u⃗k, v⃗k). These redundant requests do not
change the result of any query computation and ensure that a request cannot occur more
than ord(x) blocks later than it is predicted to.

We now give separate definitions for fully dynamic and partially dynamic problems,
beginning with the fully dynamic setting.

▶ Definition 30 (Fully Dynamic Locally Reducible). Let P be a fully dynamic problem with
update set X and query set Q. Suppose there is no algorithm for P with update time U(n) and
query time Q(n) satisfying n3

(
u(n1, n2)U(n) + q(n1, n2)Q(n)

)
= ˜̃o(n1n2n3) , if the OuMv

conjecture is true, where n1, n2, n3 are integers satisfying n1 = ⌊nγ
2⌋ for some constant γ > 0,

functions u, q : N× N→ N, and n = n(n1, n2) is the size of the P instance in the reduction.
P is (u, q)-locally reducible from γ-OuMv if there exists a universal request sequence

ρ̄ = ρ̄(n1, n2) of requests satisfying the following properties:

M. Henzinger, B. Saha, M. P. Seybold, and C. Ye 62:17

1. The universal request sequence ρ̄ consists of n3 identical copies of the sequence B =
B(n1, n2), indexed B1, B2, . . . , Bn3 . The request sequence B contains u(n1, n2) updates
and q(n1, n2) queries.

2. For any γ-OuMv instance with n1 × n2 matrix M and vector updates {(u⃗k, v⃗k)}n3
k=1 the

reduction constructs an initial data structure D0 and request sequence ρ satisfying:
a. ρ is the concatenation of request sequences B′

1 ◦B′
2 ◦ . . . ◦B′

n3
where B′

k = πk(B′′
k) is

an ordering of B′′
k for some B′′

k ⊆ B.
b. Each γ-OuMv request (u⃗k, v⃗k), u⃗⊤

k Mv⃗k can be computed in O(q(n1, n2)) time based on
the answers given to the queries in B′

1 ◦B′
2 ◦ . . . ◦B′

k.
3. Every update x ∈ ρ̄ in the universal sequence ρ̄ is cyclic.

▶ Remark 31. Our proof assumes that each update has some small finite cyclic order. For
example, the edge flip operation has order 2. Alternatively, we can view an update in a
fully dynamic algorithm to have an inverse operation. For example, removal and insertion of
the same edge are inverse operations. The proof of Theorem 33 for locally reducible fully
dynamic problems follows in this case as well. Whenever we insert two edge flips in the
proof of Theorem 33, we can insert an operation and its inverse operation counterpart. Both
of these sequences of two updates have the desired effect of leaving the underlying data
structure unmodified.

Let us compare the Definitions 26 and 30. In both cases, the universal request sequence
ρ̄ depends only on the reduction from γ-OuMv to the dynamic problem P . It is universal in
the sense that ρ̄ is independent of any specific γ-OuMv instance.

In Definition 30, each block of the request sequence ρ does not have to respect the order
of ρ̄. Each block of the request sequence in the reduction to a locally correctable problem
must be a subsequence of the corresponding block in the universal request sequence. In the
reduction to a locally reducible problem, we may instead arbitrarily permute a subsequence
of a block of the universal request sequence. To see why this is the case, observe that a list
accurate prediction imposes the constraint that a certain update can occur only at O(1) time
steps in each block (since only 2 updates can occur at a given time step). Instead, bounded
delay predictions allow the update to be placed at any point within a range of the predicted
update. We are therefore free to order the subset of block of requests without being forced
to adhere to the original order in the universal sequence.

Furthermore, instead of requiring that any instance can be efficiently augmented to a
larger instance with an efficient “correction” function to the query computations (Conditions
3, 4, and 5), we now require that each update is cyclic (Condition 3). We now give the
definition for partially dynamic locally reducible problems.

▶ Definition 32 (Partially Dynamic Locally Reducible). Let γ > 0 be a constant and n1, n2, n3
be integers satisfying n1 = ⌊nγ

2⌋. Let u, q : N × N → N. Let P be an incremental (resp.
decremental) dynamic problem with update set X and query set Q.

Suppose there is no algorithm for P with update time U(n) and query time Q(n) satisfying,

n3

(
u(n1, n2)U(n) + q(n1, n2)Q(n)

)
= ˜̃o(n1n2n3)

if the OuMv conjecture is true, where n = n(n1, n2) is the size of the P instance in the
reduction. P is (u, q)-locally reducible from γ-OuMv if there exists a universal request
sequence ρ̄ = ρ̄(n1, n2) of requests (where only queries can occur more than once) satisfying
the following properties:
1. The universal request sequence ρ̄ consists of n3 subsequences {Bk}n3

k=1 where request block
Bk contains u(n1, n2) updates and q(n1, n2) queries.

ITCS 2024

62:18 On the Complexity of Algorithms with Predictions for Dynamic Graph Problems

2. For any γ-OuMv instance with n1 × n2 matrix M and vector updates {(u⃗k, v⃗k)}n3
k=1 the

reduction constructs an initial data structure D0 and request sequence ρ satisfying:
a. ρ is the concatenation of request sequences B′

1 ◦B′
2 ◦ . . . ◦B′

n3
where B′

k = πk(Bk) is
an ordering of Bk.

b. Each γ-OuMv request (u⃗k, v⃗k), u⃗⊤
k Mv⃗k can be computed in O(q(n1, n2)) time based on

the answers given to the queries in B′
1 ◦B′

2 ◦ . . . ◦B′
k.

We are now ready to present our main lower bound result.

▶ Theorem 33. Let γ > 0 be a constant and u, q be functions. Suppose P is a fully dynamic
problem that is (u, q)-locally reducible from γ-OuMv and let C = maxx∈X ord(x).

Then there is no algorithm solving P with (1+C)(u(n1, n2)+q(n1, n2)) delayed predictions
with update time U(n) and query time Q(n) satisfying n3

(
u(n1, n2)U(n) + q(n1, n2)Q(n)

)
=

˜̃o(n1n2n3) if the OuMv conjecture is true.

We begin by defining some useful notation, denoting the position in which the k-th
instance of a request occurs.

▶ Definition 34. Let X denote the set of updates and Q the set of queries. Let ρ ∈ (X ∪Q)T

be a sequence of requests. For a given request a ∈ X ∪Q and k ∈ N, define pos(a, k, ρ) to be
the position in ρ of the k-th occurrence of a. If a does not occur k times in ρ, pos(a, k, ρ) = ⊥.
When the underlying request sequence is clear, we omit the sequence and write pos(a, k).

We now prove Theorem 33.

Proof. The key ingredient for the lower bound will be a reduction from a γ-OuMv instance
to the dynamic problem P. However, we will require the reduction to construct the online
request sequence in such a way that we can efficiently compute a very simple prediction with
(1+C)(u(n1, n2)+q(n1, n2)) delay. Then, if an efficient algorithm A with (1+C)(u(n1, n2)+
q(n1, n2)) bounded delay predictions exists, we can solve the γ-OuMv problem by constructing
the prediction and running the algorithm A as a sub-routine, violating the γ-OuMv lower
bound. Throughout the proof, we defer proofs of certain lemmas to the full version [32].

Preliminaries. Since our reduction will be constructed by modifying an existing reduction,
we begin by describing the existing reduction given by Condition 2. Consider a γ-OuMv
instance (M,U) consisting of a n1×n2 matrix M and a length-n3 sequence of vector updates
U = {(u⃗k, v⃗k)}n3

k=1. We use ρ′(U) = B′
1 ◦B′

2 ◦ . . . ◦B′
n3

to denote the request sequence given
by the reduction such that each γ-OuMv request (u⃗k, v⃗k) can be computed in O(q(n1, n2))
time given the answers to the queries in B′

1 ◦B′
2 ◦ . . . ◦B′

k.
We now describe the universal request sequence ρ̄. In the given γ-OuMv reduction, each

vector update (u⃗k, v⃗k) is encoded into the data structure using some set of updates. For
any request x ∈ X ∪Q, define M(x) to be the maximum number of times an update x ∈ X
occurs in a single block B′

k ⊂ ρ′(U) over all k and all possible vector update sequences U
(not just the worst-case one). The set B then contains M(x) copies of x for all requests
x ∈ X ∪Q. Note that if M(x) = 0, B does not contain any copy of M(x). Additionally, we
give an arbitrary, fixed order to the requests in B, so that B is a sequence. The universal
request sequence ρ̄ consists of n3 copies of the sequence B. Define the predicted requested
sequence ρ̂ = ρ̄ = B1 ◦B2 ◦ . . . ◦Bn3 to be the universal request sequence.

Note that for a specific γ-OuMv instance (M,U), we may not need every request in Bk to
encode the vector update (u⃗k, v⃗k) (with k ∈ [n3]) given the state of the data structure after
the block computing the previous vector update (u⃗k−1, v⃗k−1). However, by our definition
of M(x), it is possible to encode the vector update using some subset B′

k ⊆ Bk. This is
precisely the block of requests in the request sequence ρ′(U).

M. Henzinger, B. Saha, M. P. Seybold, and C. Ye 62:19

Notation. During the proof, we will focus on three request sequences. We use ρ′ to denote
the request sequence that is generated by the reduction of a worst-case γ-OuMv instance to
P. We denote by ρ̂ the predicted request sequence constructed from the universal sequence
ρ̄ as discussed above. Note that it can be constructed without knowledge of ρ′. In this proof
we will modify ρ′ into a request sequence ρ∗ encoding the same instance, with the additional
property that π(ρ∗) = ρ̂ for some permutation |π − id| ≤ d. Finally, we denote by ρ an
arbitrary request sequence for P partitioned into n3 blocks. For any 1 ≤ k ≤ n3 let ρ(k)
denote the first k blocks of ρ and for a request x ∈ X ∪Q, let N(x, k, ρ) denote the number
of times that x occurs in ρ(k).

Our proof will proceed in three parts. In Part 1, we describe how to modify ρ′ into ρ∗ for
any γ-OuMv instance. In Part 2, we show that π(ρ∗) = ρ̂ for some permutation |π − id| ≤ d.
In Part 3, we complete the proof by showing how an algorithm with bounded delay can be
given ρ̂ as prediction and can be used to answer any γ-OuMv instance.

Part 1: Constructing ρ∗ from ρ′. We begin by describing the construction of ρ∗. In
Lemma 35, we will argue that ρ∗ constructed from ρ′ correctly encodes the γ-OuMv instance,
while satisfying certain properties that we will use in Part 2 to show that π(ρ∗) = ρ̂ for some
permutation π that is d-close to the identity permutation. We construct ρ∗ sequentially,
appending requests to the end of ρ∗. Recall that we have constructed the universal request
sequence ρ̄ by imposing an arbitrary order onto B and concatenating n3 copies of B. Whenever
we append a request x, we always append the copy of x that occurs earliest in the universal
sequence ρ̄ out of all requests of ρ̄ that we have not already added to ρ∗.

We proceed by induction on k. The sequence after the k-th block is denoted ρ∗
(k) and

ρ∗
(0) is the empty sequence. For k > 0 we extend ρ∗

(k−1) to ρ∗
(k) in the following three steps.

For i ∈ {1, 2, 3}, let ρ∗
(k),i denote the sequence ρ∗ after step i when extending ρ∗

(k−1) to ρ∗
(k).

Note ρ∗
(k) = ρ∗

(k),3.

1. We begin by concatenating B′
k to obtain ρ∗

(k),1 ← ρ∗
(k−1) ◦B′

k, emphasizing that we always
append the copy of an update that occurs earliest in ρ̄ first. In particular, in this step we
may in fact append a copy of x from Bj for j < k rather than from Bk.

2. Then, for every update x ∈ X such that N
(

x, k, ρ∗
(k),1

)
≤ kM(x)− ord(x), we append⌊

kM(x)−N(x,k,ρ∗
(k),1)

ord(x)

⌋
· ord(x) copies of x to the end of ρ∗

(k),1, emphasizing that we always

append the copy of an update that occurs earliest in ρ̄ first.
3. For every query q ∈ Q such that N

(
q, k, ρ∗

(k),2

)
< kM(q), append kM(q)−N

(
q, k, ρ∗

(k),2

)
copies of q to the end of ρ∗

(k),2, emphasizing that we always append the copy of a query
that occurs earliest in ρ̄ first.

Finally, after the final block B′
n3

, we add in all remaining unused requests from the
universal request sequence ρ̄. Thus ρ∗ contains exactly all requests of ρ̂. We now claim that
ρ∗ computes the same γ-OuMv instance as ρ′, while satisfying certain additional properties
we will use in Part 2.

▶ Lemma 35. The constructed sequence ρ∗ satisfies the following properties.
1. For all x ∈ X and 1 ≤ k ≤ n3, kM(x)− ord(x) < N(x, k, ρ∗) ≤ kM(x).
2. For all q ∈ Q and 1 ≤ k ≤ n3, N(q, k, ρ∗) = kM(q).
3. Each γ-OuMv request (u⃗k, v⃗k), u⃗⊤

k Mv⃗k can be answered in O(q(n1, n2)) time given the
answers to the queries in the request sequence ρ∗

(k) = B∗
1 ◦B∗

2 ◦ . . . ◦B∗
k.

ITCS 2024

62:20 On the Complexity of Algorithms with Predictions for Dynamic Graph Problems

Part 2: π(ρ∗) = ρ̂ for some π ∈ Perm(T) such that |π − id| ≤ d. We show that ρ∗

can be obtained by re-ordering the predicted sequence ρ̂, for a permutation π that is d-close
to the identity. In particular, this will show that ρ̂ is a prediction with bounded delay d

for request sequence set S consisting of all request sequences ρ∗ which can be produced in
Part 1.

Recall that ρ̂ is the universal request sequence ρ̄ obtained by concatenating n3 copies of
B. We will prove that ρ̂ has (C + 1)(u(n1, n2) + q(n1, n2)) delay with the following steps.
First, in Lemma 36, we show that any request occurs at most O(1) blocks away from its
predicted position. Then, in Lemma 37, we bound the size of each block. Combining, we
show in Lemma 38 that we obtain an upper bound on the delay of prediction ρ̂.

▶ Lemma 36. Let 1 ≤ k ≤ n3.
If x ∈ Bk is an update, then x ∈ B∗

i for k ≤ i ≤ k +
⌈

ord(x)
M(x)

⌉
− 1.

If q ∈ Bk is a query, then q ∈ B∗
k.

▶ Lemma 37. Let ρ∗ be a request sequence as constructed in Part 1. Let C = maxx∈B ord(x).
For all 1 ≤ k ≤ n3, k(u(n1, n2)+q(n1, n2))−C ·u(n1, n2) <

∣∣∣ρ∗
(k)

∣∣∣ ≤ k(u(n1, n2)+q(n1, n2)).

▶ Lemma 38. Let ρ∗ be a request sequence as constructed in Part 1. Let C = maxx∈B ord(x).
Then, there exists permutation π that is (1 + C)(u(n1, n2) + q(n1, n2)) close to the identity
permutation and π(ρ∗) = ρ̂.

Part 3: Proof of Theorem 33 for Fully Dynamic Locally Reducible Problems. We now
complete the proof of Theorem 33 for fully dynamic problems. Suppose there exists an
algorithm A with (1 + C)(u(n1, n2) + q(n1, n2)) bounded delay predictions solving P with
polynomial preprocessing time, update time U(n) and query time Q(n).

Then, there is algorithm B (that works without prediction) for the γ-OuMv problem. Let
(M,U) be a worst-case γ-OuMv instance. In the preprocessing step, we compute the universal
sequence ρ̄ = ρ̄(n1, n2) in polynomial time, construct the predicted request sequence ρ̂ = ρ̄,
and give ρ̂ as input to A. Note we do not need to see the matrix M nor the request sequence
U to construct ρ̂. Recall that matrix M is given to B during preprocessing. It gives M to A,
which builds the initial data structure D0. This completes the preprocessing phase.

Next, given a vector update (u⃗k, v⃗k), B constructs the sequence B∗
k and asks A to perform

this sequence of requests. A returns the correct answers to the requests in B∗
k to B as, by

Lemma 38, ρ̂ is a (1 + C)(u(n1, n2), q(n1, n2)) delayed prediction for ρ′ = ρ′(U), and A is
a correct algorithm when given (1 + C)(u(n1, n2), q(n1, n2)) delayed predictions. Thus, by
Lemma 35, B can correctly answer u⃗T

k Mv⃗k in O(q(n1, n2)) time given the answers to the
queries in B′

k.
We now analyze the complexity of B. In the preprocessing phase, B constructs ρ̂

and D0, requiring only polynomial time. For each vector update, B computes B∗
k in

O(u(n1, n2) + q(n1, n2)) (Lemma 39), asking A to perform the updates in B∗
k. Since B

solves γ-OuMv, the OuMv conjecture states that A cannot satisfy, n3

(
u(n1, n2)U(n) +

q(n1, n2)Q(n)
)

= ˜̃o(n1n2n3). We conclude the proof by proving Lemma 39.

▶ Lemma 39. For all 1 ≤ k ≤ n3, B∗
k can be constructed in O(u(n1, n2) + q(n1, n2)) time.

This concludes our proof of Theorem 33. ◀

For partially dynamic algorithms, in fact a simpler argument shows the analogous result.
This lower bound gives a similar result to Theorem 1.3 in the independent work of [54].

M. Henzinger, B. Saha, M. P. Seybold, and C. Ye 62:21

▶ Theorem 40. Let γ > 0 be a constant and u, q be functions. Suppose P is a partially
dynamic problem that is (u, q)-locally reducible from γ-OuMv.

Then there is no algorithm solving P with (u(n1, n2) + q(n1, n2)) delayed predictions
with update time U(n) and query time Q(n) satisfying n3

(
u(n1, n2)U(n) + q(n1, n2)Q(n)

)
=

˜̃o(n1n2n3) if the OuMv conjecture is true.

Above, we have established that algorithms with predictions with delay (1+C)(u(n1, n2)+
q(n1, n2)) with C = maxx∈B ord(x) cannot be more efficient than algorithms with no
predictions at all. In the following, we show that for smaller delay the conditional lower
bounds based on the OuMv conjecture degrade gracefully with the quality of the predictions.

▶ Theorem 41. Suppose P is (u, q)-locally reducible from γ-OuMv with n = n(n1, n2) a
non-decreasing function. Let t ∈ (0, 1) be a constant. Let d1 = ⌊dγ

2⌋ where d2 = ⌊nt
2⌋.

Then there is no algorithm solving P on instances of size n = n(n1, n2) with
(1 + C)(u(d1, d2) + q(d1, d2)) delayed predictions with update time U(n) and query time
Q(n) satisfying n3

(
u(d1, d2)U(n) + q(d1, d2)Q(n)

)
= ˜̃o(d1d2n3) = ˜̃o(nt

1nt
2n3) if the OuMv

conjecture is true.

In particular, as the guaranteed prediction quality increases (as t decreases towards 0),
the lower bound weakens. As an application, we show that #s-△ is locally reducible.

▶ Theorem 42. There is no algorithm solving the #s-△ problem with O(n) delayed predictions
with update time U(n) and query time Q(n) satisfying n2U(n) + nQ(n) = ˜̃o(n3) if the OuMv
conjecture is true.

Proof. We claim the #s-△ problem is a fully dynamic locally-reducible problem. Set
parameters n1 = n2 = n3 = n. We claim that #s-△ is (n1 + n2, 1)-locally reducible where
u(n1, n2) = n1 + n2 and q(n1, n2) = 1. It is easily verified that the reduction of Figure 1 from
γ-OuMv to #s-△ instances of size n(n1, n2) = 1 + n1 + n2 = 2n + 1 satisfies the required
conditions, with Bk = {(s, ui)}n

i=1 ∪ {(s, wi)}n
i=1 ∪ {q}. Finally, we note that each update

(edge flip) has cyclic order 2. ◀

For any d = O(n1−ε), there is an algorithm with d delayed predictions overcoming the
above lower bound. For #s-△, we give an update optimized algorithm with constant update
time and O(d2) query time, as well as a query optimized algorithm with O(d) update time
and constant query time. Furthermore, this is tight by Theorem 41 and the above observation
that #s-△ is locally reducible.

▶ Theorem 43. Let t ∈ (0, 1) be a constant and d = ⌊nt⌋. There is no algorithm solving the
#s-△ problem with O(d)-delayed predictions with update time U(n) and query time Q(n)
satisfying ndU(n) + nQ(n) = ˜̃o(nd2) if the OuMv conjecture is true.

Either update time is not ˜̃o(d) or query time is not ˜̃o(d2), so our algorithms are optimal.

References
1 Anders Aamand, Piotr Indyk, and Ali Vakilian. (learned) frequency estimation algorithms

under zipfian distribution. CoRR, abs/1908.05198, 2019. arXiv:1908.05198.
2 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In Proc. 55th Symposium on Foundations of Computer Science
(FOCS’14), pages 434–443, 2014. doi:10.1109/FOCS.2014.53.

ITCS 2024

https://arxiv.org/abs/1908.05198
https://doi.org/10.1109/FOCS.2014.53

62:22 On the Complexity of Algorithms with Predictions for Dynamic Graph Problems

3 Keerti Anand, Rong Ge, Amit Kumar, and Debmalya Panigrahi. Online algorithms with
multiple predictions. In Proc. International Conference on Machine Learning, (ICML’22),
pages 582–598, 2022. URL: https://proceedings.mlr.press/v162/anand22a.html.

4 Antonios Antoniadis, Joan Boyar, Marek Elias, Lene Monrad Favrholdt, Ruben Hoeksma,
Kim S. Larsen, Adam Polak, and Bertrand Simon. Paging with succinct predictions. In Proc.
40th International Conference on Machine Learning (ICML’23), pages 952–968, 2023. URL:
https://proceedings.mlr.press/v202/antoniadis23a/antoniadis23a.pdf.

5 Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and Bertrand Si-
mon. Learning-augmented dynamic power management with multiple states via new
ski rental bounds. In Proc. Neural Information Processing Systems (NeurIPS’21),
pages 16714–16726, 2021. URL: https://proceedings.neurips.cc/paper/2021/hash/
8b8388180314a337c9aa3c5aa8e2f37a-Abstract.html.

6 Antonios Antoniadis, Christian Coester, Marek Eliás, Adam Polak, and Bertrand Simon.
Mixing predictions for online metric algorithms. In Proc. International Conference on Machine
Learning (ICML’23), pages 969–983, 2023. URL: https://proceedings.mlr.press/v202/
antoniadis23b.html.

7 Antonios Antoniadis, Peyman Jabbarzade Ganje, and Golnoosh Shahkarami. A novel prediction
setup for online speed-scaling. In Proc. 18th Scandinavian Symposium and Workshops on
Algorithm Theory (SWAT’22), pages 9:1–9:20, 2022. doi:10.4230/LIPIcs.SWAT.2022.9.

8 Yossi Azar, Debmalya Panigrahi, and Noam Touitou. Online graph algorithms with predictions.
In Proc. Symposium on Discrete Algorithms (SODA’22), pages 35–66, 2022. doi:10.1137/1.
9781611977073.3.

9 Étienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method
for learning augmented algorithms. In Proc. Neural Information Processing Sys-
tems (NeurIPS’20), 2020. URL: https://proceedings.neurips.cc/paper/2020/hash/
e834cb114d33f729dbc9c7fb0c6bb607-Abstract.html.

10 Nikhil Bansal, Christian Coester, Ravi Kumar, Manish Purohit, and Erik Vee. Learning-
augmented weighted paging. In Proc. Symposium on Discrete Algorithms (SODA’22), pages
67–89, 2022. doi:10.1137/1.9781611977073.4.

11 Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in
o(log n) update time (corrected version). SIAM J. Comput., 47(3):617–650, 2018. doi:
10.1137/16M1106158.

12 Thiago Bergamaschi, Monika Henzinger, Maximilian Probst Gutenberg, Virginia Vassilevska
Williams, and Nicole Wein. New techniques and fine-grained hardness for dynamic near-
additive spanners. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1836–1855.
SIAM, 2021. doi:10.1137/1.9781611976465.110.

13 Diptarka Chakraborty, Lior Kamma, and Kasper Green Larsen. Tight cell probe bounds for
succinct boolean matrix-vector multiplication. In Proc. of the 50th Symposium on Theory of
Computing (STOC’18), pages 1297–1306, 2018. doi:10.1145/3188745.3188830.

14 Timothy M. Chan, Mihai Pătraşcu, and Liam Roditty. Dynamic connectivity: Connecting to
networks and geometry. SIAM J. Comput., 40(2):333–349, 2011. doi:10.1137/090751670.

15 Shiri Chechik. Improved distance oracles and spanners for vertex-labeled graphs. In
Proc. 20th Annual European Symposium (ESA’12), pages 325–336, 2012. doi:10.1007/
978-3-642-33090-2_29.

16 Søren Dahlgaard. On the hardness of partially dynamic graph problems and connections to
diameter. In Proc. 43rd International Colloquium on Automata, Languages, and Programming
(ICALP’16), pages 48:1–48:14, 2016. doi:10.4230/LIPIcs.ICALP.2016.48.

17 Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Al-
gorithms with prediction portfolios. In NeurIPS, 2022. URL: http://papers.nips.cc/paper_
files/paper/2022/hash/7f9220f90cc85b0da693643add6618e6-Abstract-Conference.
html.

https://proceedings.mlr.press/v162/anand22a.html
https://proceedings.mlr.press/v202/antoniadis23a/antoniadis23a.pdf
https://proceedings.neurips.cc/paper/2021/hash/8b8388180314a337c9aa3c5aa8e2f37a-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/8b8388180314a337c9aa3c5aa8e2f37a-Abstract.html
https://proceedings.mlr.press/v202/antoniadis23b.html
https://proceedings.mlr.press/v202/antoniadis23b.html
https://doi.org/10.4230/LIPIcs.SWAT.2022.9
https://doi.org/10.1137/1.9781611977073.3
https://doi.org/10.1137/1.9781611977073.3
https://proceedings.neurips.cc/paper/2020/hash/e834cb114d33f729dbc9c7fb0c6bb607-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e834cb114d33f729dbc9c7fb0c6bb607-Abstract.html
https://doi.org/10.1137/1.9781611977073.4
https://doi.org/10.1137/16M1106158
https://doi.org/10.1137/16M1106158
https://doi.org/10.1137/1.9781611976465.110
https://doi.org/10.1145/3188745.3188830
https://doi.org/10.1137/090751670
https://doi.org/10.1007/978-3-642-33090-2_29
https://doi.org/10.1007/978-3-642-33090-2_29
https://doi.org/10.4230/LIPIcs.ICALP.2016.48
http://papers.nips.cc/paper_files/paper/2022/hash/7f9220f90cc85b0da693643add6618e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/7f9220f90cc85b0da693643add6618e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/7f9220f90cc85b0da693643add6618e6-Abstract-Conference.html

M. Henzinger, B. Saha, M. P. Seybold, and C. Ye 62:23

18 Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths. SIAM J. Comput.,
29(5):1740–1759, 2000. doi:10.1137/S0097539797327908.

19 Ran Duan. New data structures for subgraph connectivity. In Automata, Languages and
Programming, 37th International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010,
Proc., Part I, volume 6198 of Lecture Notes in Computer Science, pages 201–212. Springer,
2010. doi:10.1007/978-3-642-14165-2_18.

20 Ran Duan and Seth Pettie. Connectivity oracles for failure prone graphs. In Proc. of the 42nd
ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8
June 2010, pages 465–474. ACM, 2010. doi:10.1145/1806689.1806754.

21 Talya Eden, Piotr Indyk, Shyam Narayanan, Ronitt Rubinfeld, Sandeep Silwal, and Tal Wagner.
Learning-based support estimation in sublinear time. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net,
2021. URL: https://openreview.net/forum?id=tilovEHA3YS.

22 Jacob Evald, Viktor Fredslund-Hansen, and Christian Wulff-Nilsen. Near-optimal distance
oracles for vertex-labeled planar graphs. In Proc. 32nd International Symposium on Algorithms
and Computation (ISAAC’21), pages 23:1–23:14, 2021. doi:10.4230/LIPIcs.ISAAC.2021.23.

23 Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. J. ACM, 28(1):1–4, 1981.
doi:10.1145/322234.322235.

24 Daniele Frigioni and Giuseppe F. Italiano. Dynamically switching vertices in planar graphs.
Algorithmica, 28(1):76–103, 2000. doi:10.1007/s004530010032.

25 Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks cannot compute their
diameter in sublinear time. In Proc. of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 1150–1162.
SIAM, 2012. doi:10.1137/1.9781611973099.91.

26 Gramoz Goranci, Monika Henzinger, and Pan Peng. The power of vertex sparsifiers in
dynamic graph algorithms. In 25th Annual European Symposium on Algorithms, ESA 2017,
September 4-6, 2017, Vienna, Austria, volume 87 of LIPIcs, pages 45:1–45:14. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ESA.2017.45.

27 Anupam Gupta, Debmalya Panigrahi, Bernardo Subercaseaux, and Kevin Sun. Augmenting
online algorithms with ε-accurate predictions. In Advances in Neural Information Processing
Systems, volume 35, pages 2115–2127, 2022. URL: https://proceedings.neurips.cc/paper_
files/paper/2022/file/0ea048312aa812b2711fe765a9e9ef05-Paper-Conference.pdf.

28 Manoj Gupta and Richard Peng. Fully dynamic (1+ e)-approximate matchings. In 2013 IEEE
54th Annual Symposium on Foundations of Computer Science, pages 548–557. IEEE, 2013.

29 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In Proc. of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, STOC, pages 21–30. ACM, 2015. doi:10.1145/2746539.2746609.

30 Monika Henzinger, Ami Paz, and Stefan Schmid. On the complexity of weight-dynamic network
algorithms. In IFIP Networking Conference, IFIP Networking 2021, Espoo and Helsinki,
Finland, June 21-24, 2021, pages 1–9. IEEE, 2021. doi:10.23919/IFIPNetworking52078.
2021.9472803.

31 Monika Henzinger, Ami Paz, and A. R. Sricharan. Fine-grained complexity lower bounds
for families of dynamic graphs. In Proc. 30th European Symposium on Algorithms (ESA’22),
volume 244 of LIPIcs, pages 65:1–65:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.ESA.2022.65.

32 Monika Henzinger, Barna Saha, Martin P. Seybold, and Christopher Ye. On the complexity
of algorithms with predictions for dynamic graph problems. CoRR, abs/2307.16771, 2023.
doi:10.48550/arXiv.2307.16771.

33 Danny Hermelin, Avivit Levy, Oren Weimann, and Raphael Yuster. Distance oracles for
vertex-labeled graphs. In Proc. 38th International Colloquium, Automata, Languages and
Programming (ICALP’11), pages 490–501, 2011. doi:10.1007/978-3-642-22012-8_39.

ITCS 2024

https://doi.org/10.1137/S0097539797327908
https://doi.org/10.1007/978-3-642-14165-2_18
https://doi.org/10.1145/1806689.1806754
https://openreview.net/forum?id=tilovEHA3YS
https://doi.org/10.4230/LIPIcs.ISAAC.2021.23
https://doi.org/10.1145/322234.322235
https://doi.org/10.1007/s004530010032
https://doi.org/10.1137/1.9781611973099.91
https://doi.org/10.4230/LIPIcs.ESA.2017.45
https://proceedings.neurips.cc/paper_files/paper/2022/file/0ea048312aa812b2711fe765a9e9ef05-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0ea048312aa812b2711fe765a9e9ef05-Paper-Conference.pdf
https://doi.org/10.1145/2746539.2746609
https://doi.org/10.23919/IFIPNetworking52078.2021.9472803
https://doi.org/10.23919/IFIPNetworking52078.2021.9472803
https://doi.org/10.4230/LIPIcs.ESA.2022.65
https://doi.org/10.48550/arXiv.2307.16771
https://doi.org/10.1007/978-3-642-22012-8_39

62:24 On the Complexity of Algorithms with Predictions for Dynamic Graph Problems

34 Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency es-
timation algorithms. In 7th International Conference on Learning Representations, ICLR.
OpenReview.net, 2019. URL: https://openreview.net/forum?id=r1lohoCqY7.

35 Sungjin Im, Ravi Kumar, Aditya Petety, and Manish Purohit. Parsimonious learning-
augmented caching. In Proc. of the 39th International Conference on Machine Learning,
volume 162 of Proc. of Machine Learning Research, pages 9588–9601. PMLR, 17–23 July 2022.
URL: https://proceedings.mlr.press/v162/im22a.html.

36 Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polylogar-
ithmic worst case time. In Proc. of the Twenty-Fourth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA, pages 1131–1142. SIAM, 2013. doi:10.1137/1.9781611973105.81.

37 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjecture.
In Proc. of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1272–1287. SIAM, 2016.
doi:10.1137/1.9781611974331.ch89.

38 Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned
index structures. In Proc. of the 2018 International Conference on Management of Data,
SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 489–504. ACM, 2018.
doi:10.1145/3183713.3196909.

39 Jakub Lacki, Jakub Ocwieja, Marcin Pilipczuk, Piotr Sankowski, and Anna Zych. The power
of dynamic distance oracles: Efficient dynamic algorithms for the steiner tree. In Proc. 47th
Symposium on Theory of Computing (STOC’15), pages 11–20, 2015. doi:10.1145/2746539.
2746615.

40 Kasper Green Larsen and R. Ryan Williams. Faster online matrix-vector multiplication.
In Proc. 28th Symposium on Discrete Algorithms (SODA’17), pages 2182–2189, 2017. doi:
10.1137/1.9781611974782.142.

41 Alexander Lindermayr and Nicole Megow. Non-clairvoyant scheduling with predictions revisited.
CoRR, abs/2202.10199, 2022. arXiv:2202.10199.

42 Quanquan C. Liu and Vaidehi Srinivas. The predicted-deletion dynamic model: Taking
advantage of ML predictions, for free. CoRR, abs/2307.08890, 2023. doi:10.48550/arXiv.
2307.08890.

43 Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
J. ACM, 68(4):24:1–24:25, 2021. doi:10.1145/3447579.

44 Aleksander Madry. From graphs to matrices, and back: new techniques for graph algorithms.
PhD thesis, Massachusetts Institute of Technology, 2011.

45 Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with Predictions, pages 646–662.
Cambridge University Press, 2021. doi:10.1017/9781108637435.037.

46 Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Proc. of the
42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010, pages 603–610. ACM, 2010. doi:10.1145/1806689.1806772.

47 Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ML
predictions. In Advances in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 9684–9693, 2018. URL: https://proceedings.neurips.cc/paper/2018/hash/
73a427badebe0e32caa2e1fc7530b7f3-Abstract.html.

48 Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica, 61(2):389–
401, 2011. doi:10.1007/s00453-010-9401-5.

49 Liam Roditty and Uri Zwick. Dynamic approximate all-pairs shortest paths in undirected
graphs. SIAM J. Comput., 41(3):670–683, 2012. doi:10.1137/090776573.

50 Dhruv Rohatgi. Near-optimal bounds for online caching with machine learned advice. In Proc.
of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,
USA, January 5-8, 2020, pages 1834–1845. SIAM, 2020. doi:10.1137/1.9781611975994.112.

https://openreview.net/forum?id=r1lohoCqY7
https://proceedings.mlr.press/v162/im22a.html
https://doi.org/10.1137/1.9781611973105.81
https://doi.org/10.1137/1.9781611974331.ch89
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/2746539.2746615
https://doi.org/10.1145/2746539.2746615
https://doi.org/10.1137/1.9781611974782.142
https://doi.org/10.1137/1.9781611974782.142
https://arxiv.org/abs/2202.10199
https://doi.org/10.48550/arXiv.2307.08890
https://doi.org/10.48550/arXiv.2307.08890
https://doi.org/10.1145/3447579
https://doi.org/10.1017/9781108637435.037
https://doi.org/10.1145/1806689.1806772
https://proceedings.neurips.cc/paper/2018/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://doi.org/10.1007/s00453-010-9401-5
https://doi.org/10.1137/090776573
https://doi.org/10.1137/1.9781611975994.112

M. Henzinger, B. Saha, M. P. Seybold, and C. Ye 62:25

51 Yongho Shin, Changyeol Lee, Gukryeol Lee, and Hyung-Chan An. Improved learning-
augmented algorithms for the multi-option ski rental problem via best-possible competitive
analysis. In Proc. of the 40th International Conference on Machine Learning, pages 31539–
31561. PMLR, 2023. URL: https://proceedings.mlr.press/v202/shin23c.html.

52 Sandeep Silwal, Sara Ahmadian, Andrew Nystrom, Andrew McCallum, Deepak Ramachandran,
and Seyed Mehran Kazemi. Kwikbucks: Correlation clustering with cheap-weak and expensive-
strong signals. In The Eleventh International Conference on Learning Representations ICLR,
2023. URL: https://openreview.net/pdf?id=p0JSSa1AuV.

53 Shay Solomon. Fully dynamic maximal matching in constant update time. In IEEE 57th Annual
Symposium on Foundations of Computer Science, FOCS, pages 325–334. IEEE Computer
Society, 2016. doi:10.1109/FOCS.2016.43.

54 Jan van den Brand, Sebastian Forster, Yasamin Nazari, and Adam Polak. On dynamic graph
algorithms with predictions. CoRR, abs/2307.09961, 2023. doi:10.48550/arXiv.2307.09961.

55 Ryan Williams. Matrix-vector multiplication in sub-quadratic time: (some preprocessing
required). In Proc. 18th Symposium on Discrete Algorithms (SODA’07), pages 995–1001, 2007.
URL: http://dl.acm.org/citation.cfm?id=1283383.1283490.

ITCS 2024

https://proceedings.mlr.press/v202/shin23c.html
https://openreview.net/pdf?id=p0JSSa1AuV
https://doi.org/10.1109/FOCS.2016.43
https://doi.org/10.48550/arXiv.2307.09961
http://dl.acm.org/citation.cfm?id=1283383.1283490

	1 Introduction
	1.1 Contribution and Paper Outline

	2 Preliminaries and OMv with Predictions
	2.1 The Online Matrix Vector Problem
	2.2 Upper and Lower Bounds for OMv with Predictions

	3 Dynamic Prediction Models with General Lower Bounds
	3.1 -Accurate Predictions
	3.2 List Accurate Predictions
	3.3 Bounded Delay Predictions

	4 Extensions of the OMv Conjecture
	4.1 Sparse OMv Conjecture

	5 Locally Correctable Problems: Lower Bounds for List-accurate Predictions
	5.1 Preliminaries: Edge Updates in Dynamic Graphs
	5.2 Locally Correctable Dynamic Problems

	6 Locally Reducible Problems: Lower Bounds for Delay Predictions
	6.1 Locally Reducible Dynamic Problems

