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Abstract

In this paper we give the first efficient algorithms for the 𝑘-center problem on dynamic

graphs undergoing edge updates. In this problem, the goal is to partition the input into 𝑘 sets by

choosing 𝑘 centers such that the maximum distance from any data point to its closest center is

minimized. It is known that it is NP-hard to get a better than 2 approximation for this problem.

While in many applications the input may naturally be modeled as a graph, all prior

works on 𝑘-center problem in dynamic settings are on point sets in arbitrary metric spaces.

In this paper, we give a deterministic decremental (2 + 𝜖)-approximation algorithm and a

randomized incremental (4 + 𝜖)-approximation algorithm, both with amortized update time

𝑘𝑛𝑜 (1) for weighted graphs. Moreover, we show a reduction that leads to a fully dynamic (2+𝜖)-
approximation algorithm for the 𝑘-center problem, with worst-case update time that is within

a factor 𝑘 of the state-of-the-art fully dynamic (1 + 𝜖)-approximation single-source shortest

paths algorithm in graphs. Matching this bound is a natural goalpost because the approximate

distances of each vertex to its center can be used to maintain a (2 + 𝜖)-approximation of the

graph diameter and the fastest known algorithms for such a diameter approximation also rely

on maintaining approximate single-source distances.

1 Introduction

Clustering is a key concept in data analysis that involves organizing ‘similar’ data into groups. One

of the most fundamental and well-studied objectives is the 𝑘-center objective. Specifically, given a

metric space with 𝑛 points and a positive integer 𝑘 ≤ 𝑛, the goal of the 𝑘-center problem is to select

𝑘 points, referred to as centers, such that the maximum distance of any point in the metric space to

its closest center is minimized. It is known that 𝑘-center is NP-hard to approximate within a factor

of (2 − 𝜖) for any 𝜖 > 0 [HN79]. Due to its popularity, 𝑘-center has been considered under several

algorithmic frameworks, including approximation algorithms [HN79, Gon85, HS86, Ple80, FG88],

parameterized complexity [Fel15, BFM22], massive parallel computation (MPC) model [CPP19,

BDGK22, BBM23], and beyond worst-case analysis [BHW20], among others. This problem also

serves as a testbed for developing fundamental algorithmic definitions and paradigms, which are

then often applied to solving other variants of clustering objectives.
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Clustering in the dynamic setting has received increasing attention in recent years. This line of

work was initiated by Charikar et al. [CCFM97] who considered the problem of minimizing cluster

diameters under the insertions of new points in an underlying metric space. Under both point

insertions and deletions, the 𝑘-center problem was considered by Chan et al. [CGS18], who achieved

a (2 + 𝜖)-approximation in𝑂 (𝑘2𝜖−1 logΔ) amortized update time, where Δ is the aspect ratio of the

metric space. Later on, the amortized update time was improved to𝑂 (𝑘𝜖−1poly log(𝑛,Δ)) by Bateni
et al. [BEFH

+
23]. This is almost optimal considering that even in the static setting, any algorithm for

𝑘-clustering problems (including 𝑘-center, 𝑘-median, and 𝑘-means) on point sets in arbitrary metric

spaces that achieves any non-trivial approximation, must make at least Ω(𝑛𝑘) distance queries, and
in turn must take Ω(𝑛𝑘) time [BEFH

+
23]. These results spurred several follow-up works that studied

other point sets-based clustering objectives such as 𝑘-means [CHPS
+
19, HK20], 𝑘-median [GKLX21],

facility location [GHL18, GKLX20, GHLS
+
21, BLP22], and sum-of-radii [HLM20] in the dynamic

setting.

An important case of 𝑘-center clustering is when the input metric is induced by a graph𝐺 on 𝑛

vertices and𝑚 edges. Naturally, any 𝑘-center algorithm that works with points in arbitrary metric

spaces, can be applied on top of the graphical metric obtained by computing all-pairs shortest

paths in 𝐺 . However, the latter leads to slow running times, especially since it could make a sparse

graph 𝐺 very dense. In the static setting, Thorup [Tho04] gave a faster algorithm for the 𝑘-center

problem in the graph setting, achieving a (2 + 𝜖)-approximation in 𝑂̃ (𝑚𝜖−1) time, where 𝑂̃ hides

polylogarithmic factors in 𝑛 and in the maximum edge-weight of the graph. This result was recently

revisited by the work of Eppstein et al. [EHS20] and even more recently by Abboud et al. [ACLM23]

who gave a refined and simpler algorithm for 𝑘-center on graphs.

We note that graph clustering has also received attention in the machine learning community,

albeit for the closely related objective of 𝑘-means [RMJ07]. They observe the computational

challenges involving graphs (see also [AW10, Section 2.3]) and specifically the output sensitivity

due to distance changes caused by edge updates.

Motivated by these developments, we study the fundamental problem of dynamic 𝑘-center on
graphs. In comparison to the model with dynamic point sets in arbitrary metric spaces, we remark

that the model with dynamic graphs is more challenging since (i) there is no guarantee of having

oracle access to all-pairs shortest paths distances, and (ii) a single edge update may have a global
effect on the underlying graph metric, forcing a large number of vertex pairs to change their shortest

path distance. This is also why we cannot use other black-box approaches such as a distance oracle

of the metric completion of the graph.

To that end, we ask the natural question of to what extent one can leverage the structure of

graphical 𝑘-center in the context of obtaining faster algorithms for dynamic 𝑘-center on graphs:

Are there efficient algorithms for 𝑘-center on graphs undergoing edge updates?

1.1 Our Contribution

In this paper, we answer the question in the affirmative. Our first contribution is a fully dynamic

𝑘-center algorithm that follows from prior work using a surprisingly simple trick.

Theorem 1.1. Given a weighted undirected graph 𝐺 = (𝑉 , 𝐸,𝑤) subject to edge updates, an integer
parameter 𝑘 ≥ 1, and a positive constant parameter 𝜖 ≤ 1/2, there are two fully dynamic algorithms for
the 𝑘-center problem on graphs, that maintain a (2 + 𝜖)-approximation with the following guarantees
(based on the current value of the matrix multiplication exponent):
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1. Deterministic algorithm with 𝑂 (𝑘𝑛1.529𝜖−2) worst-case update time, if 𝐺 has uniform weights;
2. Randomized algorithm, against an adaptive adversary, with 𝑂 (𝑘𝑛1.823𝜖−2) worst-case update

time, if 𝐺 has general weights.
Both algorithms have preprocessing time 𝑂 (𝑛2.373𝜖−2 log 𝜖−1).

Note that our update time bounds match up to an 𝑂̃ (𝑘) factor, those of the state-of-the-art
fully-dynamic single-source distance approximation algorithms with multiplicative error (1 +
𝜖) [BN19, BFN22]. Matching this bound is a natural goalpost for dynamic 𝑘-center algorithms

maintaining the (1 + 𝜖)-approximate distance of each vertex to its closest center, because such

distance approximations are sufficient to return a (2+𝜖)-approximation for graph diameter when𝑘 =

1 and the fastest known approach for this is to use a dynamic single-source distance approximation

algorithm. Our algorithms—and to the best of our knowledge all related dynamic𝑘-center algorithms

on general metrics—do have this desirable property of maintaining the (1+𝜖)-approximate distance

of each vertex to its closest center. Moreover, the previous result is a reduction to the problem of

maintaining 𝑘-source approximate shortest paths in a fully dynamic setting; hence any improvement

on the shortest paths algorithms directly improves the running time of our algorithms as well.

The above suggests that in order to achieve faster running times, we need to consider partially
dynamic algorithms for the 𝑘-center problem on graphs, where edge updates are restricted to only

edge insertions or edge deletions. In particular, the insertions-only algorithms (also known as the

incremental setting) in the context of clustering are particularly well-motivated from a practical

viewpoint. For example, real-world graphs such as co-authorship networks are incremental since

the fact that two scientists co-authoring a research paper (almost) never changes over time. Our

main result regarding the incremental setting is the following.

Theorem 1.2. Given a weighted undirected graph 𝐺 = (𝑉 , 𝐸,𝑤) subject to edge insertions, an integer
parameter 𝑘 ≥ 1, and a positive constant parameter 𝜖 < 1, there is a randomized incremental (4 + 𝜖)-
approximation algorithm for the 𝑘-center problem on graphs, which w.h.p. is correct and w.h.p. has
𝑘𝑛𝑜 (1) amortized update time.

To complete the picture of partially dynamic algorithms, we also study the 𝑘-center problem

on graphs undergoing edge deletions only, known as the decremental setting. Here, we obtain an

algorithm that achieves a tight (2 + 𝜖) approximation ratio.

Theorem 1.3. Given a weighted undirected graph 𝐺 = (𝑉 , 𝐸,𝑤) subject to edge deletions, an integer
parameter 𝑘 ≥ 1, and a positive constant parameter 𝜖 < 1, there is a deterministic decremental
(2 + 𝜖)-approximation algorithm for the 𝑘-center problem on graphs, with 𝑘𝑛𝑜 (1) amortized update
time over a sequence of Θ(𝑚) updates.

We note that the 𝑛𝑜 (1) factors in the running time are also due to using partially dynamic

approximate single-source shortest paths (SSSP) algorithms, which is inherent in our bounds based

on similar reasoning as in the fully dynamic setting.

Outline. In Section 2, we give an overview of our algorithm and also discuss the main challenges

we face in dynamic graphs, as opposed to point sets. In Section 4, we review a well-known reduction

that relates the 𝑘-center problem to finding a maximal independent set on a graph. This reduction

is fundamental to our partially dynamic algorithms. Section 5 presents our primary technical

contribution, showcasing the incremental algorithm of Theorem 1.2. Section 6 completes the

partially dynamic picture by providing the decremental algorithm of Theorem 1.3. In Section 7,
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we explore the fully-dynamic setting, in which we use a different type of algorithm to prove

Theorem 1.1. Unlike the reduction presented in Section 4, our approach here is based on the greedy

algorithm of Gonzalez [Gon85]. In addition to the set of centers, we can also answer other natural

queries, such as the corresponding center for each vertex. We briefly discuss this in Appendix A.

2 Technical Overview

In this section, we give a high-level overview of our algorithms and discuss several technical

challenges that we need to handle for dynamically maintaining a 𝑘-center solution on graphs rather

than on point sets.

Reduction to 𝒌-Bounded Maximal Independent Set on Threshold Graphs. We start by

reviewing a known reduction from 2-approximate 𝑘-center to 𝑘-bounded maximal independent set

(MIS) [HS86]. This reduction is also the basis of some of the fully dynamic 𝑘-center algorithms on

point sets in arbitrary metric spaces [BEFH
+
23, CGS18]. The idea for obtaining a 2-approximation is

to guess the optimal value 𝑅∗ of the 𝑘-center instance via a binary search, and return any maximal

distance-2𝑅∗ independent set𝑀 . It can be shown that𝑀 must be of size at most 𝑘 . Recall that𝑀

is a maximal subset of vertices such that no two vertices 𝑢, 𝑣 ∈ 𝑀 are within distance 2𝑅∗ of each
other. The vertices of𝑀 then correspond to the centers of the 𝑘-center instance.

For utilizing this idea in the dynamic setting, rather than guessing the value of 𝑅∗, we maintain

theMIS on each 𝑟 -threshold graph𝐺𝑟 , for every distance range 𝑟 ≤ (1+𝜖)𝑖 , where 𝑖 ∈ [0, log1+𝜖 (𝑛𝑊 )]
and𝑊 is the maximum edge-weight of the graph. Here, by 𝑟 -threshold graph we mean a graph such

that there is an edge between two vertices if and only if they are within distance 𝑟 . This general

framework has been used in the dynamic 𝑘-center algorithms on point sets [BEFH
+
23, CGS18].

Actually, they maintain a relaxation of the MIS, called a 𝑘-bounded MIS. The observation is that it

is sufficient to either return an MIS of size at most 𝑘 on each 𝑟 -threshold graph 𝐺𝑟 , or to simply

report that there is an independent set of size at least 𝑘 + 1 as a witness that the distance range 𝑟 is
not the correct guess.

Technical Challenges in Graphs vs Point Sets. As discussed before there are several important

technical differences between the graph and point sets setting. The first difference is that, unlike

the point sets setting, in graphs we do not have direct access to distances. Thus, we also need

to maintain the appropriate distances simultaneously while the dynamic MIS is modified on the

𝑟 -threshold graphs. For this, we would like to combine a dynamic MIS maintenance algorithm with

partially dynamic (approximate) shortest paths algorithms. At a high-level, our goal is to maintain

a 𝑘-bounded MIS 𝑀 dynamically on each 𝑟 -threshold graph 𝐺𝑟 and at the same time maintain a

dynamic (approximate) SSSP algorithm from a super-source which is connected to all the vertices

in the dynamic set𝑀 . Hence the efficiency of the algorithm will depend on the number of times

the set𝑀 is modified over all the updates. Equivalently, the efficiency will depend on the number

of times the dynamic SSSP algorithm is restarted.

In both point sets and graph setting, we need to bound the recourse, where by recourse we mean

the number of times a new center is introduced by the algorithm. However, we argue that a stronger
recourse guarantee is needed for graphs. Recall that another important difference between these two

settings is that in the point sets setting adding or removing points has a more local impact, whereas

in a graph an update may impact the distances between many vertices. In other words, in the graph
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setting an edge update may distort the metric itself. This difference in graphs together with the

fact that the efficiency will depend on the number of times the dynamic set𝑀 is modified/dynamic

SSSP is restarted, requires our algorithm to have an overall recourse guarantee, as opposed to an

amortized one that suffices for the point sets setting. Thus an amortized recourse of 𝑂̃ (𝑘) per update
is not enough, and we need the stronger guarantee that the recourse is 𝑂̃ (𝑘) over all updates. More

concretely, this total bound on recourse will let us argue that in total we need to re-initialize a

dynamic (1 + 𝜖)-SSSP algorithm 𝑂̃ (𝑘) times from each center, and an amortized guarantee would

not be enough for getting our desired update bound. We will see that maintaining this stronger

recourse guarantee is more challenging in the incremental setting than in the decremental setting.

Note that these types of recourse guarantees have been studied in point sets from arbitrary

metric spaces under the name consistent clustering [LV17, FLNS21, ŁHGR
+
23]. However, we would

like to emphasize that the known sublinear bounds on the total recourse in the point sets setting

do not carry over to the graph setting.

Decremental 𝒌-Center on Graphs. We can obtain a decremental (2 + 𝜖)-approximation algo-

rithm for the 𝑘-center problem on graphs, by maintaining a decremental (1 + 𝜖)-SSSP algorithm

from a super-source which is connected to all the centers in each of the 𝑂 (log𝑛𝑊 ) 𝑟 -threshold
graphs. Bounding the recourse in the decremental setting is relatively straightforward based on the

following observation. Whenever a new center forms a cluster due to a distance increase in a given

𝑟 -threshold graph, it stays disjoint of other clusters throughout the algorithm and thus it stays a

valid center. Furthermore, as soon as we get more than 𝑘 centers, we move to the next distance

range and so, the recourse is upper bounded by 𝑘 on each 𝑟 -threshold graph and by 𝑂 (𝑘 log𝑛𝑊 )
overall. Hence the (1 + 𝜖)-SSSP algorithm is restarted at most 𝑂 (𝑘 log𝑛𝑊 ) times in total. This

combined with the time needed for maintaining partially dynamic (1 + 𝜖)-approximate SSSP leads

to our desired 𝑘𝑛𝑜 (1) amortized update time.

2.1 Incremental 𝒌-Center on Graphs

Incremental Low Recourse Ruling Sets. Bounding the recourse in the incremental setting is

more challenging compared to the decremental setting, for the following reason. After an edge

insertion in the input graph, a center 𝑐1 of a cluster may come within distance 𝑟 of an existing

center 𝑐2 of another cluster. In turn, this means that the two vertices 𝑐1 and 𝑐2 become neighbors in

the 𝑟 -threshold graph𝐺𝑟 . We cannot simply merge the corresponding clusters in some way and still

maintain a 2-approximation, as some vertices in such a merged cluster would go beyond the desired

distance range after each update. Hence we need a new technical idea to keep the recourse low.

The idea is to maintain a small (i.e., of size 𝑂̃ (𝑘)) dominating set 𝑆 on 𝐺𝑟 such that, at a high-level,

maintaining a maximal independent set on𝐺𝑟 [𝑆] will give us an approximate maximal independent

set on 𝐺𝑟 . More formally, by maintaining a 𝑘-bounded MIS𝑀 on the dominating set 𝑆 in 𝐺𝑟 , we

can show that 𝑀 is also a 𝑘-bounded (2, 2)-ruling set
1
on 𝐺𝑟 . That is, a subset 𝑀 of vertices of

size at most 𝑘 such that: (i) the distance in 𝐺𝑟 between any pair of vertices in𝑀 is at least 2, and

(ii) for each vertex in 𝑉 there exists a vertex in𝑀 within distance 2 in 𝐺𝑟 . Introducing this small

dominating set allows us to maintain a dynamic 𝑘-bounded maximal independent set 𝑀 on the

smaller subgraph𝐺𝑟 [𝑆] more efficiently, at the cost of losing a factor 2 in the approximation due to

the fact that𝑀 is only a (2, 2)-ruling set on 𝐺𝑟 . For maintaining such a dominating set, we use a

1
While our 𝑘-center algorithms work for weighted graphs, the ruling set subroutines always perform on unweighted

graphs regardless on the input to the 𝑘-center problem.
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recursive algorithm that maintains a union of hitting sets on a sequence of sparsified subgraphs of

𝐺𝑟 . The hitting sets are obtained by a standard sampling procedure on the subgraphs corresponding

to each recursive call. Informally, the sampling rate of the hitting sets is tuned depending on the

densities of these subgraphs and the recursion continues until the remaining set of low degree

vertices is sufficiently small. Since we have an incremental graph, the set of low degree vertices
defined based on a specific degree threshold that are not covered by the hitting sets shrinks over time.

This together with observations regarding the sampling, the degrees, and a property of the 𝑘-center

problem allows us to bound the recursion depth by 𝑂 (log𝑛).

Challenges of Working with the 𝒓-Threshold Graphs. The high-level idea described above

will give us an algorithm for maintaining a 𝑘-bounded (2, 2)-ruling set on an incremental graph

in 𝑂̃ (𝑘) amortized update time with an overall recourse of 𝑂̃ (𝑘) . Similar to the decremental

algorithm, our goal is to maintain such a ruling set on all 𝑟 -threshold graphs. This, combined with

an incremental (1 + 𝜖)-SSSP algorithm, will lead to an incremental (4 + 𝜖)-approximation algorithm

for the 𝑘-center problem on graphs. The main remaining challenge is that an edge insertion into the

input graph 𝐺 could lead to many edge insertions in the 𝑟 -threshold graph. In turn, the density of

the 𝑟 -threshold graphs could be 𝑛2 ≥ 𝑚. To overcome this challenge, we do not explicitly store the

𝑟 -threshold graphs. Instead, we utilize the construction of the dominating set on each 𝑟 -threshold

graph𝐺𝑟 together with the fact that the dominating set for each 𝐺𝑟 is of small size, to ensure that

only relevant edges are processed. That is, edges that either participate in the construction of the

dominating set or those that cause a conflict. Overall, by bounding the number of candidate centers

and taking advantage of the construction of the dominating sets, we ensure that 𝑂̃ (𝑘) incremental

(1 + 𝜖)-SSSP algorithms are re-initialized in total, and the relevant information is maintained. In

turn, this leads to an amortized update time of 𝑘𝑛𝑜 (1) .

3 Preliminaries

Graphs. Consider a weighted undirected graph𝐺 = (𝑉 , 𝐸,𝑤). We denote by 𝑛 = |𝑉 | the number

of vertices, by𝑚 = |𝐸 | the number of edges, and by𝑊 the maximum weight of an edge. Without

loss of generality (w.l.o.g.), we assume that the minimum edge weight is equal to 1. Moreover, we

assume that𝑊 is bounded by a polynomial in 𝑛 (i.e.,𝑊 = 𝑂 (poly(𝑛))).
For any two vertices 𝑢, 𝑣 ∈ 𝑉 , the distance 𝑑𝐺 (𝑢, 𝑣) between 𝑢 and 𝑣 is the length of a shortest

path from 𝑢 to 𝑣 in 𝐺 . For a fixed subset of vertices 𝑆 ⊆ 𝑉 and a vertex 𝑣 ∈ 𝑉 , the distance 𝑑𝐺 (𝑣, 𝑆)
between 𝑣 and 𝑆 is equal to min𝑢∈𝑆 𝑑𝐺 (𝑣,𝑢), namely the distance from 𝑣 to its closest vertex in 𝑆 . For

a vertex 𝑣 ∈ 𝑉 , we denote by 𝑁𝐺 (𝑣) the set of neighbors of 𝑣 in𝐺 , and by 𝑁𝐺 [𝑣] := 𝑁𝐺 (𝑣) ∪ {𝑣} the
closed neighborhood of 𝑣 in 𝐺 . A subgraph 𝐻 of a graph 𝐺 is a graph whose vertex set and edge set

are subsets of the vertex set and edge set of𝐺 respectively. An edge-subgraph of𝐺 is a graph whose

vertex set is the same as the vertex set of 𝐺 and whose edge set is a subset of the edge set of 𝐺 . For

a subset of vertices 𝑆 ⊆ 𝑉 , the induced subgraph 𝐺 [𝑆] is the graph with vertex set 𝑆 , whose edge

set consists of all edges in 𝐸 that have both endpoints in 𝑆 . We also say that 𝐺 [𝑆] is the subgraph
induced by 𝑆 . For a graph 𝐻 , we denote by𝑉 (𝐻 ) the vertex set of 𝐻 , and by 𝐸 (𝐻 ) the edge set of 𝐻 .

Consider now an unweighted undirected graph 𝐺 = (𝑉 , 𝐸). A distance-𝛼 independent set 𝑀 is

a subset of vertices such that the distance between any two vertices in𝑀 is strictly more than 𝛼 .

An independent set (IS) is a distance-1 independent set. An (𝛼, 𝛽)-ruling set is a subset of vertices
𝑀 ⊆ 𝑉 such that the distance between any two vertices in𝑀 is at least 𝛼 , and the distance between
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any vertex in 𝑉 and its closest vertex in 𝑀 is at most 𝛽 . A maximal independent set (MIS) is a
(2, 1)-ruling set.

Dynamic Setting. In the dynamic setting, the input graph 𝐺 is subject to edge updates. Namely,

edges can be inserted into𝐺 (edge insertions) and/or edges can be removed from𝐺 (edge deletions).

A fully dynamic algorithm is able to process both types of edge updates (i.e., edge insertions and

edge deletions), while a partially dynamic algorithm is able to process only one type of edge updates

(i.e., either edge insertions or edge deletions). In particular, an incremental algorithm can process

only edge insertions and a decremental algorithm can process only edge deletions.

In our incremental algorithms, we assume that the updates are performed by an oblivious
adversary who fixes the sequence of updates before the algorithm starts. Namely, the adversary

cannot adapt the updates based on the choices of the algorithm during the execution. This is as

opposed to an adaptive adversary, that instead we consider in the decremental and fully-dynamic

settings. A dynamic algorithm has amortized update time𝑢 (𝑛,𝑚) if its total time spent for processing

any sequence of ℓ updates is bounded by ℓ · 𝑢 (𝑛,𝑚).
In the incremental setting, let𝑀 be an independent set in 𝐺 . Then for an edge insertion (𝑢, 𝑣)

in𝐺 , we say that the edge (𝑢, 𝑣) causes a conflict in𝐺 when both of its endpoints 𝑢 and 𝑣 belong to

𝑀 before the update.

3.1 𝒌-Center on Graphs

The 𝑘-center problem on graphs is defined formally as follows.

Definition 3.1 (𝑘-center on graph). Given a weighted undirected graph 𝐺 = (𝑉 , 𝐸,𝑤) and an
integer 𝑘 ≥ 1, the goal is to output a subset of vertices 𝑆 ⊆ 𝑉 of size at most 𝑘 , such that the value
max𝑣∈𝑉 𝑑𝐺 (𝑣, 𝑆) is minimized.

Consider a 𝑘-center instance (𝐺 = (𝑉 , 𝐸,𝑤), 𝑘), which is the pair of the given input graph𝐺 and

the integer 𝑘 . For each choice of 𝑆 ⊆ 𝑉 , we define the radius 𝑟 := max𝑣∈𝑉 𝑑𝐺 (𝑣, 𝑆). The vertices of
𝑆 are also called centers. For a fixed 𝑆 with radius 𝑟 , we define a cluster for every 𝑐 ∈ 𝑆 containing

all vertices within distance 𝑟 from the center 𝑐 . We denote by 𝑅∗ := min |𝑆 | ≤𝑘 max𝑣∈𝑉 𝑑𝐺 (𝑣, 𝑆) the
optimal radius of the given instance, and by 𝑆∗ any subset with radius𝑅∗ (i.e., 𝑅∗ = max𝑣∈𝑉 𝑑𝐺 (𝑣, 𝑆∗)).
For completeness we also discuss how we may be interested in answering other type of queries

in Appendix A. In the dynamic setting, the input graph of the 𝑘-center instance is subject to edge

updates.

3.2 Partially Dynamic Shortest Paths Algorithms

Through the paper, we heavily make use of the existing partially dynamic (1+𝜖)-approximate single-

source shortest paths (SSSP) algorithms. In the decremental setting, we can use a deterministic

algorithm.

Theorem 3.2 (Decremental (1+𝜖)-SSSP, [BPS21]). Given a weighted undirected graph𝐺 = (𝑉 , 𝐸,𝑤)
subject to edge deletions, a source 𝑠 ∈ 𝑉 , and a constant 𝜖 ∈ (0, 1), there is a deterministic algorithm
that maintains (1 + 𝜖)-approximate shortest paths from 𝑠 in total update time𝑚1+𝑜 (1) .

In the incremental setting, we can use the following randomized partially dynamic algorithm.
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Theorem 3.3 (Incremental (1 + 𝜖)-SSSP, [HKN18, Che18, ŁN22]). Given a weighted undirected
graph 𝐺 = (𝑉 , 𝐸,𝑤) subject to edge insertions, a source 𝑠 ∈ 𝑉 , and a constant 𝜖 ∈ (0, 1), there is a
randomized algorithm (against an oblivious adversary) that maintains (1 + 𝜖)-approximate shortest
paths from 𝑠 in total update time𝑚1+𝑜 (1) .

The incremental (1+𝜖)-SSSP algorithm is not explicitly stated but follows from similar algorithms

as the decremental setting such as [HKN18, Che18, ŁN22]. In Appendix C, we give a brief sketch of

how one can adapt these results to the incremental setting, but the details of this algorithm are

beyond the scope of this paper.

4 Reduction from 2-Approximate 𝒌-Center to 𝒌-Bounded Ruling
Set

It is well-know that the 𝑘-center problem can be reduced to the problem of finding an MIS on

a graph. This reduction was first given by Hochbaum and Schmoys [HS86], in order to get a

2-approximation algorithm, and also it has been used by [CGS18, BEFH
+
23] for the fully dynamic

𝑘-center problem on point sets in arbitrary metric spaces. In particular, it is sufficient to solve a

weaker version of the MIS problem, where we only need to return an MIS of size at most 𝑘 , or

report that there is an independent set of size at least 𝑘 + 1. Formally, we define this problem based

on an (𝛼, 𝛽)-ruling-set, as follows. A similar definition was also given in [BEFH
+
23] for the MIS.

Recall that an MIS is a (2, 1)-ruling set.

Definition 4.1 (𝑘-bounded (𝛼, 𝛽)-ruling set problem). Given an unweighted undirected graph
𝐺 = (𝑉 , 𝐸), an integer 𝑘 ≥ 1, and parameters 𝛼, 𝛽 such that 𝛽 ≥ 𝛼 − 1 ≥ 0, the 𝑘-bounded (𝛼, 𝛽)-
ruling set problem asks to either return an (𝛼, 𝛽)-ruling set of size at most 𝑘 , or to report that there is a
distance-(𝛼 − 1) independent set of size at least 𝑘 + 1.

The reduction solves the 𝑘-bounded (𝛼, 𝛽)-ruling set problem on the following type of graphs.

Definition 4.2 (𝑟 -threshold graph). Given a weighted graph 𝐺 = (𝑉 , 𝐸,𝑤) and a parameter 𝑟 > 0,
the 𝑟 -threshold graph𝐺𝑟 = (𝑉 , 𝐸𝑟 ) is defined as the graph with vertex set𝑉 and edge set 𝐸𝑟 = {(𝑢, 𝑣) ∈
𝑉 ×𝑉 : 𝑑𝐺 (𝑢, 𝑣) ≤ 𝑟 }.

In other words, the 𝑟 -threshold graph𝐺𝑟 connects all pairs of vertices that are within distance 𝑟 in

𝐺 . Observe that the 𝑟 -threshold graph 𝐺𝑟 is unweighted.

The next lemma is an adjustment of the reduction of Hochbaum and Schmoys [HS86] to

Definition 4.1. The proof is deferred to Appendix B.

Lemma 4.3. Consider a 𝑘-center instance (𝐺 = (𝑉 , 𝐸,𝑤), 𝑘), and a positive constant parameter
𝜖 . Then by running a 𝑘-bounded (2, 𝛽)-ruling set algorithm on the 𝑟 -threshold graph 𝐺𝑟 , for each
𝑟 ∈ {(1 + 𝜖)𝑖 | (1 + 𝜖)𝑖 ≤ 𝑛𝑊 , 𝑖 ∈ N}, we can find a 2𝛽 (1 + 𝜖)-approximate solution for the 𝑘-center
instance.

For the sake of efficiency, in the dynamic setting we do not handle 𝑟 -threshold graphs, but

rather an approximation of them. For this reason, we generalize the previous lemma as follows.

Lemma 4.4. Consider a 𝑘-center instance (𝐺 = (𝑉 , 𝐸,𝑤), 𝑘), constant positive parameters 𝜖, 𝜖′, 𝑟 ≥ 0,
and 𝛽 ≥ 1. Let 𝑟 ′ := (1 + 𝜖′)𝑟 and consider the threshold graphs 𝐺𝑟 and 𝐺𝑟 ′ . Assume that there is an
algorithm A such that, given 𝐺, 𝑟, 𝜖′, 𝛽 ,
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• either reports that there is an independent set in 𝐺𝑟 of size at least 𝑘 + 1,
• or runs a 𝑘-bounded (2, 𝛽)-ruling set algorithm B on an edge-subgraph 𝐻 of 𝐺𝑟 ′ with the
following condition: whenever B reports that there is an independent set in 𝐻 of size at least
𝑘 + 1, then there is an independent set in 𝐺𝑟 of size at least 𝑘 + 1.

Then, by running A with input 𝐺, 𝑟, 𝜖′, 𝛽 , for each 𝑟 ∈ {(1 + 𝜖)𝑖 | (1 + 𝜖)𝑖 ≤ 𝑛𝑊 , 𝑖 ∈ N}, we can find
a 2𝛽 (1 + 𝜖) (1 + 𝜖′)-approximate solution for the 𝑘-center instance.

As already stated, the previous lemma is a generalization of Lemma 4.3. In fact, observe that in

the definition of a 𝑘-bounded (2, 𝛽)-ruling set problem, we are allowed to report that there is an

independent set of size at least 𝑘 + 1. Thus by setting 𝐻 = 𝐺𝑟 and 𝜖′ = 0 in Lemma 4.4, we get

Lemma 4.3 as a corollary.

Before proving Lemma 4.4, we state two auxiliary results that will be useful. Their proofs are

deferred to Appendix B.

Lemma 4.5. Consider a 𝑘-center instance (𝐺 = (𝑉 , 𝐸,𝑤), 𝑘) with optimal radius 𝑅∗. Then for each
𝑟 ≥ 2𝑅∗ and for every 𝛽 ≥ 1, it holds that every (2, 𝛽)-ruling set in the 𝑟 -threshold graph 𝐺𝑟 is of size
at most 𝑘 .

Observation 4.6. Consider a 𝑘-center instance (𝐺 = (𝑉 , 𝐸,𝑤), 𝑘) with optimal radius 𝑅∗, and let 𝐺𝑟

be the 𝑟 -threshold graph where 𝑟 = 2𝑅∗. Then, there is no independent set in 𝐺𝑟 of size at least 𝑘 + 1.

We proceed now with the proof of Lemma 4.4.

Proof of Lemma 4.4. Let 𝑟 be the smallest 𝑟 ∈ {(1 + 𝜖)𝑖 | (1 + 𝜖)𝑖 ≤ 𝑛𝑊 , 𝑖 ∈ N} such that algorithm

A returns a (2, 𝛽)-ruling set𝑀𝑟 of size at most 𝑘 in an edge-subgraph 𝐻 of𝐺𝑟 ′ , where 𝑟
′ = (1+𝜖′)𝑟 .

Also, let 𝑟 ′ = (1 + 𝜖′)𝑟 and let 𝑆 := 𝑀𝑟 be the solution we return for the 𝑘-center instance.

Since 𝐻 is a subgraph of 𝐺𝑟 ′ , then for every edge (𝑢, 𝑣) ∈ 𝐸 (𝐻 ), the distance between 𝑢 and 𝑣

in 𝐺 is at most 𝑟 ′. Hence, as𝑀𝑟 is a (2, 𝛽)-ruling set in 𝐻 , then every vertex is within distance 𝛽𝑟 ′

from its closest center in 𝐺 . Thus, the returned solution 𝑆 has radius at most 𝛽𝑟 ′.
We show now that 𝑟 is at most 2(1 + 𝜖) times larger than 𝑅∗. Based on Observation 4.6, for the

fixed choice of 𝑟 = 2𝑅∗, algorithmA always returns a (2, 𝛽)-ruling set𝑀𝑟 in 𝐻 of size at most 𝑘 . By

definition of 𝑟 , and since the possible values of 𝑟 are powers of (1 + 𝜖), we have that 𝑟 ≤ 2(1 + 𝜖)𝑅∗.
Therefore, the radius of the returned solution 𝑆 is at most 2𝛽 (1 + 𝜖) (1 + 𝜖′)𝑅∗. □

5 Incremental 𝒌-Center on Graphs

In the incremental setting, the input graph of the 𝑘-center instance is subject to edge insertions.

We start by recalling the concept of dominating set, which we will exploit throughout this section.

Definition 5.1 (Dominating set). Given an unweighted undirected graph𝐺 = (𝑉 , 𝐸), a dominating
set 𝑆 ⊆ 𝑉 in 𝐺 is a subset of vertices such that each vertex of 𝐺 is either in 𝑆 or has a neighbor in 𝑆 .

Observation 5.2. Consider an unweighted undirected graph𝐺 = (𝑉 , 𝐸). Let 𝑆 be a dominating set in
𝐺 , and𝑀 be an (𝛼, 𝛽)-ruling set in 𝐺 [𝑆]. Then𝑀 is an (𝛼, 𝛽 + 1)-ruling set in 𝐺 .

In this section, we first develop an incremental algorithm for the 𝑘-bounded (2, 2)-ruling set
problem by finding a small dominating set 𝑆 and maintaining a 𝑘-bounded (2, 1)-ruling set in𝐺 [𝑆],
as Observation 5.2 suggests. The idea is to use the reduction of Lemma 4.3 with this algorithm,
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in order to solve the incremental 𝑘-center problem. In the reduction though, notice that we need

to maintain an incremental 𝑘-bounded (2, 2)-ruling set algorithm on 𝑟 -threshold graphs, which

is more challenging. To that end, in Section 5.2 we develop an efficient incremental 𝑘-bounded

(2, 2)-ruling set algorithm that works on approximate versions of 𝑟 -threshold graphs. Finally, we

apply Lemma 4.4 instead of Lemma 4.3, to obtain the incremental 𝑘-center algorithm.

5.1 Incremental 𝒌-Bounded (2, 2)-Ruling Set Algorithm

We begin by describing how to detect a small dominating set 𝑆 on an incremental graph 𝐺 , and

maintain a 𝑘-bounded (2, 1)-ruling set on the subgraph induced by 𝑆 . In particular, we prove the

following theorem.

Theorem 5.3. Given an unweighted undirected graph 𝐺 = (𝑉 , 𝐸) subject to edge insertions, and an
integer 𝑘 ≥ 1, there is a randomized incremental algorithm which:

• either reports that there is an independent set in𝐺 of size at least 𝑘 + 1, and this is correct w.h.p.,
• or finds a dominating set 𝑆 of size 𝑂̃ (𝑘) in 𝐺 and maintains a 𝑘-bounded (2, 1)-ruling set in
𝐺 [𝑆].

Notice that based on Observation 5.2 and the definitions of dominating set and 𝑘-bounded

(𝛼, 𝛽)-ruling set problem (i.e., Definition 5.1 and Definition 4.1), the algorithm of Theorem 5.3

solves the incremental 𝑘-bounded (2, 2)-ruling set problem in 𝐺 . Before describing the algorithm

we review two existing algorithms tools. First tool is the following folklore hitting set claim (e.g.,

see [ACIM99], also widely used in decremental settings against an oblivious adversary).

Lemma 5.4. Given a graph𝐺 = (𝑉 , 𝐸) and a threshold𝛾 ≥ 1, let 𝑆 be the set obtained by sampling each
vertex independently with probability min(𝑐 ln(𝑛)/𝛾, 1), for a constant 𝑐 > 1. Then, with probability
at least 1 − 𝑛−(𝑐−1) , every vertex of degree more than 𝛾 has at least one neighbor in 𝑆 .

As noted, e.g., in [RZ12], even though Lemma 5.4 refers to a static graph, it is easy to see that it

holds for partially dynamic graphs. Since we are assuming an oblivious adversary, the choice of the

random set 𝑆 is independent of the graph. This and the fact that we have at most 𝑂 (𝑛2) versions
of the graph in the incremental setting, let us bound the overall probability via a straightforward

union bound, and the failure probability is at most 𝑛−(𝑐−3) .
Second tool, is a fully dynamic 𝑘-bounded (2, 1)-ruling set algorithm with the following guaran-

tees. This algorithm is a trivial extension of any fully dynamic MIS algorithm that returns explicitly

the MIS. For that reason, we can either use the MIS algorithm of Behnezhad et al. [BDHS
+
19], or

the algorithm of Chechik and Zhang [CZ19].

Theorem 5.5. Given a graph 𝐺 = (𝑉 , 𝐸) subject to edge updates, there is a fully dynamic 𝑘-bounded
(2, 1)-ruling set algorithm with 𝑂̃ (1) amortized update time.

Proof. The algorithm of Behnezhad et al. [BDHS
+
19] maintains an MIS𝑀 under edge updates, in

𝑂̃ (1) amortized update time. Recall that an MIS is a (2, 1)-ruling set. Thus at any moment, if the

size of 𝑀 is at least 𝑘 + 1, we report that there is an independent set in 𝐺 of size at least 𝑘 + 1,
otherwise we return the set𝑀 . □
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5.1.1 Overview of the Algorithm

A pseudocode of the algorithm of Theorem 5.3 is provided in Algorithm 1. The algorithm consists of

two phases. Roughly speaking, the first phase either detects a dominating set 𝑆 or reports that there

is an independent set in 𝐺 of size at least 𝑘 + 1. The second phase starts when such a dominating

set 𝑆 is detected and is only responsible for maintaining an incremental 𝑘-bounded (2, 1)-ruling set

in 𝐺 [𝑆].

Algorithm 1 𝑘-bounded (2, 2)-ruling set

// In the preprocessing 𝑖 = 0, 𝐿0 = 𝑉 , and 𝑘-Bounded-Ruling-Set() is called with no edge (note that
Line 16 where the edge is actually used cannot be reached during the preprocessing)

// The index 𝑖 and the sets 𝐿𝑖 , 𝑆𝑖 for every 𝑖 are global

1 Procedure 𝑘-Bounded-Ruling-Set(𝑢, 𝑣):
2 if |𝐿𝑖 | > 4𝑘 then // first phase
3 if 𝑖 = 0 or |𝐿𝑖 | ≤ |𝐿𝑖−1 |

2
then // recursive sampling

4 𝑖 ← 𝑖 + 1
5 𝛾𝑖 ← |𝐿𝑖−1 |

2𝑘
− 1

6 𝑆𝑖 ← sample vertices of 𝐿𝑖−1 independently with prob. min(10 ln(𝑛)/𝛾𝑖 , 1) // Lemma 5.4
7 𝐿𝑖 ← {𝑥 ∈ 𝐿𝑖−1 : 𝑁𝐺 [𝐿𝑖−1 ] (𝑥) ∩ 𝑆𝑖 = ∅}
8 𝑘-Bounded-Ruling-Set(u,v)
9 end

10 else
11 report there is an independent set in 𝐺 of size at least 𝑘 + 1 // Lemma 5.6
12 end
13 end
14 else // second phase
15 if B is not initialized then // B is dynamic 𝑘-bounded (2, 1)-ruling set algorithm (Theorem 5.5)
16 𝑑 ← 𝑖

17 𝑆 ← ⋃𝑑
𝑗=1 𝑆 𝑗 ∪ 𝐿𝑑 // 𝑆 is a dominating set (Lemma 5.8)

18 B .𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 (𝐺 [𝑆])
19 end
20 else if 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑆 then
21 B .𝑢𝑝𝑑𝑎𝑡𝑒 (𝐺 [𝑆], 𝑢, 𝑣)
22 end
23 end
24 return

25 Procedure Insert(𝑢, 𝑣):
26 𝐺 ← (𝑉 , 𝐸 ∪ {𝑢, 𝑣})
27 if 𝑢 ∈ 𝐿𝑖 and ∃ 𝑗 ≤ 𝑖 such that 𝑣 ∈ 𝑆 𝑗 (resp., 𝑣 ∈ 𝐿𝑖 and ∃ 𝑗 ≤ 𝑖 such that 𝑢 ∈ 𝑆 𝑗 ) then
28 𝐿𝑖 ← 𝐿𝑖 \ {𝑢} (resp., 𝐿𝑖 ← 𝐿𝑖 \ {𝑣})
29 end
30 𝑘-Bounded-Ruling-Set(𝑢, 𝑣)

31 return
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In the first phase, the algorithm iteratively adds vertices to the dominating set by recursively

sampling a sequence of hitting sets. In each recursive call 𝑖 ≥ 1, we set a threshold 𝛾𝑖 =
|𝐿𝑖−1 |
2𝑘
−1 and

construct two sets 𝑆𝑖 and 𝐿𝑖 . The set 𝑆𝑖 is obtained by sampling each vertex of 𝐿𝑖−1 independently
with probability min(𝑐 ln(𝑛)/𝛾𝑖 , 1), for a sufficiently large constant 𝑐 . Roughly speaking the set 𝑆𝑖
is the hitting set of the vertices with degree more than 𝛾𝑖 in 𝐺 [𝐿𝑖−1]. Moreover, the set 𝑆𝑖 is w.h.p.

small in size due to the sampling procedure. The set 𝐿𝑖 is constructed as the subset of vertices of

𝐿𝑖−1 that do not belong to 𝑆𝑖 and do not have a neighbor in 𝑆𝑖 . Given the property of the hitting set

𝑆𝑖 , the set 𝐿𝑖 contains w.h.p. only vertices with degree at most 𝛾𝑖 in 𝐺 [𝐿𝑖−1]. The recursion starts

with 𝐿0 = 𝑉 and it ends when |𝐿𝑖 | ≤ 4𝑘 .

In the 𝑖th recursive call, if the size of 𝐿𝑖 is at most |𝐿𝑖−1 |/2 then a new recursive call begins. This

implies that the depth of the recursion over all updates is bounded by 𝑂 (log𝑛). On the other hand,

if the size of the set 𝐿𝑖 is greater than |𝐿𝑖−1 |/2, the recursion pauses and the algorithm reports that

there is an independent set in 𝐺 of size at least 𝑘 + 1. In this case 𝑖 may not be the final recursive

call of the algorithm, because on future updates the algorithm can possibly continue the recursion.

Whenever an edge (𝑢, 𝑣) is inserted to𝐺 during the first phase, we update the set 𝐿𝑖 by removing

from it one of the endpoints if the other one is contained in 𝑆𝑖 . Observe that edge insertions will

eventually shrink the size of 𝐿𝑖 , forcing the recursion to continue.

The second phase begins when the size of 𝐿𝑖 is at most 4𝑘 , and at this moment the recursion

ends. We denote by 𝑑 the index of the last recursive call in the first phase, and let 𝑆 :=
⋃𝑑

𝑗=1 𝑆 𝑗 ∪ 𝐿𝑑
be the union of the hitting sets of all recursive calls and of the set 𝐿𝑑 . Notice that the set 𝑆 can be

constructed explicitly during the first phase of the algorithm. Also, in the updates following the

second phase we never re-enter the first phase, and thus the set 𝑆 is not modified anymore. We

show in the analysis, that even though the set 𝑆 is random, it is always a dominating set in 𝐺 .

At the beginning of the second phase, the dynamic 𝑘-bounded (2, 1)-ruling set algorithm B
of Theorem 5.5 is initialized on 𝐺 [𝑆]. Whenever an edge (𝑢, 𝑣) is inserted to 𝐺 during the second

phase, the algorithm simply forwards the update to B if 𝑢, 𝑣 ∈ 𝑆 , and does nothing otherwise.

5.1.2 Analysis of the Algorithm

The analysis consists of three claims. First, we prove that whenever the algorithm reports that

there is an independent set in 𝐺 of size at least 𝑘 + 1, this is correct with high probability (w.h.p.).

Second, we show that there are 𝑂 (log𝑛) recursive calls and that w.h.p. the size of 𝑆 is 𝑂̃ (𝑘). Third,
we prove that the set 𝑆 detected by the algorithm is indeed a dominating set in 𝐺 .

Lemma 5.6. At any stage of the algorithm with 𝑖 ≥ 1, if |𝐿𝑖 | > |𝐿𝑖−1 |
2

, then w.h.p. there is an
independent set in 𝐺 of size at least 𝑘 + 1.

Proof. The threshold 𝛾𝑖 is set to
|𝐿𝑖−1 |
2𝑘
− 1, and 𝑆𝑖 is obtained by sampling each vertex of 𝐿𝑖−1

independently with probability min(𝑐 ln(𝑛)/𝛾𝑖 , 1), for a sufficiently large constant 𝑐 . Then by

Lemma 5.4, it holds that w.h.p. every vertex in 𝐿𝑖−1 of degree more than 𝛾𝑖 in the induced subgraph

𝐺 [𝐿𝑖−1] has a neighbor in 𝑆𝑖 . Hence, w.h.p. every vertex in 𝐿𝑖 is of degree at most 𝛾𝑖 in 𝐺 [𝐿𝑖−1]. As
𝐺 [𝐿𝑖] is a subgraph of𝐺 [𝐿𝑖−1], w.h.p. every vertex of𝐺 [𝐿𝑖] is of degree at most 𝛾𝑖 in𝐺 [𝐿𝑖] as well.

Since w.h.p. the maximum degree in 𝐺 [𝐿𝑖] is bounded by 𝛾𝑖 , for any 𝑇 ⊆ 𝐿𝑖 such that |𝑇 | = 𝑘

(note that |𝐿𝑖 | > 4𝑘) , it holds that w.h.p. the number of vertices which are either in 𝑇 or have

a neighbor in 𝑇 is at most 𝑘 (𝛾𝑖 + 1) ≤ |𝐿𝑖−1 |
2

. By assumption we have that |𝐿𝑖 | > |𝐿𝑖−1 |
2

, and so 𝑇

cannot be a maximal independent set. So it holds that w.h.p. there is an independent set in 𝐺 [𝐿𝑖]
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of size at least 𝑘 + 1. In turn, as 𝐺 [𝐿𝑖] is an induced subgraph of 𝐺 , it holds that w.h.p. there is an

independent set in 𝐺 of size at least 𝑘 + 1 as well. □

Lemma 5.7. Over the sequence of updates, there are 𝑑 = 𝑂 (log𝑛) recursive calls. Moreover, the size
of 𝑆 is w.h.p. 𝑂 (𝑘 log2 𝑛).

Proof. Regarding the first claim, at every recursive call 𝑖 ≥ 1, it holds that |𝐿𝑖 | ≤ |𝐿𝑖−1 |
2

. Initially we

have that |𝐿0 | = 𝑛, and so, the depth of the recursion is 𝑑 = 𝑂 (log𝑛).
Regarding the second claim, at each recursive call 𝑖 ≥ 1, we sample each vertex of 𝐿𝑖−1

independently with probability min(𝑐 ln(𝑛)/𝛾𝑖 , 1), for a sufficiently large constant 𝑐 . Recall that

𝛾𝑖 =
|𝐿𝑖−1 |
2𝑘
− 1 and note that the sampling takes place only if |𝐿𝑖−1 | > 4𝑘 . Then

E[|𝑆𝑖 |] ≤ |𝐿𝑖−1 | ·
𝑐 ln(𝑛)
𝛾𝑖

= |𝐿𝑖−1 | ·
𝑐 ln(𝑛)
|𝐿𝑖−1 |
2𝑘
− 1

= |𝐿𝑖−1 | ·
2𝑘 · 𝑐 ln(𝑛)
|𝐿𝑖−1 | − 2𝑘

=
2𝑘 · 𝑐 ln(𝑛)
1 − 2𝑘/|𝐿𝑖−1 |

< 4𝑘 · 𝑐 ln(𝑛) .

Moreover note that |𝐿𝑑 | ≤ 4𝑘 . Therefore, by linearity of expectation it holds that E[|𝑆 |] = |𝐿𝑑 | +∑𝑑
𝑖=1 E[|𝑆𝑖 |] = 𝑂 (𝑘 log2 𝑛). Finally, since |𝑆 | is a sum of independent Poisson trials, a standard

application of a Chernoff’s bound implies that |𝑆 | = 𝑂 (𝑘 log2 𝑛) with high probability. □

Lemma 5.8. The set 𝑆 is a dominating set in 𝐺 .

Proof. For a fixed vertex 𝑣 ∈ 𝑉 \ 𝑆 , let 𝑖 be the minimum index such that 𝑣 ∉ 𝐿𝑖 . Note that such an

index exists since 𝑣 ∈ 𝑉 = 𝐿0 and so 𝑖 ≥ 1. If 𝑣 ∉ 𝐿𝑖 , then by definition of 𝐿𝑖 , vertex 𝑣 must have a

neighbor in 𝑆𝑖 . Therefore, every vertex 𝑣 ∈ 𝑉 \ 𝑆 has a neighbor in 𝑆 and the claim follows. □

Finally, Theorem 5.3 which we restate for convenience, follows by the combination of Lemma 5.6,

Lemma 5.7 and Lemma 5.8.

Theorem 5.3. Given an unweighted undirected graph 𝐺 = (𝑉 , 𝐸) subject to edge insertions, and an
integer 𝑘 ≥ 1, there is a randomized incremental algorithm which:

• either reports that there is an independent set in𝐺 of size at least 𝑘 + 1, and this is correct w.h.p.,
• or finds a dominating set 𝑆 of size 𝑂̃ (𝑘) in 𝐺 and maintains a 𝑘-bounded (2, 1)-ruling set in
𝐺 [𝑆].

Let us explain now why this algorithm actually solves w.h.p. the incremental 𝑘-bounded (2, 2)-
ruling set problem in 𝐺 as we argued before (see also Observation 5.2). Recall that an independent

set is a distance-1 independent set, and by the definition of the 𝑘-bounded (2, 2)-ruling set problem

(see Definition 4.1), we are allowed to report that there is a distance-1 independent set of size at

least 𝑘 + 1. Hence, whenever this algorithm performs the operation stated in the first bullet of

Theorem 5.3, the claim follows.

Regarding the operation stated in the second bullet of Theorem 5.3, let B be a 𝑘-bounded

(2, 1)-ruling set algorithm running on 𝐺 [𝑆]. If B reports that there is a distance-1 independent set

in 𝐺 [𝑆] of size at least 𝑘 + 1, then B correctly reports that there is a distance-1 independent set

in 𝐺 of size at least 𝑘 + 1 as well. This is because 𝐺 [𝑆] is an induced subgraph of 𝐺 , and so, any

distance-1 independent set in 𝐺 [𝑆] is also a distance-1 independent set in 𝐺 .

Otherwise, B returns a (2, 1)-ruling set𝑀 of size at most 𝑘 . Then for any vertex 𝑣 ∈ 𝑆 , we have
that 𝑣 is of distance at most 1 from its closest vertex in𝑀 . Therefore, since every vertex 𝑣 ∈ 𝑉 \ 𝑆
has at least one neighbor in 𝑆 by Lemma 5.8, we have that every vertex of𝐺 is of distance at most 2

from its closest vertex in𝑀 . Thus, the set𝑀 is a (2, 2)-ruling set in 𝐺 of size at most 𝑘 , and so the

claim follows.
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5.2 Incremental 𝒌-Bounded (2, 2)-Ruling Set on 𝑮𝒓

Our goal here is to extend Theorem 5.3 to 𝑟 -threshold graphs so that we can apply Lemma 4.3 and

maintain an incremental 𝑘-center solution. At a high level, our intention is to simulate the two

phases of Algorithm 1 on an 𝑟 -threshold graph 𝐺𝑟 . Recall by Definition 4.2 that for any pair of

vertices 𝑢, 𝑣 ∈ 𝑉 ×𝑉 , there is an edge in 𝐺𝑟 if and only if the distance between 𝑢 and 𝑣 in 𝐺 is at

most 𝑟 . The main challenges in the incremental setting are the following ones.

• We cannot afford to explicitly maintain all the edges of𝐺𝑟 in the incremental setting, because

it is very expensive to run an incremental all-pairs shortest paths algorithm on 𝐺 .

• A single edge insertion in the original graph𝐺 could introduce multiple edge insertions in

the 𝑟 -threshold graph 𝐺𝑟 .

Note that Algorithm 1 does not need access to all edges of 𝐺𝑟 in order to process 𝐺𝑟 . Thus, our aim

is to describe how to maintain all the necessary information that Algorithm 1 needs, so as to run

with implicit input the 𝑟 -threshold graph 𝐺𝑟 .

To extract the relevant information for the 𝑟 -threshold graph𝐺𝑟 , we make use of the incremental

(1 + 𝜖)-SSSP algorithm of Theorem 3.3. We note that using partially dynamic exact SSSP algorithms

for this step would be too slow for our purposes, as even in unweighted graphs we would require

Ω(𝑚𝑟 ) time and 𝑟 could be very large (i.e., as big as 𝑛). Consequently, rather than explicitly

maintaining𝐺𝑟 , we maintain an edge-subgraph 𝐻 of the 𝑟 ′-threshold graph𝐺𝑟 ′ , with 𝑟
′
:= (1 + 𝜖)𝑟 .

However, whenever the algorithm reports that there is an independent set in 𝐻 of size at least 𝑘 + 1,
we guarantee that this is also true for the 𝑟 -threshold graph 𝐺𝑟 .

We exploit the fact that Algorithm 1 guarantees that the size of the dominating set is small (see

Theorem 5.3). Hence, since during the second phase only the edges in the subgraph induced by

the dominating set are needed, we argue based on Lemma 5.7 that during the whole second phase

of the algorithm we maintain 𝑂̃ (𝑘) incremental (1 + 𝜖)-approximate SSSP instances. Furthermore

again by Lemma 5.7, we argue that during the whole first phase of the algorithm, we maintain

𝑂̃ (1) incremental (1 + 𝜖)-approximate SSSP instances. As a result, in total we maintain only 𝑂̃ (𝑘)
incremental (1 + 𝜖)-approximate SSSP instances over the course of the algorithm, and this is the

main ingredient for the efficiency of the algorithm. In particular, we prove the following theorem.

Theorem 5.9. Consider a weighted undirected graph 𝐺 = (𝑉 , 𝐸,𝑤) subject to edge insertions, an
integer 𝑘 ≥ 1, a positive parameter 𝑟 and a positive constant 𝜖 < 1. Let 𝑟 ′ := (1 + 𝜖)𝑟 and consider the
threshold graphs 𝐺𝑟 and 𝐺𝑟 ′ . There is a randomized algorithm which:

• either reports that there is an independent set in𝐺𝑟 of size at least 𝑘 + 1, and this is correct w.h.p.,
• or finds a dominating set 𝑆 ⊆ 𝑉 of size 𝑂̃ (𝑘) in an edge-subgraph 𝐻 of 𝐺𝑟 ′ and runs an
incremental 𝑘-bounded (2, 1)-ruling set algorithm B on 𝐻 [𝑆] with the following condition:
whenever B reports that there is an independent set in 𝐻 of size at least 𝑘 + 1, then there is an
independent set in 𝐺𝑟 of size at least 𝑘 + 1.

The total update time of the algorithm is w.h.p. 𝑘𝑚1+𝑜 (1) .

Based on Observation 5.2 and by the definitions of dominating set and 𝑘-bounded (𝛼, 𝛽)-ruling
set problem (i.e., Definition 5.1 and Definition 4.1), the next corollary immediately follows.

Corollary 5.10. Consider the setting of Theorem 5.9. There is a randomized algorithm which:
• either reports that there is an independent set in𝐺𝑟 of size at least 𝑘 + 1, and this is correct w.h.p.,
• or runs an incremental 𝑘-bounded (2, 2)-ruling set algorithm B on an edge-subgraph 𝐻 of 𝐺𝑟 ′

with the following condition: whenever B reports that there is an independent set in 𝐻 of size at
least 𝑘 + 1, then there is an independent set in 𝐺𝑟 of size at least 𝑘 + 1.
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The total update time of the algorithm is w.h.p. 𝑘𝑚1+𝑜 (1) .

5.2.1 Overview of the Algorithm

In the following, we describe the algorithm of Theorem 5.9 which is an adaptation of Algorithm 1

on approximate 𝑟 -threshold graphs. Specifically, we adapt Algorithm 1 to process an approximate

𝑟 -threshold graph 𝐺𝑟 implicitly. A pseudocode of the algorithm is provided in Algorithm 2.

For a fixed value of 𝑟 and 𝜖 , let 𝑟 ′ := (1 + 𝜖)𝑟 . Also let 𝐻 be an initially empty graph with vertex

set 𝑉 . Consider a recursive call 𝑖 ≥ 1 of Algorithm 1 during the first phase. The sampling step for

obtaining the set 𝑆𝑖 does not need access to the edges of the input graph, but only to the vertices of

the input graph. Thus, each hitting set 𝑆𝑖 can be explicitly constructed. In turn, the union of the

sampled sets 𝑆 (𝑖 ) = 𝑆1 ∪ · · · ∪ 𝑆𝑖 is explicitly constructed as well.

The next step of Algorithm 1 is to compute the size of 𝐿𝑖 , and decide how to proceed with the

recursion depending on the sizes of 𝐿𝑖−1 and 𝐿𝑖 . A simulation of Algorithm 1 on𝐺𝑟 would construct

the set 𝐿𝑖 as the set of vertices which are of distance more than 𝑟 in 𝐺 from their closest vertex in

𝑆𝑖 . Nevertheless, as we use an approximate SSSP algorithm, we construct the set 𝐿𝑖 in a slightly

different way as follows. In the beginning of the recursive call, we set 𝑆 = 𝑆 (𝑖 ) and 𝐿𝑖 = 𝐿𝑖−1 \ 𝑆𝑖 . At
this point, we maintain the incremental (1 + 𝜖)-SSSP algorithm of Theorem 3.3 with super-source

𝑆 on 𝐺 , providing distance estimates 𝛿𝑆 (·).2 Whenever the distance estimate 𝛿𝑆 (𝑣) of a vertex

𝑣 ∈ 𝑉 becomes smaller than (1 + 𝜖)𝑟 , we remove 𝑣 from 𝐿𝑖 and add the edge (𝑎, 𝑣) to 𝐻 , where

𝑎 is the corresponding vertex of 𝑆 for the distance estimate 𝛿𝑆 (𝑣). Therefore, we continue with
the recursion as in Algorithm 1 by constructing the set 𝐿𝑖 in this way, and in turn computing its

size. Moreover, since at every new recursive call the set 𝑆 (𝑖 ) is modified (i.e., we may sample more

vertices), at every new recursive call we set 𝑆 = 𝑆 (𝑖 ) and we restart the incremental (1 + 𝜖)-SSSP
algorithm with super-source 𝑆 on 𝐺 .

As in Algorithm 1, the second phase begins when the size of 𝐿𝑖 is at most 4𝑘 , and at this moment

the recursion ends. We denote by 𝑑 the index of the last recursive call in the first phase, and 𝑆 is

updated to 𝑆 := 𝑆 (𝑑 ) ∪ 𝐿𝑑 . During the second phase, Algorithm 1 has to maintain an incremental

𝑘-bounded (2, 1)-ruling set algorithm on𝐺𝑟 [𝑆]. Instead, we maintain an incremental 𝑘-bounded

(2, 1)-ruling set algorithm on a subgraph𝐻 [𝑆] of𝐺𝑟 ′ [𝑆]. The subgraph𝐻 [𝑆] is maintained explicitly,

as follows. Let 𝐸𝑆 be the initially empty set consisting of the edges in 𝐻 [𝑆]. For each vertex 𝑣 ∈ 𝑆 ,
we maintain the incremental (1 + 𝜖)-SSSP algorithm of Theorem 3.3 with source 𝑣 on 𝐺 , providing

distance estimates 𝛿𝑣 (·). Then for any two vertices 𝑢, 𝑣 ∈ 𝑆 , whenever we have that 𝛿𝑢 (𝑣) ≤ (1+𝜖)𝑟
or 𝛿𝑣 (𝑢) ≤ (1 + 𝜖)𝑟 , the edge (𝑢, 𝑣) is added to 𝐸𝑆 .

Thus during the second phase, we maintain the incremental 𝑘-bounded (2, 1)-ruling set algo-
rithm B of Theorem 5.5 on (𝑆, 𝐸𝑆 ). Whenever B reports that there is an independent set in (𝑆, 𝐸𝑆 )
of size at least 𝑘 + 1, we report that there is an independent set in 𝐺𝑟 of size at least 𝑘 + 1. In the

analysis we argue that 𝑆 is a dominating set in 𝐻 . Hence, this implies that B solves the incremental

𝑘-bounded (2, 2)-ruling set problem in 𝐻 .

Edge insertions. Consider an edge insertion to 𝐺 , and let 𝑖 be the current recursive call of the

algorithm before the update arrives. While the algorithm is in the first phase, the update is passed

to the incremental (1 + 𝜖)-SSSP algorithm with super-source 𝑆 (𝑖 ) , and the corresponding set 𝐿𝑖 is

2
Namely, we introduce a fake root 𝑥 and add an edge (𝑥, 𝑣) of zero weight, for every 𝑣 ∈ 𝑆 . Then, we run the

approximate SSSP algorithm with source 𝑥 on 𝐺 .
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updated accordingly. If the algorithm is in (or enters) the second phase after an edge insertion, then

for every vertex 𝑣 ∈ 𝑆 , the inserted edge is passed as an update to the incremental (1 + 𝜖)-SSSP
algorithm with source 𝑣 . Notice that an edge insertion in the original graph 𝐺 could introduce

multiple updates to 𝐸𝑆 . Thus whenever an edge (𝑎, 𝑏) is added to 𝐸𝑆 , the edge (𝑎, 𝑏) is passed as an

update to the incremental 𝑘-bounded (2, 1)-ruling set algorithm B running on (𝑆, 𝐸𝑆 ).

5.3 Analysis of the Algorithm

Our goal here is to prove Theorem 5.9. Note that if we had access to exact distances and we removed

a vertex 𝑣 from 𝐿𝑖 whenever its distance estimate is at most 𝑟 , then the correctness would follow

from the arguments of the previous section. However, since for efficiency purposes we are utilizing

approximate distances, the analysis has to be adapted. In our case we remove a vertex 𝑣 from 𝐿𝑖
whenever its approximate distance estimate is at most 𝑟 ′ = (1 + 𝜖)𝑟 . The next lemma is similar to

Lemma 5.6 but now applied to the 𝑟 -threshold graph 𝐺𝑟 .

Lemma 5.11. At any stage of the algorithm with 𝑖 ≥ 1, if |𝐿𝑖 | > |𝐿𝑖−1 |
2

, then w.h.p. there is an
independent in 𝐺𝑟 of size at least 𝑘 + 1.

Proof. The threshold 𝛾𝑖 is set to
|𝐿𝑖−1 |
2𝑘
− 1, and 𝑆𝑖 is obtained by sampling each vertex of 𝐿𝑖−1

independently with probability min(𝑐 ln(𝑛)/𝛾𝑖 , 1), for a sufficiently large constant 𝑐 . Then by

Lemma 5.4, it holds that w.h.p. every vertex 𝑣 in 𝐿𝑖−1 of degree more than 𝛾𝑖 in the induced subgraph

𝐺𝑟 [𝐿𝑖−1] has a neighbor in 𝑆𝑖 . This is equivalent of saying that w.h.p. every vertex 𝑣 of degree

more than 𝛾𝑖 in 𝐺𝑟 [𝐿𝑖−1] is within distance 𝑟 from a vertex of 𝑆𝑖 in 𝐺 , that is, 𝑑𝐺 (𝑣, 𝑆𝑖) ≤ 𝑟 . Then,

by Theorem 3.3 we have that 𝛿𝑆 (𝑣) ≤ (1 + 𝜖)𝑟 , which means that 𝑣 has been removed from 𝐿𝑖 . In

turn, this implies that w.h.p. every vertex in 𝐿𝑖 is of degree at most 𝛾𝑖 in 𝐺𝑟 [𝐿𝑖−1]. As 𝐺𝑟 [𝐿𝑖] is a
subgraph of 𝐺𝑟 [𝐿𝑖−1], w.h.p. every vertex of 𝐺𝑟 [𝐿𝑖] is of degree at most 𝛾𝑖 in 𝐺𝑟 [𝐿𝑖] as well.

Since w.h.p. the maximum degree in 𝐺𝑟 [𝐿𝑖] is bounded by 𝛾𝑖 , the claim follows by applying the

same process of the second paragraph of Lemma 5.6 on 𝐺𝑟 [𝐿𝑖]. □

Notice that after computing the size of 𝐿𝑖 , the recursion continues in the same way as in

Algorithm 1. The next lemma says that Lemma 5.7 holds in this algorithm as well. Recall that 𝑑 is

the recursive call after the first phase has ended and just before the second phase begins (i.e., 𝑑 is

the final depth of the recursion).

Lemma 5.12. Over the sequence of updates, there are 𝑑 = 𝑂 (log𝑛) recursive calls. Moreover, the size
of 𝑆 is w.h.p. 𝑂 (𝑘 log2 𝑛).

Remember that wewant to use Algorithm 2 as a subroutine in the incremental𝑘-center algorithm.

By using the next property of 𝐻 , we argue that only an extra (1 + 𝜖) factor shows up in the

approximation ratio of the 𝑘-center algorithm.

Lemma 5.13. The graph 𝐻 is a subgraph of the 𝑟 ′-threshold graph 𝐺𝑟 ′ , where 𝑟 ′ = (1 + 𝜖)𝑟 .

Proof. Let (𝑢, 𝑣) ∈ 𝐸 (𝐻 ) be an edge of the graph 𝐻 . Assume that the edge has been added during

the first phase of the algorithm. Then, w.l.o.g. it must be the case that 𝑢 ∈ 𝑆 and 𝛿𝑆 (𝑣) ≤ 𝑟 ′. Based
on Theorem 3.3, the distance estimate 𝛿𝑆 (·) does not underestimate the distances, and so we have

that 𝑑𝐺 (𝑢, 𝑣) ≤ 𝛿𝑆 (𝑣) ≤ 𝑟 ′. Thus by definition, the edge (𝑢, 𝑣) is part of 𝐺𝑟 ′ as well.

Similarly, assume that the edge has been added during the second phase of the algorithm. Then,

w.l.o.g. it must be the case that 𝑢, 𝑣 ∈ 𝑆 and 𝛿𝑢 (𝑣) ≤ 𝑟 ′. Using a similar argument as before, we

conclude that every edge of 𝐻 is part of 𝐺𝑟 ′ . □
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During the second phase, whenever the incremental 𝑘-bounded (2, 1)-ruling set algorithm

B reports that there is an independent set in 𝐻 of size at least 𝑘 + 1, we report that there is an
independent set in 𝐺𝑟 of size at least 𝑘 + 1. Since algorithm B is running on 𝐻 [𝑆], the following
lemma states that in this case, there is definitely an independent set in 𝐺𝑟 (and not just with high

probability) of size at least 𝑘 + 1.

Lemma 5.14. Any independent set in 𝐻 [𝑆] is also an independent set in 𝐺𝑟 [𝑆].

Proof. Let𝑀 be an independent set in 𝐻 [𝑆], and suppose to the contrary that𝑀 is not an indepen-

dent set in𝐺𝑟 [𝑆]. Then there must exist two vertices𝑢, 𝑣 ∈ 𝑆∩𝑀 , such that the edge (𝑢, 𝑣) belongs to
𝐺𝑟 [𝑆] but not to𝐻 [𝑆]. Since (𝑢, 𝑣) belongs to𝐺𝑟 , the distance between 𝑢 and 𝑣 in𝐺 is at most 𝑟 (i.e.,

𝑑𝐺 (𝑢, 𝑣) ≤ 𝑟 ). Also as 𝑢 ∈ 𝑆 , in the algorithm we maintain the incremental (1 + 𝜖)-SSSP algorithm

with source 𝑢 on 𝐺 , and by Theorem 3.3 it holds that 𝛿𝑢 (𝑣) ≤ (1 + 𝜖)𝑑𝐺 (𝑢, 𝑣) ≤ (1 + 𝜖)𝑟 . Hence as
𝑣 ∈ 𝑆 , the algorithm must have added the edge (𝑢, 𝑣) to 𝐻 , which contradicts the assumption that

the edge (𝑢, 𝑣) does not belong to 𝐻 [𝑆]. □

Lemma 5.15. The set 𝑆 is a dominating set in 𝐻 .

Proof. The claim follows by applying the proof of Lemma 5.8 on 𝐻 . □

Running time. During the first phase, the incremental (1 + 𝜖)-SSSP algorithm with super-source

𝑆 (𝑖 ) on𝐺 , is restarted as many times as the number of the recursive calls. By Lemma 5.12, there are

at most𝑂 (log𝑛) recursive calls in total, and by Theorem 3.3, the total update time of the incremental

(1 + 𝜖)-SSSP algorithm is𝑚1+𝑜 (1)
. Thus, the total update time charged for the first phase of the

algorithm is𝑚1+𝑜 (1)
.

During the second phase, for every vertex 𝑣 ∈ 𝑆 , we maintain the incremental (1 + 𝜖)-SSSP
algorithm of Theorem 3.3 with source 𝑣 on 𝐺 . By Lemma 5.12, the size of 𝑆 is w.h.p. 𝑂̃ (𝑘), and so

the total update time for maintaining the edge set 𝐸𝑆 is 𝑘𝑚1+𝑜 (1)
.

Observation 5.16. Since 𝐺 is subject to edge insertions, the edge set 𝐸𝑆 of 𝐻 [𝑆] is non-descreasing.

The 𝑘-bounded (2, 1)-ruling set algorithm B of Theorem 5.5 is running on (𝑆, 𝐸𝑆 ) (i.e., the
induced subgraph 𝐻 [𝑆]). Also, as the edge set 𝐸𝑆 contains only edges between vertices in 𝑆 , the

maximum size of 𝐸𝑆 is w.h.p. 𝑂̃ (𝑘2). Then based on Theorem 5.5 and Observation 5.16, the total

update time charged for B is 𝑂̃ (𝑘2), which (when amortized over the Ω(𝑘2) total edge insertions
to 𝐸𝑠 ) amounts to an amortized update time of 𝑂̃ (1). This concludes the running time analysis of

Theorem 5.9.

Finally, Theorem 5.9 follows by combining all the previous lemmas. In turn, Corollary 5.10

which we will use follows, and we restate it here for convenience.

Corollary 5.10. Consider the setting of Theorem 5.9. There is a randomized algorithm which:
• either reports that there is an independent set in𝐺𝑟 of size at least 𝑘 + 1, and this is correct w.h.p.,
• or runs an incremental 𝑘-bounded (2, 2)-ruling set algorithm B on an edge-subgraph 𝐻 of 𝐺𝑟 ′

with the following condition: whenever B reports that there is an independent set in 𝐻 of size at
least 𝑘 + 1, then there is an independent set in 𝐺𝑟 of size at least 𝑘 + 1.

The total update time of the algorithm is w.h.p. 𝑘𝑚1+𝑜 (1) .
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5.4 Incremental 𝒌-Center on Graphs: Putting It Together

At this point, we have developed all the necessary tools in order to obtain our main theorem for

the incremental 𝑘-center problem on graphs. The idea is to combine the reduction of Lemma 4.4

with Algorithm 2 of Theorem 5.9.

Theorem 1.2. Given a weighted undirected graph 𝐺 = (𝑉 , 𝐸,𝑤) subject to edge insertions, an integer
parameter 𝑘 ≥ 1, and a positive constant parameter 𝜖 < 1, there is a randomized incremental (4 + 𝜖)-
approximation algorithm for the 𝑘-center problem on graphs, which w.h.p. is correct and w.h.p. has
𝑘𝑛𝑜 (1) amortized update time.

Proof. Observe that algorithm A inside Lemma 4.4 with 𝛽 = 2, has the same properties of the

algorithm in Corollary 5.10. Hence, let A be the Algorithm 2 of Corollary 5.10, and 𝜖1 =
𝜖
12
. Based

on Lemma 4.4, by runningA with input𝐺, 𝑟, 𝜖1, for each 𝑟 ∈ {(1 + 𝜖1)𝑖 | (1 + 𝜖1)𝑖 ≤ 𝑛𝑊 , 𝑖 ∈ N}, we
get an incremental 4(1 + 𝜖1) (1 + 𝜖1)-approximation algorithm for the 𝑘-center problem. As 𝜖 < 1

and 𝜖1 =
𝜖
12
, the approximation ratio is (4 + 𝜖).

Regarding the running time, by Corollary 5.10 the total update time of A is w.h.p. 𝑘𝑚1+𝑜 (1)
.

Since we run A for at most 𝑂 (log
1+𝜖1 (𝑛𝑊 )) different values of 𝑟 , the total update time of the

algorithm remains 𝑘𝑚1+𝑜 (1)
. □

6 Decremental 𝒌-Center on Graphs

In the decremental setting, the input graph of the 𝑘-center instance is subject to edge deletions.

Based on Lemma 4.3, in order to get a (2+𝜖)-approximation decremental algorithm for the 𝑘-center

problem, it is sufficient to develop a decremental algorithm for the 𝑘-bounded (2, 1)-ruling set

problem on 𝑟 -threshold graphs. To maintain the necessary information for the 𝑟 -threshold graphs,

we use a decremental SSSP algorithm on 𝐺 .

6.1 Decremental 𝒌-Bounded (2, 1)-Ruling Set on 𝑮𝒓

For the sake of efficiency, in order to maintain the necessary information for the 𝑟 -threshold graphs,

we make use of the approximate SSSP algorithm of Theorem 3.2. Thus, we obtain instead the

following theorem which is a slight relaxation of the decremental 𝑘-bounded (2, 1)-ruling set

problem on 𝑟 -threshold graphs. This is still sufficient for the 𝑘-center problem, as Lemma 4.4

suggests.

Theorem 6.1. Consider a weighted undirected graph 𝐺 = (𝑉 , 𝐸,𝑤) subject to edge deletions, an
integer 𝑘 ≥ 1, a positive parameter 𝑟 and a positive constant 𝜖 < 1. Let 𝑟 ′ := (1 + 𝜖)𝑟 and consider the
threshold graphs 𝐺𝑟 and 𝐺𝑟 ′ . There is a deterministic algorithm which:

• either reports that there is an independent set in 𝐺𝑟 of size at least 𝑘 + 1,
• or runs a decremental 𝑘-bounded (2, 1)-ruling set algorithm B on an edge-subgraph 𝐻 of 𝐺𝑟 ′

with the following condition: whenever B reports that there is an independent set in 𝐻 of size at
least 𝑘 + 1, then there is an independent set in 𝐺𝑟 of size at least 𝑘 + 1.

The total update time of the algorithm is 𝑘𝑚1+𝑜 (1) .

Recall that in the definition of an (𝛼, 𝛽)-ruling set, the first property is that the distance between
any two vertices in the (𝛼, 𝛽)-ruling set is at least 𝛼 . The crucial observation here is that under

edge deletions, the distance between any two vertices is non-decreasing. Hence the first property

is preserved in the decremental setting, and this is the major ingredient for the algorithm.
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6.1.1 Overview of the Algorithm

For a fixed value of 𝑟 and 𝜖 , let 𝑟 ′ := (1 + 𝜖)𝑟 . In the beginning of the algorithm of Theorem 6.1,

we execute a static 𝑘-bounded (2, 1)-ruling set algorithm B on 𝐺𝑟 . One simple algorithm for this

problem is to run 𝑘 times the Dijkstra’s algorithm on𝐺 . In particular, at each iteration we choose a

vertex 𝑠 which has not been covered yet, and we run Dijkstra’s algorithm on𝐺 with source 𝑠 . Then,

every vertex 𝑣 of distance at most 𝑟 from 𝑠 is set as covered, and the same process is repeated at

most 𝑘 times. The running time of this algorithm is clearly 𝑂̃ (𝑚𝑘).
Assume that algorithm B returns a (2, 1)-ruling set𝑀 in𝐺𝑟 of size at most 𝑘 . Next, we initialize

a decremental approximate SSSP algorithm A with super-source 𝑀 on 𝐺 , providing distance

estimates 𝛿 (·).3 Specifically, we use the (1 + 𝜖)-approximate SSSP algorithm of Theorem 3.2. Also

let 𝐻 be a graph whose edge set contains all the edges (𝑢, 𝑣) ∈ 𝑉 × 𝑉 such that 𝛿 (𝑣) ≤ 𝑟 ′ and
𝑢 ∈ 𝑀 is the corresponding vertex for the distance estimate 𝛿 (𝑣). The graph 𝐻 can be explicitly

constructed during the previous step.

Whenever there is an edge deletion in 𝐺 , we pass this update to A. In turn, this update can

possibly increase the distance estimate 𝛿 (·) of some vertices. In particular, whenever the distance

estimate 𝛿 (𝑣) of a vertex 𝑣 ∈ 𝑉 becomes greater than 𝑟 ′, we add 𝑣 to 𝑀 , and the algorithm A is

restarted with super-source the modified set𝑀 . Moreover, the graph 𝐻 is recomputed from scratch

as before.

At any moment, if the size of𝑀 has exceeded 𝑘 , the algorithm reports that there is an indepen-

dent set in 𝐺𝑟 of size at least 𝑘 + 1, and we do not restart the algorithm A anymore.

6.1.2 Analysis of the Algorithm

Our goal here is to prove Theorem 6.1. Initially the static algorithm produces a (2, 1)-ruling set𝑀

in𝐺𝑟 . At any moment, if the size of𝑀 becomes at least 𝑘 + 1, the algorithm reports that there is an

independent set in 𝐺𝑟 of size at least 𝑘 + 1. The next lemma shows the correctness of this step.

Lemma 6.2. If the size of 𝑀 is at least 𝑘 + 1, then there is an independent set in 𝐺𝑟 of size at least
𝑘 + 1.

Proof. Initially the set𝑀 is a (2, 1)-ruling set in 𝐺𝑟 , and by definition𝑀 is also an independent set

in 𝐺𝑟 . Thus, if the size of𝑀 is at least 𝑘 + 1 after the execution of the static algorithm, the set𝑀

remains an independent set in 𝐺𝑟 under edge deletions, and the claim holds.

Hence, we can assume that the size of𝑀 became at least𝑘+1 after some edge deletions. We prove

the claim by contradiction. Suppose to the contrary that𝑀 is not an independent set in 𝐺𝑟 after an

edge deletion. In this case, the algorithm must have added a vertex 𝑣 to𝑀 which has a neighbor

𝑢 ∈ 𝑀 in 𝐺𝑟 (i.e., 𝑑𝐺 (𝑢, 𝑣) ≤ 𝑟 ). Since 𝑢 ∈ 𝑀 , in the algorithm we maintain the decremental (1 + 𝜖)-
SSSP algorithm with super-source𝑀 , and by Theorem 3.2 it holds that 𝛿 (𝑣) ≤ (1 + 𝜖)𝑑𝐺 (𝑢, 𝑣) ≤ 𝑟 ′.
But then, the algorithm does not add 𝑣 to𝑀 which yields a contradiction. □

Assume that the size of the solution𝑀 is at most 𝑘 . The next lemma shows that the algorithm

maintains a decremental 𝑘-bounded (2, 1)-ruling set algorithm on an edge-subgraph 𝐻 of 𝐺𝑟 ′ .

Lemma 6.3. The graph 𝐻 is a subgraph of 𝐺𝑟 ′ . Moreover, if |𝑀 | ≤ 𝑘 , then the set 𝑀 is always a
(2, 1)-ruling set in 𝐻 .

3
Namely, we introduce a fake root 𝑥 and add an edge (𝑥, 𝑣) of zero weight, for every 𝑣 ∈ 𝑀 . Then, we run a

decremental approximate SSSP algorithm with source 𝑥 on 𝐺 .
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Proof. Let (𝑢, 𝑣) ∈ 𝐸 (𝐻 ) be an edge in𝐻 . Then, w.l.o.g. it must be the case that𝑢 ∈ 𝑀 and 𝛿 (𝑣) ≤ 𝑟 ′.
Based on Theorem 3.2, the distance estimate 𝛿 (·) does not underestimate the distances, and so we

have that 𝑑𝐺 (𝑢, 𝑣) ≤ 𝛿 (𝑣) ≤ 𝑟 ′. Thus by definition, the edge (𝑢, 𝑣) is part of 𝐺𝑟 ′ as well.

The algorithm adds the vertex 𝑣 to𝑀 only if the distance estimate 𝛿 (𝑣) becomes greater than

𝑟 ′, while the edge (𝑢, 𝑣) is part of 𝐻 only if 𝛿 (𝑣) is at most 𝑟 ′. This implies that the set 𝑀 is an

independent set in 𝐻 . Furthermore, whenever the distance estimate 𝛿 (𝑣) of a vertex 𝑣 ∈ 𝑉 \𝑀
becomes greater than 𝑟 ′, the set𝑀 and the graph 𝐻 are recomputed. This implies that the distance

estimate of any vertex 𝑣 ∈ 𝑉 \𝑀 is at most 𝑟 ′. By construction of 𝐻 , there must exist an edge (𝑢, 𝑣)
in 𝐻 , where 𝑢 ∈ 𝑀 is the corresponding vertex of 𝛿 (𝑣). Hence, we can conclude that the set𝑀 is a

(2, 1)-ruling set in 𝐻 . □

Running time. The running time of the simple static algorithm is 𝑂̃ (𝑚𝑘). By Theorem 3.2,

the total time of the decremental approximate SSSP algorithm is 𝑚1+𝑜 (1)
. As the decremental

approximate SSSP algorithm is restarted at most 𝑘 times, the total update time of the algorithm is

𝑘𝑚1+𝑜 (1)
. Notice that the time to detect whether a distance estimate is greater than 𝑟 ′ = (1 + 𝜖)𝑟 is

incorporated in the update time of the decremental approximate SSSP algorithm.

Finally, Theorem 6.1 follows by combining Lemma 6.2 and Lemma 6.3 together with the analysis

of the running time.

6.2 Decremental 𝒌-Center on Graphs: Putting It Together

We combine Theorem 6.1 with Lemma 4.4 to obtain the next theorem for the decremental 𝑘-center

problem on graphs. A pseudocode of the algorithm of Theorem 1.3 is provided in Algorithm 3.

Theorem 1.3. Given a weighted undirected graph 𝐺 = (𝑉 , 𝐸,𝑤) subject to edge deletions, an integer
parameter 𝑘 ≥ 1, and a positive constant parameter 𝜖 < 1, there is a deterministic decremental
(2 + 𝜖)-approximation algorithm for the 𝑘-center problem on graphs, with 𝑘𝑛𝑜 (1) amortized update
time over a sequence of Θ(𝑚) updates.

Proof. Observe that algorithm A inside Lemma 4.4 with 𝛽 = 1, has the same properties of the

algorithm in Theorem 6.1. Hence, let A be the algorithm of Theorem 6.1, and 𝜖1 =
𝜖
6
. Based on

Lemma 4.4, by running A with input 𝐺, 𝑟, 𝜖1, for each 𝑟 ∈ {(1 + 𝜖1)𝑖 | (1 + 𝜖1)𝑖 ≤ 𝑛𝑊 , 𝑖 ∈ N}, we
get a deterministic decremental 2(1 + 𝜖1) (1 + 𝜖1)-approximation algorithm for the 𝑘-center problem.

As 𝜖 < 1 and 𝜖1 =
𝜖
6
, the approximation ratio is (2 + 𝜖).

Regarding the running time, by Theorem 6.1 the total update time of A is 𝑘𝑚1+𝑜 (1)
. Since we

run A for at most 𝑂 (log
1+𝜖1 (𝑛𝑊 )) different values of 𝑟 , the total update time of the algorithm

remains 𝑘𝑚1+𝑜 (1)
. □

7 Fully Dynamic 𝒌-Center on Graphs

In this section we describe how to maintain a (2 + 𝜖)-approximate solution to the 𝑘-center problem

on fully dynamic graphs. We start by reviewing Gonzalez’s algorithm, a classical 2-approximation

algorithm to the 𝑘-center problem in the static setting. Afterwards, we describe how to adapt it to

the fully dynamic setting by using fully dynamic approximate SSSP algorithms.
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7.1 Gonzalez’s Algorithm

Gonzalez’s algorithm [Gon85] is a well-known greedy algorithm for the 𝑘-center problem on

(possibly weighted and directed) graphs
4
. It works as follows:

1. pick as first center an arbitrary vertex 𝑐1 ∈ 𝑉 and set 𝐶 = {𝑐1};
2. while |𝐶 | < 𝑘 , pick the next center 𝑐𝑖 ∈ argmax𝑣∈𝑉 𝑑𝐺 (𝐶, 𝑣) and set 𝐶 = 𝐶 ∪ {𝑐𝑖};
3. return the set of centers 𝐶 .

Theorem 7.1. Gonzalez’s algorithm computes a 2-approximation for the 𝑘-center problem on graphs
and a standard implementation runs in time 𝑂 (𝑘 (𝑚 + 𝑛 log𝑛)).

Definition 7.2 (𝛼-approximate Gonzalez’s algorithm). For 𝛼 ≥ 1, an 𝛼-approximate Gonzalez’s
algorithm is a relaxation of Gonzalez’s algorithm that picks the next center 𝑐𝑖 in step 2 above such that
𝑑𝐺 (𝐶, 𝑐𝑖) ≥ 𝛼−1 ·max𝑣∈𝑉 𝑑𝐺 (𝐶, 𝑣).

Theorem 7.3 ([ACLM23, Lemma 4.1]). For 𝛼 ≥ 1, an 𝛼-approximate Gonzalez’s algorithm computes
a 2𝛼-approximation for the 𝑘-center problem on graphs.

7.2 Fully Dynamic 𝒌-Center via Fully Dynamic (1 + 𝝐)-SSSP

Assuming that we have a fully dynamic (1 + 𝜖)-SSSP data structure, we show how to use this to get

a fully dynamic 𝑘-center data structure in Algorithm 4.

Theorem 7.4. Given a graph 𝐺 = (𝑉 , 𝐸), a positive parameter 𝜖 ≤ 1/2, and a fully dynamic data
structure that maintains (1 + 𝜖)-approximate distances from a single source 𝑠 ∈ 𝑉 with worst-case
update time 𝑇 (𝑛,𝑚, 𝜖), Algorithm 4 maintains a 2(1 + 4𝜖)-approximate solution to fully dynamic
𝑘-center in time 𝑂 (𝑘 · (𝑇 (𝑛,𝑚, 𝜖) + 𝑛)).

Proof. We prove that the procedure SimulateGonzalez in Algorithm 4 is a (1 + 4𝜖)-approximate

Gonzalez’s algorithm, hence the claim about the approximation follows by Theorem 7.3.

Note that the procedure runs on 𝐺 ′, which is a copy of 𝐺 with an additional super-source

vertex 𝑠 which is initially disconnected. Let us call D the data structure used to maintain the

(1 + 𝜖)-approximate distances from 𝑠 in 𝐺 ′, e.g., the one given in Theorem 7.5 or in Theorem 7.6.

Suppose to be at the 𝑖-th iteration of the procedure, i.e., the super-source 𝑠 is connected to all

vertices in 𝐶 = {𝑐1, ..., 𝑐𝑖} in 𝐺 ′. Note that such additional edges imply that 𝑑𝐺 ′ (𝑠, 𝑣) = 1 + 𝑑𝐺 (𝐶, 𝑣),
for every 𝑣 ∈ 𝑉 . Let 𝛿𝐺 ′ (𝑠, 𝑣) be the approximate distance between 𝑠 and 𝑣 maintained by D,

which guarantees that 𝑑𝐺 ′ (𝑠, 𝑣) ≤ 𝛿𝐺 ′ (𝑠, 𝑣) ≤ (1 + 𝜖)𝑑𝐺 ′ (𝑠, 𝑣). Let 𝑣max ∈ argmax𝑣∈𝑉 𝑑𝐺 (𝐶, 𝑣) be
one among the furthest vertices from 𝐶 . Let 𝑐𝑖+1 be the next center selected by the algorithm, i.e.,

𝑐𝑖+1 ∈ argmax𝑣∈𝑉 𝛿𝐺 ′ (𝑠, 𝑣). Therefore, it holds that

1 + 𝑑𝐺 (𝐶, 𝑣max) = 𝑑𝐺 ′ (𝑠, 𝑣max) ≤ 𝛿𝐺 ′ (𝑠, 𝑣max) ≤ 𝛿𝐺 ′ (𝑠, 𝑐𝑖+1)
≤ (1 + 𝜖)𝑑𝐺 ′ (𝐶, 𝑐𝑖+1) = (1 + 𝜖) (1 + 𝑑𝐺 (𝐶, 𝑐𝑖+1)) .

Noting that 𝑑𝐺 (𝐶, 𝑣max) ≥ 1 and since by assumption 𝜖 ∈ (0, 1/2], the previous equation implies

𝑑𝐺 (𝐶, 𝑐𝑖+1) ≥
1 + 𝑑𝐺 (𝐶, 𝑣max)

1 + 𝜖 − 1 = 𝑑𝐺 (𝐶, 𝑣max) − 𝜖
1 + 𝜖 =

1 − 𝜖/𝑑𝐺 (𝐶, 𝑣max)
1 + 𝜖 𝑑𝐺 (𝐶, 𝑣max)

≥ 1 − 𝜖
1 + 𝜖 𝑑𝐺 (𝐶, 𝑣max) ≥

1

1 + 4𝜖 max

𝑣∈𝑉
𝑑𝐺 (𝐶, 𝑣),

4
The algorithm is also used for the 𝑘-center problem in metric spaces.
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which concludes the approximation proof.

The update procedure requires that D is updated 2𝑘 + 1 times, with a worst-case time of

𝑇 (𝑛,𝑚, 𝜖) per update, and additionally look for the approximate furthest neighbor 𝑘 times, each

requiring time 𝑂 (𝑛), i.e., querying the approximate distance 𝛿𝐺 (𝑠, 𝑣), ∀𝑣 ∈ 𝑉 . □

In particular, for the fully dynamic data structure we use the state-of-the-art algorithm for

unweighted graphs by [BFN22].

Theorem 7.5 ([BFN22]). Given an unweighted undirected graph 𝐺 = (𝑉 , 𝐸) and a single source 𝑠 ,
and 0 < 𝜖 < 1, there is a deterministic fully dynamic data structure for maintaining (1 + 𝜖)-distances
from 𝑠 with worst-case update time of 𝑂 (𝑛1.529𝜖−2) for the current matrix multiplication exponent 𝜔 .
The algorithm has preprocessing time of 𝑂 (𝑛𝜔𝜖−2 log 𝜖−1), where 𝜔 ≤ 2.373.

For weighted graphs the state-of-the-art algorithm is slower and it is given by [BN19].

Theorem 7.6 ([BN19]). Given a weighted and directed graph𝐺 = (𝑉 , 𝐸), a single source 𝑠 ∈ 𝑉 , and a
positive parameter 𝜖 < 1, there is a randomized fully dynamic algorithm working against an adaptive
adversary that maintains (1 + 𝜖)-distances from 𝑠 with worst-case update time of 𝑂 (𝑛1.823𝜖−2) for the
current matrix multiplication exponent 𝜔 . The algorithm has preprocessing time of 𝑂 (𝑛𝜔𝜖−2 log 𝜖−1),
where 𝜔 ≤ 2.373.

A combination of Theorem 7.4 with Theorems 7.5 and 7.6 gives the following result.

Theorem 1.1. Given a weighted undirected graph 𝐺 = (𝑉 , 𝐸,𝑤) subject to edge updates, an integer
parameter 𝑘 ≥ 1, and a positive constant parameter 𝜖 ≤ 1/2, there are two fully dynamic algorithms for
the 𝑘-center problem on graphs, that maintain a (2 + 𝜖)-approximation with the following guarantees
(based on the current value of the matrix multiplication exponent):

1. Deterministic algorithm with 𝑂 (𝑘𝑛1.529𝜖−2) worst-case update time, if 𝐺 has uniform weights;
2. Randomized algorithm, against an adaptive adversary, with 𝑂 (𝑘𝑛1.823𝜖−2) worst-case update

time, if 𝐺 has general weights.
Both algorithms have preprocessing time 𝑂 (𝑛2.373𝜖−2 log 𝜖−1).

Appendix

A Dynamic 𝒌-Center Algorithms Queries

The dynamic algorithms for 𝑘-center we give in this paper can simply and efficiently answer queries

of the following types:

1. Return a set 𝑆 of at most 𝑘 centers and the corresponding radius 𝑟 .

2. Given a vertex 𝑣 ∈ 𝑉 , return the center 𝑐 ∈ 𝑆 of the cluster 𝑣 belongs to.

The first type of queries simply returns the independent sets which have size ≤ 𝑘 . The corresponding

radius in the first query and the second type of queries can be answered using the dynamic shortest

path data structures that we use. When maintaining distances from a super-source, the data

structures let us keep the parent nodes along shortest paths which can be used for finding the

closest source. The partially dynamic algorithms that we use are based on structures with 𝑛𝑜 (1)

layers, such that we have a parent along the shortest path on each of these levels. Therefore without

additional overhead we can keep track of the first parents along the path.
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In our fully dynamic algorithm, we can keep track of the cluster center of each vertex by

explicitly checking for each vertex whether its distance to the “super-source” changes with each

iteration of the simulated Gonzalez’s algorithm; the additional𝑂 (𝑘𝑛) overhead is already accounted
for in our update time.

B Reduction from 2-Approximate 𝒌-Center to 𝒌-Bounded Ruling
Set: Omitted Proofs of Section 4

This section is devoted to the omitted proofs of Section 4.

Lemma 4.5. Consider a 𝑘-center instance (𝐺 = (𝑉 , 𝐸,𝑤), 𝑘) with optimal radius 𝑅∗. Then for each
𝑟 ≥ 2𝑅∗ and for every 𝛽 ≥ 1, it holds that every (2, 𝛽)-ruling set in the 𝑟 -threshold graph 𝐺𝑟 is of size
at most 𝑘 .

Proof. Consider an optimal solution 𝑆∗ = {𝑐∗
1
, . . . , 𝑐∗

𝑘 ′} of the 𝑘-center instance with 𝑘
′ ≤ 𝑘 , and let

𝐶∗
1
, . . . ,𝐶∗

𝑘 ′ be the corresponding clusters, each of radius 𝑅∗. Let𝑀 be an arbitrary (2, 𝛽)-ruling set

in 𝐺𝑟 , with 𝑟 ≥ 2𝑅∗. We can assume w.l.o.g. that the set 𝑀 is ordered. The proof is by induction

on the number of vertices of 𝑀 . The goal is to prove that for any 𝑖 ≤ 𝑘 ′, every vertex 𝑣 ∈ 𝐶∗𝑖 is a
neighbor of the 𝑖𝑡ℎ vertex of𝑀 in 𝐺𝑟 . This would imply then that |𝑀 | ≤ 𝑘 ′ ≤ 𝑘 , as otherwise there

would be two vertices in𝑀 which are neighbors in 𝐺𝑟 , violating the fact that𝑀 is a (2, 𝛽)-ruling
set in 𝐺𝑟 with 𝛽 ≥ 1

As a base case, let 𝑣1 be the first vertex of𝑀 , and assume w.l.o.g. that 𝑣1 ∈ 𝐶∗1 . Since all vertices
in 𝐶∗

1
are within distance 𝑅∗ from 𝑐∗

1
in 𝐺 , by triangle inequality it holds that 𝑑𝐺 (𝑣1, 𝑢) ≤ 2𝑅∗, for

every vertex 𝑢 ∈ 𝐶∗
1
. Hence as 𝑟 ≥ 2𝑅∗, we have that every vertex 𝑢 ∈ 𝐶∗

1
is a neighbor of 𝑣1 in 𝐺𝑟 .

Let 𝑣𝑖 ∈ 𝑀 be the 𝑖th vertex of 𝑀 . Since 𝑀 is a (2, 𝛽)-ruling set in 𝐺𝑟 with 𝛽 ≥ 1, 𝑣𝑖 cannot

be a neighbor of any other vertex that belongs to 𝑀 . By inductive hypothesis, every vertex

𝑢 ∈ 𝐶∗
1
∪ · · · ∪𝐶∗𝑖−1 has a neighbor in𝑀 , and so 𝑣𝑖 cannot be part of𝐶

∗
1
∪ · · · ∪𝐶∗𝑖−1. As a result, we

can assume w.l.o.g. that 𝑣𝑖 ∈ 𝐶∗𝑖 . By following the same approach as in the base case, we have that

every vertex 𝑢 ∈ 𝐶∗𝑖 is a neighbor of 𝑣𝑖 in 𝐺𝑟 , and so the claim follows. □

Observation 4.6. Consider a 𝑘-center instance (𝐺 = (𝑉 , 𝐸,𝑤), 𝑘) with optimal radius 𝑅∗, and let 𝐺𝑟

be the 𝑟 -threshold graph where 𝑟 = 2𝑅∗. Then, there is no independent set in 𝐺𝑟 of size at least 𝑘 + 1.

Proof. Suppose to the contrary that there is an IS 𝑀 in 𝐺𝑟 of size at least 𝑘 + 1, and let 𝑀 ′ be an
MIS on 𝐺𝑟 such that 𝑀 ⊆ 𝑀 ′. Then clearly it holds that |𝑀 ′ | ≥ 𝑘 + 1. Also since 𝛽 ≥ 1, we have

that𝑀 ′ is a (2, 𝛽)-ruling set in 𝐺𝑟 of size at least 𝑘 + 1. However based on Lemma 4.5, as 𝑟 ≥ 2𝑅∗

and 𝛽 ≥ 1, the size of𝑀 ′ must be at most 𝑘 , and this yields a contradiction. □

Lemma 4.3. Consider a 𝑘-center instance (𝐺 = (𝑉 , 𝐸,𝑤), 𝑘), and a positive constant parameter
𝜖 . Then by running a 𝑘-bounded (2, 𝛽)-ruling set algorithm on the 𝑟 -threshold graph 𝐺𝑟 , for each
𝑟 ∈ {(1 + 𝜖)𝑖 | (1 + 𝜖)𝑖 ≤ 𝑛𝑊 , 𝑖 ∈ N}, we can find a 2𝛽 (1 + 𝜖)-approximate solution for the 𝑘-center
instance.

Proof. Let 𝑟 ′ be the smallest 𝑟 ∈ {(1+𝜖)𝑖 | (1+𝜖)𝑖 ≤ 𝑛𝑊 , 𝑖 ∈ N} such that a 𝑘-bounded (2, 𝛽)-ruling
set algorithm running on 𝐺𝑟 returns a (2, 𝛽)-ruling set 𝑀𝑟 of size at most 𝑘 . Let 𝑆 = 𝑀𝑟 ′ be the

solution we return for the 𝑘-center instance.

Since𝑀𝑟 ′ is a (2, 𝛽)-ruling set in 𝐺𝑟 ′ , then every vertex is within distance 𝛽𝑟 ′ from its closest

center in 𝐺 . Thus, the returned solution 𝑆 has radius at most 𝛽𝑟 ′. We show now that 𝑟 ′ is at
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most 2(1 + 𝜖) times larger than 𝑅∗. Based on Observation 4.6, for the fixed choice of 𝑟 = 2𝑅∗, any
𝑘-bounded (2, 𝛽)-ruling set algorithm A running on the 𝑟 -threshold graph 𝐺𝑟 always returns a

(2, 𝛽)-ruling set 𝑀𝑟 of size at most 𝑘 . By definition of 𝑟 ′, and since the possible values of 𝑟 are

powers of (1 + 𝜖), we have that 𝑟 ′ ≤ 2(1 + 𝜖)𝑅∗. Therefore, the radius of the returned solution 𝑆 is

at most 2𝛽 (1 + 𝜖)𝑅∗. □

C Incremental (1 + 𝝐)-SSSP

Most of the existing work on partially dynamic (1 + 𝜖)-SSSP [Ber09, HKN18, Che18, ŁN22] is

presented for the decremental setting, but while not explicitly written, the techniques extend to

the incremental setting as well with the same running time. At a high-level these techniques first

maintain a hopset (or similar objects like low-hop emulators) of size 𝑂̃ (𝑚1+𝑜 (1) ) and hopbound

ℎ = 𝑛𝑜 (1) , and maintain an ℎ-hop limited (ES) Even-Schiloach tree [SE81].

The ℎ-hop limited ES tree algorithm [Ber09] allows us to maintain (1 + 𝜖)-approximate single-

source shortest path up to ℎ-hops (which finds the approximate shortest path using at most ℎ hops)

in 𝑂̃ (𝑚ℎ) time.

To use this subroutine several works utilize a hopset [HKN18, Che18, ŁN22]. A (𝛽, 𝜖)-hopset
𝐻 ′ for 𝐺 = (𝑉 , 𝐸) is a set of weighted edges such that for all 𝑢, 𝑣 ∈ 𝑉 , we have that 𝑑𝐺 (𝑢, 𝑣) ≤
𝑑
(𝛽 )
𝐺∪𝐻 ′ (𝑢, 𝑣) ≤ (1 + 𝜖)𝑑𝐺 (𝑢, 𝑣), where 𝑑

(𝛽 )
𝐺∪𝐻 ′ (𝑢, 𝑣) refers to a shortest path that uses at most 𝛽 hops.

Much of the technical difficulty in the decremental setting is due to the fact that we have to

insert hopset/emulator edges in a decremental data structure. The existing decremental structures

use an algorithm called monotone ES tree data structure [HKN14] to handle this, however in the

incremental setting a monotone ES tree is not needed. In an incremental setting, an update may

require to decrease the weight of an edge or remove it from a hopset/emulator to keep the size

small. Handling weight decreases is easy, as we can simply add a new edge with the smaller weight

and keep the previous edges in place and this will only impact the number of edges by a logarithmic

factor over the sequence of updates. The second issue of removing edges from a hopset/emulator,

will also not impact the over all performance of the algorithm for the following reason: In these

data structure we would only remove an auxiliary edge 𝑒 ∈ 𝐸 (𝐻 ) if the weight 𝑤 (𝑡 ) (𝑒) (which
corresponds to the length of a path in the original input graph 𝐺 at time 𝑡 ), is reduced by more

than a constant factor so that it is within a factor of (1 − 𝜖′)𝑤 (𝑡−1) (𝑒). It is easy to see that in the

incremental setting it will add a logarithmic factor in the size if we keep all of these edges and

simply add new parallel edges and thus keep the data structures completely incremental.
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Algorithm 2 𝑘-bounded (2, 2)-ruling set on 𝐺𝑟

// In the preprocessing 𝑖 = 0, 𝐿0 = 𝑉 , and 𝑘-Bounded-Ruling-Set() is called with no edge
1 𝑟 ′ ← (1 + 𝜖)𝑟
2 𝐻 ← (𝑉 , 𝐸𝐻 ) where 𝐸𝐻 ← ∅
3 Procedure 𝑘-Bounded-Ruling-Set(𝑢, 𝑣):
4 if |𝐿𝑖 | < 4𝑘 then // first phase
5 if 𝑖 = 0 or |𝐿𝑖 | ≤ |𝐿𝑖−1 |

2
then

6 𝑖 ← 𝑖 + 1
7 𝛾𝑖 ← |𝐿𝑖−1 |

2𝑘
− 1

8 𝑆𝑖 ← sample vertices of 𝐿𝑖−1 independently with prob. min(10 ln(𝑛)/𝛾𝑖 , 1)
9 𝑆 (𝑖 ) ← ⋃𝑖

𝑗=1 𝑆 𝑗

10 A𝑆 (𝑖 ) .𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 (𝐺, 𝑆 (𝑖 ) ) // A𝑆 (𝑖 ) is incremental approx. SSSP algorithm
// A𝑆 (𝑖 ) provides approx. distance 𝛿𝑆 (𝑖 ) (·)

11 𝐿𝑖 ← {𝑥 ∈ 𝑉 : 𝛿𝑆 (𝑖 ) (𝑥) > 𝑟 ′}
12 𝑘-Bounded-Ruling-Set(u,v)

13 else
14 report there exists an IS in 𝐺𝑟 of size at least 𝑘 + 1

15 else // second phase
16 if B not initialized then // B is dynamic 𝑘-bounded (2, 1)-ruling set algorithm (Theorem 5.5)
17 𝑑 ← 𝑖

18 𝑆 ← ⋃𝑑
𝑗=1 𝑆 𝑗 ∪ 𝐿𝑑

19 for 𝑠 ∈ 𝑆 do
20 A𝑠 .𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 (𝐺, 𝑠) // A𝑠 is incremental approx. SSSP algorithm

// A𝑠 provides approx. distance 𝛿𝑠 (·)
21 𝐸𝑆 ← {(𝑢, 𝑣) ∈ 𝑆 × 𝑆 : 𝛿𝑢 (𝑣) ≤ 𝑟 ′} // Edges of 𝐻 [𝑆]
22 𝐻 ← (𝑉 , 𝐸𝐻 ∪ 𝐸𝑆 )
23 B .𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 (𝐻 [𝑆])
24 else
25 for 𝑠 ∈ 𝑆 do
26 A𝑠 .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑢, 𝑣)
27 while ∃𝑎, 𝑏 ∈ 𝑆 such that (𝑎, 𝑏) ∉ 𝐸𝑆 and 𝛿𝑎 (𝑏) ≤ 𝑟 ′ do
28 𝐸𝑆 ← 𝐸𝑆 ∪ {(𝑎, 𝑏)} // 𝐻 [𝑆] := (𝑆, 𝐸𝑆 )
29 B .𝑖𝑛𝑠𝑒𝑟𝑡 (𝐻 [𝑆], 𝑎, 𝑏)

30 Procedure Insert(𝑢, 𝑣):
31 𝐺 ← (𝑉 , 𝐸 ∪ {𝑢, 𝑣})
32 A𝑆 (𝑖 ) .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑢, 𝑣)
33 while ∃ 𝑥 ∈ 𝐿𝑖 such that 𝛿𝑆 (𝑖 ) (𝑥) ≤ 𝑟 ′ do
34 𝐿𝑖 ← 𝐿𝑖 \ {𝑥}
35 𝑘-Bounded-Ruling-Set(u,v)
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Algorithm 3 decremental (2 + 𝜖)-approximation algorithm for 𝑘-center

FunctionMaximalDistrIS():
𝑖 ← 0

while 𝐺 \⋃𝑖
𝑗=1𝐶 𝑗 ≠ ∅ and 𝑖 ≤ 𝑘 do

𝑢 ← arbitrary vertex from 𝐺 \⋃𝑖
𝑗=1𝐶 𝑗

𝑖 ← 𝑖 + 1
𝑐𝑖 ← 𝑢

𝐶𝑖 ← cluster with center 𝑐𝑖 and radius 𝑟

end
return i

return

Procedure FindRadius():
whileMaximalDistrIS() > k do

𝑟 ← (1 + 𝜖) · 𝑟
end

return

Procedure Preprocessing():
𝑟 ← 1

FindRadius()

𝑀 ← {𝑐1, . . . , 𝑐𝑖}
A .𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 (𝐺,𝑀) // A is decremental approx. SSSP algorithm with distance estimates 𝛿 (·)

return

Procedure Update(𝑢, 𝑣):
𝐺 ← (𝑉 , 𝐸 \ (𝑢, 𝑣))
A .𝑑𝑒𝑙𝑒𝑡𝑒 (𝑢, 𝑣)
while ∃𝑥 ∈ 𝑉 such that 𝛿 (𝑥) > (1 + 𝜖)𝑟 do

if 𝑖 < 𝑘 then
𝑖 ← 𝑖 + 1
𝑐𝑖 ← 𝑥

𝑀 ← {𝑐1, . . . , 𝑐𝑖}
𝐶𝑖 ← cluster with center 𝑐𝑖 and radius 𝑟

end
else

𝑟 ← (1 + 𝜖) · 𝑟
FindRadius()

end
A .𝑟𝑒𝑠𝑡𝑎𝑟𝑡 (𝐺,𝑀)

end
return
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Algorithm 4 Fully dynamic 2(1 + 𝜖)-approximation k-center

Function SimulateGonzalez(D, s, k):
𝐶 = ∅
for 𝑖 = 1, ..., 𝑘 do

𝑐𝑖 ← 𝑥 ∈ argmax𝑣∈𝑉 𝛿𝐺 ′ (𝑠, 𝑣) // 𝑐1 ← arbitrary 𝑣 ∈ 𝑉
// 𝑠 is disconnected at 𝑖 = 1; 𝛿𝐺 ′ (𝑠, 𝑣) = ∞, ∀𝑣 ∈ 𝑉 ; ties broken arbitrarily

1 D .𝑖𝑛𝑠𝑒𝑟𝑡 (𝑠, 𝑐𝑖)
2 𝐶 ← 𝐶 ∪ {𝑐𝑖}

end
for 𝑖 = 1, ..., 𝑘 do
D .𝑑𝑒𝑙𝑒𝑡𝑒 (𝑠, 𝑐𝑖)

end
return 𝐶

return

Function Preprocessing(G, k):
𝐺 ′ ← (𝑉 ∪ {𝑠}, 𝐸) // augment 𝐺 with super source 𝑠

3 D ← Initialize(𝐺 ′, 𝑠) // D is fully dynamic (1 + 𝜖)-SSSP, with approx. distance 𝛿𝐺 ′ (𝑠, 𝑣)
4 𝐶 ← SimulateGonzalez(D, s, k)
return

Function Update(𝑢, 𝑣):
D .𝑢𝑝𝑑𝑎𝑡𝑒 (𝑢, 𝑣) // either insert or delete edge (𝑢, 𝑣)

5 𝐶 ← SimulateGonzalez(D, s, k)
return
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