
Map matching queries on realistic input graphs under the Fréchet

distance

JOACHIM GUDMUNDSSON, University of Sydney, Australia

MARTIN P. SEYBOLD, University of Vienna, Austria

SAMPSON WONG, University of Copenhagen, Denmark

Map matching is a common preprocessing step for analysing vehicle trajectories. In the theory community, the most popular

approach for map matching is to compute a path on the road network that is the most spatially similar to the trajectory,

where spatial similarity is measured using the Fréchet distance. A shortcoming of existing map matching algorithms under

the Fréchet distance is that every time a trajectory is matched, the entire road network needs to be reprocessed from scratch.

An open problem is whether one can preprocess the road network into a data structure, so that map matching queries can be

answered in sublinear time.

In this paper, we investigate map matching queries under the Fréchet distance. We provide a negative result for geometric

planar graphs. We show that, unless SETH fails, there is no data structure that can be constructed in polynomial time that

answers map matching queries in O((pq)1−δ) query time for any δ > 0, where p and q are the complexities of the geometric

planar graph and the query trajectory, respectively. We provide a positive result for realistic input graphs, which we regard as

the main result of this paper. We show that for c-packed graphs, one can construct a data structure of Õ(cp) size that can

answer (1+ ε)-approximate map matching queries in Õ(c4q log4 p) time, where Õ(·) hides lower-order factors and dependence

on ε .

CCS Concepts: · Theory of computation → Design and analysis of algorithms.

Additional Key Words and Phrases: Computational geometry, Approximation algorithms, Map matching, Fréchet distance.

1 INTRODUCTION

Location-aware devices have enabled the tracking of vehicle trajectories. In urban environments, vehicle

trajectories align with an underlying road network. However, imprecision in the Global Positioning System

introduces errors into the trajectory data. Map matching aims to mitigate the efects of these errors by computing

a path on the underlying road network that best represents the vehicle’s trajectory. See Figure 1.

Map matching is a common preprocessing step for analysing vehicle trajectories. As such, numerous map

matching algorithms have been proposed across multiple communities (e.g. in the Urban Planning, Geographic

Information Systems, and Databases communities). Map matching was the focus of the 2012 ACM SIGSPATIAL

Cup [4]. For an overview of the extensive literature on map matching, see the surveys [17, 41, 43, 45, 52, 56]. In

the theory community, by far the most popular approach is to embed the road network and the trajectory into

A preliminary version of this article appeared in the proceedings of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023.

Authors’ addresses: Joachim Gudmundsson, joachim.gudmundsson@sydney.edu.au, University of Sydney, Sydney, Australia; Martin P.

Seybold, martin.seybold@univie.ac.at, University of Vienna, Vienna, Austria; Sampson Wong, sawo@di.ku.dk, University of Copenhagen,

Copenhagen, Denmark.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1549-6325/2024/1-ART

https://doi.org/10.1145/3643683

ACM Trans. Algor.

HTTPS://ORCID.ORG/0000-0002-6778-7990
HTTPS://ORCID.ORG/0000-0001-6901-3035
HTTPS://ORCID.ORG/0000-0003-3803-3804
https://orcid.org/0000-0002-6778-7990
https://orcid.org/0000-0001-6901-3035
https://orcid.org/0000-0001-6901-3035
https://orcid.org/0000-0003-3803-3804
https://doi.org/10.1145/3643683
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3643683&domain=pdf&date_stamp=2024-01-30

2 • Gudmundsson, Seybold and Wong

Fig. 1. A road network (black), a noisy trajectory (red), and its matched path (blue).

the Euclidean plane, and to compute a path on the road network that is the most spatially similar to the trajectory

[5, 8, 16, 18, 39, 49, 53], where spatial similarity is measured using the Fréchet distance [6]. Formally, the map

matching problem under the Fréchet distance is deined as follows.

Problem 1 (Map matching). Given a graph P and a trajectoryQ in the plane, compute a path π in P that minimises

dF (π ,Q), where dF (·, ·) denotes the Fréchet distance.

In a seminal paper by Alt, Efrat, Rote and Wenk [5], the authors study Problem 1 on geometric planar graphs.

They provide anO(pq logp) time algorithm, where p is the complexity of the graph and q is the complexity of the

trajectory. Their idea is to construct a free space surface, which is a generalisation of the free space diagram [6],

and then to perform a sweep line algorithm where a set of reachable points is maintained at the sweep line’s

current position.

Alt et al. [5]’s algorithm forms the basis of several existing implementations [8, 18, 49, 51, 53]. Brakat-

soulas et al. [8] implement Alt et al. [5]’s algorithm and experimentally compare it to a linear-time heuristic and

an algorithm minimising the weak Fréchet distance. In their experiments, forty-ive vehicle trajectories, each

with approximately one hundred edges, are mapped onto an underlying road network with approximately ten

thousand edges. Their experiments conclude that of the three algorithms, Alt et al. [5]’s provides the best map

matching results but is the slowest. Subsequent papers focus on improving the practical running time of the

algorithm [49, 53]. We show that a signiicantly faster algorithm for geometric planar map matching is unlikely

to exist, unless SETH fails.

Traditional analysis focuses on worst case instances, which are unlikely to occur in practice. By making realistic

input assumptions, we can circumvent these worst-case instances, and provide bounds that better relect running

time on realistic input. In computational movement analysis, the most popular realistic input assumption is

c-packedness. A set of edges is c-packed if the total length of edges inside any ball is at most c times the radius of

the ball. Given two c-packed trajectories of complexity n, one can (1 + ε)-approximate their Fréchet distance

in O(cε−1/2 log(1/ε)n + cn logn) time [11, 26], circumventing the Ω(n2−δ) lower bound for all δ > 0 implied by

SETH [9, 14].

Chen, Driemel, Guibas, Nguyen and Wenk [18] study map matching on realistic input graphs and realistic

input trajectories. They provide a (1 + ε)-approximation algorithm that runs in O((p + q) log(p + q) + (ϕq +

cp) logpq log(p + q) + (ϕε−2q + cε−1p) log(pq)) time, where the graph is ϕ-low-density and has complexity p, and

the trajectory is c-packed and has complexity q. A graph is ϕ-low-density if, for any ball of radius r , the number of

edges with length at least r that intersect the ball is at most ϕ. Note that a c-packed graph is 2c-low-density [26].

Chen et al. [18] implement their algorithm to map trajectories, each with at most one hundred edges, onto an

underlying road network with approximately one million edges. Their experiments show signiicant running

ACM Trans. Algor.

Map matching queries on realistic input graphs under the Fréchet distance • 3

time improvements compared to previous work. On large road networks, their map matching algorithm runs in

under a second, whereas previous algorithms [8, 53] require several hours.

For both general graphs and realistic input graphs, a shortcoming of the existing map matching algorithms

is that, every time a trajectory is matched, the entire road network needs to be reprocessed from scratch. This

is relected in the linear dependence on p in the running times of Alt et al. [5] and Chen et al. [18], where p is

the complexity of the input graph. If we were to build a data structure for eicient map matching queries, then

we would remove the need to reprocess the graph every time a new trajectory is mapped. Formally, the query

version of the map matching problem is given below.

Problem 2 (Map matching queries). Given a graph P in the plane, construct a data structure so that given a query

trajectory Q in the plane, the data structure returns minπ dF (π ,Q), where π ranges over all paths in P and dF (·, ·)

denotes the Fréchet distance.

To the best of our knowledge, our paper is the irst to study map matching queries under the Fréchet distance.

Obtaining a data structure for Problem 2 with query time that is sublinear in the complexity of the graph is stated

as an open problem in [18] and in [39].

1.1 Contributions

In this paper, we investigate map matching queries under the Fréchet distance. An open problem proposed

independently by [18] and [39] asks whether it is possible to preprocess a graph into a data structure so that map

matching queries can be answered in sublinear time.

We provide a negative result in the case of geometric planar graphs. We show that, unless SETH fails, there is

no data structure that can be constructed in polynomial preprocessing time, that answers map matching queries

in O((pq)1−δ) query time for any δ > 0, where p and q are the complexities of the graph and the query trajectory,

respectively. Our negative result shows that preprocessing does not help for geometric planar map matching.

We provide the irst positive result in the case of realistic input graphs. Our data structure has near-linear size

in terms of p, and its query time is polylogarithmic in terms of p. We consider the following theorem to be the

main result of our paper.

Theorem 3. Given a c-packed graph P of complexity p, one can construct a data structure of O(p log2 p +

cε−4 log(1/ε)p logp) size, so that given a query trajectory Q of complexity q, the data structure returns in O(q logq ·

(log4 p + c4ε−8 log2 p)) query time a (1 + ε)-approximation of minπ dF (π ,Q) where π ranges over all paths in P and

dF (·, ·) denotes the Fréchet distance. The preprocessing time is O(c2ε−4 log2(1/ε)p2 log2 p).

The most closely related results are [18] and [39]. We briely compare the realistic input assumptions of these

related works to our result. In Chen et al. [18], the graph is ϕ-low-density and the trajectory is c-packed. In

Gudmundsson and Smid [39], the graph is a c-packed tree with long edges, and the trajectory has long edges. In

our result, the graph is c-packed, but surprisingly, we require no input assumptions on the query trajectory.

1.2 Related work

The Fréchet distance is a popular similarity measure for trajectories. To compute the Fréchet distance be-

tween a pair of trajectories of complexity n, Alt and Godau [6] provide an O(n2 logn) time algorithm, which

Buchin et al. [12] improve to an O(n2
√

logn(log logn)3/2) algorithm. Conditioned on the Strong Exponential

Time Hypothesis (SETH), for all δ > 0, Bringmann [9] shows an Ω(n2−δ) lower bound for computing the Fréchet

distance in two or more dimensions. Buchin et al. [14] generalise the lower bound to one or more dimensions.

Variants of Problem 1 have been considered. Seybold [48] and Chambers et al. [16] consider inding the shortest

map matching paths in geometric graphs. Chen et al. [20] study map matching under the weak Fréchet distance,

whereas Wylie and Zhu [55] and Fu et al. [35] consider map matching under the discrete Fréchet distance.

ACM Trans. Algor.

4 • Gudmundsson, Seybold and Wong

Wei et al. [51] and Chen et al. [20] combine the Fréchet distance approach with a Hidden Markov Model approach

to obtain a hybrid algorithm.

A problem closely related to Problem 2 is to preprocess a trajectory for Fréchet distance queries. Driemel

and Har-Peled [25] preprocess a trajectory Z of complexity n in O(n log3 n) time and O(n logn) space, so that

given a query trajectory Q with complexity k , and a query subtrajectory Z [u,v] where u and v are points on Z ,

one can return in O(k2 logn log(k logn)) time a constant factor approximation of the Fréchet distance between

Z [u,v] andQ . In this paper we show that, even with polynomial time preprocessing time on the trajectory Z , one

cannot hope to answer Fréchet distance queries in truly subquadratic time, unless SETH fails. As such, special

cases have been considered. For k = 2, one can answer (1 + ε)-approximate [25] or exact [15, 23, 40] queries

in polylogarithmic query time, by constructing a data structure of subquadratic size. Discrete Fréchet distance

queries for small values of k have been studied [28, 32, 34]. Data structures that preprocess realistic (c-packed or

κ-straight) curves for Fréchet distance queries have also been studied [29, 50].

Gudmundsson and Smid [39] preprocess a c-packed tree for Fréchet distance queries. We regard this to be

one of the most relevant results to our work. Given a c-packed tree T , and a positive real number ∆, the authors

show how to construct a data structure of size O(cn) in O(n log2 n + cn logn) preprocessing time, so that given a

polygonal curve Q with k vertices, one can decide in O(c4k log2 n) time whether there exists a path π ∈ T so that

dF (π ,Q) ≤ 3.001 · ∆, or that dF (π ,Q) > ∆ for all paths π ∈ T , where dF (·, ·) denotes the Fréchet distance. The

authors assume that the edges of T and Q have length Ω(∆). Since ∆ is ixed at preprocessing time, it is unclear

whether it is possible to minimise the Fréchet distance to solve Problem 2.

Related structures that have received considerable attention include range searching and approximate nearest

neighbour searching under the Fréchet distance [3, 7, 10, 13, 22, 27, 31, 33, 37, 42].

2 PRELIMINARIES

Let P = (V ,E) be an undirected graph embedded in the Euclidean plane R2. An edge uv ∈ E is a segment between

u,v ∈ V , with length equal to the Euclidean distance, i.e. |uv | = d(u,v). Let p = |V | + |E | be the complexity

of the graph P . We assume that P is connected, otherwise, our map matching queries can be handled for each

connected component independently. A path π ∈ P is deined to be a sequence of vertices u1, . . . ,uk ∈ V so that

uiui+1 ∈ E for all 1 ≤ i < k . In particular, for the purposes of this paper we consider only paths π in P that start

and end at vertices of P . Given a pair of vertices u,v ∈ P , the graph metric dP is deined so that dP (u,v) equals

the total length of the shortest path between u and v in the graph P . The graph P is c-packed if, for every ball

Br of radius r in the Euclidean plane, the total length of edges in E inside Br is upper bounded by cr . Formally,
∑

e ∈E |e ∩ Br | ≤ cr .

A trajectory is a sequence of vertices in the Euclidean plane. Given vertices a1, . . . ,aq , the polygonal curveQ is

a piecewise linear function Q : [1,q] → R2 satisfying Q(i) = ai for all 1 ≤ i ≤ q, and Q(i + µ) = (1 − µ)ai + µai+1
for all integers 1 ≤ i ≤ q − 1 and reals 0 ≤ µ ≤ 1. Let Γ(q) be the space of all continuous non-decreasing surjective

functions for [0, 1] → [1,q]. For a pair of polygonal curves Q1 and Q2 of complexities n1 and n2, we deine the

Fréchet distance between Q1 and Q2 to be dF (Q1,Q2) = inf (α1,α2)∈Γ(n1)×Γ(n2) maxµ ∈[0,1] d(Q1(α1(µ)),Q2(α2(µ))),

where d(·, ·) denotes the Euclidean distance.

Let 0 < ε < 1 be a constant that is ixed at preprocessing time.

3 TECHNICAL OVERVIEW

In Section 3.1, we give an overview of our data structure for map matching queries on c-packed graphs. In

Section 3.2, we give an overview of our lower bound for map matching queries on geometric planar graphs. Full

proofs are provided in Sections 4-7.

ACM Trans. Algor.

Map matching queries on realistic input graphs under the Fréchet distance • 5

3.1 Data structure for c-packed graphs

Our data structure for c-packed graphs is built in three stages. In Stage 1, we construct a data structure for

straightest path queries, which we will deine in due course. In Stage 2, we construct a data structure for map

matching queries, in the special case that the trajectory is a segment. In Stage 3, we construct a data structure

for map matching queries in general. Each stage builds upon and generalises the previous stage. We provide an

overview of Stages 1, 2 and 3 in Sections 3.1.1, 3.1.2 and 3.1.3 respectively.

3.1.1 Stage 1: Straightest path queries. For every pair of vertices in the graph, we are interested in precomputing

a path between them that is as straight as possible. We deine straightness using the Fréchet distance. Formally,

given a pair of vertices u and v , we deine a straightest path between u and v to be a path π ∈ P between u

and v that minimises the Fréchet distance dF (π ,uv). This leads us to the following deinition for straightest path

queries.

Subproblem 4 (Straightest path queries). Given a graph P in the plane, construct a data structure so that given

any pair of vertices u,v ∈ P , the data structure returns minπ dF (π ,uv) where π ranges over all paths in P between u

and v . See Figure 2.

δF

u v

π

P

Fig. 2. Given a pair of query vertices u,v (red), the data structure in Subproblem 4 returns minπ dF (π ,uv) (orange) where π

ranges over all paths between u and v (blue) in the graph P (black).

Note that Subproblem 4 can be viewed as a special case of map matching queries, where the query trajectory

must be a segment between two graph vertices, and the path must connect the endpoints of the query segment.

A naïve way to answer straightest path queries is, for every pair of vertices, to precompute the Fréchet distance

for its straightest path. Unfortunately, storing the precomputed Fréchet distance for all pairs of vertices requires

Ω(p2) space.

Instead, we use a semi-separated pair decomposition [1] to reduce the number of pairs we need to consider.

We deine the transit vertices of a semi-separated pair to be a set of vertices so that any path between the two

components of the semi-separated pair must pass through at least one of the transit vertices. We deine the set

of transit pairs of a semi-separated pair to be pairs of vertices where one vertex is in the semi-separated pair,

and one vertex is a transit vertex. For c-packed graphs, we show that there are at most O(cp logp) transit pairs.

By storing the minimum Fréchet distance for each transit pair, we reduce the storage requirement of our data

structure to O(cp logp).

Finally, we answer straightest path queries by dividing the path u → v into two paths. Speciically, we divide

u → v into u → w → v , where w is a transit vertex of the semi-separated pair separating u and v . Having

precomputed the minimum Fréchet distance for transit pairs (u,w) and (w,v), we use these Fréchet distances to

obtain a constant factor approximation for the Fréchet distance of the straightest path between u and v .

Putting this all together, we obtain Theorem 5. For a full proof see Section 4.

ACM Trans. Algor.

6 • Gudmundsson, Seybold and Wong

Theorem 5. Given a c-packed graph P of complexity p, one can construct a data structure of O(cp logp) size, so

that given a pair of query vertices u,v ∈ P , the data structure returns in O(logp) query time a 3-approximation of

minπ dF (π ,uv), where π ranges over all paths in P between u and v . The preprocessing time is O(cp2 log2 p).

3.1.2 Stage 2: Map matching segment queries. Our next step is to answer map matching queries where the query

trajectory is an arbitrary segment.

Subproblem 6 (Map matching segment queries). Given a graph P in the plane, construct a data structure so that

given a query segment Q in the plane, the data structure returnsminπdF (π ,Q) where π ranges over all paths in P

that start and end at a vertex of P . See Figure 3.

δFπ Q

P

Fig. 3. Given a query segment Q (red), the data structure in Subproblem 6 returns minπ dF (π ,Q) (orange) where π ranges

over all paths (blue) in the graph P (black).

Subproblem 6 can be viewed as a generalisation of Subproblem 4, where the endpoints of the segment Q are

not necessarily graph vertices, and the starting and ending points of the path are not given and must instead be

computed. To answer map matching segment queries, we combine two data structures. The irst data structure

is an extension of the data structure in Theorem 5, which we modify to handle query segments that do not

necessarily have their endpoints at graph vertices. The second data structure is to build a simpliication of the

c-packed graph so that one can eiciently query the starting and ending points of the path.

To build our irst data structure, we use the result of Driemel and Har-Peled [25], which states that one can

preprocess a trajectory in near-linear time and space, so that given a query segment, one can (1 + ε)-approximate

the Fréchet distance from the query segment to any subcurve of the trajectory in constant time. Let ε > 0 and

χ = ε−2 log(1/ε). By combining Theorem 5 with their result, we obtain a data structure of O(c χ 2p logp) size, so

that given a pair of query vertices u,v ∈ P and a query segment ab in the plane, the data structure returns in

O(logp + cε−1) time a (1 + ε)-approximation of minπ dF (π ,ab), where π ranges over all paths in P between u

and v . The preprocessing time is O(c χ 2p2 log2 p).

To build our second data structure, we use graph clustering to simplify the c-packed graph. We irst consider

the decision version of the problem. Given a Fréchet distance r , we guarantee that all edges in our simpliied

graph have length at least εr . By c-packedness, the number of simpliied graph vertices inside a disk of radius r is

at most a constant. Given a query segment ab, this reduces the number of candidate starting and ending points of

the matched path to a constant. We use an orthogonal range searching data structure to eiciently query for the

candidate starting and ending points of the path. Finally, we apply parametric search to minimise the Fréchet

distance r .

By combining our two data structures, we obtain Theorem 7. For a full proof see Section 5.

Theorem 7. Given a c-packed graph P of complexity p, one can construct a data structure of O(cε−4 log2(1/ε) ·

p logp) size, so that given a query segment ab in the plane, the data structure returns in O(c4ε−4 · log2 p) time a

ACM Trans. Algor.

Map matching queries on realistic input graphs under the Fréchet distance • 7

(1 + ε)-approximation of minπ dF (π ,ab), where π ranges over all paths in P that start and end at a vertex of P . The

preprocessing time is O(cε−4 log2(1/ε) · p2 log2 p).

3.1.3 Stage 3: Map matching queries. Finally, we consider general map matching queries, which we restate for

convenience. See Figure 4.

Problem 2 (Map matching queries). Given a graph P in the plane, construct a data structure so that given a query

trajectory Q in the plane, the data structure returns minπ dF (π ,Q), where π ranges over all paths in P and dF (·, ·)

denotes the Fréchet distance.

δF

Q

P

π

Fig. 4. Given a query trajectory Q (red), the data structure in Problem 2 returns minπ dF (π ,Q) (orange) where π ranges over

all paths (blue) in the graph P (black).

Let the vertices of Q be a1, . . . ,aq , and let the Fréchet distance for the decision version be r . We compute a

set of points Ti that ai can match to. Each point bi, j ∈ Ti is either a vertex of P , or a point along an edge of P .

The size of Ti is at most a constant, depending on c and ε . For a point bi, j that is a vertex of P , we construct it in

the same way as in Stage 2. For a point bi, j that is on an edge of P , we construct it by sampling along the edges

of P that have length at least εr/2 and are within a distance of r to ai . To eiciently query the edges of P with

these two properties, we build a three-dimensional low-density environment and use the range searching data

structure of Schwarzkopf and Vleugels [47].

The inal step is to build a directed graph on the set of points ∪
q
i=1Ti . For each bi, j ∈ Ti and bi+1,k ∈ Ti+1, we use

the map matching segment query from the previous section to compute a (1 + ε)-approximation of the minimum

Fréchet distance minπ (π ,aiai+1) where π ranges over all paths between bi, j and bi+1,k . We set the capacity of

the directed edge from bi, j to bi+1,k to be this minimum Fréchet distance. We decide whether there is a directed

path from a point in T1 to a point in Tq so that the capacities of all edges on the directed path are at most (1 + ε)r .

Finally, we use parametric search to minimise r .

Putting this all together, we obtain Theorem 3, which we restate for convenience. For a full proof see Section 6.

Theorem 3. Given a c-packed graph P of complexity p, one can construct a data structure of O(p log2 p +

cε−4 log(1/ε)p logp) size, so that given a query trajectory Q of complexity q, the data structure returns in O(q logq ·

(log4 p + c4ε−8 log2 p)) query time a (1 + ε)-approximation of minπ dF (π ,Q) where π ranges over all paths in P and

dF (·, ·) denotes the Fréchet distance. The preprocessing time is O(c2ε−4 log2(1/ε)p2 log2 p).

3.2 Lower bound for geometric planar graphs

In the inal section, we investigate lower bounds for map matching queries on graphs that are not c-packed. Our

lower bounds attempt to explain why answering map matching queries is such a diicult problem in general.

In particular, we show that unless SETH fails, there is no data structure that can be constructed in polynomial

ACM Trans. Algor.

8 • Gudmundsson, Seybold and Wong

preprocessing time, that answers map matching queries on geometric planar graphs in truly subquadratic time.

Note that the upper bound of Alt et al. [5] matches this lower bound up to lower-order factors, which implies

that preprocessing does not help for geometric planar map matching, unless SETH fails.

To build towards our lower bound for map matching queries, we consider a warm-up problem, which is to

preprocesses a trajectory, so that given a query trajectory, the data structure can eiciently answer the Fréchet

distance between the query trajectory and the preprocessed trajectory. Buchin et al. [15] claim that this is an

extremely diicult problem, which is why the special case of query segments is considered in their paper. We

provide evidence towards Buchin et al.’s [15] claim. We show that preprocessing does not help with Fréchet

distance queries on trajectories unless SETH fails. In particular, there is no data structure with polynomial

preprocessing time that can answer Fréchet distance queries signiicantly faster than computing the Fréchet

distance without preprocessing. To show our lower bound, we modify Bringmann’s [9] construction to answer

the oline version of the data structure problem in a similar fashion to Rubinstein [46], Driemel and Psarros [28]

and Bringmann et al. [10].

Next, we prove a lower bound for Problem 1. We show that unless SETH fails, there is no truly subquadratic

time for map matching on geometric planar graphs. This shows that the algorithm by Alt et al. [5] for geometric

planar map matching is optimal up to lower-order factors, unless SETH fails. Finally, we combine the ideas from

our warm-up problem and our lower bound for Problem 1 to rule out truly subquadratic query times for map

matching queries on geometric planar graphs, unless SETH fails.

Putting this all together, we obtain Theorem 8. For a full proof see Section 7.

Theorem 8. Given a geometric planar graph of complexity p, there is no data structure that can be constructed

in poly(p) time, that when given a query trajectory of complexity q, can answer 2.999-approximate map matching

queries in O((pq)1−δ) query time for any δ > 0, unless SETH fails. This holds for any polynomial restrictions of p

and q.

This completes the overview of the main results of our paper.

4 STAGE 1: STRAIGHTEST PATH QUERIES

The irst stage of our data structure for c-packed graphs is to construct a straightest path query data structure.

Recall that the straightest path between u and v is a path π ∈ P from u to v that minimises the Fréchet distance

dF (π ,uv). A data structure for straightest path queries is deined as follows. Given a pair of query verticesu andv ,

the data structure returns the minimum Fréchet distance dF (π ,uv) where π ranges over all paths between u

and v . As stated in the technical overview, we avoid storing a quadratic number of Fréchet distances by using a

semi-separated pair decomposition (SSPD) to reduce the number of pairs of vertices we need to consider.

Deinition 9 (SSPD). Let V be a set of vertices. A semi-separated pair decomposition of V with separation constant

s ∈ R+ is a collection {(Ai ,Bi)}
k
i=1 of pairs of non-empty subsets of V so that

min(diameter(Ai), diameter(Bi)) ≤ s · d(Ai ,Bi),

and for any two distinct points u and v of V , there is exactly one pair (Ai ,Bi) in the collection, such that (i) u ∈ Ai

and v ∈ Bi , or (ii) v ∈ Ai and u ∈ Bi .

Note that for sets A,B, we deine d(A,B) = min(a,b)∈A×B d(a,b), where d(a,b) denotes the Euclidean distance.

The total weight of {(Ai ,Bi)}
k
i=1 is deined as

∑k
i=1(|Ai | + |Bi |). Abam et al. [1] show how to construct an SSPD

of V with separation constant s in O(ns−2 + n logn) time, that has O(ns−2) pairs, and total weight O(ns−2 logn),

where n is number of vertices in V .

Although not explicitly stated in [1], given any two distinct points u and v of V , one can query the SSPD

in O(logn) time to retrieve the pair (Ai ,Bi) satisfying either (i) u ∈ Ai and v ∈ Bi or (ii) v ∈ Ai and u ∈ Bi .

ACM Trans. Algor.

Map matching queries on realistic input graphs under the Fréchet distance • 9

We provide a sketch of the query procedure. The SSPD in [1] is constructed using a Balanced Aspect Ratio

(BAR) tree [30], where each node in the balanced tree has an associated weight class. Each leaf of the BAR tree

is associated with a point in V , and has a weight class of O(logn). Given any two distinct points u and v , we

simultaneously traverse the BAR tree, from the root to the leaf nodes associated with u and v . The invariant

maintained by the simultaneous traversal is that the weight class along the two traversals remains the same. The

semi-separated pair (Ai ,Bi) that we return is the pair of nodes in the BAR tree with minimum weight class that

satisies the semi-separated property min(diameter(Ai), diameter(Bi) ≤ s · d(Ai ,Bi). Putting this together, we

obtain the following observation.

Observation 10. Given a pair of distinct points u and v of V , one can query the SSPD of [1] in O(logn) time to

obtain a semi-separated pair (Ai ,Bi) satisfying either (i) u ∈ Ai and v ∈ Bi or (ii) v ∈ Ai and u ∈ Bi .

We construct an SSPD of the vertices of P with separation constant 1/2. For each semi-separated pair (Ai ,Bi)

in our SSPD, we select a set of O(c) vertices of P to be transit vertices. The transit vertices have the property

that any path from Ai to Bi must pass through a transit vertex. In Lemma 11, we show how to compute transit

vertices.

Lemma 11. Let P = (V ,E) be a c-packed graph and let {(Ai ,Bi)}
k
i=1 be an SSPD of V with separation constant 1/2.

For each pair (Ai ,Bi) of the SSPD, one can compute a set of vertices Ci ⊂ V in O(cp) time satisfying (i) |Ci | ≤ 2c ,

and (ii) any path starting at a vertex in Ai and ending at a vertex in Bi must pass through a vertex in Ci .

Proof. First, we construct the set Ci . Then we prove that Ci satisies the required properties. Finally, we

analyse the running time of our algorithm.

Without loss of generality, suppose diameter(Ai) ≤ diameter(Bi). Let a0 be a vertex inAi . Let D1 be a disk with

centre at a0 with radius diameter(Ai), and letD2 be a disk with centre ata0 with radius 2·diameter(Ai). See Figure 5.

All vertices of Ai are in D1. All vertices of Bi are outside D2, since d(a0,Bi) ≥ d(Ai ,Bi) ≥ 2 · diameter(Ai) =

radius(D2), where the second inequality comes from the separation constant of the SSPD being 1/2.

Ai

Bi

D1

D2

a0

Ci

Fig. 5. A semi-separated pair Ai (red) and Bi (blue). The circles D1 and D2 (orange) are centred at a vertex a0 ∈ Ai , and have

radius diameter(Ai) and 2 · diameter(Ai) respectively. The value of the max-flow/min-cut in the figure is ℓ = 4, so |Ci | = 4

(grey).

ACM Trans. Algor.

10 • Gudmundsson, Seybold and Wong

Next, we set up a max-low instance. Set the capacity of each edge of P = (V ,E) to 1. Set the vertices in Ai to

be sources, and set the vertices in Bi to be sinks. The max-low of the instance is equal to its min-cut. Let the

minimum cut be a set of edges e1, e2, . . . , eℓ . Choose one endpoint for each edge e1, e2, . . . , eℓ to form the set Ci .

This completes the construction of Ci .

We show that our construction of Ci satisies the properties (i) |Ci | ≤ 2c , and (ii) any path starting at a vertex

in Ai and ending at a vertex in Bi must pass through a vertex in Ci . Property (ii) follows from e1, e2, . . . , eℓ being

a cut. This is because removing all the edges in the cut would disconnect the sources from the sinks, so all paths

from Ai to Bi must pass through one of e1, e2, . . . , eℓ and one of the vertices in Ci . Property (i) follows from

c-packedness. In the max-low instance, the capacity of the max-low is ℓ. Since all edges have capacity 1, there

are ℓ edge-disjoint paths from Ai to Bi . Each edge-disjoint path has one endpoint in D1, and one endpoint outside

D2. So each path intersects both the inner and outer boundaries of the annulus D2 \D1. The width of the annulus

D2 \ D1 is equal to diameter(Ai). Therefore, there are ℓ edge disjoint paths in D2 \ D1 that each have length at

least diameter(Ai). Since the graph is c-packed, the total length of edges in the ball D2 is at most c times the

radius of D2, which is 2c · diameter(Ai). Therefore, ℓ · diameter(Ai) ≤ 2c · diameter(Ai). Hence, |Ci | = ℓ ≤ 2c as

required.

Finally, we analyse the running time of our algorithm, which is dominated by computing the max-low. The

running time of the Ford-Fulkerson algorithm is equal to the number of edges in P times the max-low. Since

ℓ ≤ 2c , the max-low is ≤ 2c . Moreover, there are O(p) edges in P . Therefore, the overall running time of the

algorithm is O(cp). □

The set of transit vertices for a semi-separated pair (Ai ,Bi) is deined to be the set Ci constructed above. Next,

we deine transit pairs. Given a semi-separated pair (Ai ,Bi), a transit pair for the semi-separated pair (Ai ,Bi) is a

pair of vertices (u,w) so that u ∈ Ai ∪ Bi andw ∈ Ci , where Ci is the set of transit vertices for (Ai ,Bi) deined in

Lemma 11. Now, we bound the total number of transit vertices and pairs.

Lemma 12. There are O(cp) transit vertices and O(cp logp) transit pairs in P , over all semi-separated pairs in the

SSPD.

Proof. There areO(p) semi-separated pairs in the SSPD in [1]. By Lemma 11, there areO(c) transit vertices per

semi-separated pair. Therefore, there areO(cp) transit vertices in total. For a semi-separated pair (Ai ,Bi), let (u,w)

be a transit pair. There are |Ai | + |Bi | choices for u, and at most 2c choices forw . Therefore, the number of transit

pairs over all semi-separated pairs is at most
∑k

i=1 2c(|Ai |+ |Bi |) = O(cp logp), since
∑k

i=1(|Ai |+ |Bi |) = O(p logp)

is the weight of the SSPD in [1]. □

Our next step is to precompute and store the minimum Fréchet distance dF (π ,uw) for each transit pair (u,w),

where π ranges over all paths in P between u andw . For this, we use a modiication of the algorithm by Alt et

al. [5].

Lemma 13. Letu,w ∈ P be a pair of vertices, and let ab be a segment. One can computeminπ dF (π ,ab) inO(p logp)

time, where π ranges over all paths in P between u andw .

Proof (Sketch). Our proof is essentially the same as in [5], except that we replace the sweepline algorithm

with a simple Dijkstra search [24]. The fact that the endpointsu andw are given makes this simpliication possible.

Furthermore, by replacing the sweepline with Dijkstra, we do not require P to be planar.

For the sake of completeness, we provide a proof sketch of our result. We set up a free space diagram for the

decision problem in the same way as in [5]. Let P = (V ,E). For each edge e ∈ E, let FD(e,ab) be the free space

diagram between e and ab. Note that the x- and y-coordinates of FD(e,ab) denote the positions along e and

ab respectively. Moreover, orient FD(e,ab) so that a has the minimum y-coordinate and b has the maximum

y-coordinate. Similarly to [5], there is a path π between vertices u andw satisfying dF (π ,ab) ≤ d if and only if

ACM Trans. Algor.

Map matching queries on realistic input graphs under the Fréchet distance • 11

there is a sequence of free space diagrams {FD(ei ,ab)}
k
i=1 with a monotone path in the free space from (u,a) to

(w,b). See Figure 6.

e1 e2

b

a
e3

e4

F3

F4

F1

Fi = FD(ei, ab)

F2

u

(u, a)

(w, b)

w

Fig. 6. The x-coordinates of FD(ei ,ab) denote the position along ei , and the y-coordinates denote the position along ab.

There is a path π between u andw with dF (π ,ab) ≤ d if and only if there is a monotone path from (u,a) to (w,b) in the free

space surface.

We avoid using a sweepline algorithm, and instead perform a Dijkstra search between u andw . First, check

that (u,a) and (w,b) are in the free space. Next, construct a priority queue on points (x ,y) in the free space

diagram, where x is a vertex of P , and y is any point on the segment ab. The priority of (x ,y) is y. The invariant

maintained by the priority queue is that for all (x ,y) in the priority queue, there is a monotone path from (u,a) to

(x ,y). Initially, the priority queue contains only (u,a). In each iteration, we pop a point from the priority queue

with minimum y-coordinate. Let this point be (x ,y). We mark the point x as visited. For all neighbours x ′ of

x ∈ P , add (x ′,y ′) to the priority queue, where y ′ is the minimum y-coordinate so that there is a monotone path

from (x ,y) to (x ′,y ′) in FD(xx ′,ab). This maintains the invariant of the priority queue. Halt the priority queue if

(w,b ′) is in the priority queue, which occurs if and only if there is a monotone path from (u,a) to (w,b ′) to (w,b)

(assuming (w,b) is in free space). Finally, we apply parametric search to minimise the Fréchet distance in the

same way as in [5].

We analyse the running time. Constructing the free space diagrams takes O(p) time. Running Dijkstra’s

algorithm takes O(|E | + |V | log |V |) = O(p logp) time. Finally, applying parametric search [44] with Cole’s

optimisation [21] takes O(p logp) time. □

We are now ready to build the data structure for straightest path queries, which is the main result of this

section.

Theorem 5. Given a c-packed graph P of complexity p, one can construct a data structure of O(cp logp) size, so

that given a pair of query vertices u,v ∈ P , the data structure returns in O(logp) query time a 3-approximation of

minπ dF (π ,uv), where π ranges over all paths in P between u and v . The preprocessing time is O(cp2 log2 p).

Proof. First we describe the preprocessing procedure. Construct an SSPD of the vertices of P , with separation

constant 1/2. For each semi-separated pair (Ai ,Bi), let Ci be its set of transit vertices as deined in Lemma 11.

Recall that if u ∈ Ai ∪ Bi andw ∈ Ci , then (u,w) is a transit pair of (Ai ,Bi). For each transit pair (u,w), we set

ab = uw in Lemma 13 to compute the straightest path between u and w , and we store the minimum Fréchet

distance.

ACM Trans. Algor.

12 • Gudmundsson, Seybold and Wong

Next, we describe the query procedure. Given a pair of query vertices u and v , we query our SSPD for the

semi-separated pair (Ai ,Bi) so (i) u ∈ Ai and v ∈ Bi , or (ii) v ∈ Ai and u ∈ Bi . Let Ci be the transit vertices for

(Ai ,Bi). For eachw ∈ Ci , deine πuw to be the straightest path between u andw , and deine Duw = dF (πuw ,uw).

Deine πwv and Dwv analogously. Deine t to be the orthogonal projection ofw onto uv and deine Dw to be the

orthogonal distance. See Figure 7. Finally, return minw ∈Ci (max(Duw ,Dwv) + Dw) as a 3-approximation for the

minimum Fréchet distance of the shortest path between u and v .

πuw

w

u v

t

Dwv

πwv

Duw

Dw

Fig. 7. Vertices u,v and transit vertexw (black), the straightest paths πuw and πwv (blue) with Fréchet distances Duw ,Dwv

(orange), and the orthogonal distance Dw fromw to uv (orange, dashed).

We prove that the query procedure returns a 3-approximation. Our proof is inspired by the proof of Lemma 5.5

in [25]. Let πuv be the straightest path between u and v . Then, for any transit vertexw ∈ Ci , we have

dF (πuv ,uv) ≤ dF (πuw ◦ πwv ,uv)

≤ max(dF (πuw ,ut),dF (πwv , tv)))

≤ max(dF (πuw ,uw) + dF (uw,ut),dF (πwv ,wv) + dF (wv, tv))

= max(Duw + Dw ,Dwv + Dw)

= max(Duw ,Dwv) + Dw

Therefore, dF (πuv ,uv) ≤ minw ∈Ci (max(Duw ,Dwv)+Dw). Next, using Lemma 11, assume thatw∗ ∈ Ci is a transit

vertex so thatw∗ ∈ πuv . Then clearly Dw∗ ≤ dF (πuv ,uv). Next, we will use Lemma 5.3 in [25], which states that

for any subcurve Z ′ of Z we have dF (spine(Z
′),Z ′) ≤ 2dF (spine(Z),Z)), where spine(X) denotes the segment

joining the endpoints of curveX . Applying this lemma to Z = πuv and Z ′
= πuw∗ , we haveDuw∗ ≤ 2 ·dF (πuv ,uv).

Putting this together, we obtain max(Duw∗ ,Dw∗v)+D
∗
w ≤ 3 ·dF (πuv ,uv). Therefore, our query procedure returns

a 3-approximation of dF (πuv ,uv), as required.

Finally, we analyse the running time and space of our preprocessing and query procedures. Constructing the

SSPD takesO(p logp) time [1]. By Lemma 11, all transit vertices and transit pairs can be computed inO(cp2 logp)

time. Computing the minimum Fréchet distance for all transit pairs takes O(cp2 log2 p) time. Therefore, our

data structure can be constructed in O(cp2 log2 p) time. Storing the Fréchet distance for all transit pairs requires

O(cp logp) space, by Lemma 12. By Observation 10, querying the SSPD for the semi-separated pair containing

the query vertices takes O(logp) time. There are O(c) transit vertices to check. For a transit vertexw , looking up

the values Duw and Dwv in our data structure takes constant time. Computing Dw takes constant time. Putting

this all together, we obtain the stated theorem. □

5 STAGE 2: MAP MATCHING SEGMENT QUERIES

Recall that a data structure for map matching segment queries is deined as follows. Given a query segment ab in

the plane, the data structure returns the minimum Fréchet distance dF (π ,ab) as π ranges over all paths in P that

start and end at a vertex of P .

ACM Trans. Algor.

Map matching queries on realistic input graphs under the Fréchet distance • 13

As stated in the technical overview, we build two data structures in this section. The irst data structure in this

section is an extension of Theorem 5, which we modify to handle arbitrary query segments in the plane.

Lemma 14. Given a c-packed graph P of complexity p, one can construct a data structure of O(cp logp) size, so

that given a pair of query vertices u,v ∈ P and a query segment ab in the plane, the data structure returns in

O(logp) query time a 3-approximation of minπ dF (π ,ab), where π ranges over all paths in P between u and v . The

preprocessing time is O(cp2 log2 p).

Proof (Sketch). Our proof is the exactly same as the proof of Theorem 5, except that (i) we deine Dw =

dF (uw ◦wv,ab), and (ii)we deine t to be the point on ab that matches tow , under the minimum Fréchet distance

matching between ab and uw ◦wv . □

This completes the construction of the irst data structure, however, its approximation ratio is 3. Next, we

improve the approximation ratio to (1+ ε). The next lemma is inspired by Lemma 5.8 in [25], which uses log(1/ε)

number of ε-grids to ensure that at least one grid size is within a factor of (1 + ε) of the true Fréchet distance.

Lemma 15. Let u,w ∈ P be a ixed pair of vertices. Let ε > 0 and χ = ε−2 log(1/ε). One can construct a data

structure of O(χ 2) space, so that given a query segment ab in the plane, the data structure returns in constant time a

(1 + ε)-approximation of minπ dF (π ,ab), where π ranges over all paths in P between u and w . The preprocessing

time is O(χ 2p logp).

Proof (Sketch). Our proof is the same as the proof of Lemma 5.8 in [25], except that instead of computing

the Fréchet distance between a curve and a segment joining a pair of grid points, we use Lemma 13 to minimise

the Fréchet distance over all paths between u andw . □

Now, we use Lemma 15 to improve the approximation ratio of Lemma 14 to (1 + ε).

Lemma 16. Let ε > 0 and χ = ε−2 log(1/ε). One can construct a data structure ofO(c χ 2p logp) size, so that given a

pair of query vertices u,v ∈ P and a query segment ab in the plane, the data structure returns inO(logp + cε−1) time

a (1 + ε)-approximation of minπ dF (π ,ab), where π ranges over all paths in P between u and v . The preprocessing

time is O(c χ 2p2 log2 p).

Proof (Sketch). Our proof is essentially the same as the proof of Theorem 5.9 in [25], except that (i) we

replace subcurves with transit pairs, (ii) we replace Lemma 5.8 in [25] with Lemma 15, and (iii) we replace

Theorem 5.6 in [25] with Lemma 14.

For the sake of completeness, we provide a proof sketch of our result. We irst describe the preprocessing

procedure. We construct the data structure in Lemma 14. For each transit pair, we construct the data structure in

Lemma 15. Next, we describe the query procedure. Given a pair of query vertices (u,v) and a query segment ab,

we use Lemma 14 to compute a real value r so that minπ dF (π ,ab) ≤ r ≤ 3 ·minπ dF (π ,ab), where π ranges over

all paths between u and v . Next, we iterate over all transit vertices w associated with the semi-separated pair

containing (u,v). Deine B(w, 3r) to be a ball with radius 3r centred at w . If B(w, 3r) does not intersect ab, we

skip the transit vertex w and move onto the next one. Hence, we may assume that B(w, 3r) intersects ab. We

compute O(ε−1) evenly spaced vertices on the chord B(w, 3r) ∩ ab. Let t be one of these vertices. See Figure 8.

We use Lemma 15 to compute a (1 + ε)-approximation of minπ dF (π ,at) as π ranges over all paths between u

andw (resp. tb and paths betweenw and v). We take the larger Fréchet distance out of the at and tb cases, and

return it as a (1+ ε)-approximation of minπ dF (π ,ab) as π ranges over all paths between u and v assumingw ∈ π

andw matches to t . Finally, we minimise over all transit verticesw and the evenly spaced vertices t ∈ B(w, 3r)∩ab

to obtain a (1 + ε)-approximation of minπ dF (π ,ab). The proof of correctness follows from Theorem 5.9 in [25].

We analyse the preprocessing time and space. There are O(cp logp) transit pairs by Lemma 12. By Lemma 14 and

Lemma 15, the data structure has O(c χ 2p logp) size, and can be constructed in O(c χ 2p2 log2) preprocessing time.

ACM Trans. Algor.

14 • Gudmundsson, Seybold and Wong

ba

t

B(w, 3r)

Fig. 8. The O(ε−1) evenly spaced vertices, including t (black) on the chord B(w, 3r) ∩ ab which is the intersection of segment

ab (red) and the ball centred atw with radius 3r (orange).

We analyse the query time. Computing a 3-approximation takes O(logp) query time. Iterating over all choices

ofw and t takes O(cε−1) time. Putting this together yields the claimed lemma. □

This improves the approximation ratio of the irst data structure to (1 + ε). Next, we consider the second data

structure, which can eiciently query the starting and ending points of the path.

For our second data structure, we simplify the c-packed graph using graph clustering. The clustering algorithm

we use is Gonzales’ algorithm [36]. Let P = (V ,E) be the graph, which from Section 2 is assumed to be connected.

For a pair of vertices u,v ∈ V , let dP (u,v) be the shortest path between u and v in P . For k = 1, . . . ,p, we

compute a k-centre clustering of V under the graph metric dP . For k = 1, choose an arbitrary vertex v1 to be the

1-centre. Mark v1 as a cluster centre, and let r1 be the radius of the 1-centre clustering. For k ≥ 2, compute the

vertex vk that is the furthest from all existing cluster centres v1, . . . ,vk−1. Mark vk as a new centre, and let rk be

the radius of the k-centre clustering. After all vertices are marked as cluster centres, we have computed a list

[(v1, r1), . . . , (vp , rp)] of cluster centres and cluster radii.

We use the cluster centres and cluster radii to construct a hierarchy of simpliications of the graph P . In

particular, deineVr to be the set of vertices {vi ∈ V : ri ≥ εr }. We show that for any square S with side length 2r ,

there are at most O(cε−1) vertices in Vr ∩ S .

Lemma 17. Let P = (V ,E) be a c-packed graph and let S be a square in the plane with side length 2r . Then there

exists a set of vertices T ⊆ V satisfying (i) |T | = O(cε−1) and (ii) for all vertices v ∈ V ∩ S , there exists t ∈ T so that

dP (v, t) ≤ εr .

Proof. Run the clustering algorithm described above to compute a list [(v1, r1), . . . , (vp , rp)] of cluster centres

and their clustering radii. Recall that Vr is the set of vertices in V satisfying ri ≥ εr . Let S ′ be a square concentric

with S , but has side length 4r . Deine T1 = Vr ∩ S ′. First, we show that T1 satisies Property (i). Then we add a

single vertex to T1 to construct T2, and show that T2 satisies both Properties (i) and (ii).

For Property (i), if there exists a vertex t ∈ T1 so that dP (t , t
′) ≤ εr for all t ′ ∈ V , then deiningT1 = {t} clearly

satisies both properties. Otherwise, for all t ∈ T1 pick a vertex t ′ so that dP (t , t
′) ≥ εr . Construct the shortest

path from t to t ′ under the graph metric dP , and let t ′′ be the point (not necessarily a vertex) on the shortest

path between t and t ′ so that dP (t , t
′′) = εr/3. Let the shortest path from t to t ′′ be πt . Construct the set of paths

{πt }t ∈T1 . First, we will show that the set of paths {πt }t ∈T1 are edge disjoint, and all lie in a square with side

length 5r . See Figure 9. Then, we will use the c-packedness property in the square with side length 5r to prove

Property (i).

First, we show {πt }t ∈T1 is edge disjoint. Suppose for the sake of contradiction that s, t ∈ T1, and πs and πt
share an edge. Using this shared edge, by the triangle inequality we have dP (s, t) < εr . Let s = vi have cluster

ACM Trans. Algor.

Map matching queries on realistic input graphs under the Fréchet distance • 15

u πu

v
πv

t πt

4r5r

Fig. 9. The vertices T1 = {t ,u,v} (black) are in a square of side length 4r (orange, solid). The paths {πt ,πu ,πv } (blue) are

edge disjoint and lie in a square with side length 5r (orange, dashed).

radius ri , and t = vj have cluster radius r j , so that i < j. Then we have the inequality

r j ≤ r j−1 = max
v ∈P

min
k<j

dP (vk ,v) = min
k<j

dP (vk ,vj) ≤ dP (vi ,vj) = dP (s, t) < εr ,

where maxv ∈P mink<j dP (vk ,v) = mink<j dP (vk ,vj) comes from the fact that vj was the furthest vertex from all

existing cluster centres in the jth round of Gonzales’ algorithm. But t ∈ Vr , so r j ≥ εr . This is a contradiction, so

{πt }t ∈T1 is edge disjoint.

Now, we will use the c-packedness property to show that |T1 | = O(cε−1). Each path πt is a shortest path

between a pair of points that are distance εr/3 away, so the total path length of {πt }t ∈T1 is |T1 | · εr/3. Each vertex

t ∈ T1 is in a square with side length 4r . Each path πt has length at most εr < r , since 0 < ε < 1. Therefore, all

edges in {πt }t ∈T1 are in a square with side length 5r . Finally, by c-packedness, we have that c · 5r is an upper

bound on the total edge length in the square of side length 5r , which is guaranteed to contain the edges of

{πt }t ∈T1 . Therefore, c · 5r ≥ |T1 | · εr/3, which implies |T1 | ≤ 15cε−1. This concludes the proof of Property (i).

For Property (ii), letVr = [v1, . . . ,vi]. IfVr consists of all vertices ofV , thenT1 consists of all vertices inside S
′,

and (ii) is trivially true. Otherwise, suppose vi+1 < Vr . So ri+1 < εr . Therefore, after i + 1 rounds of Gonzales’

algorithm, the cluster radius is at most εr . So all vertices v ∈ P are within distance εr from one of the vertices

[v1, . . . ,vi+1]. DeineT2 = [v1, . . . ,vi+1]∩S
′. Then |T2 | ≤ |T1 |+1 = O(cε

−1). Moreover, for all verticesv ∈ P ∩S ,v

is within distance εr from one of the vertices [v1, . . . ,vi+1]. Without loss of generality, let j ≤ i + 1 so that

dP (v,vj) < εr . Since v ∈ S and dP (v,vj) < εr , we have vj ∈ S ′. Therefore, vj ∈ T2 = [v1, . . . ,vi+1] ∩ S ′. As a

result, T2 satisies both Properties (i) and (ii), as required. □

Next, we build a data structure so that, given any square S in the plane, the data structure can eiciently return

a set of vertices T that satisies the properties in Lemma 17.

Lemma 18. Let P = (V ,E), and let ε > 0. One can construct a data structure of O(p logp) size, so that given a

query square S in the plane with side length 2r , the data structure returns in O(logp + cε−1) time a set of vertices

T satisfying (i) |T | = O(cε−1) and (ii) for all vertices v ∈ V ∩ S , there exists t ∈ T so that dP (v, t) ≤ εr . The

preprocessing time is O(p2 logp).

Proof. We show how to eiciently query the set T2 given in Lemma 17. We run the clustering algorithm

described in this section to compute a list [(v1, r1), . . . , (vp , rp)] of cluster centres and their clustering radii. We

build an orthogonal range searching data structure for three-dimensional points. Speciically, for each pair (vi , ri)

in the list, we insert the point (xi ,yi , ri) into the orthogonal range searching data structure, where (xi ,yi) are

the x- and y-coordinates of the point vi , respectively. Given a square S , we perform an orthogonal range search

for all vertices (vi , ri) so that vi ∈ S , and ri ≥ εr . We return this set of vertices as T2. Lemma 17 proves that T2
satisies Properties (i) and (ii).

ACM Trans. Algor.

16 • Gudmundsson, Seybold and Wong

Next, we analyse the running time and space of the preprocessing and query procedures. We use the orthogonal

range searching data structure of Afshani et al. [2], and we use the clustering algorithm of Gonzales [36].

The storage requirement of the orthogonal range searching data structure is O(p log2 p). Computing the

distance matrix under dP takes O(p2 logp) time. Performing Gonzales’ clustering algorithm to compute p centres

takes O(p2) time. Constructing the orthogonal range searching data structure takes O(p log2 p) time. Therefore,

the overall preprocessing time is O(p2 logp). The query time of the orthogonal range searching data structure is

O(logp + |T |). Therefore, the overall query time is O(logp + cε−1). This proves the stated lemma. □

Finally, we are ready to combine the two data structures in Lemmas 16 and 18 to answer map matching segment

queries. The theorem below is the main result of this section.

Theorem 7. Given a c-packed graph P of complexity p, one can construct a data structure of O(cε−4 log2(1/ε) ·

p logp) size, so that given a query segment ab in the plane, the data structure returns in O(c4ε−4 · log2 p) time a

(1 + ε)-approximation of minπ dF (π ,ab), where π ranges over all paths in P that start and end at a vertex of P . The

preprocessing time is O(cε−4 log2(1/ε) · p2 log2 p).

Proof. The preprocessing procedure is to construct the data structure in Lemmas 16 and 18. For both data

structures, we use the parameter ε ′ = ε/6 instead of ε .

Next, we consider the query procedure for the decision problem. Given a segment ab in the plane and a Fréchet

distance of r , the decision problem is to decide whether r ∗ ≤ r or r ∗ ≥ r , where r ∗ = minπ dF (π ,ab) where π

ranges over all paths in P that start and end at a vertex of P . We construct a disk centred at a with radius r , and

we enclose this disk in a square with side length 2r . We query the data structure in Lemma 18 to obtain a set of

verticesTa . We query the set of verticesTb analogously. For every (u,v) ∈ Ta ×Tb , we query the data structure in

Lemma 16 for a value ruv which is a (1 + ε ′)-approximation of minπ dF (π ,ab), where π ranges over all paths

between u and v . See Figure 10.

v

a

b

πuv

ruv

u

Fig. 10. The query segment ab (red), the squares centred at a and b with side length 2r (orange), the sets of vertices Ta and

Tb including u and v (orange), and the path πuv (blue) between u and v minimising the Fréchet distance ruv (black) up to a

factor of (1 + ε).

Let r ′ = min(u,v)∈Ta×Tb ruv . We distinguish three cases (a), (b) and (c):

(a) If r ′ ≤ r , we return that r ∗ ≤ r .

(b) If r ′ ≥ (1 + ε ′)2r , we return that r ∗ ≥ r .

(c) If r ′ ∈ [r , (1 + ε ′)2r], we return that r ∗ ∈ [(1 − ε ′)r , (1 + ε ′)2r].

The third case does not technically answer the decision problem, as it does not return r ∗ ≤ r or r ∗ ≥ r . However,

in this case, we will show that (1 + ε ′)r is a (1 + ε)-approximation of r ∗, as required by the stated theorem. This

completes the description of the query procedure for the decision problem. Next, we prove its correctness, which

we separate into cases (a), (b) and (c).

ACM Trans. Algor.

Map matching queries on realistic input graphs under the Fréchet distance • 17

(a) We know r ∗ ≤ ruv for all vertices u,v in P . Therefore, r ∗ ≤ r ′. So if r ′ ≤ r , then r ∗ ≤ r .

(b) Given a pair of vertices u,v in P , deine r ∗uv to be minπ dF (π ,ab) where π ranges over all paths between u

andv . Clearly, r ∗ ≤ r ∗uv for all verticesu,v in P . Moreover, by Lemma 16, since ruv is a (1+ε ′)-approximation,

we have r ∗ ≤ r ∗uv ≤ ruv ≤ (1 + ε ′)r ∗uv . Let π
∗ be the path that attains r ∗, i.e. r ∗ = dF (π

∗,ab). Let the

starting and ending points of π ∗ be u∗ and v∗ respectively. By Lemma 17, there exists a graph vertex

u ∈ Ta so that dP (u
∗,u) ≤ ε ′r . Deine the vertex v ∈ Tb analogously. See Figure 11. Consider the path

π ∗
uv obtained by concatenating the paths uu∗, π ∗, and v∗v . Note that π ∗

uv is a valid path between u

and v , moreover, dF (π
∗
uv ,ab) ≤ max(dF (uu

∗,a),dF (π
∗,ab),dF (v

∗v,b)). But dF (u
∗,a) ≤ dF (π

∗,ab) = r ∗,

and dP (u
∗,u) ≤ ε ′r . Hence, dF (uu

∗,a) ≤ r ∗ + ε ′r . Similarly, dF (v
∗v,b) ≤ r ∗ + ε ′r , so dF (π

∗
uv ,ab) ≤ r ∗ + ε ′r .

Therefore, r ∗uv ≤ dF (π
∗
uv ,ab) ≤ r ∗ + ε ′r . Now, r ′ ≤ ruv ≤ (1 + ε ′)r ∗uv ≤ (1 + ε ′)(r ∗ + ε ′r). If r ′ ≥ (1 + ε ′)2r ,

then (1 + ε ′)(r ∗ + ε ′r) ≥ (1 + ε ′)2r , so r ∗ + ε ′r ≥ r + ε ′r , and therefore r ∗ ≥ r .

(c) From the proof of the irst case, we have r ∗ ≤ r ′. If r ′ ≤ (1+ε ′)2r , then r ∗ ≤ (1+ε ′)2r . From the proof of the

second case, we have r ′ ≤ r ∗ + ε ′r . If r ′ ≥ r , then r ∗ ≥ (1 − ε ′)r . Putting this together, if r ′ ∈ [r , (1 + ε ′)2r],

then r ∗ ∈ [(1−ε ′)r , (1+ε ′)2r]. In particular, (1+ε ′)2r ≥ r ∗, and (1+ε ′)2r ≤ (1+ε ′)3r ∗ ≤ (1+ε ′)(1+3ε ′)r ∗ ≤

(1 + 6ε ′)r ∗ = (1 + ε)r ∗, so (1 + ε ′)r is a (1 + ε)-approximation of r ∗, as required.

v

a

b

π
∗

u
u
∗

v
∗

Fig. 11. Given segment ab (red), the path π∗ (blue) minimises its Fréchet distance to ab. We define a new path that

concatenates vertex u, path π∗, and vertex v , where u ∈ Ta and v ∈ Tb .

Next, we apply parametric search to the decision problem, which we call D(r). Deine D(r) to be TRUE if

r ′ ≤ r , and deine D(r) to be FALSE if r ′ ≥ (1 + ε ′)r . If r ′ ∈ [r , (1 + ε ′)r], we immediately halt the parametric

search, and return (1 + ε ′)r as a (1 + ε)-approximation of r ∗. It suices to show (i) that D(r) is monotone, and (ii)

that all operations in D(r) are either independent of r , or can be made equivalent to a constant number of

comparisons {r > ci } where ci is a critical value. First, we show (i). Suppose D(r1) evaluates to TRUE, and r1 < r2.

Then r ∗ ≤ r1 ≤ r2, and we cannot have D(r2) evaluating to FALSE. So either D(r2) is also TRUE, or we halt the

parametric search and obtain a (1 + ε)-approximation. Similarly, if D(r1) evaluates to FALSE, and r1 > r2, then we

cannot have D(r2) evaluating to TRUE. Therefore, D(r) is monotone. Next, we show (ii). The irst step of D(r)

is to query the data structure in Lemma 18 for the set Ta . The data structure is a three-dimensional orthogonal

range searching data structure. All operations that depend on r can be evaluated by comparing r to a diference

between x-, y- or z-coordinates. As an example, if a = (xa ,ya), then a point (xi ,yi , ri) lies in the orthogonal range

if and only if |xa − xi | ≤ r , |ya −yi | ≤ r and ri ≥ ε ′r . In particular, |xa − xi |, |ya −yi | and ri/ε
′ are critical values.

The next step is to query Lemma 16 to obtain r ′. This step is independent of r and generates no critical values.

Finally, we compare r ′ with r and (1 + ε ′)r . Therefore, r ′ and r ′/(1 + ε ′) are critical values. This completes the

proof of (i) and (ii).

We analyse the construction time and space of the data structure. Let χ = ε−2 log(1/ε). The data structure

in Lemma 16 has O(c χ 2p logp) size, whereas the data structure in Lemma 18 has O(p logp) size. The data

structure in Lemma 16 requires O(c χ 2p2 log2 p) preprocessing time, whereas the data structure in Lemma 18

requires O(p2 logp) preprocessing time. Therefore, the overall data structure has O(c χ 2p logp) size, and requires

O(c χ 2p2 log2 p) preprocessing time.

ACM Trans. Algor.

18 • Gudmundsson, Seybold and Wong

We analyse the query time of the decision problem. Querying the data structure in Lemma 18 takesO(logp+cε−1)

time. There are O(c2ε−2) pairs (u,v) ∈ Ta × Tb . For each pair (u,v), querying the data structure in Lemma 16

takes O(logp) time. Therefore, the overall query time of the decision version is O(c2ε−2 logp). We analyse the

running time of parametric search. The decision version forms both the sequential and parallel algorithms. The

running time of parametric search [44] is O(NpTp +TpTs logNp), where Ts is the running time of the sequential

algorithm, Np is the number of processors for the parallel algorithm, and Tp is the number of parallel steps in the

parallel algorithm. By setting Np = 1, we obtain Ts = Tp = O(c
2ε−2 logp). Therefore, the overall running time of

the parametric search step is O(c4ε−4 log2 p). □

6 STAGE 3: MAP MATCHING QUERIES

We start by considering the decision problem of the map matching query, in which we are given a trajectoryQ in

the plane and a Fréchet distance r , and we are to decide whether r ≤ r ∗ or r ≥ r ∗, where r ∗ is the minimum value

of dF (π ,Q) where π ranges over all paths in P that start and end at a vertex of P . Let Q have vertices a1, . . . ,aq .

The irst step is to compute a constant number of points on P that can match to ai . We have two cases, either

the point matching to ai is a vertex of P , or it is a point along an edge of P . The points along the edges of P are

deined as follows.

Deinition 19. Given a graph P = (V ,E) embedded in the Euclidean plane, deine the set F to be points that lie on

an edge of E. Formally, F = { f ∈ R2 : f ∈ e, e ∈ E}.

The trajectory vertex ai must match to a point inV or F . If the point is inV , we use Lemma 17 to compute a set

of O(cε−1) vertices that can match to ai . If the point is in F , we prove a generalisation of Lemma 17 to compute a

set of O(cε−2) points that can match to ai . The generalisation is stated below.

Lemma 20. Let P = (V ,E) and let F = { f ∈ R2 : f ∈ e, e ∈ E}. Let S be a square in the plane with side length 2r .

Then there exists a set of pointsT ⊂ F satisfying (i) |T | = O(cε−2) and (ii) for all points f ∈ F ∩ S , there exists t ∈ T

so that dP (f , t) ≤ εr .

Proof. We use Lemma 17 to construct a set of graph vertices T2 so that |T2 | = O(cε−1), and for all vertices

v ∈ V ∩ S , there exists t2 ∈ T2 so that dP (v, t) ≤ εr/2. Let Er be the set of edges E with length at least εr/2. Let S ′

be a square that is concentric with S , but has side length 4r . For each e ∈ Er , choose O(ε
−1) evenly spaced points

on the chord e ∩ S ′, so that the distance between consecutive points is at most εr/2. Add these O(ε−1) points to

the set T3, for each e ∈ Er . We will show that the set T2 ∪T3 satisies both Properties (i) and (ii).

We irst prove Property (i). By Lemma 17, |T2 | = O(cε
−1). Then for e ∈ Er , the length of the edge e ∩ S ′ is at

least εr/2. By the c-packedness property on S ′, we have c · 4r ≥ |Er | · εr/2. Therefore, |Er | = O(cε
−1). The set T3

consists of O(ε−1) points per edge in |Er |, so |T3 | = O(cε
−2). This completes the proof of Property (i).

Next we prove Property (ii). Let f ∈ F ∩ S . We have three cases, either f is a graph vertex, f is on an edge

with length ≤ εr/2, or f is on an edge with length ≥ εr/2. If f is a graph vertex, then Lemma 17 implies that

there exists t ∈ T2 so that dP (f , t) ≤ εr/2. If f is on an edge with length ≤ εr/2, let v be one of the endpoints

of the edge. There exists t ∈ T2 so that dP (v, t) ≤ εr/2. Therefore, dP (f , t) ≤ dP (f ,v) + dP (v, t) ≤ εr . Finally,

if f is on an edge with length ≥ εr/2, then let the edge be e . There exists O(ε−1) evenly spaced points on the

chord e ∩ S ′ in T3. Since the distance between consecutive points is ≤ εr/2, there exists a point t3 ∈ T3 so that

dP (f , t3) ≤ εr/2. This completes the proof of Property (ii) and we are done. □

Our next step is to build a data structure analogous to Lemma 18, but for computing points that ai can match

to. To build this data structure, we irst construct a three-dimensional low-density environment.

ACM Trans. Algor.

Map matching queries on realistic input graphs under the Fréchet distance • 19

Deinition 21. A set of objects in R3 is k-low-density if, for every axis-parallel cube Hr with side length r , there are

at most k objects that satisfy (i) the object intersects Hr , and (ii) the object has size at least r . The size of an object is

the side length of the smallest axis-parallel cube that encloses the object.

In our three dimensional space, the point (x ,y, z) ∈ R3 represents a disc D(x ,y, z) ⊂ R2 with centre (x ,y) and

radius z. To compute a set of points satisfying the properties of Lemma 20, we need be able to ind all edges e that

intersect D(x ,y, z) and satisfy |e | ≥ εz/2. This motivates Deinition 22, where for each every edge e , we construct

a three dimensional object that captures all discs D(x ,y, z) where e would intersect D(x ,y, z) and |e | ≥ εz/2.

Deinition 22. Given a segment e ⊂ R2 and ε ∈ R+, we deine trough(e, ε) ⊂ R3 to be

trough(e, ε) = {(x ,y, z) : d((x ,y), e) ≤ 4z ≤ 8ε−1 |e |}

The three-dimensional object trough(e, ε) ⊂ R3 is the union of two half-cones and a triangular prism. See

Figure 12.

Fig. 12. A trough is the union of two half-cones (red, blue) and a triangular prism (grey).

The base of the half-cones have a radius of 8ε−1 |e |. The half-cones and the triangular prism have a height of

2ε−1 |e |. Next, we show that if P = (V ,E) is a c-packed graph, then the set of troughs {trough(e, ε) : e ∈ E} is a

low-density environment.

Lemma 23. Let P = (V ,E) be a c-packed graph, and let 0 < ε < 1. Then {trough(e, ε) : e ∈ E} is an O(cε−1)-low-

density environment.

Proof. First, we show that trough(e, ε) has size at most 18ε−1 |e |. Let (x ,y, z) ∈ trough(e, ε). Then 0 ≤ z ≤

2ε−1 |e |. Moreover, d((x ,y), e) ≤ 8ε−1 |e |, so (x ,y) must lie inside a circle centred at the midpoint of e , with radius

9ε−1 |e |. So (x ,y, z) lies in a cylinder with radius 9ε−1 |e | and height 2ε−1 |e |. So the size of trough(e, ε) is at most

18ε−1 |e |, as claimed.

Let Hr be any axis parallel cube with side length r . Let zmin be the minimum z-coordinate of Hr . We can

assume without loss of generality that zmin ≥ 0. Suppose trough(e, ε) intersects with Hr and trough(e, ε) has size

at least r . Let (x ,y, z) ∈ trough(e, ε) ∩Hr . Let h be the projection of the centre of Hr onto the hyperplane deined

by z = 0. See Figure 13.

Then,
d(h, e) ≤ d(h, (x ,y)) + d((x ,y), e)

≤ r + 4z

≤ 5r + 4zmin

where the irst inequality is the triangle inequality, the second comes from (x ,y, z) ∈ Hr ∩ trough(e, ε), and the

third comes from the maximum z-coordinate of Hr being zmin + r .

The maximum z-coordinate of trough(e, ε) is 2ε−1 |e |, whereas the minimum z-coordinate of Hr is zmin . There-

fore, zmin ≤ 2ε−1 |e |. Since trough(e, ε) has size at least r and at most 18ε−1 |e |, we have r ≤ 18ε−1 |e |. Putting this

together, we have 5r + 4zmin ≤ 100ε−1 |e |.

ACM Trans. Algor.

20 • Gudmundsson, Seybold and Wong

Hr

e
h

(x, y, z)

Fig. 13. The point (x ,y, z) (blue) is in the intersection of trough(e, ε) (black) and the cube Hr (orange). The point h (orange)

and the edge e (black) are on the hyperplane z = 0.

Consider the ball B(h, 10r + 8zmin) centred at h with radius 10r + 8zmin . Since d(h, e) ≤ 5r + 4zmin , the length

of e that is contained in B(h, 10r + 8zmin) is at least min(|e |, 5r + 4zmin). But 100ε
−1 |e | ≥ 5r + 4zmin . So the length

of e that is contained in B(s, 10r + 8zmin) is at least ε · (5r + 4zmin)/100.

Finally, suppose there werek edges {ei }
k
i=1 so that each ei satisies (i) trough(ei) intersectsHr , and (ii) trough(ei)

has size at least r . Then by deinition, the environment is k-low-density. It suices to upper bound k . The total

length of edges inside B(h, 10r + 8zmin) is at least kε · (5r + 4zmin)/100. By the c-packedness of P , we have

c · (10r + 8zmin) ≥ kε · (5r + 4zmin)/100, so k ≤ 50cε−1. Therefore, for all Hr there are at most 50cε−1 troughs

that intersect Hr and have size at least r . This proves the stated lemma. □

Next, we use the result of Schwarzkopf and Vleugels [47] to build a range searching data structure for the

low-density environment. Note that trough(e, ε) has constant description complexity.

Lemma 24 (Theorem 3 in [47]). Let E be a set of n objects in R3, where each object has constant description

complexity. Suppose that E is a k-low-density environment. Then E can be stored in a data structure of size

O(n log2 n + kn), such that it takes O(log2 n + k) time to report all objects that contain a given query point q ∈ R3.

The data structure can be computed in O(n log2 n + kn logn) time.

We use Lemma 24 to construct a data structure for computing points that the vertices of the query trajectory

(i.e. ai for 1 ≤ i ≤ q) can match to. In particular, for any square S in the plane, the following data structure returns

a set of points T ⊂ F satisfying the properties in Lemma 20.

Lemma 25. Let P = (V ,E), let F = { f ∈ R2 : f ∈ e, e ∈ E}, and let ε > 0. One can construct a data structure in

O(p2 logp) time of sizeO(p log2 p), so that given a query square S in the plane with side length 2r , the data structure

returns in O(log2 p + cε−2) time a set of points T ⊂ F satisfying (i) |T | = O(cε−2) and (ii) for all points f ∈ F ∩ S ,

there exists t ∈ T so that dP (f , t) ≤ εr .

Proof. We construct the data structure in Lemma 18. For each edge e ∈ E, we construct trough(e, ε), and we

use Lemma 24 to construct a range searching data structure on the set of troughs. Note that troughs form a

low-density environment by Lemma 23. This completes the construction procedure.

Given a query square S , we use Lemma 18 to query a set T2. Next, we state the query for T3. Let the centre

of S be (x ,y), and its side length be 2r . Query the data structure in Lemma 24 for all troughs that contain the

query point (x ,y, r). Suppose the data structure returns {trough(ei)}
k
i=1. Let S

′ be the square concentric with S ,

but with side length 4r . For each ei , choose O(ε
−1) evenly spaced points on the chord ei ∩ S ′, so that the distance

between consecutive points is ≤ εr/2. This completes the query for set T3.

Next, we prove the correctness of the query. For T2, the proof of correctness follows from Lemma 18. For T3,

we require all edges with length at least εr/2 that intersect S ′. It suices to show that querying Lemma 24 for all

troughs containing the query point (x ,y, r) is suicient to obtain all such edges. Recall from the deinition of

the trough that (x ,y, r) ∈ trough(e, ε) if and only if d((x ,y), e) ≤ 4r and 4r ≤ 8ε−1 |e |. Note that d((x ,y), e) ≤ 4r

ACM Trans. Algor.

Map matching queries on realistic input graphs under the Fréchet distance • 21

covers all edges that intersect S ′, and 4r ≤ 8ε−1 |e | covers all edges with length at least εr/2. Therefore, the queries

for T2 and T3 are correct. Lemma 20 proves that T2 ∪T3 satisies Properties (i) and (ii) in the stated lemma.

The data structure in Lemma 18 has O(p logp) size. The data structure in Lemma 24 has O(p log2 p + cp) =

O(p log2 p) size. Therefore, the overall size of our data structure is O(p log2 p).

The preprocessing time of Lemma 18 and Lemma 24 are O(p2 logp) and O(p log2 p + cε−1p logp) respectively.

Therefore, the overall preprocessing time is O(p2 logp).

Finally, the query time of Lemma 18 is O(logp + cε−1). The query time of Lemma 24 is O(log2 n + cε−1) time.

Constructing the evenly spaced points takesO(ε−1) time per chord, and there areO(cε−1) chords overall. Therefore,

the overall query time is O(log2 p + cε−2). □

Finally, we are ready to construct the map matching data structure for general trajectory queries on c-packed

graphs.

Theorem 3. Given a c-packed graph P of complexity p, one can construct a data structure of O(p log2 p +

cε−4 log(1/ε)p logp) size, so that given a query trajectory Q of complexity q, the data structure returns in O(q logq ·

(log4 p + c4ε−8 log2 p)) query time a (1 + ε)-approximation of minπ dF (π ,Q) where π ranges over all paths in P and

dF (·, ·) denotes the Fréchet distance. The preprocessing time is O(c2ε−4 log2(1/ε)p2 log2 p).

Proof. The preprocessing procedure is to build the data structures in Lemmas 16 and 25. For both data

structures, we use the parameter ε ′ = ε/9 instead of ε .

Given a query trajectory Q and a Fréchet distance of r , the decision problem is to decide whether r ∗ ≤ r

or r ∗ ≥ r , where r ∗ = minπ dF (π ,Q) as π ranges over all paths in P that start and end at a vertex of P . Recall

that the vertices of Q are a1, . . . ,aq . We divide the decision problem into three steps. In step one, we construct

a square of side length 2r centred at ai . For 1 ≤ i ≤ q, we query Lemma 25 with this square to obtain a set of

points Ti that can match to ai . In step two, we build a directed graph over ∪
q
i=1Ti , which we deine as follows.

Let bi, j ∈ Ti and bi+1,k ∈ Ti+1. Let ci, j and di, j be graph vertices so that bi, j is on the edge ci, jdi, j . Deine ci+1,k
and di+1,k analogously. If bi, j and bi+1,k lie on the same edge, then the Fréchet distance dF (bi, jbi+1,k ,aiai+1) is the

smaller of the two lengths |bi, jai | and |bi+1,kai+1 |. Otherwise, bi, j and bi+1,k lie on two diferent edges, and we can

suppose without loss of generality that the path π passes through the pair of endpoints (ci, j , ci+1,k). Analogous

arguments can be made if the path π instead passes through the pairs of endpoints (ci, j ,di+1,k), (di, j , ci+1,k) or

(di, j ,di+1,k). Let a
′
i be the point on aiai+1 that is the closest to ai and satisies dF (bi, jci, j ,aia

′
i) ≤ r . Let a′i+1 be the

point on aiai+1 that is the closest to ai+1 and satisies dF (ci+1,kbi+1,k ,a
′
i+1ai+1) ≤ r . See Figure 14.

ai

ai+1bi,j
di,j

ci,j

Ti

Ti+1

bi+1,k
ci+1,k

di+1,k

Fig. 14. If bi, j ∈ Ti (orange) is a point that can match to ai (red), we let the edge containing bi, j be ci, jdi, j (black). The

analogous edge ci+1,kdi+1,k is defined for bi+1,k .

We query the data structure in Lemma 16 to obtain a (1 + ε ′)-approximation of minπ dF (π ,a
′
ia

′
i+1) where π

ranges over all paths between the graph vertices ci, j and ci+1,k . In our directed graph over ∪
q
i=1Ti , deine the

ACM Trans. Algor.

22 • Gudmundsson, Seybold and Wong

capacity of the directed edge from bi, j to bi+1,k as follows. If bi, j and bi+1,k are on the same edge, then the capacity

is min(|bi, jai |, |bi+1,kai+1 |). If bi, j and bi+1,k are on diferent edges, the capacity is the minimum of the four (1+ε ′)-

approximations of minπ dF (π ,a
′
ia

′
i+1) where π ranges over all paths between the pairs of vertices (ci, j , ci+1,k),

(ci, j ,di+1,k), (di, j , ci+1,k) and (di, j ,di+1,k). This completes step two, that is, building the directed graph. The third

step is, for r ′ ∈ {r , (1 + ε ′)r }, to decide whether there exists a path in the directed graph fromT1 toTq , so that the

capacity of each edge in the path is at most r ′. We distinguish three cases (a), (b) and (c):

(a) If there exists a path in the case r ′ = r , we return that r ∗ ≤ r .

(b) If there does not exist a path in the case r ′ = (1 + ε ′)2r , we return that r ∗ ≥ r .

(c) If there exists a path in the case r ′ = (1 + ε ′)2r but not for the case r ′ = r , we return that

r ∗ ∈ [(1 + ε ′)−2r , (1 + ε ′)2r].

Note that the third case does not technically answer the decision problem, however, in this case, we will

show that (1 + ε ′)2r is a (1 + ε)-approximation of r ∗, as required by the theorem statement. This completes the

description of the query procedure in the decision version. Next, we prove its correctness, which we separate

into cases (a), (b) and (c).

(a) Suppose there exists a path with capacity at most r ′, where r ′ ≥ r . Let this path be b1, . . . ,bq , where bi ∈ Ti
for 1 ≤ i ≤ q. Let the capacity of the directed edge from bi to bi+1 be Ci . Then Ci ≤ r ′, by deinition. If

bi and bi+1 are on the same edge, deine π ′
i to be the edge bibi+1, so that dF (π

′
i ,aiai+1) ≤ r ′. Otherwise,

there exists graph vertices ci and ci+1, and points a′i and a′i+1 on aiai+1 satisfying dF (bici ,aia
′
i) ≤ r ,

dF (bi+1ci+1,a
′
i+1ai+1) ≤ r , and dF (πi ,a

′
ia

′
i+1) ≤ Ci for some path πi between ci and ci+1. Deine π

′
i to be the

concatenation of bici , πi and ci+1bi+1. So dF (π
′
i ,aiai+1) ≤ max(Ci , r) ≤ r ′. Deine π ′ to be the concatenation

of π ′
i for all 1 ≤ i ≤ q. Then dF (π

′,Q) ≤ r ′. Therefore, r ∗ = minπ dF (π ,Q) ≤ dF (π
′,Q) ≤ r ′, so r ∗ ≤ r ′. In

the irst case, there exists a path for r ′ = r , so r ∗ ≤ r , as required.

(b) Suppose there does not exist a pathwith capacity at most r ′. Let π ∗ be the path in P so that r ∗ = dF (π
∗,Q). Let

the points on π ∗ that match to a1, . . . ,aq ∈ Q be u∗1, . . . ,u
∗
q ∈ P . By Lemma 25, there exist points bi ∈ Ti so

that dP (bi ,u
∗
i) ≤ ε ′r , for all 1 ≤ i ≤ q. Let ri be the minimum Fréchet distance dF (π ,aiai+1) where π ranges

over all paths between bi and bi+1. Then ri ≤ max(dF (biu
∗
i ,ai),dF (π

∗[u∗i ,u
∗
i+1],aiai+1),dF (u

∗
i+1bi+1,ai+1)),

since the concatenation of biu
∗
i , the subtrajectory π ∗[u∗i , ,u

∗
i+1] of π

∗, and u∗i+1bi+1 is a valid path from bi
to bi+1. See Figure 15.

Note that dF (biu
∗
i ,ai) ≤ dF (u

∗
i ,ai) + dP (bi ,u

∗
i) ≤ r ∗ + ε ′r . Therefore, ri ≤ r ∗ + ε ′r . Then, the capacity of

the edge from bi to bi+1 is at most (1 + ε ′)ri ≤ (1 + ε ′)(r ∗ + ε ′r). Putting this together, there exists a path

from T1 to Tq with capacity at most (1 + ε ′)(r ∗ + ε ′r). In the second case, there does not exist a path with

capacity r ′ = (1 + ε ′)2r . Therefore, (1 + ε ′)2r ≤ (1 + ε ′)(r ∗ + ε ′r) which implies (1 + ε ′)r ≤ r ∗ + ε ′r and

r ≤ r ∗, as required.

(c) From proof of the irst case, r ∗ ≤ r ′, if there exists a path for r ′. Therefore, r ∗ ≤ (1+ ε ′)2r . From the proof of

the second case, r ∗ ≥ r ′ if there exists a path for (1+ ε ′)2r ′. Therefore, r ∗ ≥ (1+ ε)−2r . Putting this together,

we get r ∗ ∈ [(1 + ε ′)−2r , (1 + ε ′)2r]. In particular, we have (1 + ε)2r ≥ r ∗, and (1 + ε)2r ≤ (1 + ε ′)4r ∗ ≤

(1 + 3ε ′)2r ∗ ≤ (1 + 9ε ′)r ∗ = (1 + ε)r ∗, so (1 + ε ′)2r is a (1 + ε)-approximation of r ∗, as required.

For the minimisation version, we apply parametric search. Deine the decision problem D(r) to be TRUE if

there exists a path for r ′ = r , and FALSE if there does not exist a path for r ′ = (1 + ε ′)2r .

It suices to show (i) that D(r) is monotone and (ii) that all operations in D(r) are either independent of r ,

or can be made equivalent to a constant number of comparisons {r > ci } where ci is a critical value. First we

show (i). Suppose D(r1) evaluates to TRUE, and r1 < r2. Then r ∗ ≤ r1 ≤ r2 and we cannot have D(r2) evaluation

to FALSE. So either D(r2) is also TRUE, or we halt the parametric search and obtain a (1 + ε)-approximation of r ∗.

ACM Trans. Algor.

Map matching queries on realistic input graphs under the Fréchet distance • 23

ai

ai+1

bi+1

bi

u
∗

i+1

π
∗[u∗

i
, u

∗

i+1
]

u
∗

i

Fig. 15. The trajectory vertices ai and ai+1 (red) match to u∗i and u
∗
i+1 on the optimal path π∗ (blue). We construct a path

from bi to bi+1 (orange) by concatenating the edge biu
∗
i , the subtrajectory π

∗[u∗i ,u
∗
i+1] and u

∗
i+1bi+1.

Similarly, if D(r1) evaluates to FALSE, and r1 > r2, then we cannot have D(r2) evaluating to TRUE. Therefore,

D(r) is monotone.

Next, we show (ii). The irst step is to query Lemma 16 to obtain a set of points Ti that can match to ai .

The critical values of this step are when the query point (x ,y, r) lies on the boundary of the troughs in the

low-density environment. This can be evaluated as a low order polynomial in terms of r . The second step is to

compute the points ai and a
′
i , and query the data structure in Lemma 16 to obtain a (1 + ε ′)-approximation of

minπ dF (π ,a
′
ia

′
i+1). The critical values occur when ai and a

′
i match to diferent pairs of grid points in Lemma 15,

which can be resolved using a low order polynomial in terms of r . The third step is to decide whether there

exists a path in the directed graph where the capacity of each edge is at most r ′. The critical values are when the

capacity of an edge is exactly r ′, which can be resolved as a low order polynomial of r . This completes the proof

of (i) and (ii).

We analyse the space and preprocessing time of the data structure. First, we analyse the space. The data

structures in Lemmas 16 and 25 require O(cε−4 log(1/ε)p logp) and O(p log2 p) space respectively. The overall

space requirement is O(cε−4 log(1/ε)p logp + p log2 p). Next, the preprocessing times of Lemmas 16 and 25 are

O(c2ε−4 log2(1/ε)p2 log2 p) andO(p2 logp) respectively. The overall preprocessing time isO(c2ε−4 log2(1/ε)p2 log2 p).

For the query time of the decision version, for each 1 ≤ i ≤ q we query the data structure in Lemma 20 to

construct the setTi . In total, this takesO(q · (log2 p +cε−2)) time. Next, we build a directed graph on ∪
q
i=1Ti . There

areO(q · c2ε−4) directed edges betweenTi andTi+1, for 1 ≤ i < q. Computing the capacity of the directed edge, by

querying Lemma 16, takes O(logp + cε−1) time. Finally, deciding whether there is a directed path from T1 to Tq
takes O(q · c2ε−4) time. Therefore, the overall running time of the decision version is O(q · (log2 p + c2ε−4 logp)).

Finally, we analyse the running time of parametric search. The running time of parametric search [44] is

O(NpTp +TpTs logNp), where Ts is the running time of the sequential algorithm, Np is the number of processors

for the parallel algorithm, and Tp is the number of parallel steps in the parallel algorithm. The sequential

algorithm is the same as the decision algorithm, so Ts = O(q · (log2 p + c2ε−4 logp)). The parallel algorithm is

to simulate the decision algorithm on Np = q processors. The irst two steps can be parallelised to run on q

processors in O(log2 p + c2ε−4 logp) parallel steps. In the third step, it suices to check if each of the edges has

capacity at most r ′. Computing the directed path generates additional critical values, so it does not need to

be simulated by the parallel algorithm. The third step can be parallelised onto q processors to run in O(c2ε−4)

parallel steps. The total number of parallel steps is Tp = O(log2 p + c2ε−4 logp). Therefore, substituting these

values into the running time of parametric search, we get that the overall running time of parametric search is

O(q logq · (log4 p + c4ε−8 log2 p)). □

ACM Trans. Algor.

24 • Gudmundsson, Seybold and Wong

7 LOWER BOUND FOR GEOMETRIC PLANAR GRAPHS

In this section, we no longer assume that the graph P is c-packed. The main result of this section is that for

geometric planar graphs, unless SETH fails, no data structure can preprocess a graph in polynomial time to

answer map matching queries inO((pq)1−δ) time for any δ > 0, and for any polynomial restrictions of p and q. In

Section 7.1, we construct a lower bound for the warm-up problem of Fréchet distance queries on trajectories. In

Section 7.2, we construct a lower bound for map matching queries on geometric planar graphs.

7.1 Fréchet distance queries on trajectories

Our warm-up problem is to extend the lower bound of Bringmann [9] to Fréchet distance queries on trajectories.

The lower bound assumes a weaker version of SETH.

Deinition 26 (SETH′). The CNF-SAT problem is to decide whether a formula φ on N variables x1, . . . xN andM

clauses C1, . . . ,CM has a satisfying assignment. SETH ′ states that there is no Õ((2 − δ)N) algorithm for CNF-SAT

for any δ > 0, where Õ hides polynomial factors in N andM .

If SETH′ fails, then so does SETH [54]. Next, we provide a proof sketch of Theorem 1.2 in [9].

Lemma 27 (Theorem 1.2 in [9]). Let n andm denote the complexities of a pair of trajectories. There is no 1.001-

approximation with running time O((nm)1−δ) for the Fréchet distance for any δ > 0, unless SETH fails. This holds

for any polynomial restrictions of n andm.

Proof (Sketch). Suppose for the sake of contradiction that there exists a positive constant δ so that there is a

1.001-approximation with running time O((nm)1−δ) for the Fréchet distance. We summarise the main steps of

Theorem 1.2 in [9], which generalises them = n case to them , n case.

Suppose m = Θ(nγ) for some γ > 0. We are given a CNF-SAT instance φ with variables x1, . . . ,xN and

clauses C1, . . . ,CM . We partition its variables x1, . . . ,xN into V1 = {x1, . . . ,xℓ} and V2 = {xℓ+1, . . . ,xN }, where

ℓ = N /(γ + 1). Let Ak be all the assignments ofVk for k ∈ {1, 2}. Using the same method as them = n case in [9],

we construct curves P1 and P2 so that |P1 | = Θ(M · |A1 |) and |P2 | = Θ(M · |A2 |). Moreover, by Lemma 3.7 and

Lemma 3.9 in [9], if A1 ×A2 contains a satisfying assignment, then dF (P1, P2) ≤ 1, whereas if A1 ×A2 contains no

satisfying assignment, then dF (P1, P2) ≥ 1.001. Note that if n = |P1 |, thenm = |P2 | = Θ(nγ).

Therefore, any 1.001-approximation of dF (P1, P2) with running time O((nm)1−δ) yields an algorithm for CNF-

SAT with running time O((M · |A1 |)
1−δ (M · |A2 |)

1−δ) = O(M22(1−δ)N), contradicting SETH′ and SETH. □

Next, we consider the problem of preprocessing a trajectory such that, given a query trajectory, their Fréchet

distance can be computed eiciently. This is stated as an extremely challenging problem in Buchin et al. [15].

In Lemma 28 we show that preprocessing essentially does not help with computing the Fréchet distance. In

particular, we show that even with polynomial preprocessing time, one cannot obtain a truly subquadratic query

time for computing the Fréchet distance. We prove this by considering the oline version of the data structure

problem, in a similar fashion to Rubinstein [46], Driemel and Psarros [28] and Bringmann et al. [10].

Lemma 28. Let n denote the complexity of a trajectory. There is no data structure that can be constructed in poly(n)

time, that when given a query trajectory of complexitym, can answer 1.001-approximate Fréchet distance queries in

O((nm)1−δ) query time for any δ > 0, unless SETH fails. This holds for any polynomial restrictions of n andm.

Proof. Suppose for the sake of contradiction that there exists positive constants α and δ so that one can

construct a data structure in O(nα) preprocessing time to answer 1.001-approximate Fréchet distance queries

with a query time of O((nm)1−δ).

Supposem = Θ(nγ) for some γ > 0. We take two cases. In the irst case, γ ≥ 2α . Given a pair of trajectories

with complexities n andm, we can preprocess the irst trajectory inO(nα) time, and query a 1.001-approximation

ACM Trans. Algor.

Map matching queries on realistic input graphs under the Fréchet distance • 25

of its Fréchet distance with the second trajectory inO((nm)1−δ) time. ButO(nα) = O(m1/2), so the overall running

time is O((nm)1−δ). This contradicts Lemma 27.

In the second case, γ ≤ 2α . We follow the same steps as Lemma 27. We are given a CNF-SAT instance φ

with variables x1, . . . ,xN and clauses C1, . . . ,CM . We partition its variables x1, . . . ,xN into V1 = {x1, . . . ,xℓ}

and V2 = {xℓ+1, . . . ,xN }, where ℓ = N /(2α + 1). Let Ak be all the assignments of Vk for k ∈ {1, 2}. Note that

if n = |A1 |, thenm = |A2 | = Θ(n2α). Partition the set A2 into subsets B1, . . . ,BK so that |Bi | = Θ(|A1 |
γ), for all

1 ≤ i ≤ K , and K = O(|A1 |
2α−γ). Note that A1 ×A2 contains a satisfying assignment if and only if there exists

1 ≤ i ≤ K so that A1 × Bi contains a satisfying assignment. Using the same method as them = n case in [9], we

construct curves P1 and Qi so that |P1 | = Θ(M |A1 |) and |Qi | = Θ(M |Bi |) for 1 ≤ i ≤ K . Moreover, by Lemma 3.7

and Lemma 3.9 in [9], ifA1 ×Bi contains a satisfying assignment, then dF (P1,Qi) ≤ 1, whereas ifA1 ×Bi contains

no satisfying assignment, then dF (P1,Qi) ≥ 1.001. Note that if n = |P1 |, thenm = |Qi | = Θ(nγ).

Therefore, to decide if there is a satisfying assignment for the CNF-SAT instance φ, it suices to query

a 1.001-approximation of dF (P1,Qi) for all 1 ≤ i ≤ K . We preprocess the trajectory P1 in O((M |A1 |)
α) =

O(Mα 2αN /(2α+1)) = O(Mα 2N /2) time. We answer all K queries in time

O(
∑K

i=1(M |A1 |)
1−δ (M |Bi |)

1−δ) = O(KM2 |A1 |
1−δ |A1 |

(1−δ)γ)

= O(M2 |A1 |
(1−δ)+(1−δ)γ+2α−γ)

= O(M2 |A1 |
(1−δ)+2α)

= O(M22N (1+2α−δ)/(1+2α))

= O(M22(1−δ/(1+2α))N).

Putting this together, we yield an algorithm for CNF-SAT with running time

O(Mα 2N /2
+M22(1−

δ

1+2α)N),

where α and δ are constants, contradicting SETH′and SETH. □

An open problem is whether one can adapt the lower bound of Buchin et al. [14] to rule out approximation

factors between 1.001 and 3. In particular, one would need to extend their construction for pairs of trajectories

with an imbalanced number of vertices to rule out approximation algorithms with running time O((nm)1−δ) for

all δ > 0.

Another open problem is whether one can extend the lower bound to range searching queries. Given a database

of k trajectories withm vertices each and a query trajectory with n vertices, Baldus and Bringmann [7] conjecture

that a O((kmn)1−δ) time algorithm for range searching would falsify SETH.

7.2 Map matching queries on geometric planar graphs

We return to the map matching problem. The main result of this section is that there is no data structure that can

preprocess a geometric planar graph in polynomial time to answer map matching queries in truly subquadratic

time. To build towards this result, we irst show that Alt et al.’s [5] O(pq logp) time algorithm for Problem 1 is

optimal up to lower-order factors, conditioned on unbalanced OVH.

Deinition 29 (OVH). The OV problem is to decide whether the sets A,B ⊆ {0, 1}d contain a pair of binary vectors

(a,b) ∈ A × B so that a and b are orthogonal. Let n = |A| andm = |B |. OVH states that there is no Õ((nm)1−δ) time

algorithm for OV for any δ > 0, where Õ hides polynomial factors in d . This holds for any polynomial restrictions of

n andm.

If OVH fails, then so does SETH [54]. We use OVH to prove our lower bound for Problem 1. For constructing

our graph and our trajectory, we use the notation Q = ⃝
q
i=1ai = a1 ◦ . . . ◦ aq to denote the polygonal curve Q

obtained by linearly interpolating between the vertices a1, . . . ,aq .

ACM Trans. Algor.

26 • Gudmundsson, Seybold and Wong

Lemma 30. Let P be a geometric planar graph of complexity p and Q be a trajectory of complexity q. There is no

2.999-approximation with running time O((pq)1−δ) for computing minπ dF (π ,Q) for any δ > 0, unless SETH fails.

This holds for any polynomial restrictions of p and q.

Proof. Suppose for the sake of contradiction that there exists a positive constant δ so that there is a 2.999-

approximation with running time O((pq)1−δ) for Problem 1.

We are given an OV instance A,B ⊆ {0, 1}d . Let p = |A| and q = |B |, where there may be any polynomial

restriction of p and q. First, we will construct a graph P of complexity O(dp) and a trajectory Q of complexity

O(dq). Then we will show that a 2.999-approximation of minπ dF (π ,Q) yields an O((pq)
1−δ) time algorithm for

OV.

Let h be a small constant, which we will choose later on in the proof. Inspired by Buchin et al. [14] and

Bringmann et al. [10], we deine the following polygonal curves. See Figure 16. It is straightforward to verify that

dF (0A, 0B) = dF (0A, 1B) = dF (1A, 0B) = 1, and dF (1A, 1B) = 3.

1A := (0, 0) ◦ (12, 0) ◦ (12,h) ◦ (6,h) ◦ (6, 2h) ◦ (18, 2h)

0B := (0, 0) ◦ (13, 0) ◦ (13,h) ◦ (5,h) ◦ (5, 2h) ◦ (18, 2h)

0A := (0, 0) ◦ (14, 0) ◦ (14,h) ◦ (4,h) ◦ (4, 2h) ◦ (18, 2h)

1B := (0, 0) ◦ (15, 0) ◦ (15,h) ◦ (3,h) ◦ (3, 2h) ◦ (18, 2h)

1A

0B

0A

1B

Fig. 16. The polygonal curves 1A, 0B , 0A and 1B .

We use 0A and 1A to construct P . We start by constructing the curves R, S and Ti .

R := ⃝d
k=1

Rk where Rk := 0A + (18k, 0),

S := ⃝d
k=1

Sk where Sk := 0A + (18k, 7ph),

Ti := ⃝d
j=1Ti,k where Ti,k := A[i][k]A + (18k, 3ih) for all 1 ≤ i ≤ p, 1 ≤ k ≤ d

where A[i][k] is the kth coordinate of the ith vector in A, and A[i][k]A is either 0A or 1A depending on whether

A[i][k] is 0 or 1, and +(x ,y) translates the curve horizontally by x and vertically by y. See Figure 17.

Ti

R,S

Fig. 17. The curves R and S are obtained by concatenating translated versions of 0A. The curves Ti are obtained by concate-

nating translated versions of 0A and 1A.

Next, we use R and S to construct curvesU and V . Note thatU and V each contain a loop.

U := (0,−18) ◦ (0, 0) ◦ R ◦ (36d, 3h) ◦ (0, 3h) ◦ (0, 0),

V := (0, 6ph) ◦ S ◦ (36d, 6ph) ◦ (0, 6ph) ◦ (0, 18),

ACM Trans. Algor.

Map matching queries on realistic input graphs under the Fréchet distance • 27

See Figure 18, left. Finally, we connect the curvesTi ,U andV to obtain the graph P . For 1 ≤ i ≤ p, we connectU

to Ti with the edge (0, 3h) ◦ (18, 3ih). For 1 ≤ i ≤ p, we connect Ti to V with the edge (18d, 3ih + 2h) ◦ (36d, 6ph).

We take the union of Ti , U , V , and these 2p connections to obtain the graph P , completing its construction. See

Figure 18, right. It is straightforward to verify that P is connected and planar, and |P | = O(dp).

R

S

(0,−18)

(0, 0)
(0, 3h) (36d, 3h)

(0, 6ph) (36d, 6ph)

(0, 18)

(0,−18)

R

T1

...

Tp

S

(0, 0)
(0, 3h)

(0, 6ph)

(0, 18)

(36d, h)

(36d, 6ph)

U

V P

Fig. 18. (Let) The lower curve U in red, the upper curve V in blue. (Right) The graph P obtained by connectingU , V and Ti .

Now, we use 0B and 1B to construct Q .

Wj := ⃝d
j=1Wj,k where Wj,k := B[j][k]B + (18k, 0) for all 1 ≤ j ≤ q, 1 ≤ k ≤ d,

X := ⃝
q
j=1X j where X j := (0, 0) ◦Wj ◦ (36d, 0) ◦ (0, 3h) for all 1 ≤ j ≤ q,

Q := (0,−18) ◦ X ◦ (0, 18).

Note that B[j][k] is the kth coordinate of the jth vector in B, where B[j][k]B is either 0B or 1B depending on

whether B[j][k] is 0 or 1, and +(x ,y) translates the curve horizontally by x and vertically by y. This completes

the construction of Q . See Figure 19. It is straightforward to verify that |Q | = O(dq).

Wi(0, 0)
(0, 3h) (36d, 3h)

X1 ◦ . . . ◦Xq

(0, 18)

(0,−18)

Xi Q

Fig. 19. (Let) Curve Xi is obtained by concatenating (0, 0),Wi , (36d, 3h) and (0, 3h). (Right) Curve Q is obtained by concate-

nating (0,−18), Xi for 1 ≤ i ≤ q, and (0, 18).

ACM Trans. Algor.

28 • Gudmundsson, Seybold and Wong

We will show that if our OV instance A,B is a YES-instance, then minπ dF (π ,Q) ≤ 1.001. Suppose that A[i]

and B[j] are orthogonal. We will construct a path π ∈ P with dF (π ,Q) ≤ 1.001, which we deine as follows.

Y := ⃝
j−1

ℓ=1
Yℓ where Yℓ := (0, 0) ◦ R ◦ (36d, 3h) ◦ (0, 3h) for all 1 ≤ ℓ ≤ j − 1,

Z := ⃝
q

ℓ=j+1
Zℓ where Zℓ := (0, 6ph) ◦ S ◦ (36d, 6ph) ◦ (0, 6ph) for all j + 1 ≤ ℓ ≤ q,

π := (0,−18) ◦ Y ◦Ti ◦ Z ◦ (0, 18),

It is straightforward to verify that π is a path of P . Next, we provide a matching of π and Q with Fréchet

distance at most 1.001, assuming h is suiciently small.

π = (0,−18) ◦ (0, 0) Q = (0,−18) ◦ (0, 0)

◦ ⃝
j−1

ℓ=1
Yℓ ◦ ⃝

j−1

ℓ=1
Xℓ

◦ Ti ◦ X j

◦ ⃝
q

ℓ=j+1
Zℓ ◦ ⃝

q

ℓ=j+1
Xℓ

◦ (0, 6ph) ◦ (0, 18) ◦ (0, 3h) ◦ (0, 18)

It suices to show that dF (Yℓ,Xℓ) ≤ 1, dF (Ti ,X j) ≤ 1 and dF (Zℓ,Xℓ) ≤ 1.001, for a suiciently small choice

of h. This is equivalent to showing that dF (R,Wℓ) ≤ 1, dF (Ti ,Wj) ≤ 1, and dF (S,Wℓ) ≤ 1.001. We traverse these

pairs of trajectories synchronously. For 1 ≤ k ≤ d , we have Rk = 0A + (18k, 0),Wj,k = B[j][k]B + (18k, 0),

Ti,k = A[i][k]A + (18k, 0) and Sk = 0A + (18k, 7ph). Since dF (0A,B[j][k]B) ≤ 1, we have dF (Rk ,Wj,k) ≤ 1. Putting

this together for 1 ≤ k ≤ d , we have dF (R,Wℓ) ≤ 1. Also, we have dF (A[i][k]A,B[j][k]B) ≤ 1 for all 1 ≤ k ≤ d ,

since A[i] and B[k] are orthogonal. Therefore, dF (Ti,k ,Wj,k) ≤ 1, and putting this together for 1 ≤ k ≤ d , we

have dF (Ti ,Wj) ≤ 1. Finally, since dF (0A,B[j][k]B) ≤ 1, we have dF (Sk ,Wj,k) ≤ 1 + 7ph. We can obtain that

1 + 7ph ≤ 1.001 by setting h = 0.0001/p. Putting this together for 1 ≤ k ≤ d , we have dF (S,Wℓ) ≤ 1.001. To

summarise, we have dF (Yℓ,Xℓ) ≤ 1, dF (Ti ,X j) ≤ 1 and dF (Zℓ,Xℓ) ≤ 1.001, so dF (π ,Q) ≤ 1.001 as required.

We show that if our OV instance A,B is a NO-instance, then minπ dF (π ,Q) ≥ 3. Suppose for the sake of

contradiction that A,B is a NO-instance but there exists π ∈ P so that dF (π ,Q) < 3. First, note that π must start

at (0,−18) and end at (0, 18) since no other vertices in P can match to the start and end points of Q . Note that

(0,−18) ∈ U and (0, 18) ∈ V , and that any path π from U to V must pass through one of the curves Ti . Without

loss of generality, let Ti be a subcurve of π . Consider the point (22, 3ih) ∈ Ti ⊂ π . This point must match to

some point in Q that is not on the edges (0,−18) ◦ (0, 0) or (0, 3h) ◦ (0, 18). Therefore, there exists some j so

that (22, 3ih) ∈ π matches to a point on X j . The point (22, 3ih) cannot match to any of the edges (0, 0) ◦ (18, 0),

(18(d + 1), 2h) ◦ (36d, 0), (36d, 0) ◦ (0, 3h) or (0, 3h) ◦ (0, 0) on X j . Therefore, the point (22, 3ih) ∈ Ti that matches

to a point onWj . As the pathWj ⊂ Q is traversed, the path π must continue to traverse the path along Ti , since

Ti is an isolated path that only connects to the rest of P at its endpoints. Therefore, Ti andWj are traversed

simultaneously. Speciically, the subcurves Ti,k ⊂ Ti andWj,k ⊂Wj are traversed simultaneously, since no points

on Ti,k can match to points onWj,k ′ for all k , k
′. This implies dF (π ,Q) ≥ dF (Ti,k ,Wj,k) for all 1 ≤ k ≤ d .

Finally, we use the fact that A,B is a NO-instance to show that dF (Ti,k ,Wj,k) = 3 for some 1 ≤ k ≤ d . Since

A,B is a NO-instance, A[i] and B[j] are not orthogonal. Therefore, there exists a k so that A[i][k] = B[j][k] = 1.

Therefore, dF (A[i][k]A,B[j][k]B) = 3. Since Ti,k = A[i][k]A + (18k, 3ih) and Wj,k = B[j][k]B + (18k, 0), we

have dF (A[i][k]A,B[j][k]B) = 3 + 3ih ≥ 3. Therefore, dF (π ,Q) ≥ dF (Ti,k ,Wj,k) > 3, contradicting the fact that

dF (π ,Q) < 3. Therefore, if our OV instance A,B is a NO-instance, then minπ dF (π ,Q) ≥ 3 as required.

To summarise, we can decide if A,B is a YES-instance or a NO-instance by deciding whether minπ dF (π ,Q) ≤

1.001 or minπ dF (π ,Q) ≥ 3. Therefore, any 2.999-approximation with running timeO((pq)1−δ) yields an algorithm

for OV with running time O(d2(pq)1−δ), where p = |A| and q = |B |. This contradicts OVH and SETH. □

Finally, we combine the ideas in Lemma 28 and 30 to obtain the main theorem of the section. The theorem

essentially states that for geometric planar graphs, preprocessing does not help for map matching. In particular,

ACM Trans. Algor.

Map matching queries on realistic input graphs under the Fréchet distance • 29

we show that even with polynomial preprocessing time on the graph, one cannot obtain a truly subquadratic

query time for the map matching problem in Problem 2. Similar ideas were used in Driemel and Psarros [28] and

Bringmann et al. [10] for the Approximate Nearest Neighbour Fréchet query problem.

Theorem 8. Given a geometric planar graph of complexity p, there is no data structure that can be constructed

in poly(p) time, that when given a query trajectory of complexity q, can answer 2.999-approximate map matching

queries in O((pq)1−δ) query time for any δ > 0, unless SETH fails. This holds for any polynomial restrictions of p

and q.

Proof. Suppose for the sake of contradiction that there exists positive constants α and δ so that one can

construct a data structure in O(nα) preprocessing time to answer 2.999-approximate map matching queries with

a query time of O((pq)1−δ).

Suppose q = Θ(pγ) for some γ > 0. We take two cases, In the irst case, γ ≥ 2α . Given a geometric planar

graph of complexity p and a trajectory of complexity q, we can preprocess the graph in O(pα) time, and query a

2.999-approximation of minπ dF (π ,Q) in O((pq)1−δ) time. But O(pα) = O(q1/2), so the overall running time is

O((pq)1−δ). This contradicts Lemma 30.

In the second case, γ ≤ 2α . We are given an OVH instance A,B where |A| = n and |B | =m. Since OVH holds

for any polynomial restrictions of n andm, we may assume thatm = Θ(n2α). Partition the set B into subsets

B1, . . . ,BK so that |Bi | = Θ(|A|γ), for all 1 ≤ i ≤ K , and K = O(|A|2α−γ). Note that A × B contains a pair of

orthogonal vectors if and only if there exists 1 ≤ i ≤ K so that A × Bi contains a pair of orthogonal vectors.

Given the OV instance A,Bi , we use Lemma 30 to construct a geometric planar graph P and a trajectories Qi

so that p = |P | = O(d |A|) = O(dn) and q = |Qi | = O(d |Bi |) = O(dnγ). Moreover, by Lemma 30, if (A,Bi) is a

YES-instance, then minπ (π ,Qi) ≤ 1.001, whereas if (A,Bi) is a NO-instance, then minπ (π ,Qi) ≥ 3. Note that

q = Θ(pγ).

Therefore, to decide if A,B is a YES-instance or a NO-instance, it suices to query a 2.999-approximation of

minπ (π ,Qi) for all 1 ≤ i ≤ K . Recall thatm = Θ(n2α). We preprocess the graph P in O((dn)α) = O(dαm1/2) time.

We answer all K queries in time

O(
∑K

i=1(dn)
1−δ (dnγ)1−δ) = O(Kd2n1−δ+γ)

= O(d2n(1−δ+γ+2α−γ)

= O(d2n2α+1−δ)

= O(d2n(2α+1)(1−δ/(1+2α))

= O(d2(mn)1−δ/(1+2α)).

Putting this together, we yield an algorithm for OVH with running time

O(dαm1/2
+ d2(mn)1−

δ

1+2α),

where α and δ are constants. This contradicts OVH under the polynomial restriction m = Θ(n2α), thereby

contradicting SETH. □

8 CONCLUSION

We showed that for c-packed graphs, one can construct a data structure of near-linear size, so that map matching

queries can be answered in time near-linear in terms of the query complexity, and polylogarithmic in terms of

the graph complexity. We showed that for geometric planar graphs, there is no data structure for answering map

matching queries in truly subquadratic time, unless SETH fails.

Our map matching queries return the minimum Fréchet distance between the query trajectory and any path in

an undirected graph. The data structure can be modiied for directed graphs and for matched paths that start

and end along edges of the graph. We can also modify the data structure to return the length of the minimum

ACM Trans. Algor.

30 • Gudmundsson, Seybold and Wong

Fréchet distance path. More generally, one can modify the data structure to return
∑

e ∈π f (e) for any function f ,

where π is the path with approximate minimum Fréchet distance. One application of this is fare estimation for

ride-sharing services.

Our data structures return the minimum Fréchet distance of the matched path. One can modify our data

structure to retrieve the path that attains the minimum Fréchet distance, however, the space requirement would

increase to quadratic. An open problem is whether one can obtain a map matching data structure that retrieves

the matched path, and uses subquadratic space. Another open problem is whether one can make ε chooseable at

query time, rather than at preprocessing time.

Yet another direction for future work is to improve the preprocessing, size, and query time of the data structure.

Can one improve the preprocessing time to subquadratic? Can one reduce the dependencies on c , ε−1, logq and

logp? For example, can one improve the query time by avoiding parametric search? Avoiding parametric search

would also make the algorithm more likely to be implementable in practice.

Another practical consideration is verifying whether real-world road networks are indeed c-packed. Since these

road networks contain upwards of a million edges [18], a faster implementation for computing the c-packedness

value of a graph [38] would be required. If real-world road networks are not c-packed, an interesting direction for

future work would be to consider other realistic input models, such as ϕ-low-density, which have small values of

ϕ even on large road networks [19].

Finally, two open problems are proposed in Section 7. Can one modify the lower bound of Buchin et al. [14]

to rule out approximation ratios between 1.001 and 3 for preprocessing a trajectory to answer Fréchet distance

queries in truly subquadratic time? Can one extend the lower bounds to rule out eicient data structures for

other Fréchet distance queries, for example, range searching queries?

REFERENCES

[1] Mohammad Ali Abam, Mark de Berg, Mohammad Farshi, and Joachim Gudmundsson. Region-fault tolerant geometric spanners. Discret.

Comput. Geom., 41(4):556ś582, 2009.

[2] Peyman Afshani, Lars Arge, and Kasper Dalgaard Larsen. Orthogonal range reporting: query lower bounds, optimal structures in 3-d,

and higher-dimensional improvements. In David G. Kirkpatrick and Joseph S. B. Mitchell, editors, Proceedings of the 26th Symposium on

Computational Geometry, SoCG 2010, pages 240ś246. ACM, 2010.

[3] Peyman Afshani and Anne Driemel. On the complexity of range searching among curves. In Proceedings of the 29th Annual ACM-SIAM

Symposium on Discrete Algorithms, SODA 2018, pages 898ś917. SIAM, 2018.

[4] Mohamed H. Ali, John Krumm, Travis Rautman, and Ankur Teredesai. ACM SIGSPATIAL GIS cup 2012. In Proceedings of the 20th ACM

SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPATIAL 2012, pages 597ś600. ACM, 2012.

[5] Helmut Alt, Alon Efrat, Günter Rote, and Carola Wenk. Matching planar maps. J. Algorithms, 49(2):262ś283, 2003.

[6] Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl., 5:75ś91,

1995.

[7] Julian Baldus and Karl Bringmann. A fast implementation of near neighbors queries for Fréchet distance (GIS cup). In Proceedings of the

25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPATIAL 2017, pages 99:1ś99:4. ACM,

2017.

[8] Sotiris Brakatsoulas, Dieter Pfoser, Randall Salas, and Carola Wenk. On map-matching vehicle tracking data. In Proceedings of the 31st

International Conference on Very Large Data Bases, VLDB 2005, pages 853ś864. ACM, 2005.

[9] Karl Bringmann. Why walking the dog takes time: Frechet distance has no strongly subquadratic algorithms unless SETH fails. In

Proceedings of the 55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, pages 661ś670. IEEE Computer Society,

2014.

[10] Karl Bringmann, Anne Driemel, André Nusser, and Ioannis Psarros. Tight bounds for approximate near neighbor searching for time

series under the Fréchet distance. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, pages 517ś550.

SIAM, 2022.

[11] Karl Bringmann and Marvin Künnemann. Improved approximation for Fréchet distance on c-packed curves matching conditional lower

bounds. Int. J. Comput. Geom. Appl., 27(1-2):85ś120, 2017.

[12] Kevin Buchin, Maike Buchin, Wouter Meulemans, and Wolfgang Mulzer. Four soviets walk the dog: Improved bounds for computing

the Fréchet distance. Discret. Comput. Geom., 58(1):180ś216, 2017.

ACM Trans. Algor.

Map matching queries on realistic input graphs under the Fréchet distance • 31

[13] Kevin Buchin, Yago Diez, Tom van Diggelen, and Wouter Meulemans. Eicient trajectory queries under the Fréchet distance (GIS cup).

In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPATIAL 2017,

pages 101:1ś101:4. ACM, 2017.

[14] Kevin Buchin, Tim Ophelders, and Bettina Speckmann. SETH says: Weak Fréchet distance is faster, but only if it is continuous and in one

dimension. In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, pages 2887ś2901. SIAM, 2019.

[15] Maike Buchin, Ivor van der Hoog, Tim Ophelders, Lena Schlipf, Rodrigo I. Silveira, and Frank Staals. Eicient fréchet distance queries

for segments. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th Annual European Symposium

on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 29:1ś29:14. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2022.

[16] Erin W. Chambers, Brittany Terese Fasy, Yusu Wang, and Carola Wenk. Map-matching using shortest paths. ACM Trans. Spatial

Algorithms Syst., 6(1):6:1ś6:17, 2020.

[17] Pingfu Chao, Yehong Xu, Wen Hua, and Xiaofang Zhou. A survey on map-matching algorithms. In Proceedings of the 31st Australasian

Database Conference, ADC 2020, volume 12008 of Lecture Notes in Computer Science, pages 121ś133. Springer, 2020.

[18] Daniel Chen, Anne Driemel, Leonidas J. Guibas, Andy Nguyen, and Carola Wenk. Approximate map matching with respect to the

Fréchet distance. In Proceedings of the 13th Workshop on Algorithm Engineering and Experiments, ALENEX 2011, pages 75ś83. SIAM, 2011.

[19] Daniel Chen, Leonidas J Guibas, Qixing Huang, and Jian Sun. A faster algorithm for matching planar maps under the weak Fréchet

distance. Unpublished, December, 2008.

[20] Daniel Chen, Christian Sommer, and Daniel Wolleb. Fast map matching with vertex-monotone Fréchet distance. In Proceedings of the

21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, ATMOS 2021, volume 96 of OASIcs,

pages 10:1ś10:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[21] Richard Cole. Slowing down sorting networks to obtain faster sorting algorithms. J. ACM, 34(1):200ś208, 1987.

[22] Mark de Berg, Joachim Gudmundsson, and Ali D. Mehrabi. A dynamic data structure for approximate proximity queries in trajectory

data. In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPATIAL

2017, pages 48:1ś48:4. ACM, 2017.

[23] Mark de Berg, Ali D. Mehrabi, and Tim Ophelders. Data structures for Fréchet queries in trajectory data. In Proceedings of the 29th

Canadian Conference on Computational Geometry, CCCG 2017, pages 214ś219, 2017.

[24] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269ś271, 1959.

[25] Anne Driemel and Sariel Har-Peled. Jaywalking your dog: Computing the Fréchet distance with shortcuts. SIAM J. Comput., 42(5):1830ś

1866, 2013.

[26] Anne Driemel, Sariel Har-Peled, and Carola Wenk. Approximating the Fréchet distance for realistic curves in near linear time. Discret.

Comput. Geom., 48(1):94ś127, 2012.

[27] Anne Driemel and Ioannis Psarros. ANN for time series under the Fréchet distance. In Proceedings of the 17th International Symposium

on Algorithms and Data Structures, WADS 2021, volume 12808 of Lecture Notes in Computer Science, pages 315ś328. Springer, 2021.

[28] Anne Driemel, Ioannis Psarros, and Melanie Schmidt. Sublinear data structures for short Fréchet queries. CoRR, abs/1907.04420, 2019.

[29] Anne Driemel, Ivor van der Hoog, and Eva Rotenberg. On the discrete fréchet distance in a graph. In Proceedings of the 38th Symposium

on Computational Geometry, SoCG 2022, volume 224 of LIPIcs, pages 36:1ś36:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[30] Christian A. Duncan, Michael T. Goodrich, and Stephen G. Kobourov. Balanced aspect ratio trees: Combining the advantages of k-d

trees and octrees. J. Algorithms, 38(1):303ś333, 2001.

[31] Fabian Dütsch and Jan Vahrenhold. A ilter-and-reinement-algorithm for range queries based on the Fréchet distance (GIS cup). In

Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPATIAL 2017,

pages 100:1ś100:4. ACM, 2017.

[32] Arnold Filtser and Omrit Filtser. Static and streaming data structures for Fréchet distance queries. In Proceedings of the 2021 ACM-SIAM

Symposium on Discrete Algorithms, SODA 2021, pages 1150ś1170. SIAM, 2021.

[33] Arnold Filtser, Omrit Filtser, and Matthew J. Katz. Approximate nearest neighbor for curves - simple, eicient, and deterministic. In

47th International Colloquium on Automata, Languages, and Programming, ICALP 2020, volume 168 of LIPIcs, pages 48:1ś48:19. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[34] Omrit Filtser. Universal approximate simpliication under the discrete Fréchet distance. Inf. Process. Lett., 132:22ś27, 2018.

[35] Bin Fu, Robert T. Schweller, and Tim Wylie. Discrete planar map matching. In Proceedings of the 31st Canadian Conference on

Computational Geometry, CCCG 2019, pages 218ś224, 2019.

[36] Teoilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci., 38:293ś306, 1985.

[37] Joachim Gudmundsson, Michael Horton, John Pfeifer, and Martin P. Seybold. A practical index structure supporting Fréchet proximity

queries among trajectories. ACM Trans. Spatial Algorithms Syst., 7(3):15:1ś15:33, 2021.

[38] Joachim Gudmundsson, Yuan Sha, and Sampson Wong. Approximating the packedness of polygonal curves. In Yixin Cao, Siu-Wing

Cheng, and Minming Li, editors, 31st International Symposium on Algorithms and Computation, ISAAC 2020, volume 181 of LIPIcs, pages

9:1ś9:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

ACM Trans. Algor.

32 • Gudmundsson, Seybold and Wong

[39] Joachim Gudmundsson and Michiel H. M. Smid. Fast algorithms for approximate Fréchet matching queries in geometric trees. Comput.

Geom., 48(6):479ś494, 2015.

[40] Joachim Gudmundsson, André van Renssen, Zeinab Saeidi, and Sampson Wong. Translation invariant Fréchet distance queries.

Algorithmica, 83(11):3514ś3533, 2021.

[41] Mahdi Hashemi and Hassan A. Karimi. A critical review of real-time map-matching algorithms: Current issues and future directions.

Comput. Environ. Urban Syst., 48:153ś165, 2014.

[42] Piotr Indyk. Approximate nearest neighbor algorithms for frechet distance via product metrics. In Proceedings of the 18th Symposium on

Computational Geometry, SoCG 2002, pages 102ś106. ACM, 2002.

[43] Matej Kubicka, Arben Çela, Hugues Mounier, and Silviu-Iulian Niculescu. Comparative study and application-oriented classiication of

vehicular map-matching methods. IEEE Intell. Transp. Syst. Mag., 10(2):150ś166, 2018.

[44] Nimrod Megiddo. Applying parallel computation algorithms in the design of serial algorithms. J. ACM, 30(4):852ś865, 1983.

[45] Mohammed A Quddus, Washington Y Ochieng, and Robert B Noland. Current map-matching algorithms for transport applications:

State-of-the art and future research directions. Transportation research part c: Emerging technologies, 15(5):312ś328, 2007.

[46] Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Proceedings of the 50th Annual ACM SIGACT Symposium on

Theory of Computing, STOC 2018, pages 1260ś1268. ACM, 2018.

[47] Otfried Schwarzkopf and Jules Vleugels. Range searching in low-density environments. Inf. Process. Lett., 60(3):121ś127, 1996.

[48] Martin P. Seybold. Robust map matching for heterogeneous data via dominance decompositions. In Proceedings of the 2017 SIAM

International Conference on Data Mining, SDM 2017, pages 813ś821. SIAM, 2017.

[49] Junichi Shigezumi, Tatsuya Asai, Hiroaki Morikawa, and Hiroya Inakoshi. A fast algorithm for matching planar maps with min-

imum Fréchet distances. In Proceedings of the 4th International ACM SIGSPATIAL Workshop on Analytics for Big Geospatial Data,

BigSpatial@SIGSPATIAL 2015, pages 25ś34. ACM, 2015.

[50] Ivor van der Hoog, Eva Rotenberg, and Sampson Wong. Data structures for approximate discrete fréchet distance. CoRR, abs/2212.07124,

2022.

[51] Hong Wei, Yin Wang, George Forman, and Yanmin Zhu. Map matching by Fréchet distance and global weight optimization. Technical

Paper, Departement of Computer Science and Engineering, page 19, 2013.

[52] Hong Wei, Yin Wang, George Forman, and Yanmin Zhu. Map matching: comparison of approaches using sparse and noisy data. In

Proceedings of the 21st SIGSPATIAL International Conference on Advances in Geographic Information Systems, SIGSPATIAL 2013, pages

434ś437. ACM, 2013.

[53] Carola Wenk, Randall Salas, and Dieter Pfoser. Addressing the need for map-matching speed: Localizing Globalb curve-matching

algorithms. In Proceedings of the 18th International Conference on Scientiic and Statistical Database Management, SSDBM 2006, pages

379ś388. IEEE Computer Society, 2006.

[54] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications. Theor. Comput. Sci., 348(2-3):357ś365, 2005.

[55] Tim Wylie and Binhai Zhu. Intermittent map matching with the discrete Fréchet distance. CoRR, abs/1409.2456, 2014.

[56] Yu Zheng and Xiaofang Zhou, editors. Computing with Spatial Trajectories. Springer, 2011.

ACM Trans. Algor.

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 Related work

	2 Preliminaries
	3 Technical Overview
	3.1 Data structure for c-packed graphs
	3.2 Lower bound for geometric planar graphs

	4 Stage 1: Straightest path queries
	5 Stage 2: Map matching segment queries
	6 Stage 3: Map matching queries
	7 Lower bound for geometric planar graphs
	7.1 Fréchet distance queries on trajectories
	7.2 Map matching queries on geometric planar graphs

	8 Conclusion
	References

