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Abstract

We present a dynamic data structure for maintaining the persistent homology of a time series of real
numbers. The data structure supports local operations, including the insertion and deletion of an item and
the cutting and concatenating of lists, each in time O(logn+k), in which n counts the critical items and k the
changes in the augmented persistence diagram. To achieve this, we design a tailor-made tree structure with
an unconventional representation, referred to as banana tree, which may be useful in its own right.

1 Introduction

Persistent homology is an algebraic method aimed at the topological analysis of data; see e.g. [3, 9]. It applies
to low-dimensional geometric as well as to high-dimensional abstract data. In a nutshell, the method is the
embodiment of the idea that features exist on many scale levels, and rather than preferring one scale over another,
it quantifies the features in terms of the range of scales during which they appear. More precisely, the goal of
persistent homology is to compute a representation of the features in a book-keeping data structure, called the
persistence diagram [9].

Importantly, persistent homology has fast algorithms that support the application to large data sets.
Specifically, for arbitrary dimensional inputs, persistence is generally computed by analyzing an underlying
complex, with worst-case time cubic in the size of the complex. These algorithms are, however, observed to
run much faster in applications; see e.g. [14] for a survey on popular implementations. We restrict ourselves to
one-dimensional input data, i.e., a list of m points (or items) in an interval of R with each item i being assigned
a value f(i). Persistent homology has been applied to such time series data in multiple contexts, for example to
heart-rate data [4, 12], gene expression data [7, 15], and financial data [10].

The persistent homology of one-dimensional data can be derived from the merge tree [17], which records
more detailed information about the structure of the persistence diagram, called the history of the connected
components in the filtration of sublevel sets. Without recovering this history, the persistence information can be
computed in O(m) time [11]. To the best of our knowledge, the new O(m) time algorithm in this paper is the
first linear-time algorithm that can also recover the history, which we store in the augmented persistence diagram
of the filtration of sublevel sets. This diagram is the extended persistence diagram of [5] together with a relation
that encodes the merge tree. It is defined formally in Section 2.3.

As the data may change, it is an interesting question whether persistent homology can be maintained efficiently
under update operations. The historically first such algorithm [6] takes time linear in the complex size per swap
in the ordering of the simplices; see also [13, 16]. For one-dimensional data this corresponds to a change of the
value of an item, which reduces to a sequence of interchanges of f -values, each costing time linear in the size of the
persistence diagram. More recently, [8] has shown that this can be strengthened to logarithmic time if the input
complex is a graph. The current paper is the first to maintain the persistent homology of dynamically changing
one-dimensional input with a tailor-made data structure under a larger suite of update operations, which includes
the insertion of a new item, the deletion of an item, the adjustment of the value of an item, the cutting of a list
of items into two, and the concatenation of two lists into one. The running time per operation is O(log n + k),
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in which n is the current number of critical items, and k is the number of changes to the augmented persistence
diagram caused by the operation.

Our novel dynamic data structure is based on the characterization of the items in the persistence diagram
through windows, as recently established in [2]. The main data structure is a binary tree ordered by position as
well as value (see [18] for the introduction of such a binary tree), a path-decomposition of this tree dictated by
persistent homology such that each path represents a window, and a final relaxation obtained by splitting each
path into a left trail of nodes with right children on the path and a right trail of nodes with left children on the
path. This split of each path into two trails is crucial for our results, and without it, the update time would have
a linear dependence on the depth of the tree, which might be Θ(n).

Outline. Section 2 provides the background needed for this paper: lists and maps, persistent homology, and the
hierarchy of windows that characterizes the augmented persistent diagram. In Section 3 we present a technical
overview of our technique. Section 4 introduces the data structures we use to represent a linear list: a doubly-
linked list, two dictionaries, and two path-decomposed ordered binary trees whose paths are stored as pairs of
trails. Section 5 presents the algorithms for maintaining the augmented persistence diagram of a linear list.
Section 6 concludes the paper.

2 Background

This section explains how a linear list can be viewed as a continuous map on a closed interval. Looking at the
sub- and superlevel sets of such a map, we define its augmented persistence diagram and review the hierarchical
characterization in terms of windows, as proved in [2]. A modest amount of topology suffices to describe these
diagrams, and we refer to [9] for a more comprehensive treatment needed to place the results of this paper within
a larger context.

2.1 Lists Viewed as Maps By a linear list we mean a finite sequence of real numbers, c1, c2, . . . , cm. To
view the list as a continuous map, we set f(i) = ci, for 1 ≤ i ≤ m, and linearly interpolate between consecutive
values. The result is a piece-wise linear map on a closed interval, f : [1,m] → R, with items i and values ci, for
1 ≤ i ≤ m. Important about the items is their ordering and not their precise positions along the interval, so we
use consecutive integers for convenience. To simplify discussions, we will often assume that the map is generic,
by which we mean that its items have distinct values. This is no loss of generality since a small perturbation may
be simulated and implemented by appropriate tie-breaking rules.

Given t ∈ R, the sublevel set of f at t, denoted ft = f−1(−∞, t], is the set of points in domain of f such
that its value f(x) is not larger than any fixed point t ∈ R. Since f is defined on a closed interval, the homology
of ft is fully characterized by the number of connected components. A point x in the closed interval, [1,m] is a
(homological) critical point of f if the number of connected components of ft changes at the moment t passes
f(x). Assuming genericity, a critical point is necessarily an item of f , and the only two types in the interior of
[1,m] are minima and maxima. When t passes the value of a minimum from below, then the number of connected
components of ft increases by 1, and if t passes the value of a maximum from below, the number of connected
components decreases by 1. The endpoints of [1,m] are special: the number of connected components changes at
an up-type endpoint and it remains unchanged at a down-type endpoint. Symmetrically, we call f t = f−1[t,∞)
the superlevel set of f at t. Observe that f t is the sublevel set of −f at −t, and that the minima and maxima of
−f are the maxima and minima of f . Similarly, the endpoints swap type.

2.2 Extended Persistent Homology Persistent homology tracks the evolution of the connected components
while the sublevel set of f grows, and formally defines when a component is born and when it dies. Complementing
this with the same information for the superlevel sets of f , we get what is formally referred to as extended persistent
homology, which we explain next (see [5] for more details).

In Phase One, we track the connected components of the sublevel set, ft, as t increases from −∞ to ∞. A
component is born at the smallest value of t at which a point of the component belongs to ft. This point is
necessarily a minimum in the interior of [1,m], or an up-type endpoint. The component dies when it merges
with another component that was born earlier. The point at which the two components merge is necessarily a
maximum in the interior of [1,m]. The ordinary subdiagram of f , denoted Ord(f), records the birth and death
of every component with a point in the plane whose abscissa and ordinate are those values of t at which the
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Figure 1: Left: a real-valued map on a closed interval, f , with three minima and two maxima. Right: the map −f drawn
upside-down. Middle: the augmented persistence diagram with two (blue) points in the ordinary subdiagram Ord(f)
above the diagonal, three (pink) points in the relative subdiagram Rel(f) below the diagonal, and one (green) point in the
essential subdiagram Ess(f).

component is born and dies, respectively; see Figure 1.

In Phase Two, we track the connected components of the superlevel set, f t, as t decreases from ∞ to −∞.
Birth and death are defined accordingly, and the components are recorded in the relative subdiagram, denoted
Rel(f). By construction, the points in Ord(f) lie above and those of Rel(f) lie below the diagonal; see Figure 1.
The component born at the global minimum of f is special because it does not die during Phase One. Instead, it
dies at the global minimum of −f , which is the global maximum of f . In topological terms, this happens because
the one connected component still alive at the beginning of Phase Two dies in relative homology when its first
point enters the superlevel set.1 This class is represented by the sole point in the essential subdiagram, denoted
Ess(f); see again Figure 1. The extended persistence diagram, denoted Dgm(f), is the disjoint union of the three
subdiagrams. Hence, Dgm(f) is a multi-set of points in R2, and so are the three subdiagrams, unless the map is
generic, in which case the diagram is a set.

2.3 Windows and Augmented Persistence Diagram The points of the persistence diagram can be
characterized using the concept of windows recently introduced in [2]. Let a and b be two (homological) critical
points of f , with values A = f(a) < f(b) = B. Note that f−1[A,B] contains all points in the interval whose
values lie between A and B. It consists of one or more connected components, and it is quite possible that a and
b belong to different components. However, if they belong to the same component, then we denote by [x, y] the
connected component of f−1[A,B] that contains both a and b and we call [x, y]× [A,B] the frame with support
[x, y] spanned by a and b. There are two orientations of the frame: from left to right if a < b, and from right to
left if b < a. In the former case, we call x the mirror of b and W (a, b) a triple-panel window if f(y) = A. In the
latter case, we call y the mirror of b and W (a, b) a triple-panel window if f(x) = A. We say a and b span W (a, b).
We distinguish a special type of window, referred to as a global window, whose support covers the entire interval,
[x, y] = [1,m], and which is exempt of the requirement at x or y.

In [2], the authors prove that there is a bijection between the windows and the points in Dgm(f). Furthermore,
each critical point in the interior of the interval spans exactly one window in each phase—even though the pairing
may be different in the two phases—while each endpoint spans a window in only one phase. In Figure 1, there
are five triple-panel windows, two on the left and three on the right. There is always exactly one global window
spanned by the global minimum, α, and the global maximum, β, of f . What follows is a special case of a more
general characterization of persistence proved in [2].

Proposition 2.1. (Persistence in Terms of Windows [2]) Let f : [1,m]→ R be a generic piecewise linear
map on a closed interval, and let a, b be homological critical points of f , or of −f , with f(a) = A and f(b) = B.
Then

1In the original formulation in [5], Phase Two in the construction of the (extended) persistence diagram tracks the 1-dimensional
relative homology groups of the pairs (f∞, f t), which are isomorphic to 0-dimensional homology groups of the f t. To appreciate the
guiding hand of algebraic topology, we need to understand how the absolute and relative homology groups of different dimensions

relate to each other. However, for the purpose of this paper, this is not necessary and we can track the connected components of the
superlevel set in lieu of the relative cycles in the interval modulo the superlevel set.
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(i) (A,B) ∈ Ord(f) iff W (a, b) is a triple-panel window of f ,

(ii) (B,A) ∈ Rel(f) iff W (b, a) is a triple-panel window of −f ,

(iii) (A,B) ∈ Ess(f) iff W (a, b) is the global window of f .

nhe kd g j mf ic ol

Figure 2: The graph of a generic map on a closed interval. All windows shown are with simple wave, except for the
leftmost window, whose wave is short. The global window as well as the (tiny) windows caused by the hooks (which will be
introduced in Section 4) are not shown. The light-blue shaded out-panels are part of the triple- but not of the double-panel
windows.

Suppose W (a, b) is a triple-panel window, with support [x, y]. Unless a is an endpoint of [1,m], cutting [x, y] at a
and b produces three segments, [x, a], [a, b], [b, y], in which we assume a < b. We call the corresponding products
with [A,B] the in-panel, mid-panel, out-panel, and the graph within the window a wave. This wave is simple
or short depending on whether the function value at the mirror is equal to or smaller that at the maximum:
f(x) = B or f(x) < B. In Figure 2, we have four simple waves (defined by f, g, by h, i, by l, m, and by n, k) and
one short wave (defined by d, e). Note that a simple wave of f is also a simple wave of −f , albeit upside-down.
A similar statement does not hold for short waves, which explains the violations of symmetry in the persistence
diagram; see again Figure 1.

The double-panel version of a triple-panel window consists of the in-panel and the mid-panel but drops the
out-panel. Any two double-panel windows of f are either disjoint or nested, and all these windows are nested
inside the global window [2, Lemma 3.3]. We use this property to augment the persistence diagram with the
merge tree information; that is: we draw an arrow between two points if the corresponding double-panel windows
are nested without any other window nested between them. The result is the augmented persistence diagram,
denoted D−→gm(f).

In this paper, we consider operations that maintain the augmented persistence diagram to reflect the change
from a map, f , to any other map, g. We quantify this difference by the number of points and arrows that change
or, more formally, belong to the symmetric difference between the two diagrams. What are typical differences?
Every local change in the function reduces to a sequence of interchanges between two minima or two maxima,
possibly ending in a cancellation or beginning with an anti-cancellation. Every cancellation removes a point from
the diagram, and every anti-cancellation adds a point to the diagram, so the diagrams before and after differ by
a constant amount. An interchange may or may not swap two critical values between points (two coordinates,
which are values of two critical items) or the reversal of an arrow, and if it does not, then this should not incur
any cost. On the other hand, if it does, then this can cost a constant amount of time. Our declared goal is to
have operations that run in time O(log n+ k), in which n is the number of critical points and k is the size of the
symmetric difference between D−→gm(f) and D−→gm(g).

3 Technical Overview

To achieve this goal, we propose a novel collection of data structures—some classic and some new—for maintaining
nested windows. We show that using these data structures allows us to maintain the augmented persistence
diagram to reflect the change from one map to another in the desired time bound. We maintain the following
data structures:
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Figure 3: The path-decomposed binary tree associated to the map in Figure 2 with special root, β, on the left, and the
corresponding banana tree on the right.

(1) a doubly-linked list of all items, critical or not, ordered by their positions in the interval;

(2) two binary search trees, called dictionaries, one storing the minima and the other storing the maxima, both
ordered by their positions in the interval;

(3) two banana trees (described next) representing the information in the augmented persistence diagram by
storing the minima and maxima while reflecting their ordering by position as well as by function value.

Note that the minima and maxima are subsets of all items and are therefore represented in all of the above data
structures. To reduce the special cases in the algorithms, we add two artificial items, called hooks, at the very
beginning and the very end of the interval. They make sure that the formerly first and last items are proper
minima or maxima, but we ignore them and the technicalities involved in this overview and give slightly simplified
descriptions of the data structures and the algorithms.

Banana Trees. We introduce these trees in three stages. In the first stage, we organize all windows in a full
binary tree, whose leaves are the minima and whose internal nodes are the maxima, such that (i) the in-order
traversal of the tree visits the nodes in increasing order of their positions in the interval, and (ii) the nodes along
any path from a leaf to the root are ordered by increasing function value. Such a tree always exists and it is
unique. In the following, we do not distinguish between a node in the tree and the critical item it represents.

In the second stage, we add a special root labeled with value larger than the global maximum whose only
child is the previous root. Call the resulting tree T and note that it has an equal number of leaves and internal
nodes. We then form paths, each starting at a leaf, a, and ending at an internal node, b, such that a and b span
a window, W (a, b). Call this path P (a, b). Based on structural properties of T , this leads to a partition of T into
edge-disjoint (but not vertex-disjoint) paths; see the left drawing in Figure 3. The node b ending the path that
starts at a is locally determined: it is the first internal node encountered while walking up from a, such that a
and the descending leaf with minimum function value lie on different sides (in different subtrees) of this internal
node. Hence, every maximum on the path from a to b spans a window that is immediately nested in W (a, b).
It follows that every maximum, b, belongs to two paths: P (a, b) and P (p, q) such that W (a, b) is immediately
nested in W (p, q). This even holds for the root (of the full binary tree), which spans a path and also belongs to
the path that ends at the special root. Given a map, f , the tree, T , and its partition into paths are unique. The
strict dependence on f may force T to be unbalanced, and indeed have linear depth, so that efficient maintenance
algorithms are challenging. This is why we need another modification.

In the third stage, we split each path into two trails; see the right drawing in Figure 3. The left trail of P (a, b)
contains a and every maximum u on P (a, b) with u ≤ a, while the right trail contains a and every maximum u
on P (a, b) with a ≤ u. A node v on P (a, b) is the right child of its parent, u, in the binary tree iff u is on the
left trail. Furthermore, v is the left child of u iff u is on the right trail. Thus, to which trail u belongs to can be
decided based on local information at u. To simplify language, we also give a second name to the trails. If a < b,
then W (a, b) consists of the in-panel on the left, the mid-panel in the middle, and the out-panel on the right. In
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this case, u belongs to the left trail iff the window it spans is nested inside the in-panel, so we alternatively call
the left trail the in-trail, and we alternatively call the right trail the mid-trail. If b < a, then the right trail is
the in-trail and the left trail is the mid-trail. So what happened to the out-trail? It is indeed needed, but only
if W (a, b) is with simple wave. Such a window corresponds to P (a, b) in the banana tree of f and to P (b, a) in
the banana tree of −f . The out-panel of W (a, b) is the in-panel of W (b, a), so we can get information about the
out-panel from the in-panel of the same window in the other banana tree when we need it.

To speed up the algorithms, we maintain various pointers, such as between the occurrences of the same critical
item in the banana trees, the dictionaries, and the doubly-linked list, for example. Importantly, every internal
node, b, stores a pointer to the descending leaf with minimum function value, low(b), and every leaf, a, stores a
pointer to the endpoint of its path, dth(a). Observe that q = dth(low(b)) is the maximum that spans the window
in which W (a, b) is immediately nested, so this window can be obtained in constant time.

Construction. While the main focus of this paper is the maintenance of the data structures through local
updates, we also consider the construction from scratch. It is straightforward to derive the augmented persistence
diagram during a single traversal of the banana trees in linear time, so the question we study is how fast this
diagram can be constructed from a given one-dimensional input list. Assuming all non-critical items have been
removed and we are given the remaining sequence of n critical items, there are standard algorithms that can be
adapted to construct the banana trees in O(n log n) time. There is also an O(n) time algorithm for computing
the persistence diagram [11], but this algorithm does not extend to the augmented persistence diagram. To the
best of our knowledge our algorithm is the first to construct the augmented persistence diagram in O(n) time.

The main structure of the algorithm is a left-to-right scan of the data. We interpret the item i with value
ci = f(i) as the point (i, ci) in the plane and maintain a decreasing staircase such that all processed items are
points on or below the staircase. Each step of the staircase corresponds to an unfinished banana. One of the
difficulties is that before a banana is completed, we do not know whether it will be attached to a left or a right
trail. We tentatively assume it will be attached to a left trail but are prepared to move the banana to the other
side when this turns out to be necessary. When we process the next item, we may remove any number of steps,
turning each into a finished banana, but we can add at most one new step. Since a step that is removed was
added earlier, this proves that the algorithm runs in O(1) amortized time per item, and therefore in O(n) time
altogether.

Local Maintenance. Given a list of m items with real function values, we consider the operations that insert
a new item, delete an item, and change the value of an item. All three operations reduce to a sequence
of interchanges—which can be between two maxima or between two minima—possibly preceded by an anti-
cancellation or a slide, and possibly succeeded by a cancellation or a slide. In a slide, a minimum or maximum
next to a non-critical item becomes non-critical, and the non-critical item becomes a minimum or maximum,
respectively. Similarly in a cancellation, a minimum and a neighboring maximum simultaneously become non-
critical. Here we will focus on the interchanges, because they are most common as well as most interesting, and
on the anti-cancellations, because they pose an unexpected challenge.

Consider two maxima, b and q, of f , and assume f(b) < f(q) before the interchange. To avoid confusing
language, we write g(b) and g(q) for the values after the operation but assume that f and g agree on all items
except for b. Furthermore, we assume that g(b) > g(q) and that b and q are the only two items for which the
ordering by f -value differs from the ordering by g-value. In many cases, the interchange of b and q does not
affect the banana trees. Indeed, only if b is a child of q is it necessary to update the order of the two nodes. And
even if b and q are consecutive maxima on a path, there is no structural change unless b and q also belong to a
common trail. This is the main reason for splitting each path into two trails as explained in the third stage of the
introduction of the banana trees: to avoid any cost to occur for interchanges that have no structural affect on the
augmented persistence diagram. When b and q interchange while belonging to different trails, then the banana
tree is oblivious to this change and requires no update. On the other hand, if b and q belong to the same trail,
then they swap positions along this trail, and there is a change of the augmented persistence diagram that pays
for the time it takes to update the banana tree.

The interchange of two minima, a and p, is quite different because it does not affect the ordered binary tree
at the first stage of the banana tree. However, the interchange affects the path-decomposition, so some of the
bananas may have to be updated. To be specific, assume f(a) > f(p) before and g(a) < g(p) after the operation.
As before, we also assume that f and g agree on all items except for a, and that a and p are the only two items
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for which the ordering by f -value differs from the ordering by g-value. Let b and q be the internal nodes so that
P (a, b) and P (p, q) are paths in the decomposition of the banana tree of f . The interchange of a and p has no
effect on the banana tree, unless b is a node on P (p, q). If b lies on P (p, q), then we extend P (a, b) to P (a, q)
and we shorten P (p, q) to P (p, b). The nodes u on the path from b to the child of q change their pointer from
low(u) = p to low(u) = a. There can be arbitrarily many such nodes, but each change causes the adjustment of
an arrow in the extended persistence diagram, to which it can be charged in the running time analysis.

This shows that it is possible to perform an interchange of two minima within the desired time bound, but it
is not clear how to find them. Considering the scenario in which a decreases its value continuously, it may cause
a sequence of interchanges with other minima, but since these minima are not sorted by function value, it is not
clear how to find them, and how to ignore the ones without structural consequences. Here is where the relation
between the banana trees of f and −f becomes important. The minima of f are the maxima of −f , so the
interchange of two minima in the banana tree of f corresponds to the interchange of two maxima in the banana
tree of −f . We already know how to find the interchanges of two maxima and how to ignore the ones without
structural consequences, so we use them to identify the interchanges of minima. More precisely, we prove that
the interchange of the minima, a and p of f , affects the structure of the banana tree of f only if the interchange
of the maxima, a and p of −f , affect the structure of the banana tree of −f . The converse does not hold, but
the implication suffices since the interchange of the maxima of −f leads to a change in the extended persistence
diagram which can be charged for the interchange of the minima, which costs only O(1) time if there are no
structural adjustments.

Next, we sketch what happens in the remaining operations. A slide occurs if a maximum decreases its
value so that it becomes non-critical, while a neighboring non-critical item becomes a maximum. However, if
this neighboring item is a maximum, then both items become non-critical at the same time, in which case the
operation is called a cancellation. There are also the symmetric operations in which a minimum increases its
value and becomes non-critical, while a neighboring item changes from non-critical to minimum (a slide) or from
maximum to non-critical (a cancellation). The corresponding updates are easily performed within the required
time bounds.

A more delicate operation is the anti-cancellation, in which two neighboring non-critical items become critical
at the same moment in time. Let a and b be these two items and assume a is a minimum and b is a maximum
after the operation, so g(a) < g(b) and, by assumption, f(a′) > f(a) > f(b) > f(b′), in which a′, a, b, b′ are four
consecutive items in the list. Hence, a and b are not present in the banana tree of f , but P (a, b) is a path in the
path-decomposed tree of g, so a, b form a minimal banana in the banana tree of g. All we need to do is find the
correct place to attach this banana, but this turns out to be difficult. We first explain why it is difficult, then
present an algorithm that works within the current data structure, and finally sketch a modification of the data
structure that accelerates the anti-cancellation to O(log n) time. While this leads to a speed-up in the worst case
for this type of operation, it slows down other operations by a logarithmic factor.

We use mirrors to explain in what situation an anti-cancellation is difficult. Their representation in the
banana tree is indirect: the maximum is the upper end of a mid-trail, and its mirror is the upper end of the
matching in-trail. In the tree, the two upper ends are the same node, but if we traverse the trails of the banana
trees in sequence, we visit them at different times, and these times correspond to the positions along the interval,
which are different for the maximum and its mirror. Every maximum has at most one mirror, so adding all
mirrors to the list increases it to less than double the original size. Nevertheless, it is easy to construct a case
in which there is a long subsequence of mirrors, and these mirrors are consecutive with the exception of a and b
appearing somewhere in their midst. In this situation, finding the correct attachment of P (a, b) in the banana
tree of g needs the mirrors immediately to the left and right of b. The data structure as described provides no
fast search mechanisms among the mirrors, so we find the correct attachment by linear search starting from the
first maximum to the left of a. Suppose we pass k mirrors before we find this attachment. Then we have a nested
sequence of k windows, and W (a, b) is nested inside all of them. Hence, there is one new immediate nesting
pair, while the transitive closure of the nesting relation gains k new pairs. The cost of the anti-cancellation can
be charged to the change of this transitive closure. In many cases, the change in the transitive closure will be
comparable in size to that of the transitive reduction, but it can also be significantly larger, like in the case we
just described. We thus entertain alternatives.

There is a modification of the data structure that allows for fast searches among subsequences of mirrors: for
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any consecutive min-max pair in the list, store the mirrors between them in a binary search tree. In practice,
there will be many very small such trees, but it is possible that the mirrors accumulate and produce a few large
trees. With this modification, an anti-cancellation can be performed in O(log n) time. Note however, that these
binary search trees have to be maintained, which adds a factor of O(log n) to the time of every operation, in
particular to every interchange, of which there can be many.

Topological Maintenance. We call an operation topological if it cuts the list of points into two, or it
concatenates two lists into one. More challenging topological operations, such as gluing the two ends of a list
to form a cyclic list, or gluing several lists to form a geometric tree or more complicated geometric network are
feasible but beyond the scope of this paper.

When we cut the list of data into two, we split the banana trees of the map and its negative into two each.
We mention both banana trees since we need information from the other to be able to split one within the desired
time bound. Splitting one banana tree is superficially similar to splitting a binary search tree, but more involved.
Let f : [1,m] → R be the map before the operation and g : [0, ℓ] → R and h : [ℓ + 1,m] → R the maps after
the operation. We write z = ℓ + 1

2 for the position at which the time series is cut. Since the banana trees are
determined by the maps, we need to understand the difference between the windows of f and those of g and h.
Whether or not a frame of f is also a window depends solely on the restriction of f to the support of the frame.
To decide about the future of a window of f , let [x, y] be its support. This window is also a window of g if y < z,
and it is also a window of h if z < x. The windows that need attention are the ones with x < z < y. A triple-panel
window consists of three panels, so we distinguish between three cases:

• W (a, b) suffers an injury if z cuts through the in-panel. Then a and b lie on the same side of z and they
still span a window, albeit with short wave.

• W (a, b) suffers a fatality if z cuts through the mid-panel. Then a and b lie on different sides of z and need
to find new partnering critical items to span new windows.

• W (a, b) suffers a scare if z cuts through the out-panel. These windows are difficult to find in the banana
tree of f , but they are easy to find in the banana tree of −f , in which W (b, a) suffers an injury.

The splitting of the banana tree proceeds in three steps: first, find the smallest banana that suffers an injury,
fatality, or scare; second, find the remaining such bananas; and third, split the banana tree of f into the banana
trees of g and h. We address all three steps and highlight the most interesting feature in each.

The first step is difficult because of the lack of an appropriate search mechanism in the banana tree. To
explain this, we recall that the banana tree stores the mirrors implicitly, as the upper ends of the in-trails. Like in
the case of an anti-cancellation, the challenging case is when mirrors accumulate and we have to locate z in their
midst. As before, we locate z by linear search, scanning the mirrors in the order of decreasing function value.
In contrast to the anti-cancellation, we can now charge the cost for the search to the changes in the extended
persistence diagram. Indeed, every mirror we pass belongs to a window that experiences a scare. Such a window
of f is neither a window of g nor of h, so its spanning critical items will re-pair and span new windows after the
operation.

The second step traverses a path upward from the smallest affected banana we just identified. In each step
of the traversal, we determine the corresponding window and push it onto the stacks of windows that experience
an injury, fatality, or scare. A window that experiences an injury remains a window, but now with short instead
of simple wave. Whether this window with short wave belongs to the banana tree of g or that of h depends on
whether the spanning minimum is to the right or the left of the spanning maximum. A window that experiences
a fatality falls apart, with one of the two spanning critical items in g and the other in h. Finally, a window that
experiences a scare stops to be a window, in spite of having both critical points in g or in h. As mentioned earlier,
such a window is difficult to find in the banana tree of f , but it is easy to find in the banana tree of −f , where it
experiences an injury. We thus process both banana trees simultaneously, and distributed the windows or their
corresponding bananas as needed. The upward traversal halts when we reach the spine of the tree, by which
we mean the sequence of left children that start at the root, or the sequence of right children that start at the
root. This is important because moving further until we reach the root is not necessary and can be costly because
the spine can be arbitrarily long and the steps towards the root cannot be charged to changes in the extended
persistence diagram.
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The third step re-pairs the critical items of the windows that experience a fatality or scare. All new windows
are with short wave, for else they would be windows of f before the splitting, which is a contradiction. Hence,
their bananas belong to the spines of the banana trees of g and h. The bananas in the spines have the particularly
simple structure that their critical items come in sequence. For the right spine of the banana tree of g, this
sequence increases from right to left, for the left spine of the banana tree of h, the sequence increases from left
to right, and both are consistent with the sequence in which we collect the corresponding windows in the second
step. It follows that the available critical items can be paired up in sequence, which takes O(1) time per item.

Corresponding to the concatenation of two lists, we pairwise glue the banana trees of the two maps. The
operation is the inverse of splitting, so we omit further details. A final word about the cost paid by the changes
in the augmented persistence diagram. How do we compare one diagram with two, which we get after splitting?
To deal with this issue, we consider the maps g and h to be one map, namely a map on two intervals. Then
we still have one augmented persistence diagram and the symmetric difference between the diagrams before and
after the operation is well defined.

4 Data Structures

We use five inter-connected data structures to represent a linear list or, equivalently, the implied piecewise linear
map: a doubly-linked list of all items, two dictionaries storing the minima and maxima for quick access, and
two ordered trees representing the information in the augmented persistence diagram for quick update. The
novel aspect is the implementation of the ordered trees as banana trees, to be described shortly. There are two
such trees, storing the homological critical points of the map and its negation, which are subsets of all items.
Indeed, the non-critical items are stored only in the doubly-linked list, but they enter the dictionaries and banana
trees when they become critical. The difference between critical and non-critical items is defined in terms of the
piecewise linear map implied by the items. Let m ≥ 2 and write c1, c2, . . . , cm for the list of values, which we
assume are distinct. We construct the map, f : [0,m + 1] → R, by setting f(i) = ci, for 1 ≤ i ≤ m, and adding
artifical ends by setting

f(0) = c1 + ε · sgn(c2 − c1),(4.1)

f(m+ 1) = cm + ε · sgn(cm−1 − cm),(4.2)

in which sgn(c) = ±1 depending on whether c > 0 or c < 0, and ε > 0 is arbitrarily small and in any case smaller
than the absolute difference between any two of the ci. We call these artificial ends hooks; they make sure that
items 1 and m are proper minima or maxima.

4.1 Dictionaries We maintain the items in a doubly-linked list ordered according to their position in the
interval. For reasons that will become clear shortly, we additionally store the minima and maxima in a dictionary
each, both ordered like the doubly-linked list. Besides searching, the dictionaries support the retrieval of the
minimum or maximum immediately to the left or the right of a given x ∈ R. It will be convenient to write n
for the number of maxima so that n− 1, n, or n+ 1 is the number of minima. In addition, we will pretend that
the items—and sometimes just the minima and maxima—are at consecutive integer locations along the real line.
Obviously, this cannot be maintained as we insert and delete items, but it makes sense locally and simplifies the
notation and discussions without causing any confusion.

An opportune data structure for the dictionary is a binary search tree, which supports access, insertion,
and deletion of an item in O(log n) time each. Similarly it supports the cutting of a dictionary into two, and
the concatenation of two dictionaries into one—provided all items in one dictionary are smaller than all items in
the other—again in O(log n) time. For comparison, doubly-linked lists can be cut and concatenated in constant
time, provided the nodes where the cutting and concatenation is to happen are given.

4.2 Banana Trees Let f : [0,m + 1] → R be a generic piecewise linear map constructed from a list of m
distinct values. The main data structure consists of two trees, one for f and the other for −f , which we explain
in three steps. In order to ensure that all critical items are represented in both trees, we require homological
critical points of f to also be homological critical points of −f , and vice versa. This affects how we treat up-
and down-type items: up-type items in f are already homological critical points; in −f , however, they are down-
type items, which are not homological critical points. We use the hooks at down-type items to treat them as
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proper maxima, and ignore the hooks at up-type when constructing the trees. To describe the tree for f , let
a0 < b1 < a1 < . . . < bn < an be the homological critical points of f , and note that the ai are minima—with the
possible exception of a0 and an, which may be up-type endpoints that are artificially added as hooks. On the
other hand, all bi are proper maxima.

First step: we construct a full binary tree whose nodes are the homological critical values. Among the many
choices, we arrange these values such that

I.1 the in-order sequence of the nodes in the tree is the ordering of the homological critical points in the linear
list, i.e. of their position in the interval;

I.2 the nodes along any path from a leaf to the root are ordered by increasing values.

It is not difficult but important to see that there is a unique full binary tree that satisfies Conditions I.1 and
I.2. Indeed, the largest value is a maximum, bj , which is necessarily the root of the tree. The left subtree is the
recursively defined tree of a0, b1, . . . , aj−1, and the right subtree is the recursively defined tree of aj , bj+1, . . . , an.
By induction, the two subtrees are unique, so the entire tree is unique.

Second step: we decompose the tree into edge-disjoint paths, each connecting a leaf to an internal node. Since
there is one extra leaf, we add a special root, β, whose only child is the root, as an extra internal node. We define
β to be greater than all items, both in terms of function value and along the interval; that is: f(i) < f(β) and
i < β for all items i. With this small change, the paths define a bijection between the leaves and the internal
nodes. Again there are many choices, and we pick the paths such that

II each path connects a leaf, a, to the nearest ancestor, b, for which a does not have the smallest value in the
subtree of b, and to the special root, if no such ancestor exists.

After fixing the tree in the first step, Condition II implies a unique partition of the edges into n + 1 paths; see
Figure 4. Comparing with the windows introduced in Section 2, we note that each path corresponds to a double-
panel window: the lowest and highest nodes are the minimum and maximum spanning the window, and all other
nodes of the path are maxima of nested windows in the in-panel or the mid-panel of the double-panel window.
The out-panel is indirectly represented by the requirement that its highest node is interior to another path whose
lowest node has smaller value than the lowest node of the current path. If the window is with simple wave, then
the triple-panel window is also represented in the down-tree, except that in- and out-panels are exchanged.
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Figure 4: Left: the path-decomposition of the binary tree for the map, f , displayed in Figure 2. The nodes in its spine (to
be defined shortly) are c, e, β, and o. Right: upside-down drawing of the path-decomposition of the binary tree for −f .
The nodes in its spine are d, j, and β.

Third step: we split every path into two parallel trails. Let a = q0, q1, . . . , qℓ−1, qℓ = b be such a path, and recall
that f(qi) < f(qi+1) for 0 ≤ i ≤ ℓ − 1. Assuming a < b, the in-trail consists of a, every qi whose right child is
qi−1, and b, and the mid-trail consists of a, every qi whose left child is qi−1, and b. The items in the in-trail are
smaller than those in the mid-trail, which motivates the alternative terminology of the left trail for the former
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and the right trail for the latter. If a > b, the in-trail is the right trail and the mid-trail is the left trail, so the
in-trail corresponds to the in-panel and the mid-trail to the mid-panel in either case. Both trails start at a and
end at b. All other qi are interior to the trails. For the special root, β, and the corresponding lower end of its
path, α, the order is not defined, so we make an arbitrary choice and call the left trail the in-trail and the right
trail the mid-trail. We call a trail empty if it contains no interior nodes. In both trails, the items as well as their
values are sorted. To state this formally, assume again that a < b:

III.1 writing a = u0, u1, . . . , uj = b for the nodes along the in-trail, we have ui > ui+1 for 0 ≤ i ≤ j − 2 and
f(ui) < f(ui+1), for 0 ≤ i ≤ j − 1;

III.2 writing a = v0, v1, . . . , vk = b for the nodes along the mid-trail, we have vi < vi+1 and f(vi) < f(vi+1), for
0 ≤ i ≤ k − 1.

The respective first inequalities in III.1 and III.2 imply that the nodes of the in-trail precede the nodes of the
mid-trail. In contrast, there is no particular order between the values of nodes in different trails. We draw the
trails roughly parallel, like the outline of a banana. Letting a, b be the lower and upper ends, we call the pair of
trails the banana spanned by a, b. Except if b is the special root, b is also internal to another trail, so b is where
the banana spanned by a, b connects to another banana; see Figure 5. We summarize the crucial properties of
bananas in a lemma whose proof follows directly from the construction and is thus omitted.

Lemma 4.1. (Bananas and Windows) Let a, b be critical points of a generic map, f , with f(a) < f(b). The
two points span a banana in Up(f) iff W (a, b) is a window of f . Furthermore, another window, W (p, q), is
immediately nested in the in-panel or mid-panel of W (a, b) iff its maximum, q, is an interior node of the in-trail
or mid-trail of the banana spanned by a and b, respectively.

Each node stores pointers to its neighbors along the trails: for a node p, in(p) and mid(p) point to the first node on
the in- and mid-trails beginning at p, respectively; a maximum q has additional pointers up(q) and dn(q), which
point to the node above and below q on the same trail. The banana tree uses additional pointers to connect the
ends of its trails: letting a and b be the lower and upper ends of a trail, we store dth(a) = b and low(p) = a, in
which p is any node in the banana other than b. For convenience, this includes p = a, which thus stores a pointer
to itself. To obtain the lower end of a banana from its upper end we define Bth(b) = low(in(b)) = low(mid(b)).
Observe that each of the two banana trees stores exactly one node per critical item and thus requires O(n) space.
The dictionaries and the doubly-linked list require additional O(m) space and hence the total space used by our
data structure is linear in the total number of items.

We conclude this section with the assertion that the banana tree of a linear list is unique. This will be useful
in proving some of the algorithms in the subsequent section correct.
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Figure 5: Left: the banana tree of the map in Figure 2, with dotted curves showing the tree before splitting its paths;
compare with the left drawing in Figure 4. Right: upside-down drawing of the banana tree for the negated map; compare
with the right drawing in Figure 4.
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Lemma 4.2. (Uniqueness of Banana Tree) Given a linear list of distinct values, there is a unique path-
decomposed binary tree satisfying Conditions I.1, I.2, and II, and a resulting unique banana tree satisfying
Conditions III.1 and III.2.

Proof. The algorithm that constructs the banana tree of a linear list is deterministic and thus computes a unique
such tree, which we denote B. It therefore suffices to prove that no other banana tree satisfies Conditions I.1,
I.2. II, III.1, and III.2. We have already seen that there is a unique ordered binary tree that satisfies I.1 and I.2.
Similarly, there is a unique decomposition of this tree into paths that satisfies II.

To get a contradiction, assume B′ ̸= B is another banana tree that satisfies I.1 to III.2. Write B2 and B′
2

for the path-decomposed ordered binary tree we get by merging the two trails of each banana in B and B′,
respectively. To satisfy Condition I.2, the merging must preserve the ordering by value, and by Conditions III.1
and III.2 this is indeed possible. But the step from B′ to B′

2 is deterministic, and so is the step from B to B2.
We have already established that B′

2 = B2, which implies B′ = B, as claimed.

The reverse of Lemma 4.2 does not hold for the trivial reason that the banana trees do not store the non-
critical items. There is also the more subtle reason that different path-decomposed ordered binary trees can map
to the same banana tree. Indeed, the banana trees do not specify the order of values between parallel trails, so
merging them can result in different ordered paths.

4.3 String and Spine It is possible to connect the trails of a banana tree into a single curve such that the
homological critical points are listed from left to right according to their positions in the interval. Considering a
banana tree as a graph, the minima and the special root have two neighbors, and the maxima have four neighbors
each, so the maxima would appear twice, but one appearance is the mirror of the maximum, namely the upper
end of the in-trail. We list the maximum when we reach the upper end of the mid-trail. Equivalently, we adopt
the following rule for a banana spanned by a, b: if b < a, we first list b, then walk down the interior nodes of the
left trail, then list a, and finally walk up the interior nodes of the right trail, and if b > a, we do the same except
that we list b at the end rather than at the beginning. The sub-bananas are listed recursively when their upper
ends are encountered.

As an example consider the banana tree sketched in Figure 5 on the left: after starting at the special root,
we first encounter the left hook, then c, d, e and so on until n, o, and finally the right hook before returning to
the special root. We call this the string of the banana tree. It is not difficult to see that this is also the in-order
traversal of the tree after the first step of the banana tree construction.

We continue with the definition of an important subset of nodes in a banana tree. The left spine consists of the
special root, β, as well as the first interior node of every left trail with upper end in the left spine. Symmetrically,
the right spine consists of β as well as the first interior node of every right trail with upper end in the right spine.
The two overlap in β, and the spine is the union of the left and the right spines; see Figure 4 for an example.
The nodes in the spine can also be characterized in terms of the windows they span.

Lemma 4.3. (Spines and Windows) Let Up(f) be the banana tree of the map f . Then

(i) the special root β and the global minimum span the unique global window of f ;

(ii) a node b ̸= β of the left spine spans a window with wave that is short on the left;

(iii) a node b ̸= β of the right spine spans a window with wave that is short on the right;

(iv) all other internal nodes of Up(f) span windows with simple waves.

Proof. It is not necessary to give an argument for (i). Since (ii) and (iii) are symmetric, it suffices to prove (ii). By
the first step of the construction of a banana tree in Section 4.2, a node b belongs to the left spine iff f(b) > f(q)
for all items q < b. It follows that the window spanned by b is not constrained on the left, so it extends to the
beginning of the list. In other words, the window is with short wave, and the wave is short on the left.

The condition f(b) > f(q) for all q < b is also necessary to have a short wave on the left, so all such windows
are spanned by nodes in the left spine. Symmetrically, all windows with short wave on the right are spanned by
nodes in the right spine. Hence, all other internal nodes span windows with simple wave, which proves (iv).
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According Lemma 4.3, the special root spans the global window, the remaining nodes in the spine span
windows with short wave, and the remaining internal nodes span windows with simple wave. This holds for
Up(f) as well as for Up(−f) = Dn(f). Since a window with short wave of f is not a window of −f , and vice versa
[2, Theorem 4.2], this implies that the min-max pairs with the maximum in the spine (other than the special
root) are distinct in the two trees. In contrast, the min-max pairs with the maximum not in the spine are the
same in Up(f) and Dn(f).

The algorithms for splitting and gluing banana trees in Section 5.3 need to recognize nodes in the spine. We
thus label these nodes and maintain the labeling when changes occur.

5 Algorithms

Call the banana trees of a map and its negative the up-tree and down-tree of f , denoted Up(f) and Dn(f). We
describe the construction of both trees, the extraction of the augmented persistence diagram from these trees,
and operations that maintain the trees subject to local changes of the data. We begin with the construction of
the up-tree, which takes time linear in the number of items. Together with the extraction, this gives a linear-time
algorithm for the augmented persistence diagram; compare with the algorithm of Glisse [11], which constructs
the persistence diagram in linear time but not the augmentation. We prove the correctness of the local and
topological maintenance operations in Appendices A and B.

5.1 Construction We explain the construction of the up-tree for a generic piecewise linear map defined by
a list of m items: f(i) = ci for 1 ≤ i ≤ m. For convenience, we add items 0 and m + 1 at the two ends, with
f(0) = ∞ and f(m + 1) = ∞− 1. The algorithm processes the map from left to right and uses a stack to store
a subset of the minima and maxima so far encountered. Specifically, while processing j, the stack stores pairs
(a0, b0), (a1, b1), . . . , (ak, bk) such that

• 0 = a0 = b0 < a1 < b1 < a2 < . . . < ak < bk < j,

• f(i) ≤ f(bℓ) for all 1 ≤ ℓ ≤ k and bℓ−1 < i < j,

• f(i) ≥ f(aℓ) for all 1 ≤ ℓ ≤ k and bℓ−1 < i ≤ bℓ.

The first two properties imply that the points (bℓ, f(bℓ)) form a descending staircase in the plane, and all points
(i, f(i)) with i < j that are not steps of the staircase lie below the staircase. The third property says that item
aℓ minimizes the value among all items i vertically below the step of bℓ.

The only relevant items are the critical points, so we eliminate non-critical items in a preliminary scan and
connect the remaining items with prv- and nxt-pointers. Here we consider the artificially added items as maxima,
so 0 is the first item in this list, followed by nxt(0), nxt(nxt(0)), etc., until we reach item m+1. For later use, each
remaining item in the list is provided with the appropriate subset of initially null in-, mid-, up-, dn-, low-, and
dth-pointers. During the main scan the algorithm maintains unfinished bananas, each corresponding to a pair on
the stack, as well as a value A, which, after the current item has been processed, is the item with the minimum
value to the right of the top-most item on the stack. Whenever we pass a minimum, j, we set A = j, as the
immediately preceding item must have been a maximum. Whenever we pass a maximum, the stack is accessed
through the standard functions Push and Pop, as well as through function Top, which returns the item b at the
top of the stack, but without removing the pair (a, b) from the stack.

Suppose (a, b) is the pair at the top of the stack, and we pop it off because f(b) < f(j). If f(A) < f(a),
we now know that the unfinished banana spanned by a, b is correct, so we finalize it in FixBanana. Otherwise,
A, b span a banana, which must belong to a right trail as b < A. We, thus, detach b on the left, attach it on the
right, and finalize the banana in FixBanana. Then we set A = a and push (A, j) on the stack after creating its
temporary banana and attaching it on the left:
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dn(0) = 1; Push(a0 = 0, b0 = 0); j = 0;
repeat j = nxt(j);

if j is minimum then A = j endif;
if j is maximum then

while f(j) > f(Top) do (a, b) = Pop;
if f(A) < f(a) then FixBanana(a, b)

else attach b below j on the right;
FixBanana(A, b); A = a

endif

endwhile;
attach j below b on the left; Push(A, j);
if j = m+ 1 then FixBanana(A, j) endif

endif

until j = m+ 1.

To “attach j below b on the left”, where j is the currently processed item and b is a past item, we create an
unfinished banana with upper end j and temporary in- and mid-pointers, and set the relevant pointers of j, as
illustrated in Figure 6 on the left:

up(j) = b; in(j) = dn(b); mid(j) = prv(j); dn(j) = nxt(j);
dn(b) = up(in(j)) = up(mid(j)) = j.

Whenever the pair containing j is later popped off the stack, and a comparison of the values shows that j belongs
to a left trail, then these pointers remain unchanged in the final banana.
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Figure 6: Left: item j it temporarily attached on the left, which creates a banana whose upper end, j, is interior to a left
trail. Right: the temporary attachment of item b on the left is resolved, and b is attached on the right, which creates a
banana whose upper end, b, is interior to a right trail.

If, however, this is not the case, we execute “attach b below j on the right”, which suitably updates these values
to reflect the fact that j belongs to a right trail. Specifically, we detach b on the left and attach it on the right,
as illustrated in Figure 6 on the right:

dn(up(b)) = in(b); up(in(b)) = up(b);

up(b) = j; in(b) = prv(j); aux = dn(b); dn(b) = mid(b);mid(b) = aux;

prv(j) = up(in(b)) = b.

To fix a banana, we set the low-pointers of its interior nodes and the minimum, as well as the in-, mid-, and
dth-pointers of the minimum:

function FixBanana(a, b):
q = b; p = in(b); while p ̸= a do low(p) = a; q = p; p = dn(p) endwhile; in(a) = q;
q = b; p = mid(b); while p ̸= a do low(p) = a; q = p; p = dn(p) endwhile; mid(a) = q;
low(a) = a; dth(a) = b.

To argue the correctness of the algorithm, we formulate three invariants maintained by the algorithm. Let j
denote the current item, and distinguish between past items, b < j, and future items, b > j.
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(i) The prv-pointers of the future items are unchanged, except possibly the first one, which points to j. In
contrast, all nxt-pointers remain unchanged throughout.

(ii) If a past item, b, is on the stack, then the banana rooted at b is temporary and unfinished. The latter means
that the in- and mid-pointers of b and the up- and dn-pointers of b and all interior nodes are in place, but
not necessarily the remaining pointers that define the banana. In contrast, all its sub-bananas are complete.

(iii) Right before taking b off the stack, it satisfies (ii) except that the banana rooted at b is no longer temporary.
After taking b off the stack, its banana is complete, which means that all pointers of its nodes are in place.

It is easy to see that (i) is maintained, as there is only one place where a prv-pointer is altered, and there is no
place where a nxt-pointer is altered. Invariant (ii) holds because all interior nodes of the banana rooted at b have
been taken off the stack in the past, and their bananas are complete by Invariant (iii). In particular, this implies
that each unfinished banana spanned by a, b has a path from in(b) along dn-pointers to a defining its in-trail, and
similarly from mid(b) along dn-pointers to a defining its mid-trail. Assuming (ii), function FixBanana adds the
necessary pointers to complete the banana, which implies (iii).

Extraction. We next discuss how to compute the augmented persistence diagram from the up- and the down-tree
of f . Each banana in Up(f) corresponds to a point in Ord(f), with the exception of the banana of the special
root, which corresponds to a point in Ess(f). We find these points and the nesting relation by recursively walking
along the trails from bottom to top. We are handed the upper end of each pair of trails, so first we jump to the
lower end. The recursive function that enumerates all points and arrows is called with two parameters: the upper
end of two parallel trails, and the point in the persistence diagram that corresponds to the pair of trails that
contain that upper end as an interior node. Initially, the upper end is the special root, and the point is empty:

function Walk(b, pnt):
a = Bth(b); output Point(a, b) = (f(a), f(b)) and Arrow(a, b) = (Point(a, b), pnt);
x = in(a); while x ̸= b do Walk(x,Point(a, b)); x = up(x) endwhile;
x = mid(a); while x ̸= b do Walk(x,Point(a, b)); x = up(x) endwhile.

To complete the augmented persistence diagram, we also construct Dn(f) and apply the recursive function to its
parallel trails, with the only difference that the banana of the special root does not correspond to any point in
Dgm(f).

Summary. After removing all non-critical items, which takes O(m) time, the construction of the two banana
trees as well as the extraction of the augmented persistence diagram takes only O(n) time. Indeed, the main scan
of the construction algorithm completes each banana only once, and altogether touches each item only a constant
number of times. We summarize our findings for later reference.

Theorem 5.1. (Time to Construct) Let f : [0,m+1]→ R be a generic piecewise linear map with n maxima.
After removing all non-critical items in O(m) time, Up(f) and Dn(f) can be constructed in O(n) time, and the
augmented persistence diagram of f can be computed from these trees in O(n) time.

5.2 Local Maintenance Recall that the banana trees store all critical items but none of the non-critical
items. As a temporary exception, we delete items by first adjusting their values until they become non-critical.
To formalize the operation that adjusts the value of an item, j, from cj to dj , we write f, g : [0,m + 1] → R
for the maps before and after adjustment, so g(i) = f(i) for 0 ≤ i ̸= j ≤ m + 1, and f(j) = cj , g(j) = dj .
To avoid complications near the endpoints, assume 3 ≤ j ≤ m − 2. We give details on how to treat endpoints
in Appendix A.6. We modify the trees while following the straight-line homotopy from f to g, which is the
1-parameter family of maps hλ : [0,m + 1] → R defined by hλ(x) = (1 − λ)f(x) + λg(x) for 0 ≤ λ ≤ 1. Clearly,
h0 = f and h1 = g.

The homotopy reduces to a sequence of interchanges—of two maxima or two minima—followed or preceded
by a cancellation or an anti-cancellation, which reflect the disappearance or appearance of a point into or from
the diagonal of the persistence diagram, or a slide, which occurs when a critical item becomes non-critical due to a
non-critical neighbor becoming critical. We will discuss these operations in detail below. Among the adjustments,
we consider two scenarios:
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A: item j is non-critical in f and increases its value;

B: item j decreases its value until it becomes non-critical in g.

The scenario in which j is non-critical and decreases its value is symmetric to A, and either of the two is applied
after we insert a new item. The scenario in which j increases its value until it becomes non-critical is symmetric to
B, and either of the two is needed before we delete an item. Other adjustments are subsequences or compositions
of Scenarios A and B or their symmetric versions.

Scenario A. We increase the value of a non-critical item, j, and we assume that it becomes critical, else up-
tree and down-tree would not be affected. We consider the case in which f(j − 1) < f(j) < f(j + 1) and
f(j − 1) < g(j) > f(j + 1), i.e., the item j becomes a maximum in g. If j + 1 is non-critical in f , it becomes
a minimum in g and the number of critical items increases by two. If j + 1 is critical (a maximum), then it
becomes non-critical in g and item j replaces it as maximum; the number of critical items does not change. In the
former case we perform an anti-cancellation to introduce the banana spanned by j + 1 and j; in the latter case
we perform a slide. Afterwards we fix the position of j in the up-tree and down-tree by performing a sequence of
interchanges:

if g(j) > f(j + 1) then
if f(j + 1) < f(j + 2) then anti-cancel j and j + 1 in Up(f) and Dn(f)

else slide j + 1 to j in Up(f) and Dn(f)
endif;
set q = up(j) in Up(f);
while f(q) < g(j) do interchange j and q in Up(f) and Dn(f);

q = up(j) in Up(f)
endwhile

endif.

Note that we iterate with q = up(j) and not with q = up(q). This is not a mistake because the interchange in
Up(f) is of two maxima, j and q, which swaps the two nodes (see below). In contrast, the interchange in Dn(f)
is of two minima, albeit they are the same two items, j and q. Performing these interchanges simultaneously,
we save the effort of independently finding the next relevant interchange of minima, which would be costly. The
correctness of this strategy is guaranteed by Lemma 5.1, which we will state and prove after formalizing the notion
of an interchange.

Scenario B. The symmetric version of Scenario A—in which j decreases its value—is implemented accordingly,
by switching the roles of the up-tree and the down-tree. We use the simultaneous interchange of maxima and
minima also in the implementation of this inverse of Scenario A. There are again symmetric cases, and we consider
the case in which f(j − 1) < f(j + 1) and f(j − 1) < f(j) > f(j + 1). Furthermore, we assume that item j is
interior to a left trail. The operation begins with a sequence of interchanges of maxima in the up-tree and of
minima in the down-tree, followed by a cancellation or by a slide:

loop q = argmax{f(dn(j)), f(in(j)), f(mid(j))} in Up(f);
if f(q) > f(j + 1) then interchange q and j in Up(f) and Dn(f)

else exit endif

forever;
if f(j + 1) < f(j + 2) then cancel j with j + 1 in Up(f) and Dn(f)

else slide j to j + 1 in Up(f) and Dn(f)
endif.

Note that q is either a maximum or its value is less than f(j+1) as f(j−1) < f(j+1), so we will not attempt to
interchange a maximum, j, with a minimum, q, which would be impossible indeed. We continue with the details
for the interchanges and (anti-)cancellations.

Interchange of maxima. An interchange between two maxima with f(j) < f(q) has structural consequences
only if q = up(j), as this is the only case in which a uniqueness condition, namely III.1 or III.2, is violated. We
will see that the algorithm does not ever get into the situation of attempting any other interchange. Assume that
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q is on a left trail, which is the situation depicted in Figure 7. Let i and p be such that j = dth(i) and q = dth(p).
If j = dn(q), we distinguish two cases depending on the order of f(i) and f(p).

Case 1: f(i) < f(p). Remove q from its trail and add it right below j in j’s in-trail, as illustrated in Figure 7 in
the top left. Adjust the pointers of the involved nodes accordingly.

Case 2: f(i) > f(p). Exchange j and q as upper ends of their respective bananas, remove q from its trail and
add it right below j in j’s mid-trail, as illustrated in Figure 7 in the top right. Adjust pointers, and in
particular set dth(i) = q and dth(p) = j. The in-trail of i becomes its mid-trail and vice versa.

In both cases, j joins the left spine of the up-tree iff q is a node of the left spine already before the operation.
The cases where j = mid(q) or j = in(q) are similar to the reverse of the cases with j = dn(q), and are illustrated
in the bottom row of Figure 7. There are also the inverse operations (reading Figure 7 from right to left), which
apply when j = up(q), i.e., the case f(j) > f(q), and the symmetric cases where q is on a right trail.

q
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Figure 7: The interchange of two maxima, j and q. In the dotted underlying tree, the operation corresponds to a rotation.
Before the interchange, the pairs are i, j and p, q. Top left: f(i) < f(p) which preserves the pairs. Top right: f(i) > f(p)
and the pairs change to i, q and p, j. Bottom left: j = in(q) which preserves the pairs. Bottom right: j = mid(q) and the
pairs change to i, q and p, j.

Interchange of minima. An interchange of maxima in Up(f) is always done in parallel with an interchange of
minima in Dn(f). It can, however, happen that the interchange of j and q has a structural effect on Up(f) but
not on Dn(f). An example is the interchange of nodes i and g in Figure 4 and 5. They are internal nodes in the
up-tree, so the effect of the interchange is as depicted in Figure 7 on the left. The two nodes are leaves in the
down-tree whose bananas do not meet, so the interchange of minima has no effect.

In general, the interchange of two minima with f(j) < f(q) has structural consequences only if p = dth(q)
is interior to the banana spanned by j and i = dth(j), as this is the only case in which g(j) > g(q) leads to a
violation of the uniqueness conditions, namely of II. To describe how the trails are updated, we assume that p is
interior to the left trail. We split this trail into the upper part above p and the lower part below p (with neither
part including p). Similarly, we split the parallel right trail connecting i to j into upper and lower, with values
larger and smaller than f(p), respectively. Then we concatenate the upper part of the left trail with the left trail
connecting p to q (but without the upper end, which is p), and we concatenate the upper part of the right trail
with the right trail connecting p to q (this time including p). Finally, we join the two lower parts to form parallel
trails connecting p to j.

Observe that splitting the left trail is easy because it contains p as an interior node. We split the right trail
by traversing it one node at a time from the upper end until we reach the first node with value less than f(p).
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Note that all the travsersed node on the right trail will have a change in their low-pointer and we will use this
fact when we analyze the running-time of the operation at the end of this subsection.

Simultaneity of interchanges. Next, we prove the correctness of coupling interchanges as described in
Scenarios A and B. The moment two maxima of f interchange is of course also the moment at which they
interchange as minima of −f . However, many interchanges are irrelevant, in the sense that they cause no
structural changes to the banana trees. Many of these irrelevant interchanges go unnoticed by our algorithm
(and fortunately so), but it is important that no relevant interchange is overlooked. We claim that every relevant
interchange of minima corresponds to a relevant interchange of maxima.

To formalize this claim, let F : [0,m + 1] → R be a piecewise linear map determined by its values at the
integers, and assume that these values are distinct, with the exception of F (j) = F (q) at maxima j ̸= q of
F . Let f, g : [0,m + 1] → R be piecewise linear maps defined by the same values at the integers, except that
f(j) = F (j)− ε and g(j) = F (j) + ε for a sufficiently small ε > 0. The straight-line homotopy from f to g is an
interchange of maxima, namely of j and q, and that from −f to −g is an interchange of minima, again of j and
q. We call the former relevant if Up(f) and Up(g) differ by a rotation, namely of j and q, and we call the latter
relevant if Dn(f) and Dn(g) differ by a change in the pairing.

Lemma 5.1. (Coupling of Interchanges) Let f, g : [0,m + 1] → R as introduced above. If the straight-line
homotopy from −f to −g, which is an interchange of minima, is relevant, then so is the straight-line homotopy
from f to g, which is an interchange of maxima.

Proof. We prove the contrapositive: that irrelevant interchanges of maxima imply irrelevant interchanges of
minima. The interchange of the maxima j ̸= q of f is irrelevant if there is a banana in Up(f) so that j and q
belong to opposite trails, or to sub-bananas rooted on opposite trails of this banana. Let this banana be spanned
by a, b. Assuming j < q, this implies j < a < q and b is either to the left or the right of the three items. Letting i
and p be the lower ends of the bananas spanned by j and q, respectively, we observe that i < a < p, f(a) < f(i),
and f(a) < f(p).

For the negated function, j, q are minima and i, a, p are maxima satisfying i, j < a < p, q, −f(a) > −f(i),
and −f(a) > −f(p). If W (i, j) and W (p, q) are both with simple waves, then W (j, i) and W (q, p) are triple-panel
windows of −f that are separated by a. It follows that the interchange of minima is irrelevant. Similarly, if one
or both of these windows are with short wave, then the separation by a implies that the pairing stays constant,
so again the interchange is irrelevant.

There is a special case to consider when the separating banana is spanned by the special root, and j, q are
the maxima with the two largest values. For f , we have β = q and for g we have β = j. In words, the interchange
of the maxima j and q does not change the pairing but it causes a replacement of the special root.

Cancellations. The last step in Scenario B is the cancellation of items j and j + 1, which is implemented by
removing the two nodes from the up-tree and down-tree. We argue that the implementation is really this easy.

Recall that the value of j during the homotopy from f to g is hλ(j) = (1− λ)f(j) + λg(j). By assumption,
f(j − 1) < f(j + 1), so the cancellation happens at f(j − 1) < g(j) < f(j + 1). Since f(j) > f(j + 1) > g(j) and
f(j +2) > f(j +1), there exists 0 ≤ µ ≤ 1 such that f(j +2) > hµ(j) > f(j +1). At this stage of the homotopy,
j + 1 is a child of j and dth(j + 1) = j in Up(f). In other words, j + 1 and j are the upper and lower ends of a
pair of empty trails. We can therefore simply remove this pair of trails, while forming a direct link between dn(j)
and up(j). The situation is symmetric in Dn(f).

Anti-cancellations. The first step in Scenario A is the anti-cancellation of items j and j+1. We describe how to
perform the anti-cancellation in the up-tree; the anti-cancellation in the down-tree is symmetric. By assumption,
f(j − 1) < g(j) > f(j + 1) < f(j + 2) and g(j) is such that there is no item with value between f(j + 1) and
g(j). We first identify the maximum b closest to j such that the new minimum j + 1 lies between j and b, i.e.,
j < j + 1 < b. Note that there can be no other critical point between j + 1 and b.

To insert j, we walk along the path from b to the closest minimum a with a < j < j + 1 < b, until we find a
node q with smaller value than j. The node j is then inserted as a parent of q:

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



if Bth(b) < j < b then q = mid(b) else q = dn(b) endif;
while f(q) > g(j) do q = in(q) endwhile;
if q is a leaf then if q = Bth(b) then insert j as mid(q)

else insert j as in(q)
endif

else insert j as up(q)
endif.

After inserting j, we construct a banana spanned by j + 1 and j, which includes setting in(j + 1) = mid(j + 1) =
dth(j + 1) = j and in(j) = mid(j) = j + 1.

Slides. Consider the case in which the value of a maximum, j, is decreased, and assume that f(j−1) < f(j+1) >
f(j + 2). Note that j + 2 is non-critical. If f(j − 1) < g(j) < f(j + 1), then j + 1 becomes a maximum and
j becomes non-critical. The number of critical items remains the same in f and g, but criticality is transferred
from one item in f to a neighboring item in g. As mentioned earlier, this is what we call a slide.

The same situation occurs when (1) the value of a minimum increases above the value of a non-critical
neighbor, (2) the value of a non-critical item increases above the value of a neighboring maximum, or (3) the
value of a non-critical item decreases below the value of a neighboring minimum. A slide has no impact on the
structure of the banana-tree and only requires to update the association between items and nodes.

Summary. We summarize the findings in this subsection by stating the running-time for adjusting the value of
an item in terms of the number of critical points and the number of changes caused to the augmented persistence
diagram.

Theorem 5.2. (Time to Adjust) Let f : [0,m+1]→ R be a generic piecewise linear map with n maxima. The
time to adjust the value of an item is O(log n+ k′) or O(log n+ k), depending on whether or not the adjustment
requires an anti-cancellation, in which k′ and k are the differences in the transitive closure of the nesting relation
and the augmented persistence diagrams, before and after the adjustment, respectively.

Proof. We prove the claimed bound on the running-time by charging most steps to the change in augmented
persistence diagrams they cause.

An interchange of maxima reduces to a rotation plus possibly a swap in the pairing. The rotation takes O(1)
time, which we charge to the changing arrow, and the swap takes O(1) time, which we charge to the two points
in the diagram that exchange coordinates. An interchange of minima reduces to a swap in the pairing followed
by resetting the low-pointers along the path connecting the two maxima involved in the swap. As before, the
swap is charged to the two points that exchange coordinates, and each resetting of a low-pointer is charged to the
corresponding change in the arrow. It is also possible that the interchange of minima has no effect on the binary
tree, namely when the corresponding paths are disjoint. This is detected in O(1) time, and this time is charged to
the changes caused by the simultaneous interchange of maxima in the other banana tree. A cancellation takes O(1)
time, and there are at most two cancellations per value adjustment of an item. In contrast, an anti-cancellation
takes O(log n) time to find the maximum, b, closest to the new pair of critical items. The while-loop in the
anti-cancellation takes as many iterations as there are nodes on the path from b to the newly inserted node. For
each of those nodes an arrow appears in the transitive closure of the nesting relation. Thus, the time to insert
the new banana is O(k′). The insertion itself takes constant time.

In addition, we take O(log n) time to update the dictionaries whenever an item changes from critical to non-
critical, or the other way round, and there are only O(1) such changes per value adjustment of an item. All this
adds up to O(log n+ k′) time, if the adjustment requires an anti-cancellation, or O(log n+ k) time, if it does not.

5.3 Topological Maintenance Given a collection of linear lists, we next study the maintenance of the
augmented persistence diagram subject to cutting and concatenating the lists. Recall that a list c1, c2, . . . , cm
induces a piecewise linear map, f : [0,m + 1] → R, with f(i) = ci for 1 ≤ i ≤ m. The values at i = 0,m + 1 are
added to create the computationally convenient hooks introduced in Section 4. To cut f , we split the list into
c1, c2, . . . , cℓ and cℓ+1, cℓ+2, . . . , cm and let g : [0, ℓ+1]→ R and h : [ℓ,m+1]→ R be the corresponding piecewise
linear maps. We need at least two items to construct the hooks, so we require 2 ≤ ℓ ≤ m − 1. We describe the
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operation for the up-tree, and consider the down-tree only to the extent it provides information to update the
up-tree. For ease of reference, we write x for the midpoint between ℓ and ℓ+1 and set f(x) = 1

2 (f(ℓ)+ f(ℓ+1)).

Splitting a banana tree. We introduce terminology before describing the splitting algorithm in three steps.
A banana suffers an injury, fatality, scare if x cuts through the in-, mid-, out-panel of the window, respectively;
see Figure 8. A triple-panel window with simple wave is shared by f and −f , except that in- and out-panels are
exchanged. Hence, a scare in Up(f) is an injury in Dn(f), so we exploit the down-tree to find the scares in the
up-tree.

p x q qp xqpx p

q

p

q

p

q

x x

x

Figure 8: From left to right: an injury, fatality, and scare. Correspondingly, x cuts the banana in its in-trail, in its mid-trail,
or after the maximum but still above the value of the minimum.

Step 1: Find smallest banana. To enumerate the bananas that suffer injuries or fatalities, we first find the
smallest such banana. To this end, we search the dictionaries to locate the smallest interval between two critical
points that satisfy a < x < b. Note however that neither b is necessarily the upper end nor a is necessarily the
lower end of this banana. Assuming b is a maximum, we use it to find the smallest banana in the up-tree such
that x lies between its lower and upper ends. The search uses a pair of nodes, q, r, maintaining that the upper
end of the desired smallest banana has an ancestor that is an interior node of the right trail with upper end q,
and r with f(r) > f(x) is a node on this right trail. The iteration advances q and r toward x and halts when
these conditions fail. To repeatedly go down the right trail of r, which itself is interior to a right trail, we use
the in(r) pointer. The iteration is slightly different in the first case, when b is interior to a right trail, and in the
second case, when b is interior to a left trail:

function SmallestBanana(x):
find a < x < b and assume that b is a maximum;
if dn(b) < b then q = dth(low(b)); r = dn(b) else q = b; r = mid(b) endif;
while r ̸= a and f(x) < f(r) do q = r; r = in(r) endwhile;
return (Bth(q), q).

The time is O(log n+ k), in which k is the number of inspected bananas. Each of these bananas causes a change
in the augmented persistence diagram, which pays for the visit.

Step 2: Stack bananas. After locating the smallest banana in Up(f) that suffers an injury or fatality, we find
the others by traversing the tree upward. In the process, we load three initially empty stacks with the injuries
and fatalities. In doing so, we distinguish spanning min-max pair to the left of x, separated by x, to the right of
x, and denote the corresponding stacks Lup, Mup, Rup, respectively. On its way up, the algorithm pushes each
banana on one of the three stacks, until it encounters the first banana with maximum in the spine.

function LoadStacks (x):
(p, q) = SmallestBanana(x);
loop case p < x and q < x: Push(Lup, (p, q));

p < x xor q < x: Push(Mup, (p, q));
p > x and q > x: Push(Rup, (p, q))

endcase;
if q is in spine of Up(f) then exit endif;
p = low(q); q = dth(p)

forever.

Similarly, we load the initially empty stacks Ldn, Mdn, Rdn with bananas in Dn(f). When we split the up-tree,
it will be convenient to reverse the pairs defining the bananas in the down-tree, and when we split the down-tree,
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we reverse the pairs defining the bananas in the up-tree. We call a stack with bananas (p0, q0) at the bottom to
(pj , qj) at the top sorted if f(pj) < . . . < f(p0) < f(q0) < . . . < f(qj). The stacks satisfy the following properties:

Lemma 5.2. (Sorted Stacks) Let c1, c2, . . . , cm be a sequence of distinct values, f the thus defined piecewise
linear map, x such that c2 < x < cm−1, and Lup,Mup, Rup, Ldn,Mdn, Rdn the stacks as returned by LoadStacks
holding the bananas with injury, fatality, and scare in Up(f) and Dn(f). Then

(i) all six stacks are sorted;

(ii) all bananas on the stacks are with simple wave, except for the last banana pushed onto Lup,Mup, Rup, whose
maximum belongs to the spine of Up(f), and the last banana pushed onto Ldn,Mdn, Rdn, whose maximum
belongs to the spine of Dn(f);

(iii) the set of simple wave bananas on Mup is the same as that on Mdn;

(iv) Lup, Mup, Ldn can be merged into a single sorted stack, and so can Rup, Mup, Rdn and Lup, Mup, Rup and
Ldn,Mdn, Rdn.

Proof. Property (i) is implied by Condition II on the path-decomposition and the fact that the algorithm visits
the bananas from bottom to top. Property (ii) holds because all bananas are with simple wave, other than the
ones with maxima in the spine, and except for the respective last ones, no banana pushed onto the stacks have
their maxima in the spine. To see Property (iii) recall that a simple wave of f is also a simple wave of −f . Hence,
simple wave bananas belong to both trees, except that they share the mid-trail but not the in-trail. Each banana
on Mup and Mdn suffers a fatality, which cuts cuts the mid-trail and therefore also the corresponding banana on
the other stack. Property (iv) follows from the fact that all bananas on one of these stacks must correspond to
nested windows. Note, however, that it is not true that all six stacks can be merged to a sorted stack. The reason
is that triple-panel windows of bananas in Lup and Rdn can overlap without being nested, and so can triple-panel
windows of bananas in Ldn and Rup; see the windows spanned by f, g and h, i in Figure 2. However, if x cuts
through any two such overlapping and not nested windows, then it also separates the critical points that span one
from those that span the other. Such pairs neither exist for Lup,Mup, Ldn, nor for any of the other three triplets
of stacks.

There are up to two windows with short wave which need special treatment: First, the window of −f with
its maximum on the spine of Dn(f) and x in its in-panel; second, the window of f with its maximum on the
spine of Up(f) and x in neither its in-panel or mid-panel. The former appears in Ldn or Rdn, but is not a
window of Up(f) and we ignore it when splitting Up(f). The latter is not loaded into Lup, Mup or Rup, is not a
window in Dn(f) and is thus not loaded onto any stack. However, it may have x in its out-panel, in which case it
suffers a scare and should be pushed onto Ldn or Rdn. We can identify this case by examining q′ = in(qj), where
(pj , qj) is the topmost banana. If (Bth(q′), q′) pushed onto Ldn or Rdn preserves the properties of Lemma 5.2
and f(Bth(q′)) < f(x) < f(q′), then indeed x is in the out-panel of this window and we place it on Ldn or Rdn

as appropriate when splitting Up(f). Otherwise, no window with x in its out-panel is missing from the stacks.
Symmetrically, when splitting Dn(f) we ignore in Lup ∪ Rup the window with maximum on the spine of Up(f)
and push the missing window in Dn(f) onto Lup or Rup.

After pushing the bananas onto the stacks, we remove them from the top. Write (p, q) = Top(Lup) for the
topmost banana on Lup, with (p, q) = (nil, nil) if Lup is empty, and similarly for the other stacks. We set
f(nil) = −∞. The overall top banana is the one whose maximum has the largest value and is returned by
function TopBanana:

function TopBanana:
Stack = nil; (p, q) = (nil, nil);
for each S ∈ {Lup, Rup,Mup, Ldn, Rdn} do (p′, q′) = Top(S);

if f(q′) > f(q) then Stack = S; (p, q) = (p′, q′) endif
endfor; return (Stack, (p, q)).

Step 3: Split up-tree. This operation splits the up-tree into two and in the process adds at most four new
nodes: a second special root, a minimum and a maximum if ℓ and ℓ + 1 are non-critical points prior to the cut,

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



and the up-type endpoint of the two new hooks on both sides of the cut. The algorithm uses the loaded stacks to
visit the nodes that need repair from top to bottom, i.e. from the largest to the smallest banana as determined
by the stacks. The iteration ends when the stacks are empty:

function Split(x):
LoadStacks(x);
loop (Stack, (p, q)) = TopBanana;

if (p, q) = (nil, nil) then exit endif;
case Stack ∈ {Lup, Rup}: DoInjury(p, q);

Stack = Mup: DoFatality(p, q);
Stack ∈ {Ldn, Rdn}: DoScare(p, q)

endcase; Pop(Stack)
forever.

Finally, we add ℓ and ℓ + 1 as new nodes if they become critical in the process, and we do the final adjustment
to the values of the new hooks. In each iteration, we have two banana trees, one on the left and the other on the
right. An injury transfers part of one tree to the other, and so does a fatality. The latter also adjusts the pairing
between the critical points, while a scare only adjusts the pairing. To initialize this setting, we construct a second
banana tree consisting of a single banana with two empty trails connecting its special root with a dummy leaf,
α. If we cut the original banana tree on the left spine or the special banana, then this new tree becomes the left
tree and we define its special root to be at −∞ along the interval. Otherwise, the new tree becomes the right
tree and we define the special root of the original tree to be at −∞, swapping in- and mid-trails of the special
banana to satisfy the uniqueness conditions. After splitting is complete, we reset the special roots to −∞ and
swap the in- and mid-trails of the special banana as needed.For reasons that will become clear shortly, we set
f(α) = f(pj)− ε, in which pj , qj are the nodes that span the top banana on the stacks, and ε > 0 is smaller than
the difference between the values of any two items. We observe that the top banana in the first iteration either
suffers an injury or a fatality. Indeed, if it suffered a scare, then x would cut through its out-panel and therefore
lie between qj and low(qj). But then x cuts through the in- or mid-panel of the banana spanned by low(qj) and
dth(low(qj)), and this banana would have been the top banana on the stacks, which is a contradiction. To see the
correctness of the splitting operation, we note that Function Split maintains the following invariants:

(i) both banana trees satisfy the uniqueness conditions I.1, I.2, II, III.1, and III.2;

(ii) any node u that is not on any stack and does not have an ancestor on the stacks is in the left tree, if u < x,
and in the right tree, if u > x.

Invariant (ii) implies that once the stacks are empty, all nodes to the left of x are in the left tree and all nodes to
the right of x are in the right tree. By invariant (i) the right and left trees are the unique trees representing the
maps g and h. Assuming x < b for the root of the banana tree, the first transfer will be from right to left (as in
Figure 9), so we let the existing banana tree be the right tree and the banana with the two empty trails the left
tree. We are now ready to discuss the actions specific to the injury, fatality, and scare of a banana.

An injury occurs when x cuts the in-trail of the banana spanned by p, q. To simplify the discussion, assume
Stack = Rup, so x < p < q, as illustrated in Figure 8, left, and Figure 9, middle and left. The case Stack = Lup

and q < p < x is symmetric.

The injury causes a possibly empty portion of the in-trail to split off and append to the rightmost banana
spanned by a spine node of the tree on the left; see again Figure 9. The cut off portion consists of all interior nodes
j < x and their sub-bananas. Note that it is quite possible that x cuts the string somewhere in a sub-banana
with upper end on the in-trail. In this case, the sub-banana does not transfer as its upper end is to the right of
x, and it is instead subject to a later repair operation. Because the bananas taken from the stacks are sorted, we
have f(i) > f(α) for all transferred nodes i. We maintain α as an up-type endpoint that spans a banana with b,
as before the operation.

A fatality occurs when x cuts the mid-trail of the banana spanned by p, q. Hence, Stack = Mup, and we
assume p < x < q, which is the case illustrated in Figure 8, middle, and Figure 9, middle and right. The case
q < x < p is symmetric.
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Figure 9: Middle: the banana spanned by p, q suffers an injury (cut in in-trail) or a fatality (cut in mid-trail). Left: to
process the injury, we move the dashed portion and append it to the rightmost spine banana of the left tree. The up-type
node, α, is paired with the upper end, b, of the expanded banana. Right: to process the fatality, we move the entire in-trail
together with the dash-dotted portion of the mid-trail. The new up-type endpoint, α, is paired with q in the right tree,
and p is paired with the upper end, b, of the expanded banana. Dotted portions of trails are empty.

The fatality causes the entire in-trail and a possibly empty portion of the mid-trail to split off and append to
the rightmost banana spanned by a spine node of the tree on the left; see again Figure 9. The transfer includes
the minimum, p, and all interior nodes, j, with j < x. As in the case of an injury, it is possible that x cuts
a sub-banana with upper end on the mid-trail. This sub-banana is not transferred and instead subject to later
repair operation. Since p moves from the right to the left, we move α from the left to the right and adjust the
pairing accordingly: p spans a banana with b in the left tree, and α spans a banana with q in the right tree. To
ensure that the path-decomposition remains correct, we set f(α) = f(p)− ε.

A scare occurs when x lies in the out-panel of the triple-panel window spanned by p, q, so x cuts neither
trail of the corresponding banana. However, there is a banana spanned by q, p in Dn(f), and x cuts the in-trail
of that banana. Assume Stack = Ldn, so p < q < x, which is the case illustrated in Figure 8, right. The case
Stack = Rdn and x < q < p is symmetric.

The scare does not affect the right up-tree, and it affects the left up-tree only indirectly, namely by triggering
a change in the pairing. In other words, it preserves the underlying ordered binary tree (First Step of the banana
tree construction), but it changes the path-decomposition (Second Step), and therefore also the organization of the
bananas (Third Step). This is done by executing an interchange of two minima, namely of p and α = low(dth(p)).
To justify this interchange, we adjust the value of α to f(α) = f(p) + ε.

Gluing two banana trees. Concatenating the lists c1, c2, . . . , cℓ and cℓ+1, cℓ+2. . . . , cm is the inverse of cutting
c1, c2, . . . , cm into these two lists. Equivalently, we can think of concatenating g : [0, ℓ+1]→ R and h : [ℓ,m+1]→ R
to get f = g · h : [0,m+ 1]→ R. A triple-panel window with simple wave of g is still a triple-panel window with
simple wave of f , and similarly for h and f . Also a triple-panel window whose wave is short at the left end of the
domain of g is still a triple-panel window with short wave of f , and similarly for h and the right end of the domain
of h. It follows that the only windows that need repair are the global windows of g and h and the windows whose
waves are short at the right end of the domain of g or the left end of the domain of h. These windows correspond
to the bananas rooted at nodes of the right spine of Up(g) and the left spine of Up(h).

In a nutshell, the algorithm visits the nodes in the relevant portions of the two spines from bottom to top.
For Up(g), we get a sequence of nested short wave windows ending with the global window, and we list the
corresponding critical points from right to left as a0, b0, a1, b1, . . . , ai, bi = βg. Symmetrically, we list the critical
points we get from Up(h) from left to right as a′0, b

′
0, a

′
1, b

′
1, . . . .a

′
j , b

′
j = βh. To have a specific setting, we assume

that a0 is a proper minimum of g (an up-type endpoint after removing the hook), while a′0 is a hook that is an
up-type endpoint of h. Because the windows are nested, we have

f(ai) < . . . < f(a0) < f(x) < f(b0) < . . . < f(bi);(5.3)

f(a′j) < . . . < f(a′1) < f(x) < f(b′0) < . . . < f(b′j),(5.4)

in which the hook, a′0, has been removed from the second list; see Figure 10. The two orderings imply that the
minimum with largest value is either a0 or a′1, and the maximum with smallest value is either b0 or b′0. To get
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a sorted list of nested windows, the algorithm pairs up the lowest maximum with the highest minimum, removes
the two, and iterates.

b1 b0 b′0
b′1

b′j = βhbi = βg

x
a1

a0 a′1 a′2

Figure 10: The simplified graph of g to the left of x, which connects the critical points that span bananas in the right spine
of Up(g). The symmetrically simplified graph of h to the right of x, which connects the critical points that span bananas
in the left spine of Up(h).

Given a0, the next maximum and then the next minimum to its left are b0 = dth(a0) and a1 = low(b0).
Symmetrically, a′1 = low(b′0) and b′1 = dth(a′1). Assuming the configuration in Figure 10, namely f(a0) < f(x) <
f(b′0), a0 remains a minimum and b′0 remains a maximum after connecting the two items monotonically. In other
cases, a0 and b′0 may become non-critical. As a pre-processing step to gluing, we remove up-type and down-type
endpoints that become non-critical when we connect the two lists. Whatever the case, the algorithm assumes that
a0 and b′0 are the first critical points to the left and right of x, and that a0 is a minimum and b′0 is a maximum. We
write α for the hook at b′0 and use it as a dummy leaf, like in cutting. For the purposes of this algorithm we define
f(βh) < f(βg) for tie-breaking. We also define low(βg) = nil and low(βh) = nil with f(nil) = −∞. Again,
we define the special root of the left tree, βg, to be at −∞ along the interval and swap the in- and mid-trails of
the special banana of the left tree. This is reset after the gluing is complete.In each iteration, the maximum with
lower value is paired with a minimum to its left or its right. If the maximum in the left tree, q, is processed, then
the candidate minima are p̂ = low(q), which is on the left of q, and p, which is on the same side of q as Bth(q). If
the maximum in the right tree is processed, then the situation is symmetric. The iteration ends when one of the
two trees is empty, i.e., consists only of a special root and the dummy α.

function Glue(a0, b
′
0, βg, βh):

set q = b0 = dth(a0); q
′ = b′0;

repeat if f(q) < f(q′) then
p̂ = low(q); if p ̸= α then p = Bth(q) else p = Bth(q′) endif;
case f(p) > f(p̂) and p = Bth(q): UndoInjury(p, q);

f(p) > f(p̂) and p = Bth(q′): UndoFatality(p, q);
f(p̂) > f(p): UndoScare(p̂, q)

endcase; q = dth(low(q))
else symmetric cases for f(q) > f(q′)

endif

until in(βg) = mid(βg) = α or in(βh) = mid(βh) = α;
if in(βg) = mid(βg) = α then discard βg, α else discard βh, α endif.

The main three subroutines are inverses of the earlier functions and undo injuries, fatalities, and scares. Function
UndoInjury extends the short wave banana beginning at q to a simple wave banana by inserting maxima into
the in-trail beginning at q; see Figure 9 but read the change backward, from the left to the middle. Function
UndoFatality extends the short wave banana beginning at q to a simple wave banana while also changing
the pairing of q; see again Figure 9 now reading the change from the right to the middle. Finally, function
UndoScare adjust the value of the up-type endpoint, α = Bth(q), to f(α) = f(p̂) − ε, thereby extending the
out-panel of the window associated with q and changing the pairing.

Summary. We summarize by stating the running-time for cutting and concatenating lists in terms of the number
of critical points and the number of changes to the augmented persistence diagrams.

Theorem 5.3. (Time to Cut and Concatenate) Let f : [0,m + 1] → R be a generic piecewise linear map
with n maxima, and let g and h such that f = g · h. The time to cut f into g and h is O(log n+ k), in which k
is the size of the symmetric difference between D−→gm(f) and D−→gm(g) ⊔D−→gm(h), and so is the time to concatenate
g and h to form f .
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Proof. We focus on the algorithm for cutting f at x, and omit the argument for glueing, which is symmetric. It
takes O(log n) time to find the two consecutive critical points that sandwich x between then, and it takes O(log n)
time to cut the dictionaries accordingly. The time needed to split Up(f) and Dn(f) is proportional to a constant
plus the number of nodes visited during the iteration.

We argue that we can charge each such node, q, to a change in the augmented persistence diagram in such a
way that each change is charged at most twice, once by a node in Up(f) and once by a node in Dn(f). Let q be a
visited maximum in Up(f), and let p be the minimum with dth(p) = q. Then W (p, q) is a window with simple or
short wave cut by x. If x cuts through the mid-panel or the out-panel, then W (p, q) is neither a window of g nor
of h, and we charge q to the disappearance of the point (f(p), f(p)) from the ordinary subdiagram. So suppose
x cuts through the in-panel. If W (p, q) is with simple wave, W (q, p) is a window of −f and x cuts through its
out-panel, so we charge q to the disappearance of (f(q), f(p)) from the relative subdiagram. Finally, if W (p, q)
is a window with short wave and x cuts through its in-panel, then the algorithm has reached the spine of Up(f).
By Lemma 4.3, all ancestors of q are of the same type, so we can end the traversal here. Thus, this case causes
only constant work which is charged to the cutting operation directly.

We remark that the O(log n + k) time bound for cutting and concatenating would not hold if in splitting
and gluing we traversed the banana trees all the way to the respective special roots. Let q be the node on the
spine where the algorithm halts. The path connecting q to the special root may be arbitrarily long, and none
of these nodes corresponds to a change in the augmented persistence diagram. A particular map for which this
happens is the damped sine function, defined by f(x) = x sinx; see the right half of Figure 10 for a sketch. We
get a triple-panel window for each min-max pair, each with short wave on the left. If we cut f close to 0, then all
these windows get insubstantially smaller but remain to be spanned by the same min-max pairs. These changes
are not visible in the augmented persistence diagrams of f and the functions created by cutting f at x.

6 Discussion

The main contribution of this paper is a dynamic data structure for maintaining the augmented persistence
diagram of linear lists. The data structure starts with the Cartesian tree of Vuillemin [18] (see also Aragon and
Seidel [1]), which it decomposes into paths and then splits into pairs of parallel trails, arriving at an unconvential
representation referred to as banana tree. For the efficiency of the data structure, it is essential to maintain a
pair of banana trees, which store complementary information about the list. The most important next step is
the implementation of the data structure and its algorithms. With such an implementation, we can deepen our
understanding of the persistence of random lists, which in turn can be used as a baseline for our understanding
of non-random time series.

The theoretical foundations for our dynamic algorithms are described in [2], where maps on 1-dimensional
domains, which include but go beyond intervals are described. Can the banana trees be extended to geometric
trees (which allow for bifurcations) and geometric networks (which allow for bifurcations as well as loops) without
deterioration of the asymptotic running time? Because of the unconventional representation of trees in terms of
bananas (pairs of parallel trails), we finally ask whether there are other dynamic data structure questions that
can benefit from this representation.
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A Correctness of Local Maintenance

In this section, we prove the correctness of the local operations and of the algorithms for Scenarios A and B (see
Lemmas A.13 and A.14 in Appendix A.6). We also give details on how to treat changes in value that lead to
an up-type item becoming down-type or vice versa. We make extensive use of the homotopy hλ : [0,m+ 1]→ R
defined in Section 5.2 as hλ(x) = (1− λ)f(x) + λg(x) for 0 ≤ λ ≤ 1, where f and g differ in the value of a single
item. The change in function value from f to g can be arbitrary and the transformation of Up(f) into Up(g) is
achieved by a sequence of local operations, which we define in terms of small changes in the function value of a
single item. To make the notion of small change more precise, we define contiguity of items in terms of function
value.

Definition A.1. (Contiguity) Items p and q are contiguous in f if there exists no item u ̸= {p, q} such that
f(u) ∈ [min{f(p), f(q)},max{f(p), f(q)}].

Each local operation involving items p and q is then defined as the transformation of Up(hσ) into Up(hθ), where
p and q are contiguous in hσ and hθ. We prove the correctness of local operations in terms of such a small change,
then show how to extend this to larger changes where items are not necessarily contiguous. This allows us to
combine the local operations to form the Scenarios A and B. It is easy to see that when items remain contiguous
upon exchanging values then they swap places in the order of items by function value. This is stated in the
following lemma.

Lemma A.1. (Local Changes) Let 0 ≤ σ < θ ≤ 1. Let p and q be items that are contiguous in both hσ and hθ

with hσ(p) < hσ(q) and hθ(p) > hθ(q). The order of items by function value is the same in hσ and hθ except that
p and q are swapped.

In some of the correctness proofs, we analyze how a change in the function value of an item affects the
structure of windows and leverage the correspondence between windows and bananas established in Lemma 4.1.
In other correctness proofs, we use the fact that there is a unique banana tree satisfying the conditions proved in
Lemma 4.2. To this end we reformulate the uniqueness conditions in terms of individual nodes and their pointers.
This requires the following definitions.

Definition A.2. (Ancestor and Descendant) A node p is an ancestor of an internal node q if p = up∗(q)
and of a leaf r if p = up∗(in(r)) or p = up∗(mid(r)), where up∗ denotes a sequence of up(·)-pointers. A node s is
a descendant of a node t if t is an ancestor of s.

Definition A.3. (Banana subtree) The banana subtree rooted at a maximum q is the banana tree consisting
of the banana spanned by Bth(q) and q and all bananas whose maximum has an ancestor other than q on the
in-trail or mid-trail starting at Bth(q) and ending at q.

We now state the new uniqueness conditions as Invariants 1 to 3.

Invariant 1. For each maximum q of f , except for the special root, it holds that

1. if Bth(q) < q, then all nodes u ̸= q in the banana subtree rooted at q satisfy u < q and all descendants v of
dn(q), including dn(q), satisfy v > q;

2. if Bth(q) > q, then all nodes u ̸= q in the banana subtree rooted at q satisfy u > q and all descendants v of
dn(q), including dn(q), satisfy v < q.

Invariant 2. For each minimum p of f , except for the global minimum, it holds that f(p) > f(low(dth(p))).

Invariant 3. For each maximum q of f , except for the special root, it holds that

1. f(up(q)) > f(q) > f(dn(q));

2. if q ̸= in(up(q)), then up(q) < q < dn(q) or dn(q) < q < up(q);

3. if q = in(up(q)), then either up(q) < q and dn(q) < q or up(q) > q and dn(q) > q.
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We show that there is a unique banana tree satisfying Invariants 1 to 3 for a given map f . We first show that
a banana tree satisfying Invariants 1 and 3 also satisfies Conditions III.1 and III.2.

Lemma A.2. (Invariants imply Banana Conditions) A banana tree B that satisfies Invariants 1 and 3 also
satisfies Conditions III.1 and III.2.

Proof. Let p and q be a minimum and a maximum spanning a banana in B. Assume p < q; the other case is
symmetric. The requirement on function values increasing along the trails from p to q follows immediately from
f(dn(u)) < f(u) < f(up(u)). We now show that the trails are also ordered along the interval. By Invariant 1,
mid(q) < q and in(q) < q. Write p = v0, v1, . . . , vℓ = q for the nodes along the mid-trail with v1 = mid(p),
vℓ−1 = mid(q) and vi = up(vi−1) for 2 ≤ i ≤ ℓ and vi = dn(vi+1) for 0 ≤ i ≤ ℓ − 2. If vℓ−1 = mid(q) is a
maximum, then by Invariant 3 and mid(q) < q it satisfies dn(vℓ−1) < vℓ−1 < up(vℓ−1) = q. If vℓ−2 is a maximum,
then it in turn satisfies dn(vℓ−2) < vℓ−2 < up(vℓ−2) = vℓ−1 by Invariant 3. Repeating this argument for all vi for
1 ≤ i ≤ ℓ− 3 it follows that p < v1 < · · · < vℓ.

Write p = u0, u1, . . . , uk for the nodes along the in-trail with u1 = in(p), uk−1 = in(q) and ui = up(ui−1)
for 2 ≤ i ≤ k and ui = dn(ui+1) for 0 ≤ i ≤ k − 2. By Invariant 3 and in(q) < q we have uk−1 < dn(uk−1).
Following a similar argument as for the vi we get dn(ui) > ui > up(ui) for all 1 ≤ i ≤ k − 2 and it follows that
p = u0 > u1 > · · · > uk−1. Thus, as required by Conditions III.1 and III.2, the trails are ordered along the interval
and by function value, i.e., B satisfies Conditions III.1 and III.2.

The next lemma states that a path-decomposed binary tree can be transformed into a banana tree satisfying
the invariants.

Lemma A.3. (Conditions imply Banana Invariants) If a path-decomposed binary tree T fulfills the Con-
ditions I.1, I.2 and II, then the banana tree obtained from T as described in Section 4.2 satisfies Invariants 1
to 3.

Proof. Let T be a path-decomposed binary tree satisfying Conditions I.1, I.2 and II and let B be the banana tree
obtained from T as described in Section 4.2. We begin by proving that the banana tree B satisfies Invariant 3.
Recall that B satisfies Conditions III.1 and III.2 and that by Lemma 4.2 it is unique. To see that this implies
Invariant 3 consider any banana spanned by a minimum a and a maximum b. Assume a < b; the argument for
a > b is symmetric. Let a = u0, u1, . . . , uj = b be the nodes along the in-trail and a = v0, v1, . . . , vk = b be the
nodes along the mid-trail. By Conditions III.1, III.2 we have

1. ui > ui+1 for all 0 ≤ i ≤ j − 2 and f(ui) < f(ui+1) for all 0 ≤ i ≤ j − 1,

2. vi < vi+1 for all 0 ≤ i ≤ k − 1 and f(vi) < f(vi+1) for all 0 ≤ i ≤ k − 1.

The pointers dn(·) and up(·) are defined such that up(ui) = ui+1, dn(ui) = ui−1 for all 1 ≤ i ≤ j − 1 and
up(vi) = vi+1, dn(vi) = vi−1 for all 1 ≤ i ≤ k − 1. Together with Conditions III.1 and III.2 this implies that
all maxima q on a trail between a and b satisfy f(dn(q)) < f(q) < f(up(q)) and, except uj−1, they satisfy
dn(q) < q < up(q) or up(q) < q < dn(q). By Condition III.1 it holds that dn(uj−1) = uj−2 > uj−1, and by the
assumption that a < b it holds that b = up(uj−1) > uj−1. This shows that Invariant 3 is satisfied for all ui with
1 ≤ i ≤ j − 1 and vi with 1 ≤ i ≤ k − 1, i.e, for all nodes internal on a trail from a to b. Since all maxima except
the special root are internal to some trail it follows that B satisfies Invariant 3.

We now prove that B satisfies Invariant 2. We need to show that for every minimum p it holds that
f(p) > f(low(dth(p))). Assume by contradiction that for some minimum p this is not the case and let
a = low(dth(p)), i.e., we assume f(a) = f(low(dth(p))) > f(p). The inequality f(low(dth(p))) > f(p) implies
that dth(p) = q is an ancestor of a for which a does not have the smallest value in the subtree of q. Condition II
requires that there is a path P (a, q) and this is a contradiction as q ̸= dth(a). It follows that f(p) > f(low(dth(p)))
for every minimum p and that B satisfies Invariant 2.

It remains to show that the banana tree B also satisfies Invariant 1. Let q be some maximum except the
special root, let Q be the path ending at q and let p be the leaf at the other end of Q. Assume p < q; the other
case is symmetric. The path Q is contained entirely in a subtree S1 of q and the construction of B is such that
this subtree becomes the banana subtree rooted at q. By Condition I.1 either for all s ∈ S1 : s < q or for all
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s ∈ S1 : s > q. Since p ∈ S1, it follows that all s ∈ S1 satisfy s < q. The subtree S1 becomes the banana subtree
rooted at q in B and thus the condition that u < q for all u in the banana subtree rooted at q is satisfied. Let
S2 be the other subtree of q in T . By Condition I.1 for all t ∈ S2 we have t > q. The node dn(q) in B is one of
the nodes in S2 and thus dn(q) > q. By Conditions III.1 and III.2 all descendants v of dn(q) on the same trail as
dn(q) satisfy v > dn(q) and thus v > q. All these nodes v are also nodes in S2, since they are on the same path
as dn(q) and have smaller value. The banana subtree of each v is obtained from the subtree of v in T and thus
these banana subtrees consist of nodes in subtrees of S2. It follows that every descendant t of dn(q) including
dn(q) satisfies t > q, as required by Invariant 1. This concludes the proof that B satisfies Invariant 1.

We now give an algorithm that turns a banana tree into path-decomposed binary tree.

Lemma A.4. (Merging Trails) There exists a deterministic algorithm to merge the trails of each banana in a
banana tree satisfying Invariants 1 to 3, such that the resulting path-decomposed binary tree satisfies Conditions
I.1, I.2 and II.

Proof. Let B be a banana tree satisfying Invariants 1 to 3. Define the height of a banana subtree to be the longest
simple path from the root of the banana subtree to a leaf following only in(·), mid(·) and dn(·) pointers and with
function value decreasing along the path. We show by induction over the height that any banana subtree of B
satisfying Invariants 1 to 3 can be merged into a path-decomposed binary tree satisfying Conditions I.1, I.2 and II.
Then, since the banana subtree rooted at the special root is equivalent to the banana tree B, it follows that there
is a deterministic algorithm to obtain a path-decomposed binary tree satisfying Conditions I.1, I.2 and II from B.

We now give the algorithm for merging banana trees into path-decomposed binary trees. By induction over
the height h we show that a banana subtree of B of height h with root q can be merged into a path-decomposed
binary tree T (q) such that Conditions I.1, I.2 and II are satisfied. To achieve this we also show that Bth(q) < q
implies that q has no right child in T (q) and Bth(q) > q implies that q has no left child in T (q). This is needed to
ensure that after assembling the subtrees of smaller height on a path, the nodes in the resulting binary tree are
ordered correctly. Note that a banana tree consists of at least two nodes spanning a banana with empty trails,
i.e., trails without interior nodes, so the base case is h = 1.

Base case: A banana tree of height 1 consists of a single banana spanned by a minimum p and a maximum q
with f(p) < f(q). We obtain a path-decomposed binary tree as follows: q becomes the tree with p as left child of
q if p < q and right child otherwise. There is a single path between p and q. This tree clearly satisfies Conditions
I.1, I.2 and II. Furthermore, since Bth(q) = p if p < q, then q has no right child and if p > q then q has no left
child, so the claim holds.

Induction hypothesis: For some h ≥ 1, for all 1 ≤ j ≤ h a banana subtree of B of height j can be merged into
a path-decomposed binary tree T satisfying Conditions I.1, I.2 and II. Furthermore, Bth(q) < q implies that q has
no right child in T and Bth(q) > q implies that q has no left child in T .

Induction step: Assume the induction hypothesis for some h ≥ 1. We show that the claim holds for banana
subtrees of height h+1. Let q be the root of a banana subtree of B of height h+1 and p = Bth(q). Banana subtrees
rooted at a node on the banana spanned by p and q have height at most h, and by the induction hypothesis these
banana subtrees can be merged into path-decomposed binary trees satisfying Conditions I.1, I.2 and II. Write T (u)
for the path-decomposed binary tree obtained from the banana subtree rooted at node u.

Let s0 = p, s1, . . . , sℓ = q be the nodes on the trails between p and q ordered by function value. This ordering
is unique since function values are distinct. Consider a node si for 1 ≤ i ≤ ℓ−1. We show that for all 0 ≤ j ≤ i−1,
if Bth(si) < si then si < sj and si < u for any descendant u of sj , and if Bth(si) > si then si > sj and si > u for
any descendant u of sj . Assume Bth(si) < sj ; the other case is symmetric. By Invariant 1 we have si < dn(si)
and for all descendants u of dn(si) it holds that si < u. Note that the nodes sj for 0 ≤ i− 1 that are on the same
trail as si are descendants of dn(si) or dn(si). By Conditions III.1 and III.2 the nodes sk for k ≤ i − 1 that are
on the other trail than si satisfy si < sk and dn(sk) < sj . For these nodes sk Invariant 1 implies sk < Bth(sk)
and all descendants v of sk satisfy sk < v. This proves that for all 0 ≤ j ≤ i− 1 both si < sj and si < u for any
descendant of u.

We iteratively assemble the path-decomposed binary trees rooted at the si for 1 ≤ i ≤ ℓ − 1 into a path-
decomposed binary tree rooted at q by linking T (si) to the tree assembled from the T (sj) for j ≤ i− 1.
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We begin with i = 1. Note that dn(s1) = s0, since s1 must be the bottom-most node of the in- or mid-trail
between p and b. By Invariant 1, if Bth(s1) < s1 then dn(s1) > s1 and if Bth(s1) > s1 then dn(s1) < s1. Assume
Bth(s1) < s1; the other case is symmetric. By the induction hypothesis the root s1 of the tree T (s1) has no right
child in this tree. We make s0 = dn(s1) the right child of s1 and since s0 = dn(s1) > s1 this ensures that the
resulting tree satisfies Condition I.1. By Invariant 3, f(dn(s1)) < f(s1), so Condition I.2 is also satisfied.

Now consider any i with 1 ≤ i ≤ ℓ − 1. In iteration i − 1 we have already linked the T (sj) for 1 ≤ j ≤ i
into a tree Ti−1 satisfying Conditions I.1 and I.2. The process to combine Ti−1 with T (si) is similar to that
for i = 1. By Invariant 1 we have either Bth(si) < si < dn(si) or Bth(si) > si > dn(si). Assume again that
Bth(si) < si < dn(si); the other case is symmetric. The nodes in Ti−1 are exactly the nodes sj for j ≤ i − 1
and their descendants, so as discussed above, for all t ∈ Ti−1 it holds that Bth(si) < si < t. By the induction
hypothesis si has no right child in T (si). We can thus attach Ti−1 as the right subtree of si in T (si) and the
resulting tree Ti satisfies Condition I.1. The tree Ti also satisfies Condition I.2, as Ti−1 satisfies Condition I.2 and
f(si) > f(si−1).

The algorithm finishes by making Tℓ−1 the left subtree of q if p < q and the right subtree otherwise, which
yields the tree T (q). Furthermore, we make p = s0, s1, . . . , sℓ = q a path in T (q). Since all nodes u in Tℓ−1 are in
the banana subtree rooted at q they satisfy u < q if p < q and u > q if p > q. Thus T (q) satisfies Condition I.1.
Condition I.2 is also satisfied since Tℓ−1 satisfies this condition and f(q) > f(sℓ−1). Note also that T (q) has no
right child if p := Bth(q) < q and no left child if p := Bth(q) > q, since the banana subtree rooted at q satisfies
Invariant 1.

It remains to show that T (q) satisfies Condition II. There can be no minimum a ̸= p in the banana subtree
rooted at q with f(a) < f(p), as otherwise there would exist a minimum c in the banana subtree rooted at q
violating f(low(dth(c)) < f(c) required by Invariant 2. This implies that p has the smallest value in the banana
subtree rooted at q. It is connected to the root q by a path, as required by Condition II. Since all T (si) for
1 ≤ i ≤ ℓ − 1 satisfy Condition II by the induction hypothesis we now only need to show that the path ending
at each si satisfies Condition II. Write ti for the other end of the path ending at si. We need to show that si is
the nearest ancestor to ti such that si has a descendant with smaller value than ti in T (q). Since f(p) < f(ti),
as discussed above, si is indeed such an ancestor, and since ti is connected to the root of T (si) by a path there
exists no other such ancestor in T (si). Thus, Condition II holds. This concludes the induction and the proof of
the lemma.

Finally, we state our result on uniqueness of banana trees.

Corollary A.1. (Invariants Determine the Banana Tree) Given a linear list of distinct values there is
a unique banana tree satisfying Invariants 1 to 3.

Proof. By Lemma 4.2 there exists a unique path-decomposed binary tree for the linear list that satisfies Conditions
I.1, I.2 and II. By Lemmas A.3 and A.4 it follows that there is also a unique banana tree that satisfies Invariants 1
to 3.

A.1 Slides A slide occurs when an internal critical item becomes non-critical and its non-critical neighbor
becomes critical. We distinguish two cases, based on whether the critical item is a maximum or a minimum.

Max Slide: Let p be a non-critical item, q a neighbor of p and a maximum. The value of p increases above the
value of q or the value of q decreases below the value of p.

Min Slide: Let p be a non-critical item, q a neighbor of p and a minimum. The value of p decreases below the
value of q or the value of q increases above the value of p.

In both cases, the number of critical items remains unchanged. If the order of critical items by function value is
unaffected by the slide apart from q being replaced by p, then the banana tree can be updated by replacing the
formerly critical item with the new critical item in the tree, which changes the label of the node associated with q
to refer to p instead. We now prove that this correctly maintains the up-tree if the slide is caused by a sufficiently
small change in value.
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Lemma A.5. (Max-Slide) Let p and q be neighboring items. Let σ ∈ [0, 1) be such that in hσ the item p is
non-critical, q is a maximum and p, q are contiguous. Let θ ∈ (σ, 1] be such that in hθ the item p is a maximum,
q is non-critical and p, q are contiguous. The tree Up(hθ) is obtained from Up(hσ) by replacing q with p.

Proof. By Lemma A.1, the order of maxima by function value is the same in hσ and hθ, with q replaced by p.
The maps hλ are defined such that they differ in exactly one fixed item j, so either j = p or j = q. Neither p nor
q is a minimum in hσ or hθ, so all minima have equal value in hσ and hθ. It then follows that the minimum s
paired with q in hσ is paired with p in hθ. That is, if W (s, q) is a window in hσ, then W (s, p) is a window in hθ.
Furthermore, W (s, p) is nested into the same window in hθ as W (s, q) is in hσ. No other window is affected by
the change in value, since the order of critical items by function value is the same other than q being replaced by
p. By Lemma 4.1, s and q span a banana in hσ and s and p span a banana in hθ. Thus, replacing q with p in the
up-tree for hσ yields the up-tree for hθ, as claimed.

Lemma A.6. (Min-Slide) Let p and q be neighboring items. Let σ ∈ [0, 1) be such that in hσ the item p is non-
critical, q is a minimum and p and q are contiguous. Let θ ∈ (σ, 1] be such that in hθ the item p is a minimum,
q is non-critical and p and q are contiguous. The tree Up(hθ) is obtained from Up(hσ) by replacing q with p.

Proof. By Lemma A.1, the order of minima by function value is the same in hσ and hθ, with q replaced by p.
Since the values of maxima are equal in hσ and hθ it then follows that the maximum s paired with q in hσ is
paired with p in hθ. That is, if W (q, s) is a window in hσ, then W (p, s) is a window in hθ. Furthermore, W (p, s)
is nested into the same window in hθ as W (s, q) is in hσ. No other window is affected by the change in value,
since the order of critical items by function value is the same other than q being replaced by p. By Lemma 4.1,
q, s span a banana in hσ and p, s span a banana in hθ. Thus, replacing q with p in the up-tree for hσ yields the
up-tree for hθ, as claimed.

A.2 Cancellations Let p be a minimum, q be a maximum and a neighbor of p, such that there is a window
W (p, q) without any windows nested into it, i.e., such that p and q span a banana in the banana tree whose trails
contain no other critical items. A cancellation occurs when the value of p increases above the value of q or the
value of q decreases below the value of p. Then, both p and q become non-critical and the window spanned by p
and q disappears. To update the up-tree we remove the banana spanned by p and q by connecting up(q) to dn(q)
and discarding p and q.

Lemma A.7. (Cancellation) Let p, q be neighboring items. Let σ ∈ [0, 1) be such that in hσ the item p is a
minimum, q is a maximum and p and q are contiguous and paired in hσ. Let θ ∈ (σ, 1] be such that in hθ the
items p and q are non-critical. Then nodes p and q span a banana in Up(hσ) that does not contain any other
critical items and removing this banana yields Up(hθ).

Proof. Let γ ∈ (σ, θ] be such that in hγ the items p and q are non-critical and contiguous. By Lemma A.1, the
order of items by function value is the same in hσ and hγ , except that p and q are swapped. In particular, the
order of critical items by function value is the same in hσ and hγ . Since p, q are non-critical in hγ and in hθ it
follows that the order of critical items remains the same. Thus, the order of critical items in hσ and hθ is identical.

Since p and q are contiguous in hσ, there is no critical item with value between hσ(p) and hσ(q). As p and q
are neighbors this implies that p and q are paired in hσ: consider the process to obtain the pairing described in
Section 2.2; the component born at p in hσ dies at q, since the component on the other side of q must be born at
a lower value. Furthermore, there are no windows nested into W (p, q), since there is no critical item with value
in [hσ(p), hσ(q)]. All other windows in hσ are also windows in hθ, since the critical items have the same order by
function value.

As W (p, q) is a window of hσ, by Lemma 4.1 the nodes p and q span a banana in Up(hσ). There are no
windows nested into W (p, q) and thus the trails between p and q are empty. Since p and q are non-critical in hθ

they are not present in Up(hθ). Thus, removing the banana spanned by p and q from Up(hσ) yields Up(hθ), as
claimed.

A.3 Slides and Cancellations Involving Endpoints When the criticality of the neighbor of an endpoint
changes it can also change the endpoint from up-type to down-type or vice versa. Likewise, a change in the
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criticality of an endpoint leads to a change in the criticality of its neighbor. The operations needed to maintain
the up-tree in these cases are similar to cancellations and slides. Let q ∈ {1,m} be an endpoint and a be its
neighbor. In the following we assume a < q, i.e., that q is the right endpoint of the interval. The case q < a is
symmetric. Let 0 ≤ σ < θ ≤ 1 such that hσ(q) > hσ(a), hθ(q) < hθ(a) or hσ(q) < hσ(a), hθ(q) > hθ(a). There
are four cases:

1. hσ(q) > hσ(a), hθ(q) < hθ(a), a is a minimum in hσ and non-critical in hθ,

2. hσ(q) > hσ(a), hθ(q) < hθ(a), a is non-critical in hσ and a maximum in hθ,

3. hσ(q) < hσ(a), hθ(q) > hθ(a), a is a maximum in hσ and non-critical in hθ,

4. hσ(q) < hσ(a), hθ(q) > hθ(a), a is non-critical in hσ and a minimum in hθ.

We now give the algorithm for the case a < q.

1 cancel-or-slide-endpoint(a, q):
2 if q changes from down-type to up-type then
3 if a becomes non-critical then
4 remove q and Bth(q); replace a by q
5 else if a becomes a maximum then

6 let p = Bth(q); replace q by a; replace p by q
7 endif

8 else if q changes from up-type to down-type then
9 if a becomes non-critical then
10 replace q by the hook; replace a by q
11 else if a becomes a minimum then

12 replace q by a; insert q as in(a); add a banana between q and its hook
13 endif;
14 endif.

Lemma A.8. (Changes Involving Endpoints) Let q be an endpoint, a be its neighbor and let q̌ be the hook
neighboring q. Let 0 ≤ σ < θ ≤ 1 such that

1. either hσ(q) > hσ(q̌) > hσ(a), hθ(q) < hθ(q̌) < hθ(a),

2. or hσ(q) < hσ(q̌) < hσ(a), hθ(q) > hθ(q̌) > hθ(a),

where q and q̌ are contiguous and q̌ and a are contiguous in hσ and hθ. Applying the algorithm
cancel-or-slide-endpoint(a, q) to the up-tree Up(hσ) yields the up-tree Up(hθ).

Proof. Assume a < q; the other case is symmetric. We show how the change in function value from hσ to hθ

affects the windows in each of the cases and that the algorithm correctly updates the bananas to match the
windows of hθ. Recall that the maps hλ are defined such that they differ in a single fixed item. Thus, we can
assume that either hθ(q) = hσ(q) or hθ(a) = hσ(a) and for all u ̸= q, a it holds that hθ(u) = hσ(u).

hσ(q) > hσ(a), hθ(q) < hθ(a), a is non-critical in hθ (Line 4): There is a component in hσ born at q̌ that dies
at q and a component born at a that dies at an item b. The component born at q̌ merges into the component
born at a. These components correspond to two windows W (q̌, q) and W (a, b), where the former is nested
into the latter. In hθ there are no components born at q̌ or a, as they are no longer homological critical
points. Instead, there is a component born at q, which corresponds to a window W (q, ·). As q, q̌ and q̌, a
are contiguous in hσ and hθ the order of items by function value in hσ and hθ differs only in that q, q̌ and
a are reversed by Lemma A.1. Since q neighbors a it follows that the component born at q in hθ dies at b,
i.e., there is a window W (q, b) in hθ. The algorithm reflects this change in windows: the banana spanned
by q̌ and q corresponding to W (q̌, q) is removed; the banana spanned by a and b corresponding to W (a, b)
is replaced by a banana spanned by q and b corresponding to W (q, b).
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hσ(q) > hσ(a), hθ(q) < hθ(a), a is a maximum in hθ (Line 6): Going from hσ to hθ can be seen as relabeling
q such that it represents item a, relabeling q̌ such that it represents q and removing the item formerly
associated with a. Changing the function values to reflect the values in hθ does not affect the ordering of
items, due to contiguity of q, q̌ and q̌, a. The corresponding change in the up-tree is to relabel the node
representing q to represent item a, and relabeling the node representing the hook to represent item q, as
the algorithm does in Line 6.

hσ(q) < hσ(a), hθ(q) > hθ(a), a is non-critical in hθ (Line 10): Similarly to the previous case the change
from hσ to hθ can be seen as insertion of an item a∗ < a next to a and contiguous with q in hσ, then
relabeling q to represent q̌, a to represent q and a∗ to represent a. Adjusting the values of the items to
reflect the values in hθ does not affect the ordering of items, due to contiguity of q, q̌ and q̌, a. The
corresponding change in the up-tree is to relabel the node representing q to represent q̌, and relabel the
node representing a to represent q, as the algorithm does in Line 10.

hσ(q) < hσ(a), hθ(q) > hθ(a), a is a minimum in hθ (Line 12): This is the reverse of the first case: there is
a component born at q in hθ and it is replaced by a component born at a and another component born at q̌
in hθ. Reverse to the case above the window W (q, b) is replaced by the window W (a, b) and a new window
W (q̌, q) appears. The change from W (q, b) to W (a, b) is reflected by replacing q by a in the up-tree. The
new window W (q̌, q) must be nested into W (a, b) as hθ(a) < hθ(q) < hθ(b), since a, q̌ and q are contiguous
in hθ. Furthermore, W (q̌, q) must be nested into the in-panel, as b < a. The nesting of W (q̌, q) into the
in-panel of W (a, b) is reflected in the algorithm by adding a banana spanned by q̌ and q into the in-trail of
the banana spanned by a and b.

The algorithm updates the bananas to reflect the windows and their nesting hierarchy in hθ, which implies by
Lemma 4.1 that the new up-tree is Up(hθ).

A.4 Anti-Cancellations Let p and q be neighboring non-critical items. If the value of one changes such
that both become critical, a new window is introduced. This is the reverse of a cancellation and we call it an
anti-cancellation.

Denote by hσ and hθ the map before and after the anti-cancellation, respectively, and assume that in both
hσ and hθ the items p and q are contiguous. Furthermore, assume that p becomes a minimum and q a maximum.
To change Up(hσ) into Up(hθ) we need to introduce a banana spanned by p and q. We recall the algorithm for
the case p < q; the case p > q is symmetric. The algorithm first identifies the maximum b closest to p such that
b < p < q, i.e., such that p becomes the critical item next to b. It then walks down the path from b to its successor
until it reaches the first node t such that hθ(t) < hθ(q). The node q is then inserted into this path above t, and a
new banana spanned by p and q is attached at q. To insert a node q between some nodes a and b, where a and
b are neighbors on the same trail and f(a) < f(b), we set up(q) = b, dn(q) = a and make the pointer from a to b
and the pointer from b to a point to q instead.

1 anticancel(p, q):
2 find the maximum b closest to p such that b < p < q
3 if b < Bth(b) then t = mid(b) else t = dn(b) endif;
4 while hθ(t) > hθ(q) do t = in(t) endwhile;
5 if t is a leaf then if t = Bth(b) then insert q between t and mid(t)
6 else insert q between t and in(t)
7 endif;
8 else insert q between t and up(t) into the trail of t
9 endif.
10 Set in(p) = mid(p) = q, in(q) = mid(q) = p, dth(p) = q, low(q) = low(dn(q)).

Lemma A.9. (Anti-Cancellation) Let p and q be neighboring items. Let σ ∈ [0, 1) such that in hσ both p
and q are non-critical, hσ(p) > hσ(q), and p and q are contiguous. Let θ ∈ (σ, 1] such that in hθ the item p is
a minimum, q is a maximum, and p and q are contiguous. Algorithm anticancel(p, q) applied to the up-tree
Up(hσ) yields the up-tree Up(hθ).
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Proof. We prove the lemma for the case where p < q; the other case is symmetric. The tree Up(hσ) satisfies
Invariants 1 to 3. We show that the tree obtained by anticancelalso satisfies these invariants for hθ, which by
Corollary A.1 implies that it is the unique up-tree for hθ.

The algorithm first finds the maximum b closest to p such that b < p < q. Since p and q are non-critical in
hσ, the item p cannot be an endpoint. Furthermore, hσ(p) > hσ(q) and thus this maximum b exists. After the
while-loop terminates t satisfies hθ(t) ≤ hθ(q). Since p and q are contiguous in hθ it holds that hθ(t) ̸= hθ(q) and
thus hθ(t) < hθ(q) and hθ(t) < hθ(p).

The node q is inserted above t such that dn(q) = t. As low(q) is set to low(dn(q)) = low(t), we have
hθ(low(q)) < hθ(p) and it follows that hθ(low(q)) = hθ(low(dth(p))) < hθ(p). Since the low(·) and dth(·) pointers
of all other nodes are unchanged between Up(hσ) and the new up-tree, the new up-tree satisfies Invariant 2.

We now show that Invariant 1 holds in the new up-tree. Let t0 be the node t as initialized in the first
if-statement and ti be the node t after the i-th iteration of the loop. Denote by I the last iteration, such that
tI is the node t after the loop terminates. Note that all ti for i ≥ 0 are present in Up(hσ). As Invariant 1 holds
for Up(hσ), the initialization of t guarantees b < t0. Furthermore, all ti for i ≥ 1 are descendants of t0 and thus
b < ti for all i ≥ 0. By definition of b and since p and q are neighbors it also holds that q < ti for all i ≥ 0 and
thus b < p < q < ti for all i ≥ 0.

To continue the proof of Invariant 1 we need the following claim:

Claim A.1. The while-loop terminates. For all 0 ≤ i ≤ I − 1 it holds that ti is not a leaf, Bth(ti) < ti and
ti+1 < ti.

Proof. There exists a minimum a such that b < p < q < a and such that hσ(a) < hσ(q) and such that there
are no critical items u with q < u < a. This follows from a similar argument as for the existence of b: q is
non-critical in hσ and thus cannot be an endpoint and hσ(q) < hσ(p), so the first critical item greater than q must
be a minimum. Note that a must be either t0 or a descendant of t0 and that in the latter case it is the leftmost
descendant of t0 by Invariant 1. As the algorithm modifies the up-tree after the while-loop terminated, we only
argue about Up(hσ) in this proof. Recall that this up-tree satisfies Invariants 1 to 3 and that by Lemma A.2 it
also satisfies Conditions III.1 and III.2.

By Invariant 1 b = up(t0) < t0 and by Invariants 1 and 3 in(t0) < t0 < dn(t0), unless t0 is a leaf. The while-
loop assigns t1 = in(t0) and by Conditions III.1, III.2 and Invariant 1 this is the leftmost node among the other
nodes on the banana with maximum and their descendants. Invariants 1 and 3 again in(t1) < t1, unless t1 is a leaf.
This argument can be repeated for in(t1), in(in(t1)), . . . until we reach a leaf. Thus, by following in(·)-pointers
from t0 we reach the leftmost leaf that is a descendant of t0, which is a. As hθ(a) = hσ(a) < hσ(q) ≤ hθ(q), there
exists a node in∗(t0) with hθ(in

∗(t0)) < hθ(q) and hence the while-loop terminates. If the loop terminates in a
leaf, then tI is a leaf and all ti with 0 ≤ i ≤ I − 1 are not leaves. If the loop terminates at an internal node, then
all ti for 0 ≤ i ≤ I are not leaves. We have also seen that in(ti) < ti for all 0 ≤ i ≤ I and this implies Bth(ti) < ti
by Invariant 1. This proves the claim.

We resume the proof of Lemma A.9. Claim A.1 implies that the ti are ordered such that t0 > t1 > · · · > tI .
For all 0 ≤ i ≤ I − 1 the nodes p and q are inserted into the banana subtree rooted at ti, as either q = in(ti) or q
is a descendant of in(ti). Since Bth(ti) < ti and p < q < ti for 0 ≤ i ≤ I − 1, it follows that no ti for 0 ≤ i ≤ I − 1
violates Invariant 1. Recall that q becomes up(tI); this implies that neither the banana subtree rooted at tI nor
the descendants of dn(tI) change and thus tI satisfies the condition of Invariant 1 in the new tree. Finally, b also
satisfies the condition of Invariant 1, as b < p < q < t0 and p and q are inserted into the subtree of b that contains
t0. It follows that there is no node that violates the condition of Invariant 1 and thus the new up-tree satisfies
Invariant 1.

We use the same claim to show that Invariant 3 is satisfied after inserting q and p. There are two cases: tI ̸= t0
and tI = t0. In the first case, q = in(tI−1), tI = dn(q) and tI−1 = up(q). As shown above tI > q and tI−1 > q.
Furthermore, since the while-loop did not terminate for t = tI−1 we have hθ(q) < hθ(tI−1). It also holds that
hθ(tI) < hθ(q), as the while-loop terminated for t = tI . Thus, q satisfies the conditions in Invariant 3. In the case
tI = t0, q = up(tI), up(q) = b and either q = mid(b) or q = dn(b). We have b < q < tI , i.e., up(q) < q < dn(q). As
in the other case hθ(tI) < hθ(q). It is also true that hθ(q) < hθ(b), which follows from p and q being contiguous
in hθ and the definition of b. Thus, q again satisfies the conditions in Invariant 3. No other node can violate
Invariant 3 and thus the new up-tree satisfies Invariant 3.
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We have shown that the tree constructed by applying anticancel(p, q) to Up(hσ) yields an up-tree that
satisfies Invariants 1 to 3 for hθ. By Corollary A.1 this is the unique up-tree for hθ.

A.5 Interchanges
Interchanges of Maxima An interchange of maxima occurs when the value of a maximum j increases above

the value of a maximum q or the value of q decreases below the value of j. This only has structural consequences
on the up-tree if q = up(j), as this is the only case where one of the invariants, namely Invariant 3, is violated.

Denote by hσ and hθ the map before and after the interchange, such that hσ(j) < hσ(q) and hθ(j) > hθ(q).
Assume q < j, which is the situation depicted in Figure 7. The case j < q is symmetric. Let i and p be such that
j = dth(i) and q = dth(p) in Up(hσ). There are three cases: j = dn(q), j = in(q) and j = mid(q). If j = in(q)
or j = mid(q), then p = low(j) and by Invariant 2 hσ(i) > hσ(p). If j = dn(q) we further distinguish two cases
depending on the order of hσ(i) and hσ(p). We now give the algorithm for processing an interchange of maximum
j with maximum q = up(j) for the case q < j.

1 max-interchange(j, q):
2 Let i = Bth(j), p = Bth(q);
3 if j = in(q) then
4 remove j from its trail; insert j as up(q)
5 else if j = mid(q) then
6 exchange j and q;
7 remove q from its trail; insert q as dn(j);
8 swap in- and mid-trail of i and q
9 else if j = dn(q) then
10 if hσ(i) < hσ(p) then
11 remove q from its trail; insert q as in(j)
12 else

13 exchange j and q;
14 remove q from its trail; insert q as mid(j);
15 swap in- and mid-trail of i and q
16 endif;
17 endif.

The next lemma states that this algorithm correctly maintains the up-tree.

Lemma A.10. (Max-interchange) Let j and q be two items. Let σ ∈ [0, 1) such that in hσ the items j and q
are maxima with q = up(j) and such that j and q are contiguous in hσ. Let θ ∈ (σ, 1] such that in hθ the items j
and q are maxima with hθ(j) > hθ(q) and such that j and q are contiguous in hθ. Applying max-interchange(j, q)
to the up-tree Up(hσ) yields the up-tree Up(hθ).

Proof. The tree Up(hσ) satisfies Invariants 1 to 3. Recall that by Lemma A.2 this up-tree also satisfies
Conditions III.1 and III.2. We show that the tree obtained by max-interchangealso satisfies these invariants
for hθ, which by Corollary A.1 implies that it is the unique up-tree for hθ.

Write Iq for the nodes internal to the in-trail beginning at q and Mq for the nodes internal to the mid-trail
beginning at q in Up(hσ); similarly, write Ip, Ii, Ij for the nodes internal to the in-trails and Mp, Mi, Mj for the
nodes internal to the mid-trails at p, i, j.

There are three cases in max-interchange: j = in(q), j = mid(q) and j = dn(q). As q = up(j) there is no
other case to consider. The case j = dn(q) is further divided into two cases based on the values of Bth(j) and
Bth(q). We describe for each case how the trails change from Up(hσ) to the new tree and show that Invariants 1
and 3 hold in the new tree. Afterwards we prove Invariant 2.

Case 1 (j = in(q)): Assume j < q; the other case is symmetric. Note that i = Bth(j) < j and p = Bth(q) < q.
The in-trail and mid-trail between i and j remain the in-trail and mid-trail between i and j, and the in-trail
and mid-trail between p and q remain the in-trail and mid-trail between p and q, with the exception that
j is removed from the in-trail between p and q. In the new tree the nodes internal to the in-trail between
i and j are thus Ij and the nodes internal to the mid-trail between i and j are Mj . Similarly, the nodes
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internal to the in-trail between p and q are Iq \ {j} and the nodes internal to the mid-trail between p and q
are Mq.

To see that Invariant 1 holds we analyze the subtrees of j and q to show that they satisfy the condition of
Invariant 1 in the new up-tree. For any other node the condition holds in the new tree as the nodes in the
respective subtrees do not change. First, consider the node q. The node dn(q) is the same in Up(hσ) and
in the new tree. The algorithm also does not modify the descendants of dn(q). Thus, for all descendants u
of dn(q) including dn(q) we have q < u by Invariant 1 for Up(hσ), as p = Bth(q) < q. The banana subtree
rooted at q in the new tree differs from that in Up(hσ) only by the banana subtree rooted at j, which the
algorithm removes. Thus, for all nodes v in the banana subtree rooted at q it holds that v < q by Invariant 1
for Up(hσ), as p = Bth(q) < q. It follows that q satisfies the condition for Invariant 1. Now consider the
node j. The algorithm does not change the banana subtree rooted at j and thus for all v in this subtree
we have v < j by Invariant 1 for Up(hσ), as i = Bth(j) < j. The other subtree of j, i.e., the descendants
of dn(j) differ significantly: in Up(hσ) these were the descendants of nodes on the in-trail below j; in the
new tree they are the descendants of q. For the descendants u1 of dn(q) it is easy to see that j < u1, as
j < q < u1, which follows from the discussion for q and the assumption that j < q. For the descendants u2

of nodes on the banana spanned by p and q in the new tree it follows from Conditions III.1 and III.2 and
Invariant 1 that j < u2: the node j is the topmost node on the in-trail, and with j < q this implies that
the other maxima t on the banana satisfy j < t; nodes u3 in the banana subtrees rooted at each t are either
descendants of dn(j), which implies j < u3 by Invariant 1 for Up(hσ), or t is on the mid-trail between p and
q, which by p < q and Invariant 1 also implies j < t < u3. It follows that all descendants u of dn(j) = q,
including dn(j) satisfy j < u. Thus, the condition of Invariant 1 holds for j.

We now prove that Invariant 3 holds by again analyzing j and q; for the remaining nodes the conditions
of Invariant 3 follow directly from Invariant 3 for Up(hσ). Let uq = up(q) and dq = dn(q) in Up(hσ). In
the new tree dq = dn(q), uq = up(j) and j = up(q). By the assumption j < q and Invariant 3 for Up(hσ)
we have j < q < dq in the new tree, i.e., up(q) < q < dn(q). If q = in(uq) in Up(hσ) then q < uq and in
the new tree j = in(uq) and j < uq. Thus, if j = in(up(j)) = in(uq) in the new tree then j < up(j) and
j < dn(j) = q. Otherwise, if q ̸= in(uq) in Up(hσ) then uq < q and uq < j by Invariant 1 for Up(hσ).
In the new tree this implies j ̸= in(up(j)) = in(uq) and uq = up(j) < j < dn(j) = q. The inequalities
hθ(up(j)) > hθ(j) > hθ(dn(j)) = hθ(q) and hθ(j) = hθ(up(q)) > hθ(q) > hθ(dn(q)) follow directly from the
fact that j and q are contiguous in hθ and from Invariant 3 for Up(hσ). Thus, j and q satisfy the conditions
of Invariant 3 in the new tree and it follows that Invariant 3 holds in the new tree.

Case 2 (j = mid(q)): Assume j < q; the other case is symmetric. Note that i = Bth(j) > j and p = Bth(q) < q.
The nodes q and j exchange their partners, i.e., in the new up-tree Bth(q) = i and Bth(j) = p. The in-trail
and mid-trail between i and j become the mid- and in-trail between i and q (notice that the trails change
from in to mid and vice versa); the in-trail and mid-trail between p and q become the in- and mid-trail
between p and q, with j removed from the mid-trail. That is, in the new tree the nodes internal to the
in-trail between i and q are the nodes Mj and the nodes internal to the mid-trail between i and q are the
nodes Ij . The nodes internal to the in-trail between p and j are the nodes Iq and the nodes internal to the
mid-trail between p and j are the nodes Mq \ {j}.
The proof of Invariant 3 is identical to that of Case 1. To see that Invariant 1 holds we again analyze
the subtrees of j and q to show that they satisfy the condition of Invariant 1. As in the previous case the
remaining nodes satisfy the condition in the new tree, as their subtrees are unchanged by the algorithm. For
the node q observe that dn(q) and its descendants are the same in Up(hσ) and the new tree. Furthermore,
the nodes in the banana subtree rooted at q in the new tree are also in the banana subtree rooted at q in
Up(hσ). The condition of Invariant 1 thus holds for q by Invariant 1 for Up(hσ). Now we consider the node
j. The descendants of dn(j) are (1) the descendants of dn(q), including dn(q), and (2) the node q along with
the banana subtree rooted at q. For the descendants u1 of dn(q), including dn(q), it holds that j < u1 by
Invariant 1 for Up(hσ). The banana subtree rooted at q in the new tree is the banana subtree rooted at j
in Up(hσ), and for nodes u2 in this banana subtree j < u2 by Invariant 1 for Up(hσ), since j < i = Bth(j).
With the assumption j < q it follows that the descendants u of dn(j) including dn(j) satisfy j < u in the
new tree. The nodes v in the banana subtree j in the new tree are descendants of maxima t ̸= j on a trail
between p and q. By Conditions III.1, III.2 and Invariant 1 for Up(hσ) these nodes satisfy v < j: the node
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j is the topmost node of the right trail of the banana spanned by p and q; the nodes t1 on the left trail
satisfy t1 < j by Conditions III.1 and III.2 and the nodes v1 in the banana subtrees rooted at t1 satisfy
v1 < t1 < j by Invariant 1; the nodes t2 on the right trail below j are descendants of dn(j), and they along
with their descendants v2 satisfy t2 < j and v2 < j by Invariant 1. It follows that j satisfies the condition
of Invariant 1. Since j and q satisfy the condition of Invariant 1 it follows that Invariant 1 holds in the new
tree.

Case 3.1 (j = dn(q) and hσ(i) < hσ(p)): Assume q < j; the other case is symmetric. Note that i = Bth(j) < j
and p = Bth(q) < q. The in-trails and mid-trails remain the same, with the exception that q is added to
the in-trail between i and j. That is, in the new tree the nodes internal to the in-trail between i and j
are Ij ∪ {q}, the nodes internal to the mid-trail between i and j are Mj , the nodes internal to the in-trail
between p and q are Iq and the nodes internal to the mid-trail between p and q are Mq.

To see that Invariant 1 holds we again analyze the subtrees of j and q, as in the previous cases. The banana
subtree rooted at q is the same in Up(hσ) and the new tree. The set of descendants of dn(q) including dn(q)
in the new tree is a subset of that in Up(hσ). Thus, the condition of Invariant 1 holds for q in the new
tree by Invariant 1 for Up(hσ). For the node j the dn(j) and its descendants do not change. The banana
subtree rooted at j in the new tree is equal to that in Up(hσ), with the addition of q and the banana subtree
rooted at q. By assumption q < j and by Invariant 1 for Up(hσ) the nodes v1 in the banana subtree rooted
at q satisfy v1 < q and thus v1 < j. The remaining nodes v2 in the banana subtree of j satisfy v2 < j by
Invariant 1 for Up(hσ). Thus, for all nodes v in the banana subtree rooted at j we have v < j. It follows
that j satisfies the condition of Invariant 1 and that the new up-tree satisfies Invariant 1.

We now show that Invariant 3 holds. Let ij = in(j), uq = up(q) in Up(hσ). Observe that q is inserted at the
top of the left trail between i and j, i.e., q = in(j) in the new tree. By Invariant 1 and the assumption that
q < j it follows that q < up(q) = j and q < dn(q). Note that uq = up(j) in the new tree. The inequality
j < dn(j) holds in Up(hσ) since j is on a left trail, and holds in the new tree since dn(j) does not change.
If q = in(uq) in Up(hσ), then q < uq and by Invariant 1 j < uq. In the new tree j = in(uq) and thus
j < up(j) = uq and j < dn(j). Otherwise, if q ̸= in(uq) in Up(hσ), then uq < q < j. Thus, in the new tree
uq = up(j) < j < dn(j). The inequalities hθ(up(q)) > hθ(q) > hθ(dn(q)) and hθ(up(j)) > hθ(j) > hθ(dn(j))
follow directly from Invariant 3 for Up(hσ) and the fact that j and q are contiguous in hθ.

Case 3.2 (j = dn(q) and hσ(i) > hσ(p)): Assume q < j; the other case is symmetric. Note that i = Bth(j) < j
and p = Bth(q) < q. The nodes q and j exchange their partners, i.e., in the new up-tree Bth(q) = i and
Bth(j) = p. The in-trail and mid-trail between i and j become the mid-trail and in-trail between i and p
(notice that the trails change from in to mid and vice versa); the in-trail and mid-trail between p and q
become the in-trail and mid-trail between p and j. Note that q is added to the mid-trail between p and j.
Thus, in the new tree the nodes internal to the in-trail between p and j are Iq, the nodes internal to the
mid-trail between p and j are Mq ∪ {q}, the nodes internal to the in-trail between i and q are Mj and the
nodes internal to the mid-trail between i and q are Iq.

The proof for Invariant 3 is identical to that of Case 3.1. The proof for Invariant 1 is similar to that of Case
3.1 and we point out the differences. The banana subtree rooted at q in the new tree is the banana subtree
rooted at j in Up(hσ). Since the nodes u in this subtree were descendants of dn(q) in Up(hσ) it follows
from Invariant 1 for Up(hσ) that q < u. The descendants of dn(q) including dn(q) are nodes formerly in the
banana subtree rooted at q, and these nodes v satisfy v < q by Invariant 1 for Up(hσ). As in the previous
case, the descendants of dn(j) including dn(j) are unchanged. The banana subtree rooted at j in the new
tree is the banana subtree rooted at j in Up(hσ) combined with the banana subtree rooted at q in Up(hσ).
Invariant 1 follows by the same argument as above.

It remains to prove that Invariant 2 holds in the new tree. Observe that low(·) pointers only change for q and
j. Consequently, we need to show that p and i satisfy hθ(low(dth(p)) < hθ(p) and hθ(low(dth(i))) < hθ(i). We
consider the three cases above:

Case 1 (j = in(q)): We have low(j) = p in Up(hσ) and low(j) = low(q) in the new tree. Recall that
j = dth(i) and q = dth(p) in both Up(hσ) and in the new tree. Since Up(hσ) satisfies Invariant 2, we
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know that hσ(i) > hσ(low(j)) = hσ(p) > hσ(low(q)). As hσ(u) = hθ(u) for u ̸= j, q, it holds that
hθ(i) > hθ(low(j)) = hθ(low(q)) and hθ(p) > hθ(low(q)).

Case 2 (j = mid(q)): We have low(j) = p in Up(hσ) and low(j) = low(q) in the new tree. In the new tree
dth(i) = q and dth(p) = j. It holds that hσ(i) > hσ(p) > hσ(low(q)) by Invariant 2 for Up(hσ)
and thus hθ(i) > hθ(low(q)). Similarly hθ(p) = hσ(p) > hσ(low(q)) = hθ(low(q)) = hθ(low(j)), i.e.,
hθ(p) > hθ(low(j)).

Case 3 (j = dn(q)): We distinguish the two cases hσ(i) < hσ(p) and hσ(i) > hσ(p).

hσ(i) < hσ(p): We have low(q) = low(j) in Up(hσ) and low(j) ̸= low(q) = i in the new tree. Note that low(j)
is the same in both trees. In the new tree it holds that hθ(p) = hσ(p) > hσ(low(q)) = hσ(i) = hθ(i),
i.e., hθ(p) > hθ(i). As low(j) does not change and dth(i) = j in both trees, hθ(i) > hθ(low(j)) in the
new tree.

hσ(i) > hσ(p): We have low(q) = low(j) in Up(hσ) and low(j) ̸= low(q) = p in the new tree. In the new
tree we also have dth(i) = q and dth(p) = j. Note again that low(j) is the same in both trees. In the
new tree it holds that hθ(p) = hσ(p) > hσ(low(j)) = hθ(low(j)), since in Up(hσ) hσ(p) > hσ(low(q))
and low(j) = low(q). Furthermore, in the new tree hθ(i) = hσ(i) > hσ(p) = hθ(p).

In all cases p and i satisfy the required condition and thus Invariant 2 is satisfied in the new tree. We have shown
that the new up-tree obtained by applying max-interchangeto Up(hσ) satisfies Invariants 1 to 3, which implies
that it is indeed the unique up-tree for hθ.

Interchanges of Minima Let i be a minimum and p = low(dth(i)). In an up-tree satisfying Invariant 2 the
function value of i is greater than the function value of p. If this relation changes such that the function value
of p becomes greater than the function value of i, Invariant 2 is violated. To fix this violation we perform an
interchange of minima.

Let σ ∈ [0, 1) such that hσ(i) > hσ(low(dth(i))) = hσ(p) and such that i and p are contiguous. Let θ ∈ (σ, 1]
such that hθ(i) < hθ(p) and such that i and p are contiguous. Write j = dth(i) and q = dth(p). We give the
detailed algorithm for the case q < p; the other case is symmetric.

1 min-interchange(i, p):
2 if low(dth(i)) ̸= p then exit endif.
3 Let j = dth(i), q = dth(p).
4 Let uj = up(j), dj = dn(j), ij = in(j), mj = mid(j).
5 From q down along the trail not containing j find
6 1. first node s− such that hσ(s

−) < hσ(j)
7 2. last node s+ such that hσ(s

+) > hσ(j).
8 Set dn(j)← mj , mid(j)← dj , in(j)← s−, up(j)← s+.
9 if q < j < p then

10 Swap in(i) and mid(i);
11 if ij = i then mid(ij) = uj else up(ij) = uj endif;
12 if uj = q then mid(uj) = ij else dn(uj) = ij endif;
13 if s+ = q then in(s+) = j else dn(s+) = j endif;
14 if s− = p then in(s−) = j else up(s−) = j endif

15 else if q < p < j
16 Swap in(p) and mid(p);
17 if ij = i then in(ij) = uj else up(ij) = uj endif;
18 if uj = q then in(uj) = ij else dn(uj) = ij endif;
19 if s+ = q then mid(s+) = j else dn(s+) = j endif;
20 if s− = p then in(s−) = j else up(s−) = j endif

21 endif.
22 Set dth(i) = q, dth(p) = j.
23 Set low(u) = i for nodes u ̸= q between uj and q and j and q, including uj and j.
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Lemma A.11. (Min-interchange) Let p and i be items. Let σ ∈ [0, 1) such that p and i are minima and
contiguous in hσ, hσ(i) > hσ(p) and p = low(dth(i)) in Up(hσ). Let θ ∈ (σ, 1] such that p and i are minima and
contiguous in hθ, and hθ(i) < hθ(p). Applying min-interchange(i, p) to Up(hσ) yields the up-tree for hθ.

Proof. The algorithm defines j = dth(i), q = dth(p). Assume q < p; the other case is symmetric. We show
that by applying min-interchangeto Up(hσ), which satisfies Invariants 1 to 3, we obtain an up-tree satisfying
Invariants 1 to 3 for hθ. By Corollary A.1 this is the unique up-tree for hθ, Up(hθ). Note that by definition of hλ

the maps hσ and hθ differ in either the value of i or the value of p, and are equal in the values of all other items.
In Line 5 finds two nodes on the trail between p and q that does not contain j: s− with hσ(s

−) < hσ(j) and
s+ with hσ(s

+) > hσ(j), with s− being the highest such node and s+ being the lowest such node along the trail.
Since by Invariant 3 nodes are ordered by function value along trails, s− and s+ are neighbors along the trail.

It may be the case that s− is a node internal to the trail or that s− = p, and similarly s+ is either internal
to the trail or s+ = q. Similar statements hold for the nodes defined in Line 4:

• uj = up(j) is either internal to the trail between p and q or uj = q,

• dj = dn(j) is either internal to the trail between p and q or dj = p,

• ij = in(j) is either internal to the in-trail between i and j or ij = i,

• mj = mid(j) is either internal to the mid-trail between i and j or mj = i.

The if-statement in Line 9 distinguishes two cases: q < j < p and q < p < j. The cases correspond to j being on
the mid-trail between p and q and j being on the in-trail between p and q. As j = dth(i) and p = low(dth(i)) the
node j must be in one of the trails between p and q. Thus, these two cases are the only cases that can occur.

We first prove Invariant 3. Recall that by Lemma A.2, Up(hσ) satisfies Conditions III.1 and III.2. We consider
each node for which the up(·) or dn(·) pointer changes individually.

Node j: in the new tree up(j) = s+ and dn(j) = mj . By definition of hλ it holds that hσ(s
+) = hθ(s

+) and
hσ(j) = hθ(j). As hσ(s

+) > hσ(j) it follows that hθ(up(j)) > hθ(j). If mj ̸= i then hσ(mj) = hθ(mj); if
mj = i then hσ(mj) ≥ hθ(mj) as either hσ(i) = hθ(i) or hθ(i) < hθ(p) = hσ(p). Thus, hθ(mj) < hθ(j).
It follows that hθ(dn(j)) < hθ(j) < hθ(up(j)). For the other conditions of Invariant 3 we consider the two
cases of Line 9 separately:

q < j < p: the node j is on the mid-trail between p and q, which by Conditions III.1 and III.2 implies that
j < dn(j) in Up(hσ). It follows that mj < j by Invariant 1 for Up(hσ), since in that tree mj is in the
banana tree rooted at j. Thus, in the new tree mj = dn(j) < j. If s+ = q, then q = s+ = up(j) < j.
Since in this case j = in(s+) (see Line 13) in the new tree j satisfies point 3 of Invariant 3. If s+ ̸= q,
then j < s+ by Conditions III.1 and III.2, as s+ is in the in-trail between p and q. Thus dn(j) < j < up(j)
in the new tree and hence j satisfies point 2 of Invariant 3.

q < p < j: the node j is on the in-trail between p and q, which by Conditions III.1 and III.2 implies that
dn(j) < j in Up(hσ). It follows that j < mj by Invariant 1 for Up(hσ). Thus, in the new tree
j < dn(j) = mj . If s+ = q, then q = s+ = up(j) < j. Since in this case j = mid(s+) (see Line 19) in
the new tree j satisfies point 2 of Invariant 3. If s+ ̸= q, then s+ < j by Conditions III.1 and III.2, as
s+ is in the mid-trail between p and q. Thus, up(j) < j < dn(j) in the new tree and hence j satisfies
point 2 of Invariant 3.

Node ij: we only need to consider the case where ij ̸= i, as i is a minimum and does not affect Invariant 3.
Since dn(ij) is the same in Up(hσ) and in the new tree, by Invariant 3 it holds that hσ(dn(ij)) < hσ(ij).
If dn(ij) ̸= i then hσ(dn(ij)) = hθ(dn(ij)); otherwise if dn(ij) = i then hθ(dn(ij)) ≤ hσ(dn(ij)) by the
assumptions on i and p. Hence, we have hθ(dn(ij)) < hσ(ij) = hθ(ij). In the new tree up(ij) = uj . By
Invariant 3 for Up(hσ) and the definition of hλ it holds that hθ(uj) = hσ(uj) > hσ(j) > hσ(ij) = hθ(ij).
Thus, hθ(dn(ij)) < hθ(ij) < hθ(up(ij)). For the other conditions of Invariant 3 we consider the two cases of
Line 9 separately:
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q < j < p: j is on the mid-trail and thus by Conditions III.1 and III.2 j < dn(j) in Up(hσ). By Invariant 1 it
follows that in Up(hσ) ij = in(j) < j and by Invariant 3 ij < dn(ij). Also by Invariant 3 uj = up(j) < j
in Up(hσ). As ij and j are in the same subtree of uj in Up(hσ) Invariant 1 implies that uj < ij since
uj < j. Thus, in the new tree uj = up(ij) < ij < dn(ij).

q < p < j: j is on the in-trail and thus by Conditions III.1 and III.2 dn(j) < j in Up(hσ). By Invariant 1
and Invariant 3 it follows that in Up(hσ) j = up(ij) < ij and dn(ij) < ij . If uj = q then by Invariant 3
uj = up(j) < j in Up(hσ) and thus in the new tree uj = up(j) < ij ; in this case ij = in(up(ij)) in the
new tree and hence ij satisfies point 3 of Invariant 3. If uj ̸= q then by Invariant 3 uj = up(j) > j
in Up(hσ). As j and ij are in the same subtree of uj in Up(hσ) Invariant 1 implies that uj > ij . It
follows that in the new dn(ij) < ij < up(ij) = uj and hence ij satisfies point 2 of Invariant 3.

Node uj: we only need to consider the case where uj ̸= q, as in the other case up(uj) and dn(uj) are not changed.
Note that only dn(uj) changes and that up(uj) is the same in Up(hσ) and the new tree. By Invariant 1
and the definition of hλ we have hθ(uj) = hσ(uj) < hσ(up(uj)) = hθ(up(uj)). As shown for ij we have
hθ(ij) = hθ(dn(uj)) < hθ(uj) in the new tree and thus hθ(dn(uj)) < hθ(uj) < hθ(up(uj)). We now consider
the two cases of Line 9:

q < j < p: as shown for node ij it holds that uj < dn(uj) = ij in the new tree. As j is on the mid-trail
between p and q in Up(hσ) so is uj and thus up(uj) < uj . Hence, up(uj) < uj < dn(uj) in the new
tree.

q < p < j: recall that uj ̸= q. We have shown for node ij that dn(uj) = ij < uj . As j is on the in-trail
between p and q in Up(hσ) so is uj and thus either q = up(uj) < uj or up(uj) > uj . In the first case
uj satisfies point 3 of Invariant 3 and point 2 of Invariant 3 in the new tree.

Node s+: we only need to consider the case where s+ ̸= q, as in the other case up(s+) and dn(s+) are not
changed. This implies that in the new tree dn(s+) = j. The details are similar to those for node j. We have
seen there that hθ(s

+) > hθ(j) and thus in the new tree hθ(s
+) > hθ(dn(s

+)). As the up(s+) is the same in
the new tree as in Up(hσ) it follows that hθ(up(s

+)) > hθ(s
+) also in the new tree. Now consider the two

cases of Line 9:

q < j < p: as above this implies j = dn(s+) < s+. If up(s+) = q then s+ = in(up(s+)), up(s+) < s+ and
hence s+ satisfies point 3 of Invariant 3. If up(s+) ̸= q then s+ < up(s+) by Conditions III.1 and III.2
and hence s+ satisfies point 2 of Invariant 3.

q < p < j: as above this implies j = dn(s+) > s+. As s+ is on the mid-trail from p to q in Up(hσ) it follows
that s+ > up(s+). Thus, s+ satisfies point 2 of Invariant 3.

Node s−: we only need to consider the case where s− ̸= p, as p has a minimum and does not affect
Invariant 3. This implies that in the new tree up(s−) = j. The pointer dn(s−) remains unchanged and
thus hθ(dn(s

−)) < hθ(s
−). As hθ(s

−) = hσ(s
−) < hσ(j) = hθ(j) we also have hθ(s

−) < hθ(up(s
−)). Since

s− = in(j) = in(up(s−)) in the new tree it remains to show that up(s−) = j and dn(s−) are on the same
side of s− in both cases of Line 9.

q < j < p: j is on the mid-trail and s− is on the in-trail between p and q, and thus by Conditions III.1 and
III.2 j < s−. These conditions also imply that dn(s−) < s−.

q < p < j: j is on the in-trail and s− is on the mid-trail between p and q, and thus by Conditions III.1 and
III.2 s− < j. These conditions also imply that s− < dn(s−)

In both cases s− satisfies point 3 of Invariant 3.

All nodes for which the up(·) or dn(·) pointer changed satisfy the conditions of Invariant 3 in the new tree, and
thus the new tree satisfies Invariant 3.

We now show that the new tree also satisfies Invariant 1. For any maximum, if the contents of the subtrees of
that maximum are unchanged, then the condition of Invariant 1 continues to hold for this maximum. That is, for
a maximum b, if the set of descendants of dn(b) is the same in Up(hσ) and in the new tree, and if the set of nodes
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in the banana subtree rooted at b is the same in Up(hσ) and in the new tree, and if Bth(b) < b (or Bth(b) > b)
in Up(hσ) and in the new tree, then b satisfies the condition of Invariant 1 in the new tree, since it also satisfied
it in Up(hσ). This is the case for most of the nodes:

• Bth(q) = p in Up(hσ) and Bth(q) = i in the new tree, but both q < p and q < i. The set of nodes in either
subtree of q remains unchanged.

• For any node on the trail from uj to q (except uj and q) and any node on the trail from s+ to q (excluding
s+ and q) the set of nodes in either subtree remains unchanged, and so does the Bth(·) of these nodes.

• The same holds for any descendant of j in Up(hσ), for s
− and any descendant of s−.

• For any node not in the banana subtree of q the contents of the subtrees and Bth(·) is unchanged.

Thus, we only need to show that uj , j and s+ do not violate the condition of Invariant 1. Furthermore, we only
need to consider the case where uj ̸= q and s+ ̸= q.

Node uj: the banana subtree of uj is the same in Up(hσ) and in the new tree, as is Bth(uj). The node
dn(uj) = ij in the new tree is a descendant of j in Up(hσ) and j = dn(uj) in Up(hσ). The descendants of ij
are descendants of dn(uj) in both Up(hσ) and the new tree. As uj does not gain any descendants, it follows
that uj satisfies the condition of Invariant 1 in the new tree.

Node s+: the banana subtree of s+ is the same in Up(hσ) and in the new tree, as is Bth(s+). Through the
change of dn(s+) to j, dn(s+) gains new descendants in the new tree. These are the nodes on the trail
between p and j, along with their banana subtrees, and the nodes on the trail from i to j. By Invariant 1
and Conditions III.1 and III.2 for Up(hσ) these are all on the same side of s+ as dn(s+) in Up(hσ). It follows
that s+ satisfies the condition of Invariant 1 in the new tree.

Node j: The two cases q < j < p and q < p < j are symmetric. We give the proof for the first case and
assume q < j < p. The pointers mid(j) and dn(j) are swapped going from Up(hσ) to the new tree (see the
assignment in Line 8). The banana subtree rooted at j in the new tree consists of descendants of s+ and
the descendants of dn(j) in Up(hσ). By Invariant 1 and Conditions III.1 and III.2 for Up(hσ), each node v
in this set satisfies j < v. Note that Bth(j) = p in the new tree and thus j < Bth(j) by assumption. The
descendants of dn(j) in the new tree are descendants of nodes on the mid-trail of j in Up(hσ). Each node
t in this set satisfies t < j by Invariant 1 for Up(hσ). Thus, in the new tree j satisfies the condition of
Invariant 1.

We have shown that all nodes satisfy the condition of Invariant 1 and thus the new up-tree satisfies Invariant 1.

It remains to show that the new up-tree also satisfies Invariant 2. Invariant 2 can be violated only by minima
for which low(dth(·)) changes. This changes for i, p and any node u with low(dth(·)) = p in Up(hσ).

• In the new tree low(dth(p)) = i, and hθ(p) > hθ(i) by definition of hθ.

• As the algorithm sets dth(i) = q (see Line 22) in the new tree low(dth(i)) = low(q). Since either hσ(i) = hθ(i)
or hσ(p) = hθ(p) and since i and p are contiguous in both hσ and hθ, hσ(p) > hσ(low(q)) implies that
hθ(i) > hσ(low(q)) = hθ(low(q)) = hθ(low(dth(i))).

• The nodes u for which we set low(dth(u)) = i have low(dth(u)) = p in Up(hσ). They satisfy hσ(u) = hθ(u) >
hσ(low(dth(p)), and contiguity of i and p in hσ they satisfy hθ(u) > hσ(i). As hθ(i) ≤ hσ(i), it follows that
hθ(u) > hθ(i) = hθ(low(dth(u)).

All minima satisfy the condition of Invariant 2 and thus the new tree satisfies Invariant 2. We have shown that
the new tree satisfies Invariants 1 to 3 for hθ, which concludes the proof that it is the unique up-tree for hθ.
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A.6 Correctness of Scenarios A and B So far, we have described the local operations in terms of small
changes in function value, where the involved items are contiguous in function value before and after the operation.
However, Scenarios A and B described in Section 5.2 also need to deal with larger changes in value, involving
not necessarily contiguous items. We start by describing the conditions under which a change in the value of a
maximum (or a minimum by Lemma 5.1) does not affect the corresponding banana tree. This is stated formally
in the following lemma.

Lemma A.12. (Unaffected Banana Tree) Let j be a maximum. Let hσ and hθ be maps that dif-
fer only in the value of j such that all other items have the same criticality. If it holds that
max{hσ(in(j)), hσ(mid(j)), hσ(dn(j))} < hθ(j) < hσ(up(j)) then Up(hσ) and Up(hθ) are identical.

Proof. By Invariants 1 to 3, we know that max{hσ(in(j)), hσ(mid(j)), hσ(dn(j))} < hσ(j) < hσ(up(j)). The up-
tree Up(hσ) satisfies Invariant 1 for the map hθ, since the order of items along the interval is independent
of hσ and hθ. It also satisfies Invariant 2 for hθ, as hσ(u) = hθ(u) for all minima u in hσ and hθ,
and the set of minima is the same in hσ and hθ. Finally, it also satisfies Invariant 3, which follows from
max{hσ(in(j)), hσ(mid(j)), hσ(dn(j))} < hθ(j) < hσ(up(j)) and the fact that the order of items along the interval
is independent of hσ and hθ. By Corollary A.1 there is a unique banana tree for hθ that satisfies Invariants 1
to 3, and thus Up(hσ) = Up(hθ).

We now show that the algorithms given for Scenarios A and B indeed transform Up(f) into Up(g), where the
maps f and g differ in the value of item j. Recall that in Scenario A item j is non-critical in f and f(j) < g(j), and
that in Scenario B item j is a maximum in f and decreases its value until it is non-critical in g. For Scenarios A
and B we assume that j is not an endpoint, i.e., j ∈ [2,m− 1] and we give an additional algorithm for updating
the value of an endpoint below.

We restate the algorithm for Scenario A, where we now also account for updates to items that lead to an
endpoint changing from down-type to up-type (see Line 2).

1 if g(j) > f(j + 1) then
2 if j + 2 is a hook then cancel or slide endpoint j + 1 to j in Up(f) and Dn(f)
3 else if f(j + 1) < f(j + 2) then anti-cancel j and j + 1 in Up(f) and Dn(f)
4 else slide j + 1 to j in Up(f) and Dn(f)
5 endif;
6 set q = up(j) in Up(f);
7 while f(q) < g(j) do interchange j and q in Up(f) and Dn(f);
8 q = up(j) in Up(f)
9 endwhile;
10 endif.

The following lemma states that this algorithm correctly updates Up(f) to obtain Up(g).

Lemma A.13. (Correctness of Scenario A) Let f and g be maps with f(j) < g(j) and f(i) = g(i) for all
i ̸= j, and f(j − 1) < f(j) < f(j + 1). Applying the algorithm for Scenario A to Up(f) yields Up(g).

Proof. We show how the up-tree Up(f) is modified throughout the algorithm following the homotopy hλ until
the up-tree becomes Up(g). If g(j) < f(j + 1) then item j is non-critical in f and g, Up(f) = Up(g), and the
algorithm does not change the up-tree. Assume g(j) > f(j+1) for the remainder of the proof. By this assumption
there exists an hθ0 with 0 < θ0 ≤ 1 such that j and j + 1 are contiguous in hθ0 . If j + 2 is a hook, then j + 1
is down-type in f and up-type in hθ0 and by Lemma A.8 applying cancel-or-slide-endpoint(j, j + 1) yields
Up(hθ0). If j + 2 is not a hook and f(j + 1) < f(j + 2), then j and j + 1 are non-critical in f and a maximum
and minimum, respectively, in hθ0 . By Lemma A.9 executing an anti-cancellation between j and j + 1 yields the
up-tree Up(hθ0). If j +2 is not a hook and f(j +1) > f(j +2), then j +1 is a maximum in f , non-critical in hθ0

and j is a maximum in hθ0 . By Lemma A.5 executing a slide from j + 1 to j yields the up-tree Up(hθ0).
Let qi be up(j) at the beginning of the i-th iteration of the loop in Line 7. We show by induction that

after every iteration i of the loop either (1) the current up-tree corresponds to a map hθi+1
where qi and

j are contiguous and hθi+1(qi) < hθi+1(j) or (2) the current up-tree is Up(g). For the base case i = 1, if
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f(q1) > g(j), then the up-tree Up(hθ0) = Up(g) by Lemma A.12. Otherwise, there exists a θ1 ∈ (θ0, 1] such
that hθ1(q1) < hθ1(j) and q1 and j are contiguous in hθ1 . By Lemma A.12 and Lemma A.10 interchanging q1
and j yields Up(hθ1). Now assume that at the beginning of some iteration i the current up-tree is Up(hθi−1

),
with hθi−1(j) ∈ [max{f(in(j)), f(mid(j)), f(dn(j))}, f(qi)]. If f(qi) > g(j), then the up-tree Up(hθi) = Up(g) by
Lemma A.12. Else, there exists a θi+1 ∈ (θi, 1] such that hθi+1(qi) < hθi+1(j) and qi and j are contiguous in hθi+1 .
Again, interchanging qi and j yields the up-tree Up(hθi+1

).
There exists an iteration I where f(qI) > g(j), at the latest when qI is the special root, and the loop

terminates. Then, by Lemma A.12 the Up(hθI−1
) = Up(g).

The following algorithm updates the banana trees in Scenario B, now including updates that change up-type
items to down-type items (see Line 5).

1 loop q = argmax{f(dn(j)), f(in(j)), f(mid(j))} in Up(f);
2 if f(q) > f(j + 1) then interchange q and j in Up(f) and Dn(f)
3 else exit endif

4 forever;
5 if j + 2 is a hook then cancel or slide endpoint j + 1 to j in Up(f) and Dn(f)
6 else if f(j + 1) < f(j + 2) then cancel j with j + 1 in Up(f) and Dn(f)
7 else slide j to j + 1 in Up(f) and Dn(f)
8 endif.

The next lemma states that this algorithm correctly updates Up(f) to obtain Up(g).

Lemma A.14. (Correctness of Scenario B) Let f and g be maps with f(j) > g(j) and f(i) = g(i) for all
i ̸= j, and f(j − 1) < f(j) > f(j + 1). Applying the algorithm for Scenario B to Up(f) yields Up(g).

Proof. The proof is analogous to that of Lemma A.13: after each iteration i of the loop, there is a θi such that qi
and j are contiguous in hθi and the current up-tree is Up(hθi). Let Up(hγ) be the up-tree after the loop, where
in hγ the items j and q are contiguous in value. If j + 2 is a hook, then j + 1 is an up-type endpoint in hγ and a
down-type endpoint in g, since g(j) < g(j+1). Then, by Lemma A.8 and the fact that non-critical items are not
represented in the up-tree applying cancel-or-slide-endpoint(j, j+1) to Up(hγ) yields Up(g). Similarly, if j+2
is not a hook and f(j+1) < f(j+2), then j and j+1 are non-critical in g as f(j−1) < g(j) < f(j+1) < f(j+2),
and canceling j with j + 1 yields Up(g) by Lemma A.7. Finally, if j + 2 is not a hook and f(j + 1) > f(j + 2),
then j+2 was non-critical in f and is a maximum in g, and sliding j to j+1 yields Up(g) by Lemma A.5.

To conclude, we state an algorithm for updating the banana trees under the change of value of the endpoint
m. The algorithm for the other endpoint of the interval is symmetric. We assume that m is up-type in f and
down-type in g, i.e., f(m) < f(m− 1) < g(m). There is also the reverse case, in which m is down-type in f and
up-type in g.

1 Set q = dn(m) in Dn(f);
2 while q is a maximum in −f and f(q) < g(m) do

interchange m and q in Up(f) and Dn(f);
3 q = dn(m) in Dn(f)
4 endwhile;
5 if f(m− 1) < g(m) then cancel or slide endpoint m to m− 1 endif;
6 Set q = up(m) in Up(f);
7 while f(q) < g(m) do interchange m and q in Up(f) and Dn(f);
8 q = up(m) in Up(f)
9 endwhile.

In the first loop we exploit the coupling of interchanges between the up-tree and down-tree: we find the maximum
with which to interchange m in Dn(f), and perform the corresponding interchange of minima in Up(f). The
purpose of this loop is to prepare the banana tree for switching m from an up-type to a down-type item, as
described in Appendix A.3. The value of the hook m + 1 is defined to have value f(m + 1) = m + ε and
g(m+1) = g(m)−ε, i.e., its value is adjusted alongside that of m, which justifies interchanging m only with dn(m)
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in the first loop, rather than with in(m), mid(m) and dn(m) as we have done in Scenario B. For completeness we
state in the next lemma that this algorithm correctly maintains the up-tree; we omit the proof, which is analogous
to that of Lemmas A.13 and A.14.

Lemma A.15. (Local Change at an Endpoint) Let f and g be maps differing only in the value of the
endpoint m, such that f(m) < f(m− 1) < g(m). Applying the previous algorithm to Up(f) yields Up(g).

B Correctness of Topological Maintenance

B.1 Splitting Banana Trees In this section we prove that the algorithm Split described in Section 5.3
correctly splits a banana tree. The proof will be by induction over the iterations of the loop in Split, with the
base case in Lemma B.1 and the induction step in Lemma B.2. We first prove these two lemmas and then state
the result in Theorem B.1.

Given a list of items, its associated map f and an item ℓ, the algorithm Split computes from Up(f) two new
up-trees Up(g) and Up(h), where the former contains the items up to ℓ and the latter the remaining items. We
define x to be the midpoint of ℓ and ℓ + 1 with f(x) = 1

2 (f(ℓ) + f(ℓ + 1)). We write Stacki, pi, qi for Stack, p,
q returned by TopBanana in the i-th iteration of Split. The up-trees Up(gi) and Up(hi) denote the left and
right up-trees after the i-th iteration, with initial up-trees Up(g0), Up(h0). One of the initial up-trees consists of
the new special root and the dummy leaf α. We assume that this is the tree Up(h0) with special root βh and
that Up(g0) = Up(f). This is equivalent to assuming that the top banana on the stacks is on the right spine of
Up(f), where the top banana is the banana closest to the root such that x lies in some panel of the corresponding
window. The other case where the top banana is on the left spine of Up(f) is symmetric. We further define α
such that it is the rightmost item of Up(gi) if it is in Up(gi) and the leftmost item of Up(hi) if it is in Up(hi).
Finally, let I be the total number of bananas on the stack, i.e., the number of iterations of Split.

Lemma B.1. (Base Case) At the beginning of the first iteration it holds that

1. for all nodes u in Up(g0) and all nodes v in Up(h0) we have u < v,

2. Up(g0) and Up(h0) satisfy Invariants 1 to 3,

3. any node u that is not on any stack and does not have an ancestor on any stack is in Up(g0) if u < x and
in Up(h0) if u > x,

4. f(α) < f(x), f(qj) < f(in(α)) and f(qj) < f(mid(α)) at the beginning of the iteration for all j ∈ [1, I] with
(pj , qj) ∈ Lup ∪Rup ∪Mup,

5. all bananas (pj , qj) ∈ Lup ∪ Rup ∪Mup for j ∈ [1, I] are in Up(g0) if α is in Up(h0) and in Up(h1) if α is
in Up(g1),

6. if Stack1 ∈ {Ldn, Rdn} then q1 is in the same tree as α,

7. the in-trail between α and dth(α) is empty and α is on the spine.

Proof. Assume that Up(g0) = Up(f). Claim 1 holds by definition of α and the special root of Up(h0). The up-tree
Up(f) = Up(g0) is the input to the algorithm and satisfies Invariants 1 to 3 by assumption. The topmost banana
(p1, q1) has q1 on the right spine of Up(g0) and q1 < x, which implies that nodes u that are not descendants of
q1 satisfy u < q1 < x. These are precisely the nodes in Up(g0) that have no ancestor on any stack. The nodes in
Up(h0) also have no ancestor on any stack, but α > x by definition, and so is the special root of Up(h0). This
implies claim 3. The inequality f(α) < f(x) follows from f(α) < f(p1) < f(x), where the last inequality holds
since x is in the in-panel or mid-panel of W (p1, q1). The pointers in(α) and mid(α) both point to the special
root of Up(h0), which by definition has greater value than all qj for j ∈ [1, I] with qj ∈ Lup ∪ Rup ∪Mup. Thus,
all three inequalities of claim 4 hold. To see that claim 5 holds simply note that all nodes on the stacks are in
Up(g0) and α is in Up(h0). Claim 6 holds trivially, as the topmost banana (p1, q1) cannot be on Ldn or Rdn: this
would put x in the in-panel or mid-panel of the banana that (p1, q1) is nested in, which contradict (p1, q1) being
the topmost banana. Finally, α is the only other node in Up(h0) besides the special root, and thus both trails
between α and dth(α) are empty and α is on the spine.
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Lemma B.2. (Inductive Step) If at the beginning of any iteration i of Split it holds that

1. for all nodes u in Up(gi−1) and all nodes v in Up(hi−1) we have u < v,

2. Up(gi−1) and Up(hi−1) satisfy Invariants 1 to 3,

3. any node u that is not on any stack and does not have an ancestor on any stack is in gi−1 if u < x and in
hi−1 if u > x,

4. f(α) < f(x), f(qj) < f(in(α) and f(qj) < f(mid(α)) at the beginning of the iteration for all j ∈ [i, I] with
(pj , qj) ∈ Lup ∪Rup ∪Mup,

5. all bananas (pj , qj) ∈ Lup ∪Rup ∪Mup for j ∈ [i, I] are in Up(gi) if α is in Up(hi) and in Up(hi) if α is in
Up(gi),

6. if Stacki ∈ {Ldn, Rdn} then qi is in the same tree as α,

7. the in-trail between α and dth(α) is empty and α is on the spine,

then after the i-th iteration

1. for all nodes u in Up(gi) and all nodes v in Up(hi) we have u < v,

2. Up(gi) and Up(hi) satisfy Invariants 1 to 3,

3. any node u that is not on any stack and does not have an ancestor on any stack is in gi if u < x and in hi

if u > x,

4. f(α) < f(x), f(qj) < f(in(α)) and f(qj) < f(mid(α)) for all j ∈ [i+ 1, I] with (pj , qj) ∈ Lup ∪Rup ∪Mup,

5. all bananas (pj , qj) ∈ Lup ∪ Rup ∪Mup for j ∈ [i+ 1, I] are in Up(gi) if α is in Up(hi) and in Up(hi) if α
is in Up(gi),

6. if TopBanana returns Stacki+1 ∈ {Ldn, Rdn} then qi+1 is in the same tree as α,

7. the in-trail between α and dth(α) is empty and α is on the spine.

Proof. There are in total six cases:

1. Stack = Lup,

2. Stack = Rup,

3. Stack = Mup and q < x < p,

4. Stack = Mup and p < x < q,

5. Stack = Ldn,

6. Stack = Rdn.

The first two cases are symmetric, as are the two cases with Stack = Mup and the last two cases. We prove the
claim for cases 1, 3 and 5. In the following we assume that the seven conditions hold.

Stacki = Lup: Split executes DoInjury. By definition of Lup qi < pi < x. The node qi is on a spine, as
otherwise the banana it is nested in would contain x in its in- or mid-panel. This is not possible, since this
banana would then be on the stacks above (pi, qi). Furthermore, qi < pi implies that qi is on a right spine
and it is thus in the left tree. The fourth claim follows immediately from the fourth assumption, as the
value of α remains unchanged and Lup, Rup, Mup can be merged into a sorted stack by Lemma 5.2.

Nodes j with j > x on the in-trail between pi and qi are removed and inserted between α and mid(α). These
nodes and the nodes in their banana subtrees are the rightmost nodes of Up(gi), which implies claim 1.
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Since we do not modify the in-trail between α and dth(α) and it is assumed to be empty at the beginning
of the iteration, this trail is also empty after the iteration, which proves claim 7.

Denote by j− the lowest and highest among the moved nodes in terms of function value, respectively.
Conditions III.1 and III.2 hold in Up(gi−1) and Up(hi−1), and thus the nodes j form a contiguous section of
the in-trail with j+ = in(qi). Write a for the highest node on the in-trail between pi and qi that is not moved.
Both the in-trail originally containing the nodes j and the mid-trail between α and dth(α) are right trails. By
the assumption that nodes in Up(gi) are less than nodes in Up(hi) it follows that α = dn(j−) < j− < · · · <
j+ < up(j+). The item x is in the in-panel of the window W (pi, qi) corresponding to the banana (pi, qi) in
Up(gi−1), and by Conditions III.1, III.2 and Invariant 3 x < j− also implies f(x) < f(j−). This, together
with the fourth assumption implies that f(α) = f(dn(j−)) < f(x) < f(j−) < · · · < f(j+) < f(up(j+)).
Thus, Invariant 3 holds in the new trees.

Since nodes pointed to by low(dth(·)) only change for Bth(j) where j is one of the moved nodes, namely
from pi to α, Invariant 2 holds in the new trees by the assumption that f(α) < f(pi).

Invariant 1 continues to hold in the tree that originally contained the nodes j, since nodes are only removed
from subtrees. The nodes j themselves only gain α as a descendant of dn(j) or as dn(j) itself. In addition,
α < j by definition of α and j < Bth(j) by definition of right trail. Thus, the nodes j also satisfy the
condition of Invariant 1. The nodes j are inserted as descendants of dn(t), where t = mid(α) before the
insertion. Since j < dn(t) by assumption Item 1, the condition of Invariant 1 continues to holds for t, and
also holds for the remaining nodes of this tree. It follows that both trees satisfy Invariant 1 after the i-th
iteration.

The nodes u in Up(hi−1) that are not on any stack and do not have an ancestor on any stack satisfy u > x.
The nodes j and the nodes in their banana subtrees are also greater than x. Thus, Up(hi−1) contains no
node u that is not on any stack and has no ancestor on any stack with u < x. In the left tree Up(gi)
the node a and the nodes in its subtree are the rightmost nodes of a, since a is on the right spine. Other
nodes in Up(gi) are thus less than x. Note that a < x by definition of a. The node a is either a minimum,
a maximum and not on any stack, or a maximum and on some stack. In the first two cases all nodes in
Up(gi) are less than x. In the third case, all nodes except possibly descendants of a are less than x, and
descendants of a have an ancestor on the stack. Thus, claim 3 holds.

To see that claim 5 holds, recall that the bananas in Lup, Rup and Mup are nested into each other. Call the
topmost banana on these stacks (pℓ, qℓ). It must be nested into (pi, qi) and is thus on the in-trail between
pi and qi in Up(gi), as otherwise x would be in the mid-panel of W (pi, qi), which contradicts Stacki = Lup.
This implies qi < pi and qi < x. It follows that qi remains in the left tree, while α remains in the right tree.
This proves claim 5.

We now prove claim 6. Assume that Stacki+1 = Ldn. Then, by definition pi+1 < qi+1. Thus, qi+1 cannot
be on the in-trail between pi and qi. It can also not be on any other trail, since then qi+1 < pi < x, which
implies that x is not in the out-panel of W (pi+1, qi+1). It follows that pi+1 and qi+1 cannot be in the left
tree. Now assume that Stacki+1 = Rdn. Then, by definition qi+1 < pi+1. If qi+1 is in Up(gi), then qi+1 < x,
as all maxima greater than x have been moved to Up(hi). This contradicts W (pi+1, qi+1) having x in its
out-panel, which implies that qi+1 must be in the right tree. In both cases, qi+1 is in the right tree, which
is the same tree as α.

Stacki = Mup and qi < x < pi: Split executes DoFatality. By definition of Mup qi < x < pi. This case is
similar to the case Stacki = Lup and we mainly point out the differences. As above, qi is on the left spine
of Up(gi−1). Since x is in a panel of the window (pi, qi) it holds that f(pi) < f(x). The fourth claim then
follows immediately from the third assumption, as f(α) < f(pi) after the iteration and Lup, Rup, Mup can
be merged into a sorted stack by Lemma 5.2.

All nodes internal to the in-trail between pi and qi are moved to the right tree, as are the nodes j with
j > x on the mid-trail between pi and qi. The node α replaces pi as Bth(qi). As qi is on a spine the nodes
that are moved to the right tree are the rightmost nodes of Up(gi−1), and together with assumption 1 this
implies claim 1, i.e., that the nodes in Up(hi) are all greater than the nodes in Up(gi). The in-trail between
α and dth(α) in Up(gi) is the in-trail between α and qi, which is empty as all nodes on the in-trail beginning
at qi have been moved to Up(hi).
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Invariants 1 and 3 hold in Up(gi) as f(α) < f(pi) < f(qi) by assumption 4 and because the order of maxima
and nodes in their subtrees is unchanged. By the assumption that f(qi) < f(in(α))) and f(qi) < f(mid(α)),
where in(α) and mid(α) are the pointers in Up(hi−1), the nodes j that are moved to the right tree satisfy
f(j) < f(up(j)). Those nodes j that are on a left trail in Up(gi−1) are on a left trail in Up(hi), and those
on a right trail are also on a right trail in Up(hi). It follows that Up(hi) also satisfies Invariants 1 and 3.
In Up(gi), only for nodes with low(dth(·)) = pi does this pointer change, namely to α, and f(α) is set to
f(pi)− ε. These nodes satisfy the condition of Invariant 2, as does α itself. In Up(hi) the node pi satisfies
the condition of Invariant 2, as f(pi) > f(α). The nodes that are moved to the right tree also satisfy
this condition, since low(dth(·)) remains unchanged. Other nodes u with low(dth(u)) = pi in Up(gi) were
already on the mid-trail between α and dth(α) in Up(hi−1). If f(low(dth(u))) < f(pi) then the windows
W (u, dth(u)) would have x in their out-panel, which places them in Ldn or Rdn. But by assumption 4
f(dth(u)) > f(qi) which implies that they would have been processed in an earlier iteration. This is a
contradiction and thus f(low(dth(u))) > f(pi), i.e., they satisfy the condition of Invariant 2. For no other
node of Up(hi) does the node low(dth(·)) change from what it was in Up(hi−1), so Invariant 2 holds in
Up(hi). This proves claim 2.

For claim 3 observe that nodes u in Up(gi) satisfy u < x, as any nodes with u > x are moved to hi. Nodes
v with v < x in Up(hi) have as ancestor the highest node that is moved from the mid-trail; if such nodes v
exist, then this highest node itself must be in either Rup or Mup, and thus the only nodes in Up(hi) with
v < x have an ancestor on some stack. This highest node can also be the only next node in Lup∪Rup∪Mup,
so claim 5 follows.

To see that claim 6 holds note that the next banana with x in the out-panel of the corresponding window
can only be on the mid-trail between α and qi in Up(gi), similar to the case Stacki = Lup.

Stacki = Ldn: Split executes DoScare, which sets f(α) = f(pi)+ε and then executes an interchange of minima
between α and pi. The nodes qi and α are in the same tree by assumption, and they must be in Up(gi−1), as
x is in the out-panel of W (pi, qi) and the in-trail between α and dth(α) is assumed to be empty. Going from
Up(gi−1) to Up(gi) and from Up(hi−1) to Up(hi) does not change the set of nodes contained in each tree.
In fact, Up(hi−1) = Up(hi). Claims 1 and 5 follow immediately from the respective assumption. The set of
nodes internal to the in-trail between α and dth(α) after the interchange of minima is a subset of the nodes
internal to the in-trail between α and dth(α) before the iteration. The latter is empty by assumption 7.
Furthermore, α is on the spine before iteration i by 7 and it remains on the spine through the interchange,
so the claim 7 holds.

We now show claim 2. Note that qi must be on the mid-trail between dth(α) and α, i.e., low(qi) = α,
as otherwise x would not be in the out-panel of W (pi, qi). We first show that there is no other minimum
with value between f(α) and f(pi) whose dth(·) pointer points to a maximum on the banana spanned by
α and dth(α). The in-trail between α and dth(α) is empty by assumption. Let s be a minimum with
f(α) < f(s) < f(pi) and with dth(s) on the mid-trail between α and dth(α). The banana (s, dth(s)) has x
in its out-panel and s < dth(s), and thus must be on the stack Ldn. It must be on Ldn below (pi, qi), as
otherwise it would have been processed before and f(α) > f(s) at the beginning of the iteration. Since Ldn

is sorted by Lemma 5.2 this implies f(s) > f(pi), which is a contradiction. It follows that there is no other
minimum that could be interchanged with α in place of pi. Setting the value of α to f(pi) + ε leads to a
violation of Invariant 2, but this is fixed by the interchange of minima. Thus, Up(gi) and Up(hi) satisfy
Invariants 1 to 3.

To prove claim 3 we consider the nodes which no longer have an ancestor on any stack or are no longer on
any stack themselves. The nodes no longer on any stack are pi and qi, which were taken of Ldn. These
satisfy pi < x and qi < x by definition of Ldn. The remaining nodes to consider are nodes with ancestor
qi. Descendants u of qi that were in the banana subtree of qi in Up(gi−1) satisfy u < qi by Invariant 1 for
Up(gi−1). The remaining descendants have an ancestor on the mid-trail between α and qi in the new tree
Up(gi). The window spanned by this ancestor and its birth has x in its out-panel and is thus on Ldn.

The interchange of minima does not modify mid(α), but does modify in(α). More precisely, in(α) = qi
after the interchange. By assumption 4 and Lemma 5.2 it follows for all j ∈ [i + 1, I] with (pj , qj) ∈
Lup ∪ Rup ∪Mup that f(qj) < f(in(α)) and f(qj) < f(mid(α)). By Lemma 5.2 and for all j ∈ [i + 1, I]
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with (pj , qj) ∈ Lup ∪ Rup ∪Mup it holds that f(qj) < f(qi), which implies f(qj) < f(in(α)). The value ε
is defined to be smaller than the difference between the values of any two items, and thus there is no item
with value in [f(pi), f(α)]. Because x is in the out-panel of W (pi, ,)qi it holds that f(pi) < f(x) and thus
f(α) < f(x).

For the sixth claim we first prove that Stacki+1 ̸= Rdn. If Stacki+1 ∈ Rdn, then x < qi+1 < pi+1 and x is in
the out-panel of W (pi+1, qi+1) by definition of Rdn. This implies that qi+1 cannot be on the same trail as qi
and in order for x to be in the out-panel of W (pi+1, qi+1) it must in fact be either in the in-trail between α
and dth(α), or in a right spine of the right subtree. The former is impossible, as the in-trail between α and
dth(α) is empty. Now assume that qi+1 is on a right trail in the right up-tree. Then p′ = low(qi+1) < qi+1

and dth(p′) must be on the left spine of the right tree, as otherwise x would not be in the out-panel of
W (pi+1, qi+1). This implies that p′ < x < dth(p′), which in turn implies that (p′, dth(p′)) ∈ Mup. As Mup

and Rdn are sorted and f(p′) < f(pi+1) by Invariant 2, this implies that Stacki+1 cannot be Rdn. Thus, if
Stacki+1 ∈ {Ldn, Rdn}, then Stacki+1 = Ldn. In this case pi+1 < qi+1 < x, which implies that qi+1 must
be in the left tree and thus in the same tree as α.

This concludes the proof of the inductive step.

Theorem B.1. (Correctness of Split) Given a list of m items and corresponding map f , and an item ℓ with
2 ≤ ℓ ≤ m− 1, Split splits the up-tree Up(f) into two up-trees Up(g) and Up(h), where Up(g) contains nodes u
with u ≤ ℓ and Up(h) contains the nodes u ≥ ℓ.

Proof. Recall that we defined x to be the midpoint between ℓ and ℓ + 1. The proof is by induction over the
iterations of the loop in Split, taking Lemma B.1 as the base case and Lemma B.2 as the induction step. This
proves the invariants (i) and (ii) introduced in Section 5.3, which imply the theorem.

B.2 Gluing Two Banana Trees In this section we prove that the algorithm Glue presented in Section 5.3
correctly glues two banana trees Up(g) and Up(h) into Up(f), where f = g ·h. First, we show how to pre-process
the functions g and h to obtain the case where g ends in an up-type item on the right, h begins with a down-type
item on the left and this endpoint of g has lower value than the endpoint of h. Write ℓ for the rightmost item of g
and ℓ′ for the leftmost item of h. We assume f(ℓ) < f(ℓ′). In the case f(ℓ) > f(ℓ′) we obtain the symmetric case
to the one described in section Section 5.3 and the algorithm is symmetric. There are four cases depending on
whether ℓ and ℓ′ are up-type or down-type items: (1) ℓ and ℓ′ are up-type; (2) ℓ is up-type and ℓ′ is down-type;
(3) ℓ is down-type and ℓ′ is up-type; (4) ℓ and ℓ′ are down-type. Case (2) is the one described in Section 5.3 and
we show how to reduce the other cases to this case.

(1) → (2): ℓ′ becomes non-critical in g · h and we replace it by the dummy leaf α.

(3) → (2): ℓ and ℓ′ become non-critical in g · h. Since ℓ is down-type it is paired with a hook in Up(g) and we
simply remove it along with the hook. As in the previous case we replace ℓ′ by the dummy leaf α.

(4) → (2): ℓ becomes non-critical in g · h. As in the previous ℓ is paired with a hook in Up(g) and we remove it
along with the hook.

Whenever ℓ′ is a down-type item it is paired with a hook and we replace the hook by the dummy leaf α. In all
cases we begin with the situation described in Section 5.3.

For the remainder of the section we assume that we are in case (2), and we now prove that the algorithm
Glue yields the tree Up(f). The proof will be by induction over the iterations of the loop, with the base case and
induction step in Lemmas B.3 and B.4, respectively. We combine the two and show that the algorithm terminates
correctly in Theorem B.2. Write Up(gi) and Up(hi) for the left and right tree after iteration i, respectively, with
Up(g0) = Up(g) and Up(h0) = Up(h). Define α to be greater than the other nodes of Up(gi) and less than the
other nodes of Up(hi). Furthermore, we write pi, p̂i, qi, q

′
i for p, p̂, q, q

′ in the i-th iteration.

Lemma B.3. (Base Case) At the beginning of the first iteration it holds that

1. Up(g0) and Up(h0) satisfy Invariants 1 to 3,
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2. the in-trail between α and dth(α) is empty, α ∈ {Bth(q1),Bth(q′1)}, f(α) > f(p̂1), f(α) > f(p1),

3. α is the last node on the right spine of Up(g0) or on the left spine of Up(0), q1 is on the right spine of
Up(g0) and q′1 is on the left spine of Up(h0)

4. for all nodes u in Up(g1) and all nodes v in Up(h1) we have u < v,

5. UndoInjury(p1, q1) being called implies f(mid(α)) > f(in(q1)) and
UndoInjury(p1, q

′
1) being called implies f(mid(α)) > f(in(q′1)),

6. UndoFatality(p1, q1) being called implies f(mid(α)) > f(in(q′1)) and
UndoFatality(p1, q

′
1) being called implies f(mid(α)) > f(in(q1)),

7. UndoScare(p̂1, q1) being called implies Bth(q1) = α, f(mid(α)) > f(in(q′1)) and
UndoScare(p̂1, q

′
1) being called implies Bth(q′1) = α, f(mid(α)) > f(in(q1)).

Proof. The trees Up(g0) and Up(h0) are the input to the algorithm, i.e., Up(g) and Up(h), and thus satisfy
Invariants 1 to 3. Since α is a hook, the in-trail between α and dth(α) is empty. By definition α = Bth(b′0) =
Bth(q′1). The inequalities f(α) > f(pi) and f(α) > f(p̂1) also follow from the assumptions on g and h. The
nodes q1 = b0 and q′1 = b′0 are on the right spine of Up(g0) and the left spine of Up(h0), respectively. The node
α = Bth(q′1) is thus also on the spine of Up(h0) and since it is a leaf it is the last node on the spine. Claim 4
holds by the assumption that items in g are all less than items in h.

We now prove claims 5, 6 and 7 If f(q1) < f(q1)
′, then p1 = a0 and by Invariant 2 f(p1) > f(p̂1). Thus

UndoInjury(p1, q1) is executed. Since Bth(q1) = a0 is an up-type item it also holds that in(q1) = a0. As by
definition f(α) > f(a0) the inequality f(mid(α)) > f(in(q1)) holds. This implies claim 5. If f(q1) > f(q′1), then
p1 = a0 and p1 ̸= Bth(q′1). Either UndoFatality(p1, q

′
1) or UndoScare(p̂1, q1) is executed. The inequality

f(mid(α)) > f(in(q1)) holds as we have just shown and this proves claims 6 and 7.
We have shown that all claims hold at the beginning of the first iteration and this proves the lemma.

Lemma B.4. (Inductive Step) If at the beginning of the i-th iteration the following conditions hold

1. Up(gi−1) and Up(hi−1) satisfy Invariants 1 to 3,

2. the in-trail between α and dth(α) is empty, α ∈ {Bth(qi),Bth(q′i)}, f(α) > f(p̂i), f(α) > f(pi),

3. α is the last node on the right spine of Up(gi−1) or on the left spine of Up(hi−1), qi is on the right spine of
Up(gi−1) and q′i is on the left spine of Up(hi−1)

4. for all nodes u in Up(gi) and all nodes v in Up(hi) we have u < v,

5. UndoInjury(pi, qi) being called implies f(mid(α)) > f(in(qi)) and
UndoInjury(pi, q

′
i) being called implies f(mid(α)) > f(in(q′i)),

6. UndoFatality(pi, qi) being called implies f(mid(α)) > f(in(q′i)) and
UndoFatality(pi, q

′
i) being called implies f(mid(α)) > f(in(qi)),

7. UndoScare(p̂i, qi) being called implies Bth(qi) = α, f(mid(α)) > f(in(q′i)) and
UndoScare(p̂i, q

′
i) being called implies Bth(q′i) = α, f(mid(α)) > f(in(qi)),

then at the beginning of the next iteration, if it exists, it holds that

1. Up(gi) and Up(hi) satisfy Invariants 1 to 3,

2. the in-trail between α and dth(α) is empty, α ∈ {Bth(qi+1),Bth(q
′
i+1)}, f(α) > f(p̂i+1), f(α) > f(pi+1),

3. α is the last node on the right spine of Up(gi) or on the left spine of Up(hi), qi+1 is on the right spine of
Up(gi) and q′i+1 is on the left spine of Up(hi)

4. for all nodes u in Up(gi+1) and all nodes v in Up(hi+1) we have u < v,

Copyright © 2024 by SIAM
Unauthorized reproduction of this article is prohibited



5. UndoInjury(pi+1, qi+1) being called implies f(mid(α)) > f(in(qi+1)) and
UndoInjury(pi+1, q

′
i+1) being called implies f(mid(α)) > f(in(q′i+1)),

6. UndoFatality(pi+1, qi+1) being called implies f(mid(α)) > f(in(q′i+1)) and
UndoFatality(pi+1, q

′
i+1) being called implies f(mid(α)) > f(in(qi+1)),

7. UndoScare(p̂i+1, qi+1) being called implies Bth(qi+1) = α, f(mid(α)) > f(in(q′i+1)) and
UndoScare(p̂i+1, q

′
i+1) being called implies Bth(q′i+1) = α, f(mid(α)) > f(in(qi+1)).

Proof. Assume that the conditions hold. We prove the claims for f(qi) < f(q′i) by considering separately the
three cases that the algorithm distinguishes. The case f(qi) > f(q′i) is symmetric.

Case 1 (f(pi) < f(p̂i) and pi = Bth(qi)): UndoInjury(pi, qi) is called, which removes nodes j with
f(j) < f(qi) from the mid-trail between α and dth(α) and inserts them into the in-trail between pi and qi,
specifically between the nodes in(qi) and qi.

We first prove that Up(gi) and Up(hi) satisfy Invariants 1 to 3. By assumption 1 these invariants holds for
Up(gi−1) and Up(hi−1). To see that they also hold for Up(hi), observe that removing maxima along with its
banana subtree does not affect the invariants. For Up(gi) we first show Invariant 3. Write j− and j+ for the
lowest and highest of the nodes are moved, respectively. That is, in Up(gi−1) j

− = mid(α) and j+ is the highest
node on the mid-trail between α and dth(α) such that f(j+) < f(qi). Write jq for in(qi) in Up(gi−1). In Up(gi)
these nodes are inserted such that j− = up(jq) and j+ = in(qi). By the assumption that f(mid(α)) > f(in(qi))
(assumption 5) we thus have f(dn(j−)) < f(j−) in Up(gi). Furthermore, f(j+) < f(up(j+)) = f(qi). By
assumption 4 and Invariant 3 for Up(hi−1) it holds in Up(gi) that dn(j−) < j− < up(j−) < · · · < dn(j+) < j+

and up(j+) = qi < j+. Thus Invariant 3 holds in Up(gi). To see that Invariant 1 is satisfied note that the j that
are inserted into Up(gi) satisfy qi < j by assumption 4. Since qi is on the right spine qi < pi = Bth(qi) and thus
the condition of Invariant 1 holds for qi and its ancestors. The nodes j gain descendants u in the same subtree
dn(j), and these nodes u satisfy u < j, again by assumption 4. Thus, these nodes j also satisfy the condition
for Invariant 1. For no other node do the subtrees change and thus Invariant 1 holds in Up(gi). Finally, we
prove Invariant 2 by analyzing the nodes for which the nodes at dth(low(·)) changes. These are the nodes v with
dth(v) = j for some moved node j. They originally have dth(low(v)) = α and this changes to dth(low(v)) = pi.
Assumption 2 that f(α) > f(pi) thus implies f(dth(low(v))) > f(α) > f(pi). This implies Invariant 2. In the
remainder of the proof for this case we assume Invariants 1 to 3 for Up(gi) and Up(hi).

The in-trail between α and dth(α) is empty at the beginning of the i-th iteration, is not modified by
UndoInjury and is thus also empty at the beginning of the next iteration. As q′i+1 = q′i and dth(α) = q′i
is unchanged it holds that α = Bth(q′i+1) at the beginning of the next iteration. If in the next iteration
f(qi+1) < f(q′i+1), then pi+1 = Bth(qi+1) = low(qi) = p̂i and p̂i+1 = low(qi+1). By Invariant 2 this implies
f(p̂i+1) < f(pi+1) < f(pi) < α, where the last inequality follows from assumption 2. Otherwise, if in the next
iteration f(qi+1) > f(q′i+1), then pi+1 = Bth(qi+1) = low(qi) (since Bth(q′i+1) = α) and p̂i+1 = low(q′i+1) =
low(q′i). By Invariant 2 and assumption 2 this implies f(p̂i+1) < f(α) and f(pi+1) < f(pi) < f(α). This
proves claim 2. Claim 3 follows immediately from the assumption 3: α was the last node on the left spine of
Up(hi−1) at the beginning of the iteration, and the removal of nodes from its mid-trail does not change that;
qi+1 = dth(low(qi)), which is on the right spine of Up(gi) since qi is on the right spine of Up(gi−1) and q′i+1 = q′i
is on the left spine of Up(hi) because q′i is on the left spine of Up(hi−1).

Since α is the last node on the left spine of Up(hi−1) and its in-trail is empty, the nodes that are moved to
Up(gi) are the leftmost nodes of Up(hi−1) other than α. Assumption 4 and the definition of α thus imply the
claim 4.

We now prove claims 5, 6 and 7. Recall that q′i+1 = qi+1 and q′i+1 = dth(low(qi)). In total there are six cases,
but only three can occur:

(i) f(qi+1) < f(q′i+1), f(pi+1) > f(p̂i+1) and pi+1 = Bth(qi+1)
=⇒ call to UndoInjury(pi+1, qi+1)

(ii) f(qi+1) > f(q′i+1), f(pi+1) > f(p̂i+1) and pi+1 = Bth(qi+1)
=⇒ call to UndoFatality(pi+1, q

′
i+1)

(iii) f(qi+1) > f(q′i+1), f(p̂i+1) > f(pi+1)
=⇒ call to UndoScare(p̂i+1, q

′
i+1)
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Since pi+1 = Bth(qi+1) ̸= α, if f(qi+1) < f(qi+1)
′, then UndoFatality will not be called. By Invariant 2 it also

holds that f(p̂i+1) < f(pi+1), which implies that UndoScare will not be called. Finally, Bth(q′i+1) = α implies
that if f(qi+1) > f(q′i+1), then UndoInjury will not be called. We analyze the three possible cases separately:

(i) f(qi+1) < f(q′i+1), f(pi+1) > f(p̂i+1) and pi+1 = Bth(qi+1) and UndoInjury(pi+1, qi+1) is called. We
have shown above that qi+1 is on the spine, as is qi, and thus qi+1 = dth(low(qi)) implies in(qi+1) = qi.
Since f(mid(α)) was not moved to Up(gi) and dth(α) = f(q′i) > f(qi) it follows that f(mid(α)) > f(qi) =
f(in(qi+1)).

(ii) f(qi+1) > f(q′i+1), f(pi+1) > f(p̂i+1) and pi+1 = Bth(qi+1) and UndoFatality(pi+1, q
′
i+1) is called. The

inequality f(mid(α)) > f(in(qi+1)) holds by the same argument as in the previous case.

(iii) f(qi+1) > f(q′i+1), f(p̂i+1) > f(pi+1) and UndoScare(p̂i+1, q
′
i+1) is called. Since q

′
i+1 = q′i and α = Bth(q′i)

it holds that α = Bth(q′i+1). The inequality f(mid(α)) > f(in(qi+1)) holds by the same argument as in the
other cases.

In all three cases the claims hold.

Case 2 (f(pi) < f(p̂i) and pi = Bth(q′
i)): UndoFatality(pi, qi) is called, which takes on the in-trail

between pi and q′i and the nodes j with f(j) < f(qi) on the mid-trail between pi and q′i and swaps them with
α = Bth(qi), such that the nodes formerly on the in-trail extend the mid-trail of qi and the nodes j extend the
in-trail of qi.

We first prove that Up(gi) and Up(hi) satisfy Invariants 1 to 3. By assumption 1 these invariants hold for
Up(gi−1) and Up(hi−1). To see that they also hold for Up(hi), observe that replacing a part of the banana (pi, q

′
i)

by α does not affect Invariants 1 and 3. By assumption 2 f(α) > f(pi) and thus f(α) > f(pi) > f(low(dth(α)),
where the second inequality follows from Invariant 2 for Up(hi−1). As low(dth(·)) changes for no other node
Invariant 2 also holds for Up(hi). Write j+ for the topmost node on the mid-trail between pi and q′i in Up(hi−1)
that is moved to Up(gi), and k+ for the topmost node on the in-trail between pi and q′i in Up(hi−1). As the
entire in-trail is moved to the left tree k+ = in(q′i) in Up(hi−1). Write mα for the node mid(α) in Up(gi−1). In
Up(gi) dn(mα) = k+. By assumption 6 we have f(mα) > f(k+), and by definition of j+ we have f(j+) < f(qi).
Furthermore, by assumption 4 it holds that mα < k+ and qi < j+. Since these are the only node where up(·)
and dn(·) pointers change it follows that Invariant 3 holds in Up(gi). To see that Invariant 1 is satisfied note
that the nodes u that are inserted into Up(gi) satisfy u > v for any node v that is already in this tree from the
previous iteration. With qi < Bth(qi) as qi is on the right spine and s < dn(s) for any node on the mid-trail
beginning at qi Invariant 1 follows. The nodes for which low(dth(·)) changes are those nodes t with dth(t) on
the mid-trail beginning at qi and the node pi. It changes from α to pi. By assumption 2 f(pi) < f(α), so
f(low(dth(t))) > f(α) > f(pi). Furthermore, for pi we have low(dth(pi)) = p̂i and they satisfy f(pi) > f(p̂). This
implies Invariant 2 for Up(gi) and concludes the proof of claim 1. In the remainder of the proof for this case we
assume Invariants 1 to 3 for Up(gi) and Up(hi).

After the iteration dth(α) = q′i. As the nodes on the in-trail beginning at q′i are removed, this trail is empty.
Since q′i+1 = q′i it holds that α = Bth(q′i+1). For the inequalities f(α) > f(pi+1) and f(α) > f(p̂i+1) we refer to
the proof for the previous case. It follows that claim 2 holds. The node q′i is on the left spine of Up(hi−1) and
thus q′i+1 = q′i is on the left spine of Up(hi). Since α = Bth(q′i+1) in Up(hi) it also follows that α is on the left
spine of Up(hi). Similarly, in Up(gi−1) and Up(gi) the node qi is on the right spine and thus qi+1 = dth(low(qi))
is also on the right spine. This proves claim 3. For the proof of claim 4 we again refer to the previous case, since
the proof is similar.

We now prove claims 5, 6 and 7. Again, in the next iteration only three out of six cases can occur:

(i) f(qi+1) < f(q′i+1), f(pi+1) > f(p̂i+1) and p = Bth(qi+1)
=⇒ call to UndoInjury(pi+1, qi+1)

(ii) f(qi+1) > f(q′i+1), f(pi+1) > f(p̂i+1) and p = Bth(qi+1)
=⇒ call to UndoFatality(pi+1, q

′
i+1)

(iii) f(qi+1) > f(q′i+1), f(p̂i+1) > f(pi+1)
=⇒ call to UndoScare(p̂i+1, q

′
i+1)
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Note that these are the same cases as in Case 1. The proof that the remaining three cases cannot occur is identical.
The remainder of the proof is also similar to the proof in case 1:

(i) f(qi+1) < f(q′i+1), f(pi+1) > f(p̂i+1) and p = Bth(qi+1) and UndoInjury(pi+1, qi+1) is called. Again, qi+1

and qi are on the spine and thus in(qi+1) = qi. f(mid(α)) is one of the nodes that have not been moved
from the mid-trail, and thus f(mid(α)) > f(qi) = f(in(qi+1)).

(ii) f(qi+1) > f(q′i+1), f(pi+1) > f(p̂i+1) and p = Bth(qi+1) and UndoFatality(pi+1, q
′
i+1) is called. The

inequality f(mid(α)) > f(in(qi+1)) holds by the same argument as in the previous case.

(iii) f(qi+1) > f(q′i+1), f(p̂i+1) > f(pi+1) and UndoScare(p̂i+1, q
′
i+1) is called. As before α = Bth(q′i) =

Bth(q′i+1). The inequality f(mid(α)) > f(in(qi+1) holds as shown in the other cases.

This proves claims 5, 6 and 7.

Case 3 (f(p̂i) < f(pi)): UndoScare(p̂i, qi) is called, which sets f(α) = f(p̂i) − ε and then performs an
interchange of minima. Note that α = Bth(qi), as f(pi) < f(p̂i), which by Invariant 2 for Up(gi) cannot be if
pi = Bth(qi). Thus, α ̸= Bth(q′i) and by assumption 2 this implies α = Bth(qi). Claim 4 follows directly from
assumption 4, as the contents of the trees do not change. Invariants 1 to 3 immediately follow for Up(gi) from
the correctness of the interchange of minima. As Up(hi) = Up(hi−1) these invariants hold Up(hi) by assumption
1. In the remainder of the proof for this case we assume Invariants 1 to 3 for Up(gi) and Up(hi).

The in-trail between α and dth(α) is empty in Up(gi−1) by assumption 2. As dth(α) = qi is on a spine
the in-trail remains empty after the interchange of minima. The interchange also results in dth(α) = qi+1 in
Up(gi). If f(qi+1) < f(qi+1)

′, then pi+1 = Bth(q′i+1) = Bth(q′i) = pi. As f(pi) < f(p̂i) and ε is defined to
be sufficiently small it follows that f(pi+1) < f(α). Furthermore, f(p̂i+1) < f(α) by Invariant 2. Otherwise, if
f(qi+1) > f(qi+1)

′, then pi+1 = Bth(q′i+1) = Bth(q′i) = pi, which we have just shown to satisfy f(pi+1) < f(α).
By Invariant 2 f(p̂i+1) < f(pi+1), which implies f(p̂i+1) < f(α). This proves claim 2.

The node qi+1 is on the spine since it is already on the spine in Up(gi−1) and the interchange of minima does
not change its ancestors. The node α remains on the spine since its in-trail remains empty and qi+1 = dth(α) is
on the left spine in Up(gi+1). Since it is also a leaf it is the last node on the spine. Finally, q′i+1 is on the spine
since q′i+1 = q′i. This proves 3.

It remains to prove claims 5, 6 and 7. Again, in the next iteration only three out of six cases can occur:

(i) f(qi+1) < f(q′i+1), f(pi+1) > f(p̂i+1) and pi+1 = Bth(q′i+1)
=⇒ call to UndoFatality(pi+1, qi+1)

(ii) f(qi+1) < f(q′i+1), f(p̂i+1) > f(pi+1)
=⇒ call to UndoScare(p̂i+1, qi+1)

(iii) f(qi+1) > f(q′i+1), f(pi+1) > f(p̂i1) and pi+1 = Bth(q′i+1)
=⇒ call to UndoInjury(pi+1, q

′
i+1)

Since Bth(qi+1) = α we cannot have pi+1 = Bth(qi+1) and thus if f(qi+1) < f(q′i+1) then UndoInjury is
not called. If f(qi+1) > f(q′i+1) then f(pi+1) > f(p̂i+1) by Invariant 2, and so UndoScare is not called.
UndoFatality is not called in this case as pi+1 = Bth(q′i+1). We now analyze the three possible cases:

(i) f(qi+1) < f(q′i+1), f(pi+1) > f(p̂i+1) and pi+1 = Bth(q′i+1) and UndoFatality(pi+1, qi+1) is called. The

node mid(α) is the same in Up(gi−1) and Up(gi). Furthermore in(qi+1)
′
= in(q′i), as Up(hi) = Up(hi−1).

The assumption that f(mid(α)) > f(in(q′i) thus implies f(mid(α)) > f(in(q′i+1)).

(ii) f(qi+1) < f(q′i+1), f(p̂i+1) > f(pi+1) and UndoScare(p̂i+1, qi+1) is called. We have shown above that
dth(α) = qi+1 which implies α = Bth(qi+1).

(iii) f(qi+1) > f(q′i+1), f(pi+1) > f(p̂i1) and pi+1 = Bth(q′i+1) and UndoInjury(pi+1, q
′
i+1) is called. The

inequality f(mid(α)) > f(in(q′i+1)) holds by the same argument as in the first case.

This concludes the proof of the inductive step.
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Theorem B.2. (Correctness of Glue) Given two lists of items and corresponding maps g and h Glue
applied to Up(g) and Up(h) yields the up-tree Up(f) = Up(g · h).

Proof. We show by induction over the iterations of Glue that at the beginning of the i-th iteration it holds that

1. Up(gi−1) and Up(hi−1) satisfy Invariants 1 to 3,

2. the in-trail between α and dth(α) is empty, α ∈ {Bth(qi),Bth(q′i)}, f(α) > f(p̂i), f(α) > f(pi),

3. α is the last node on the right spine of Up(gi−1) or on the left spine of Up(hi−1), qi is on the right spine of
Up(gi−1) and q′i is on the left spine of Up(hi−1)

4. for all nodes u in Up(gi) and all nodes v in Up(hi) we have u < v,

5. UndoInjury(pi, qi) being called implies f(mid(α)) > f(in(qi)) and
UndoInjury(pi, q

′
i) being called implies f(mid(α)) > f(in(q′i)),

6. UndoFatality(pi, qi) being called implies f(mid(α)) > f(in(q′i)) and
UndoFatality(pi, q

′
i) being called implies f(mid(α)) > f(in(qi)),

7. UndoScare(p̂i, qi) being called implies Bth(qi) = α, f(mid(α)) > f(in(q′i)) and
UndoScare(p̂i, q

′
i) being called implies Bth(q′i) = α, f(mid(α)) > f(in(qi)).

Lemma B.3 proves the base case for the first iteration i = 1, and the induction step is in Lemma B.4. We assume
these claims for all iterations.

We now show that there exists an iteration after which one tree is empty. Assume that the global maximum
of h has greater value than the global maximum of g and both trees have nodes other than the special root and α.
The case where the global maximum of g has greater value than that of h is symmetric. Consider any iteration
I in which f(q′I) > f(u) for any u ̸= βg in Up(gI−1) and qI = βg. Since in some iteration q′I = βh this iteration
exsists. In this iteration f(q′I) < f(qI), either since qI is a special root and q′I is not, or since f(βh) < f(βg) by
definition. We distinguish two cases: q′I ̸= βh and qI = βh.

q′I ̸= βh: There are three cases to consider: (1) Bth(q′I) ̸= α and pI = Bth(q′I); (2) Bth(q
′
I) = α and f(pI) > f(p̂I);

(3) Bth(q′I) = α and f(p̂I) > f(pI). In case (1) f(pI) > f(p̂I) by Invariant 2 and thus UndoInjury(pI , q
′
I)

is called. In case (2) UndoFatality(pI , q
′
I) is called. In case (3) UndoScare(p̂I , q

′
I) is called. If case

(1) occurs, then α = Bth(qI) = Bth(βg), the in-trail between α and βg is empty, and all nodes from the
mid-trail between α and βg are moved to Up(hI). This leaves in(βg) = mid(βg) = α and thus the loop
terminates. If case (2) occurs, then pI = Bth(qI) = Bth(βg) and all nodes on trails between pI and βg

except βg are moved to Up(hI), and α is moved to Up(gI) such that in(βg) = mid(βg) = α. Thus, the loop
terminates. In case (3) f(α) is set to f(p̂I)−ε and an interchange of minima between α and p̂I is performed.
Thus, both trees are not empty. However, q′I+1 = up(qI) is the next node upwards on the spine towards βh

and the next iteration is another iteration where f(q′I) > f(u) for all u ̸= βg ∈ Up(gi).

q′I = βh: This case is eventually reached, since the q′i move upwards on the spine to βh. We have defined
f(βh) < f(βg). There are again three cases to consider: (1) Bth(q′I) ̸= α and pI = Bth(q′I); (2) Bth(q

′
I) = α

and f(pI) > f(p̂I); (3) Bth(q
′
I) = α and f(p̂I) > f(pI). These are the same cases as above and in case (1)

and (2) the loop terminates with in(βg) = mid(βg) = α, as above. The third case, where f(p̂I) > f(pI),
cannot occur since we defined f(p̂I) = f(low(βh)) = f(nil) = −∞. Thus, when q′I = βh, the algorithm
terminates.

The choice that f(βh) < f(βg) is arbitrary and we could have also chosen f(βg) < f(βh). In this case we would
get three symmetric cases for q′I = βh with the same outcome.

Once the loop terminates after iteration I∗ with in(βg) = mid(βg) = α, the tree Up(hI∗) contains all items
from Up(g) and Up(h) except for the dummy α. Thus, Up(hI∗) = Up(g · h), which concludes the proof.
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