
Lines: 487

Approximating Multiplicatively Weighted Voronoi
Diagrams: Efficient Construction with Linear Size
Joachim Gudmundsson #

University of Sydney, Australia

Martin P. Seybold #

University of Vienna, Faculty of Computer Science, Theory and Applications of Algorithms,
Währinger Straße 29, A-1090 Vienna, Austria

Sampson Wong #

University of Copenhagen, Copenhagen

Abstract1

Given a set of n sites from Rd, each having some positive weight factor, the Multiplicatively2

Weighted Voronoi Diagram is a subdivision of space that associates each cell to the site whose3

weighted Euclidean distance is minimal for all points in the cell.4

We give novel approximation algorithms that output a cube-based subdivision such that the5

weighted distance of a point with respect to the associated site is at most (1 + ε) times the minimum6

weighted distance, for any fixed parameter ε ∈ (0, 1). The diagram size is Od(n log(1/ε)/εd−1) and7

the construction time is within an OD(log(n)/ε(d+5)/2)-factor of the size bound. We also prove a8

matching lower bound for the size, showing that the proposed method is the first to achieve optimal9

size, up to Θ(1)d-factors. In particular, the obscure log(1/ε) factor is unavoidable. As a by-product,10

we obtain a factor dO(d) improvement in size for the unweighted case and O(d log(n) + d2 log(1/ε))11

point-location time in the subdivision, improving the known query bound by one d-factor.12

The key ingredients of our approximation algorithms are the study of convex regions that we call13

cores, an adaptive refinement algorithm to obtain optimal size, and a novel notion of bisector coresets,14

which may be of independent interest. In particular, we show that coresets with Od(1/ε(d+3)/2)15

worst-case size can be computed in near-linear time.16

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Multiplicatively Weighted Voronoi Diagram, Compressed QuadTree, Adaptive
Refinement, Bisector Coresets, Semi-Separated Pair Decomposition, Lower Bound

Related Version See https://arxiv.org/abs/2112.12350 for the full version of the paper.

Acknowledgements This work was supported under the Australian Research Council Discovery
Projects funding scheme (project number DP180102870) and partially supported by Starting Grant
1054-00032B from the Independent Research Fund Denmark under the Sapere Aude research career
programme. This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (Grant agreement No.
101019564) and the Austrian Science Fund (FWF) project Z 422-N, project I 5982-N, and project
P 33775-N, with additional funding from the netidee SCIENCE Stiftung, 2020–2024.

1 Introduction17

Voronoi Diagrams are structures of fundamental importance for many scientific fields. In18

particular, planar variants with linear worst-case size are very well understood (e.g. [8, 10]).19

Though closely related to the Nearest-Neigbhor search problem, the explicit subdivisions20

provided by Voronoi Diagrams are a central tool for various problems, including meshing in21

scientific computing, planning of facility locations, motion planning, or surface reconstruction.22

Given a set of sites {s1, . . . , sn} ⊂ Rd, each having a positive weight wi > 0, their23

Multiplicatively Weighted Voronoi Diagram (MWVD) is the subdivision of Rd into cells that24

© Joachim Gudmundsson, Martin P. Seybold and Sampson Wong;
licensed under Creative Commons License CC-BY 4.0

40th International Symposium on Computational Geometry (SoCG 2024).
Editors: Wolfgang Mulzer and Jeff M. Phillips; Article No. XX; pp. XX:1–XX:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:joachim.gudmundsson@gmail.com
https://orcid.org/0000-0002-6778-7990
mailto:martin.seybold@univie.ac.at
https://orcid.org/0000-0001-6901-3035
mailto:sampson.wong123@gmail.com
https://orcid.org/0000-0003-3803-3804
https://arxiv.org/abs/2112.12350
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Approximate Multiplicatively Weighted Voronoi Diagrams with Optimal Size

associates each cell to one site, i.e. the site si that minimizes ∥p − si∥2/wi for all points p in25

the cell. Though all bisectors in an MWVD are either half-spaces (wi = wj) or Apollonian26

spheres (wi ̸= wj), the two main difficulties with MWVDs are that Voronoi regions may27

contain holes, and that the multiplicative weights can violate the triangle inequality.28

The MWVD in R1 has linear size and can be obtained using a Divide & Conquer algorithm29

in O(n log n) time [6]. Aurenhammer and Edelsbrunner showed that MWVDs in R2 can30

have Ω(n2) size and gave a worst-case optimal algorithm [7]. Held and de Lorenzo [17] gave31

a sweep approach for 2D that runs in O(n2 log n) time. In special cases, 2D MWVD size is32

known to have near-linear, or even linear, bounds [16, 11]. In general, unweighted Voronoi33

Diagrams, i.e. all wi = 1, are well known to have Ω(n⌈d/2⌉) worst-case size (see e.g. [13]).34

Importance of cube-based Approximate Voronoi Diagrams. We limit our discussion on35

two applications where the simplicity of cube-based AVDs is key for strong bounds.36

(i) Axis-Aligned Segment-Queries in 2D.37

Using Chazelle’s Point-Location & Walk method [9, Sect. 4.2] on an 2D MWVD, it38

is possible to traverse all k cells of the subdivision that are intersected by an axis-39

aligned query line-segment in O(log(n) + k) time, which determines the Ω(k) distinct40

nearest-sites for (the sequence of points that are contained in) the query-segment.41

Now, an approximate subdivision that consists of canonical squares, or set difference of42

canonical squares, allows to merge common boundaries of adjacent squares, associated43

to the same Voronoi site, without increasing the size bound of the subdivision. Thus,44

allowing to retain the O(log(n) + k) query bound in the approximate setting.45

(ii) Fast Point-Queries when d is large. The ‘curse of dimensionality’ typically refers46

to the broad phenomena that either the query-bounds or the space-bounds of known47

structures for (exact) nearest-neighbor search deteriorate ‘quickly’ as d increases. In48

ε-approximate nearest-neighbor search, we are mainly interested in the range d = 2 to49

d = O(log(n)/ε2), due to Johnson-Lindenstrauss dimension reduction (see, e.g., [13, 14]).50

Now, cube-based subdivisions allow to use compressed QuadTrees to obtain very strong51

query bounds. For example, in a subdivision of Rd with N = O(n/εd) cubes, the query52

time is O(d log(n/εd)) = O(d log(n) + d2 log(1/ε)).53

In contrast, query bounds containing O(1)d-terms are only fast when d is very small.54

For careful comparison with respect to the dimension, we distinguish between O-notation,55

OD-notation that assumes a ‘constant-dimension’ and hides dO(d)-factors, and Od-notation56

that assumes a ‘small-dimension’ and hides O(1)d-factors. E.g. O((8d)d) = Od(dd) = OD(1).57

Note that there is a separation between space bounds in the OD-regime and the Od-regime.58

For d = O(log log n), any O(1)d factors in size are O(polylog n) factors, whereas dd-factors59

are ω(polylog n). Further, cd-factors in size are sub-linear O(n1/p) for d ≤ logc(n)/p, unlike60

dd-factors.61

This work studies the problem of computing ε-Approximate MWVDs for prescribed62

ε > 0. That is, a subdivision of Rd into cells that are cubes, or set-difference of cubes, that63

associates each cell with one site that is an ε-approximate weighted nearest-neighbor for all64

points in the cell. The only known solution til date is to employ the, more general, framework65

of Har-Peled and Kumar [15], which, e.g., found application in the work [3].66

Contribution and Paper Organization. Our approach considers convex regions that we call67

‘cores’, which are the intersection of at most n − 1 Apollonian balls of MWVD bisectors. In68

Section 3, we introduce an Adaptive Refinement algorithm that ε-approximates each core with69

Joachim Gudmundsson, Martin P. Seybold and Sampson Wong XX:3

Diagram Technique Size Runtime

ε-AVD Clustering, PLEB [12] OD

(
n

log n

εd
log n

ε

)
×OD

(
log n

ε

)
ε-AVD Clustering, ε-PLSB [18] OD

(
n

log 1/ε

εd+1

)
×OD

(
log n

ε

)
ε-AVD Triangle ineq., 8-WSPD [4, p148] Od

(
n

(
d

ε

)d

log 1
ε

)
×OD

(1
εd

log n

ε

)
(1, ε)-AVD Triangle ineq. [5, Cor. 9.10.f] OD

((
n/εd−1)

log 1
ε

)
ε-AMWVD Clustering, Sketches [15] OD

(
n

(
logd+2(n)

ε2d+2 + 1
εd(d+1)

))
ε-AMWVD Adaptive Refinement, ε−1-SSPD Θd

(
n

log 1/ε

εd−1

)
×OD

(log n

ε(d+5)/2

)
Table 1 Overview of constructions of ε-AVDs that provide fast queries for large d and the proposed

method for ε-AMWVDs. Note that ε-AMWVDs are more general than the unweighted ε-AVDs. The
time bound of [15] is OD

(
n log2d+3(n)/ε2d+2 + n/εd(d+1)), and the query time O(d log(n/εd(d+1)))

is cubic in d. All other QuadTree based ε-AVD methods have O(d log(n/εd)) query time.

95

96

97

98

a set of d-cubes, and show that each core is ε-approximated with Od(log(1/ε)/εd−1) cubes.70

In Section 3.1, we show that a top-down propagation in the compressed QuadTree over the71

set of d-cubes allows to obtain an ε-AMWVD that consists of Od(n log(1/ε)/εd−1) cells that72

are d-cubes, or the set difference of d-cubes, each of which associated to one site that is73

weighted nearest-neighbor for all points in the cell, up to a (1 + ε) factor. One by-product of74

our construction is thus a compressed QuadTree that can report an ε-NN of a query-point in75

O(d log(n) + d2 log(1/ε)) time, thus improving on the query-time of the structure from [15]76

by one d-factor.77

We prove a matching lower bound on the size of the subdivision in Section 4. Specifically,78

we show that every subdivision of Rd, formed by axis-aligned hyper-rectangles, that is an79

ε-approximation of an Apollonian ball must contain Ωd(log(1/ε)/εd−1) hyper-rectangles. Our80

proposed bound improves on the known Ωd(ε/(ε
√

d)d) bound from [4, 5] in two ways. First,81

the denominator is free of the
√

d-factor and, second, it is the first known lower bound that82

shows that a log(1/ε)-factor is required in the space. Thus, the proposed construction is the83

first that computes an ε-AMWVD with worst-case optimal size, up to Θd(1)-factors.84

In Section 5, we introduce our second approximation algorithm which is the key component85

to improve the construction time from quadratic to near-linear. We show that cores admit86

an ε-approximation with low complexity, i.e. with Od(1/ε(d+3)/2) bisectors, and give an87

algorithm that outputs such bisector coresets in OD(n log(n)/ε3(d+1)/2) time, based on an88

O(1/ε)-Semi-Separated Pair Decomposition (SSPD) of the site locations. If the sites are89

a point set with polynomially bounded spread, the construction time improves from an90

OD-bound to the respective Od-bound.91

See Table 1 for an overview of the size and runtime of known ε-AVD constructions, and92

our proposed method. Due to the large amount of previous work, we only include those93

methods that also compute cube-based Approximate Voronoi Diagrams in the comparison.94

2 Preliminaries99

We provide a brief overview of canonical d-cubes and QuadTrees. The canonical cube system100

is an hierarchical and infinite tiling of Rd with canonical cubes. Level zero of the canonical101

cube system consists of unit cubes with vertices at integer coordinates. For all ℓ ≤ −1, we102

SoCG 2024

XX:4 Approximate Multiplicatively Weighted Voronoi Diagrams with Optimal Size

Figure 1 The top shows an example of an exact MWVD of five sites (εS = 0). The bottom shows
an εS-AMWVD of the same instance obtained from cores with εS = 0.01. Result squares of the
proposed Adaptive Refinement algorithm (Section 3) for all four cores are shown as black overlay.

127

128

129

construct level ℓ by bisecting each cube in level ℓ+1 along each of the d axes. Therefore, there103

are 2d cubes in level ℓ per cube in level ℓ+1. For all ℓ ≥ 1, we merge 2d cubes in level ℓ−1 to104

obtain a single cube in level ℓ, so that the cubes in level ℓ form a tiling of Rd. For example, a105

d-cube is a subset of points form Rd of the form [2ℓx1, 2ℓ(x1 + 1)] × . . . × [2ℓxd, 2ℓ(xd + 1)] for106

integers ℓ, x1, . . . , xd. Note that any two d-cubes from the system are either interior disjoint107

or one cube is a subset of the other.108

Given a set of n canonical d-cubes from the system, one can build a QuadTree on the set109

of cubes, in O(dn log ∆) time, where ∆ is the ratio between longest and shortest side length110

of the input set. In this work, we use compressed QuadTrees, which have O(dn) size and can111

be constructed in O(dn log n) time. The subdivision of Rd induced by a QuadTree consists112

of canonical d-cubes, whereas the subdivision induced by a compressed QuadTree consists of113

regions that are the set difference of canonical d-cubes.114

2.1 Voronoi Maps, Apollonian Balls, and the Core115

Mapping λ : Rd → {1, . . . , n} is called a Voronoi Map for the distance functions {d1, . . . , dn},116

if dλ(x)(x) ≤ mini di(x), for all points x ∈ Rd. The di with index i = λ(x) is called a117

nearest-neighbor of point x. In the case of Multiplicatively Weighted Voronoi Diagrams,118

each site si ∈ Rd has a positive weight-factor wi and the distance is di(x) = ∥x − si∥/wi.119

We denote by ∥·∥ the Euclidean ℓ2-norm and indicate other ℓp-norms explicitly by ∥·∥p.120

A subdivision of Rd is called MWVD if every cell in the subdivision is associated to one121

input site, and if mapping the points in a cell to the associated site is a Voronoi Map. Cell122

boundaries occur where the weighted distances to two sites are equal, which is along an123

Apollonian circle for d = 2. For general d, we define the Apollonian sphere between si124

and sj to be {x ∈ Rd : ∥x − si∥/wi = ∥x − sj∥/wj}. A trivial MWVD is to construct the125

arrangement of the
(

n
2
)

Apollonian spheres, giving a polynomial size bound.126

Approximate Voronoi Maps of Apollonian Spheres and cube-based ε-AVDs A mapping130

λ : Rd → {1, . . . , n} is called an ε-approximate Voronoi Map for the functions {d1, . . . , dn},131

if dλ(x)(x) ≤ (1 + ε) mini di(x), for all points x ∈ Rd.132

Recall that the MWVD bisector of sj and si is a (d − 1)-dimensional hyper-plane, if133

wj = wi. We introduce a parameter εS ∈ [0, ε), that we calibrate in Section 5.2, and use it134

to εS-approximate hyper-planes with hyper-spheres. (This will turn out advantageous for135

Joachim Gudmundsson, Martin P. Seybold and Sampson Wong XX:5

obtaining optimal size.) Let the sites be sorted by weight, so that w1 ≤ . . . ≤ wn, breaking136

ties arbitrary but fixed. We define for all indices i < j the Apollonian balls137

ball(i, j) = ball(si, sj , γij) =
{

x ∈ Rd : ∥x − si∥γij ≤ ∥x − sj∥
}

, (1)138

where γij := max(wj/wi, 1 + εS). We call γij the effective weight of ball(i, j). For εS > 0,139

γij ≥ 1 + εS and it follows that ball(i, j) is not a half-space. Note that the arrangement of140

the surfaces of all {ball(i, j)} yields an εS-approximate Voronoi Map. See Figure 1.141

To enable fast point location with Compressed Quad-Trees, an ε-Approximate Voronoi142

Diagram (ε-AVD) is a subdivision of Rd into d-cubes, and set-difference of d-cubes, that is143

an ε-approximate Voronoi Map. That is, each cube in the subdivision of Rd is associated to144

one input site that is an ε-Nearest-Neighbor for all points in the cube.145

Closest, Furthest, and the Core of Apollonian Balls We further define t∗(si, sj , γij) to be146

the closest distance from si to a point on the surface of ball(i, j), and t†(si, sj , γij) to be the147

furthest distance from si to a point on the surface of ball(i, j). Note that these points are on148

the line through si and sj , and their distances are149

γij = max(wj/wi, 1 + εS) (2)150

t∗
ij = t∗(si, sj , γij) = ∥sj − si∥/(γij + 1) (3)151

t†
ij = t†(si, sj , γij) = ∥sj − si∥/(γij − 1) . (4)152

For example, ball(i, j) has diameter t∗
ij + t†

ij .153

Let the set of balls of site si be Bi := {(i, j) : i < j }. For every subset Ai ⊆ Bi, define154

the convex region core(Ai) :=
⋂

(i,j)∈Ai
ball(i, j). By definition, the point si ∈ core(Ai) for155

all non-empty Ai ⊆ Bi.156

3 Small Approximate Voronoi Diagrams using
(

n
2

)
Bisectors157

The exact Voronoi region of site sj in an MWVD is core(Bj) \
⋃

i<j core(Bi) and a simple158

construction of the Voronoi Map may process the regions core(Bj) by descending index j159

and assign all points in core(Bj) to the index j. We introduce a suitable discretization for160

this idea next.161

▶ Lemma 1. There exist two balls centered at si, one with radius R containing core(Bi),162

and one with radius r contained in core(Bi), so that R/r ≤ 3/εS. I.e. core(Bi) is 3/εS-fat.163

Proof. Since any bisector has t†
ij/t∗

ij = γij+1
γij−1 ≤ 1 + 2/εS and the intersection of bisectors164

retains the maximum over those ratios, core(Bi) is 3/εS-fat with r := minj{t∗
ij}. ◀165

To discretize a R
r -fat region for some εA ∈ (0, εS), we consider the coarsest level where the166

canonical cubes have diameter at most diam(C) ≤ rεA, i.e. side-length len(C) ≤ rεA/
√

d.167

Within distance at most R from si, there are Od((2R
r ·

√
d

εA
)d) = Od((

√
d/ε2

A)d) such cubes.168

Checking each of the k bisectors that define the fat region, we can determine with O(k)169

distance computations if the centroid point of a cube is in core(Bi). Since any one cube is170

entirely inside, is entirely outside, or contains a point of the boundary, we have that only171

the latter case is potentially incorrect when deciding membership by the cube’s centroid172

point. Since any point x on the boundary has ∥x − si∥ ≥ r and any point q with erroneous173

SoCG 2024

XX:6 Approximate Multiplicatively Weighted Voronoi Diagrams with Optimal Size

membership decision has ∥q − x∥ ≤ εAr from a point x on the boundary (i.e. di(x) = dj(x)),174

the discretization of the core approximates within a factor175

di(q)
dj(q) = di(q)

di(x) · di(x)
dj(q) ≤

(
1 + ∥x − q∥

∥x − si∥

)
dj(x)
dj(q) ≤

(
1 + ∥x − q∥

∥x − si∥

) (
1 + ∥x − q∥

∥q − sj∥

)
176

≤ (1 + εA)(1 + εAr

∥q − sj∥
) ≤ (1 + εA)(1 + εAr

∥x − sj∥ − ∥x − q∥
)177

≤ (1 + εA)(1 + εAr

∥x − si∥ − ∥x − q∥
) ≤ (1 + εA)(1 + εA

1 − εA
) = 1 + O(εA) .178

▶ Observation 2. O(1/ε)-fat cores allow a discretization of Od(n(
√

d/ε2)d) total size that179

ε-approximates each core. Construction time is at most a factor d · n over the size bound.180

Note that the argument for cubes that intersect the boundary in our approximation181

bound already holds if the maximum distance of two points in a cube (diameter) is sufficiently182

small with respect to the distance to si, and not just if the diameter is at most rεA. Next,183

we discuss our, more space efficient, top-down search method that exploits this fact. (Note184

that O(log(1/εS)) levels of the canonical cube system are relevant for any given core.)185

As such, our Adaptive Refinement algorithm first determines r = min{t∗
ij} from the given186

set of k bisectors of site si, and then starts on the smallest canonical cube that contains the187

ball of radius 3r/εS around the site si. Recursively, we check if the current cube C is entirely188

inside or entirely outside, i.e. ∥centr(C) − centr(ball(i, j))∥ + diam(C)/2 ≤ rad(ball(i, j))189

for all j > i or ∥centr(C) − centr(ball(i, j))∥ − diam(C)/2 > rad(ball(i, j)) for a j > i. If so,190

the search stops and includes the current cube C in the result set, or respectively excludes191

it. Otherwise, we check if the cube’s diameter is sufficiently small for the centroid-test, i.e.192

diam(C) ≤ εA(∥si − centr(C)∥ − diam(C)/2). If not, then all 2d children of the cube are193

searched recursively. If it is, then we stop the search and include the cube in the output set194

based on the result of its centroid-test, i.e. cube C is included if and only if the centroid195

point of C is inside each of the k bisectors that define core(Bi).196

Note that the search stops descending on a cube C if one of the two criteria holds.197

Termination and correctness follow immediately from the above discussion. To improve on198

the above size bound, we bound the total number of canonical cubes that the search visits,199

each of which taking O(d · k) time.200

▶ Definition 3 (Distance Classes). Let balls(x) = {p : ∥s − p∥ ≤ x} be the ball of radius201

x around site s. Let L be the set of canonical cubes that our top-down search, Adaptive202

Refinement, visits. We partition L =:
⋃

j Lj in distance classes, such that Lj contains those203

cubes C ∈ L where C ⊆ balls(2jr) and C ⊈ balls(2j−1r).204

Note that Lj = ∅ for j ≤ −2, since such a cube C would be contained in balls(r/4).205

Consequently, its parent C ′ would be contained in balls(r/2), satisfying the inclusion-test206

criteria that stops the search. Thus, there are O(log(1/εS)) non-empty distance classes.207

We use Stirling’s formula to bound the volume of the Euclidean d-ball of radius 1208

κd = Vol(ball(1)) ∈
[

πd/2

⌈d/2⌉! ,
πd/2

⌊d/2⌋!

]
= Θd(d−(d+1)/2) . (5)209

▶ Lemma 4 (Simple Bound). There are Od(1/εd
A) canonical cubes in class Lj.210

Proof. All cubes of distance class Lj are contained in the d-ball around s with radius 2jr,211

which has the volume Vol(balls(2jr)) = κd · (2jr)d = Od((2jr)d/d(d+1)/2). Thus, it suffices212

to show that any one cube has side-length at least εA2jr/(8
√

d).213

Joachim Gudmundsson, Martin P. Seybold and Sampson Wong XX:7

From the distance class partition, we have that a cube with diameter δ in class j has that214

all of its points have distance ≥ 2jr/2 − δ from the center s.215

Now, having the top-down search visit a cube C with diameter δ would require the search216

did not terminate at its parent C ′, which has diameter 2δ. Thus, 2δ was not sufficiently small217

for stopping, i.e. 2δ > εA(∥si − centr(C ′)∥ − 2δ/2). Since centr(C ′) ∈ C, its distance from218

si is at least 2jr/2 − δ. Hence, 2δ > εA(2jr/2 − 2δ), which implies that δ > εA

1+εA
· 2jr/4.219

Thus, any cube in Lj must have diameter ≥ εA · 2jr/8, and consequently side-length220

≥ εA · 2jr/(8
√

d). ◀221

Thus, the lemma yields a running time bound and, consequently, a result size bound. In222

the full paper, we show that this bound can be improved by one (1/εA)-factor.223

We summarize our results thus far before discussing how to assemble the Approximate224

Voronoi Diagram from the εA-approximations of the cores.225

▶ Theorem 5. Let R ⊆ Rd be a region that is the intersection of k bisectors of O(1/εS)-226

fatness, s its center, and εA ∈ (0, εS). One can compute a set L of Od

(
log(1/εS)/εd−1

A

)
227

canonical cubes that εA-approximates (R, s). Time is an O(d · k)-factor over the size bound.228

Our lower bound in Theorem 7 will show that Ωd

(
log(1/ε)

εd−1

)
cubes are required, if ε ≪ 1/d3.229

3.1 Assembling the Approximate Diagram from Cubes230

In this section, we combine the εA-approximations of each of the regions core(Bi) to construct231

an ε-AMWVD, where ε = (1 + εS)(1 + εA) − 1. For each 1 ≤ i < n, we construct the232

εA-approximate cubes for (core(Bi), si) using Theorem 5. Each cube in the εA-approximation233

of (core(Bi), si) is given the label i. We collect all cubes for all labels 1 ≤ i < n in a list. For234

i = n, we construct a canonical cube that contains all other canonical cubes for 1 ≤ i < n,235

and give this canonical cube the label n and also add it to the list. (This cube will be at the236

root of the compressed QuadTree.)237

Sort the list of canonical cubes by their z-order. To remove duplicate cubes, iterate over238

the sorted list and keep only the cube with the minimum label (from those that are identical239

cubes). Construct a compressed QuadTree from this set of canonical cubes using, say, the240

Divide&Conquer approach (see Lemma 2.11 in [13]). The leaves of the compressed QuadTree241

induces a subdivision of Rd, where each cell in the subdivision is either a canonical cube, or242

the set difference of at most 2d canonical cubes.243

Finally, we label all cells in the compressed QuadTree as follows. The cubes that are244

from the the sorted list have their initial label, and the root has initial label n. Starting245

at the root, if a child is unlabeled, or the child has larger label than its parent, then the246

child replaces its label with its parent’s label. We repeat this process for all nodes in the247

compressed QuadTree in top-down fashion, say in a DFS traversal. This completes the248

construction of the approximate Voronoi Diagram.249

To answer approximate (weighted) nearest-neighbor queries, given a query point q ∈ Rd,250

we search our QuadTree for the smallest canonical cube containing q. The weighted nearest-251

neighbor of q is the site with index equal to the label stored at this node. Recall that252

point-location time in a compressed QuadTree is O(d log N) where N is the number of cubes253

in the tree.254

Next, we prove the correctness of our proposed construction. When querying with a point255

q, we have two cases: Either the label returned is n, or it is less than n. If the label is n, then256

by construction, q is in none of the εA-approximations of (core(Bi), si), for any 1 ≤ i < n.257

Therefore, q is outside the εA-approximation of core(Bi) for all 1 ≤ i < n, so sn is indeed258

SoCG 2024

XX:8 Approximate Multiplicatively Weighted Voronoi Diagrams with Optimal Size

the site with the smallest weighted distance to q, up to a factor of (1 + ε). Otherwise, let the259

label be i, for some 1 ≤ i < n. Due to the top-down propagation, we know that there is no260

canonical cube in the sorted list that both, contains q and has label less than i. Therefore,261

q is outside the εA-approximations of core(Bj) for all j < i. So q has smaller (weighted)262

distance to si than any of {s1, . . . , si}, up to a factor of (1 + ε). Moreover, we know that q263

is in the εA-approximation of core(Bi). Therefore, up to a factor of (1 + ε), q has smaller264

weighted distance to si than any of {si, . . . , sn}.265

Since the time for top-down label propagation is linear in the tree size, our construction266

time bound is one logarithmic factor over the size bound:267

▶ Theorem 6. Given εS > εA > 0 and a set of balls Bi for each i < n, one can com-268

pute an ε-approximate Voronoi Diagram, where ε = (1 + εS)(1 + εA) − 1, with total size269

Od(n log(1/εS)/εd−1
A). The construction time is Od

(
log n

εA
+ n−1 ∑

i |Bi|
)

times the size270

bound. Moreover, time to locate a query-point is O(d log(n) + d2 log(1/εA)).271

This theorem will be used as a tool in Section 5, where we improve the construction time272

to near-linear, using our efficient construction of a bisector coreset for the {Bi}. Note that273

the construction time is already quadratic in n, since |Bi| < n for all i. Next, we show that274

the result size is optimal, up to Θd(1) factors.275

4 A Matching Lower Bound for Diagram Size276

In this section, we show our matching lower bound for the size of ε-AMWVDs. That is, any277

subdivision comprised of axis-aligned hyper-rectangles requires Ωd(n · log(1/ε)/εd−1) cells.278

Our MWVD instances consist of n copies of a two-site instance that are placed sufficiently279

far from each other. The main idea for the two-site instance is that there are Ω(log 1/ε)280

distinct regions of space, each of which having a ‘large’ total volume but having a geometric281

shape that only allows to cover a relative ‘small’ volume with any one cell. Though the basic282

approach is similar to the Ωd(n · ε/(
√

dε)d) lower bound in [4, Section 5], the difference is283

that that our argument addresses various sections of two Apollonian balls with curvatures284

Θ(ε), instead of one hyper-cylinder that is bounded by two parallel hyper-planes. This results285

in a bound that is stronger by a (d(d−1)/2 log 1
ε)-factor than the known bound for unit-weight286

ε-AVDs, and matches our upper bound in Theorem 5 up to Θd(1)-factors.287

Though it is an intriguing problem to also settle the question of optimal complexity288

for unit-weight ε-AVDs, it is, unfortunately, quite unclear if one can obtain such a bound289

without curved MWVD bisectors. (Cf. last two paragraphs of Section 8 in [5].)290

▶ Theorem 7. Let ε ∈ (0, 1/16d3], wI = 1, wO = (1 + ε)2, and B := ball(sI , sO, wO/wI) be291

the Apollonian ball of sI = (−1/
√

d, . . . , −1/
√

d) and sO = ((1 + ε)2/
√

d, . . . , (1 + ε)2/
√

d).292

Any subdivision of Rd in axis-aligned hyper-rectangles that is an ε-approximation of the293

MWVD bisector B must contain Ωd

(
log(1/ε)/εd−1)

cells.294

Proof. Any ε-approximation of the MWVD of B must assign the points inside BI :=295

ball(sI , sO, (1 + ε)3) to site sI and outside BO := ball(sI , sO, 1 + ε) to site sO, i.e. only the296

points in BO \ BI may be labeled with either site. Thus, any one cell c in an ε-approximation297

must not intersect both, BI and Rd \ BO. Note that BI ⊂ B ⊂ BO and the sites, as well as298

the centers mI and mO, are co-linear, i.e. on the main diagonal. From (3) and (4), we have299

that t∗ = 1 and that t∗ and t† have the relations300

t†
I(1 + ε) = t† = t†

O/(1 + ε)301

Joachim Gudmundsson, Martin P. Seybold and Sampson Wong XX:9

t∗
I(1 + ε) = t∗ = t∗

O/(1 + ε) ,302

which shows that their radii, i.e. r = (t∗ + t†)/2, have relation rI(1 + ε) = r = rO/(1 + ε).303

The radii are Θ(1/ε).304

Let w.l.o.g. the t∗
I point on BI be at the origin. Let A contain the points from the upper305

half-space of BO \ BI , where upper/lower is due to a fixed hyper-plane that contains the306

main diagonal. Define partition A =: ∪iAi such that the points in Ai have a norm in range307

(2i, 2i+1], and let A−1 have the points with norm ≤ 1. We prove the following three claims308

in the full version of the paper.309

▷ Claim 8. Let A = BO \ BI . The i-th section Ai = {x ∈ A : ∥x∥ ∈ (2i, 2i+1]} has volume310

at least Vol(Ai) ≥ ε2i · κd−12(i+1)(d−1)−1 = Ωd(ε2di/dd/2).311

▷ Claim 9. Any axis-aligned hyper-rectangle c, which does not contain points from BI , can312

cover a volume of at most Vol(c ∩ Ai) = Od((ε2i)d/d(d+1)/2).313

▷ Claim 10. Let ε ∈ (0, 1/d3]. Any axis-aligned hyper-rectangle c, which does not contain314

points from Rd \ BO, can cover a volume of at most Vol(c ∩ Ai) = Od((ε2i)d/d(d+1)/2),315

provided index i ≤ 5
4 log2(1/ε).316

Thus, Ωd

(
ε2di/dd/2

(ε2i)d/d(d+1)/2

)
= Ωd(

√
d/εd−1) hyper-rectangles are necessary to cover any of317

the Ω(log 1/ε) many sections from A. ◀318

5 Approximate Cores: Computing Bisector Coresets Efficiently319

Next, we define the notion ε-approximation that we use for the proof (Section 5.2) of the320

quality guarantee for the algorithm in Section 5.1. It extends the intuitive idea that ‘large321

balls’ in the set Bi may not be relevant for the intersection that defines core(Bi).322

Let α-ball(i, j) denote the enlarged ball that is obtained by setting the effective weight to323

wj/αwi in the bisector, i.e. α-ball(i, j) = ball(si, sj , γij/α). For α ≥ 1, we define a relation324

between any two subsets X, Y ⊆ Bi from the bisectors of si as325

X ≺α Y ⇐⇒ ∀ (i, k) ∈ Y : core(X) ⊆ α-ball(i, k) ,326

and say for such a pair that X is an α-cover of Y . Given a subset X ⊆ Bi, we call the largest327

subset Y ⊆ Bi with X ≺α Y the set of balls that are α-covered by X. Further, X is called328

an α-cover if it covers all balls in Bi, i.e. X ≺α Bi, and we have329

core(Bi) ⊆ core(X) ⊆ α-core(Bi) :=
⋂

(i,j)∈Bi

α-ball(i, j) . (6)330

For example, the set of balls that are 1-covered by a singleton set {(i, j)} contains all balls331

(i, k) ∈ Bi with ball(i, j) ⊆ ball(i, k). Note that X ≺α Y and Y ≺α′ Z implies X ≺α·α′ Z.332

Clearly, using α-covers {A1, . . . , An−1} of the bisectors (i.e. Ai ≺α Bi for all sites si) turns333

the ε-approximation algorithm of Section 3.1 into one that computes an ε′-approximate334

Voronoi Diagram, with ε′ = (1 + ε)α − 1, whose running time is sensitive to |Ai|.335

The goal of our next algorithm is to compute a subsets Ai ⊆ Bi, so that Ai is an α-cover336

of Bi, and Ai has constant size. Then, we apply Theorem 6 to those bisector sets {Ai}.337

SoCG 2024

XX:10 Approximate Multiplicatively Weighted Voronoi Diagrams with Optimal Size

Recap: σ-Semi-Separated Pair Decompositions with Low Weight338

Let S ⊆ Rd be a set of n points. A list of subset pairs P = {(Xi, Yi) : Xi, Yi ⊆ S, Xi∩Yi = ∅ }339

is called a pair pecomposition if there is, for every {s, s′} ∈
(

S
2
)
, a pair (Xi, Yi) ∈ P with340

|{s, s′} ∩ Xi| = 1 = |Yi ∩ {s, s′}|. The quantity
∑

i(|Xi| + |Yi|) is called the weight of the341

pair decomposition P. It is well known that a pair decomposition of n points has weight342

Ω(n log n). (See [13, Lemma 3.31].)343

A pair decomposition P of S is called a σ-SSPD with respect to constant σ > 1, if every344

point set pair (X, Y) ∈ P has the separation property345

min
{

max
x,x′∈X

∥x − x′∥2 , max
y,y′∈Y

∥y − y′∥2

}
· σ ≤ min

x∈X,y∈Y
∥x − y∥2 . (7)346

That is, the two sets have a closest-pair distance of at least σ times the small diameter.347

Given a set of n points from Rd, a σ-SSPD with weight w(n, d, σ) = Od(d7d/2σdn log n) =348

OD(σdn log n) can be computed in deterministic OD(σdn + n log n) time [1, Theorem 5]. For349

point sets with polynomially bounded spread, it is possible to improve both (deterministic)350

OD-bounds to Od-bounds with a QuadTree based pair decomposition, using [2, Lemma 2.8].351

The efficiency of our coreset construction stems from low weight SSPDs. We use the352

SSPD separation in terms of the radius of the two sets, which increases σ by a factor of two.353

5.1 Computing Approximate Cores: SSPDs and Conic Space Partitions354

Let β, εC > 0 and σ ≥ 2 be constants, which we calibrate in Section 5.2. A β-cone around355

si is an angular domain of the spherical coordinate system around si. Each of its (d − 1)356

angular dimensions is partitioned into intervals of at most 2β radians. For each si, we assign357

each β-cone a unique array index j, where j = Od(1/βd−1). E.g. a rotation of at most β358

radians suffices to rotate any point in the cone onto the cone’s central ray.359

Let P be a σ-SSPD of the input sites S. For a pair (L, H) ∈ P, we call L the ‘light set’360

and H the ‘heavy set’ if sℓ is the site with maximum index in L, sh is the site with the361

maximum index in H, and ℓ < h.362

Our algorithm maintains the following structure: For each site si ∈ S, and for each363

β-cone around si with array index j, the data structure stores a set of partner sites Aij . Our364

algorithm populates the structure in three passes. In our first pass, for each (L, H) ∈ P, we365

reduce the size of H to a subset H ′. In our second pass, we iterate over P to initialize each366

of the sets Aij . Finally, the sets are populated in the third pass.367

In our first pass, for each (L, H) ∈ P, we construct a subset H ′ of H. If the diameter of368

H is at most the diameter of L, we set H ′ := {}. If the diameter of H is larger than the369

diameter of L, we construct H ′ as follows. Let sℓ ∈ L with ℓ maximal. For the jth cone370

around sℓ, we let the sites of H contained in this cone be Cℓj . We use the following function:371

372
Scan-Cone-Sites(i, C, εC):373

Let C′ := ∅, a = min{t∗
ij : sj ∈ C}, and b = min{t†

ij : sj ∈ C}.374

Let Ik = (xk, xk+1], with length aεC/2 and x1 = a, cover [a, b].375

Every interval Ik holds one pointer .376

FOR sj ∈ C DO377

Compute the index k with t∗
ij ∈ Ik .378

If diameter (t∗
ij + t†

ij) is smaller than that of Ik ’s reference ,379

then set Ik ’s pointer on sj .380

FOR interval Ik DO381

Add the kept bisector to result set C′.382

return C′
383384

Joachim Gudmundsson, Martin P. Seybold and Sampson Wong XX:11

We select for the jth cone a subset by setting C ′
ℓj := Scan-Cone-Sites(ℓ, Cℓj , εC) and define385

H ′ = ∪jC ′
ℓj . This completes the construction of H ′.386

In our second pass, we initialize each cone of each site in our structure to store an387

interval [a, b]. We iterate over all pairs (L, H) ∈ P and all si ∈ L ∪ H, and store for jth
388

cone of si, a variable a equal to the minimum value of a t∗
ik, and a variable b equal to the389

minimum value of a t†
ik. This minimum is taken over all sites sk ∈ H ′ ∪ {sℓ, sh} that are390

in the jth cone of si and have k > i. This gives us the interval [a, b]. After the pass over391

P is completed, we iterate over each cone of each site and partition the interval [a, b] into392

disjoint intervals Ik = (xk, xk+1] of length aεC/2 that cover [a, b], i.e. xk+1 − xk = aεC/2393

and x1 = a.394

In our third pass, we populate the sets Aij based on the intervals {Ik} of the jth cone395

of si. We iterate over all pairs (L, H) ∈ P and maintain a reference from Ik to the site that396

realized a minimum diameter. For si ∈ L ∪ H, and for the jth cone around si, we let the sites397

sm ∈ H ′ ∪ {sℓ, sh} with m > i that are contained in this cone be Cij . For each sm ∈ Cij , we398

locate the interval Ik of the cone that contains t∗
im and compare the diameter of ball(i, m)399

with the smallest diameter of Ik that we have encountered so far. If the diameter of ball(i, m)400

is smaller, we set sm to be the site of Ik realizing the minimum diameter. After the pass401

over all pairs is completed, for the jth cone of site si, and for all intervals Ik, we add the site402

that realized the minimum diameter for Ik into the set Aij . This completes our three passes403

that construct the cone sets. Finally, we set Ai = ∪jAij , and then apply Theorem 6 to the404

set of balls Ai.405

In the next section, we show that Ai is an α-cover of Bi. The algorithm’s runtime bound406

Od(w(n, d, σ) ·m/βd−1) will follow from weight w(n, d, σ) of a σ-SSPD, the number of β-cones407

in the partitions of Rd, and the maximum number m of sites in the sets Aij .408

5.2 Correctness: Choosing Sufficient β, σ, and εC409

Our (1+ε) bound consists of seven components for each of the convex cores. The components410

use the target approximation εA for the Adaptive Refinement in Section 3, an εS that scales411

half-space bisectors to sufficiently large balls (see Section 2.1), an εC that is the tolerance for412

selecting a small set of sites per β-cone, an εT that virtually translates sites along a ray from413

another site, and εR that virtually rotate a site’s partner (cf. Figure 2).414

For prescribed ε > 0, we set the components such that415

(1 + εA)(1 + εS)(1 + εT)(1 + εR)2(1 + εC)2 ≤ 1 + ε (8)416

max{εR, εT , εC} < εS , (9)417

where the last inequality is strict to accommodate Lemma 13. For example, we can set418

εS = ε/8 and εA = εC = εR = εT = ε/16.419

This section shows core(Ai) ⊆
(

1+ε
1+εA

)
-core(Bi) and consequently the approximation420

bound of our approach. Recall from Section 2.1 that all bisectors in Bi have wj/wi ≥ 1 + εS .421

To show inclusion properties, we will use the following parametrization of balls in Bi:422

Consider a fixed ray q, say the x-axis, that emanates from the origin si, having wi = 1.423

Ignoring the input instance S briefly, any pair (s, w) of a point s on q and a real w > 1 defines424

a ball, with respective two points on the x-axis of distance t∗, t† > 0. It is convenient to use425

parametrization (t∗, t†), instead of (s, w), to describe this ball: If input sites sj and sk are on426

the same ray q, then ball(i, j) ⊆ ball(i, k) ⇔ t∗
ij ≤ t∗

ik ∧ t†
ij ≤ t†

ik . It is noteworthy that427

both inequalities can be decided without square-root computations (cf. Eq. (3) and (4)).428

SoCG 2024

XX:12 Approximate Multiplicatively Weighted Voronoi Diagrams with Optimal Size

(HH)
h i j

(HL)
`

i
j

ball(i, `) (1 + εR)(1 + εT)-covers ball(i, j).

(LH)
h

i
j

ball(i, h) (1 + εR)(1 + εT)-covers ball(i, j).

(LL)
`i

j

m

ball(`,m) (1 + εR)(1 + εC)-covers ball(`, j).

i < j < h

i < ` < j,m

≥ σ · r

ball(i, h) 1-covers ball(i, j), if σ ≥ 2.

Figure 2 Cases (HH), (LH), (HL), and (LL), for covering an absent ball (i, j) ∈ Bi \ Ai.437

To show that every (i, j) ∈ Bi \ Ai is α-covered, the main idea is to consider the pair429

(L, H) ∈ P that separates it to observe that at least one bisector that α-covers (i, j) is430

contained in Ai. There are four cases for an absent bisector (i, j): (LL) si ∈ L and L431

has smaller diameter, (LH) si ∈ L and H has smaller diameter, (HL) si ∈ H and L432

has smaller diameter, and (HH) si ∈ H and H has smaller diameter. We use at most433

three affine transformations to bound each case. See Figure 2. The bound for (LL) is434

α = (1 + εR)2(1 + εC)2(1 + εT), the bound for (LH) is α = (1 + εR)2(1 + εT)(1 + εC), the435

bound for (HL) is α = (1+εR)2(1+εT)(1+εC), and the bound for (HH) is α = (1+εR)(1+εC).436

We start by showing an observation about pair decompositions. A cluster of points H438

that is, relative to its diameter, far from a given point si can be rotated with a small angle439

onto a common ray q, from si through an arbitrary point sh from the cluster.440

▶ Observation 11 (Distant clusters). Let angle β ∈ (0, 1], si ∈ S, c and r be the center and441

radius of the minimum enclosing ball of H ⊆ S \ {si}, σ := ∥si − c∥/r > 0, and sh ∈ H. If442

σ ≥ 2/β, then ∠s′sish ∈ [0, β] for all s′ ∈ H.443

Proof. Since r
rσ = tan β

2 = sin β
1+cos β ≤ β

1+(1−β2) = 1
2/β−β and β ≥ 0, any σ ≥ 2/β suffices. ◀444

This observation motivates our main lemma that analyzes the enlargement of a ball from445

Bi that is required to contain the ball that is obtained from a small rotation around si.446

▶ Lemma 12 (Rotations at si). If β = ∠sjsisk ∈ [0, 1] and [t∗
ij , t†

ij] = [t∗
ik, t†

ik], then447

ball(i, j) ⊆ α-ball(i, k) for all α ≥ 1 + β2/2.448

Note that this bound also applies to rotations of si on sj around sk for k > i, j, i.e.449

if [t∗
ik, t†

ik] = [t∗
jk, t†

jk] and β = ∠sisksj is small, then B ⊆ α-ball(j, k), where B is the450

translation of ball(i, k) with the vector −−→sisj .451

So far we showed that choosing a cone angle β =
√

2εR and σ ≥ 2/
√

2εR satisfies the452

(1 + εR)-factors for rotations in all cases (i.e. LL, LH, HL, and HH). Next we show that453

translations of sites in the low diameter set have a (1 + εT)-bound, for sufficiently large σ.454

Joachim Gudmundsson, Martin P. Seybold and Sampson Wong XX:13

▶ Lemma 13 (Translations). Let p and q be on a common ray from s, ∥s−p∥ < ∥s−q∥, εT ∈455

(0, εS), point m := (p+q) 1
2 , r := ∥m−p∥. If 1+εT < γ, then we have that ∥s−m∥ ≥ σr implies456

that t∗(s, q, γ) ≤ t∗
(

s, p, γ
1+εT

)
and t†(s, q, γ) ≤ t†

(
s, p, γ

1+εT

)
, for all σ ≥ 1 + 2/εT .457

This also implies that t∗(q, s, γ) ≤ t∗
(

p, s, γ
1+εT

)
and t†(q, s, γ) ≤ t†

(
p, s, γ

1+εT

)
.458

The first translation property is used for the cases where H has smaller diameter and the459

second for the cases where L has smaller diameter. One may think of the above discussion as460

a means to virtually place all sites in the low diameter set at the same spatial point with two461

transformations. We now show that partners of si with lower weight than other partners,462

transformed to the same location, can be ignored in an α-cover (e.g. Figure 2 LH and HL).463

▶ Observation 14 (Weight Monotonicity). If 1 < γ ≤ γ′, then ball(p, q, γ′) ⊆ ball(p, q, γ).464

Proof. We give the, slightly more technical, argument for t†(p, q, γ′) ≤ t†(p, q, γ). This holds465

iff ∥p−q∥
γ′−1 ≤ ∥p−q∥

γ−1 , which holds iff γ′ − 1 ≥ γ − 1, since γ − 1 ̸= 0 ̸= γ′ − 1. ◀466

Thus, for case (LH) and (HL) it suffices that si scans sh and sℓ, respectively. (They are467

member of H ′ ∪ {sℓ} ∪ {sh} and checked by algorithm when pair (L, H) is considered.) It468

remains to prove the (1 + εC) factor in the approximations of Scan-Cone-Sites.469

▶ Lemma 15 (Constant per cone). Let {s2, . . . , sn} be on a common ray from s1, wi/w1 ≥470

1 + εS, and εS > εC > 0. Computing a C1 ⊆ B1 of size O(1/εCεS), with C1 ≺(1+εC) B1,471

takes O(n) time.472

Thus, selecting at most m = O(1/ε2
C) sites per cone introduces only a factor of (1 + εC).473

This completes the argument for all four cases, and we have core(Ai) ⊆ 1+ε
1+εA

-core(Bi). Taking474

σ = 1 + 2/εT , β =
√

2εR, and m = O(ε−2
C), the coreset construction time Od(w(n, d, σ) ·475

m/βd−1) = OD((ε−dn log n) · ε−2ε−(d−1)/2) = OD(n log(n)/ε3(d+1)/2). We summarize:476

▶ Theorem 16. The approximation algorithm computes, for each 1 ≤ i < n, a subset Ai ⊆ Bi477

with core(Ai) ⊆ 1+ε
1+εA

-core(Bi) and |Ai| = Od(1/ε(d+3)/2) in OD(n log(n)/ε3(d+1)/2) time.478

We are now ready to show our main result.479

▶ Corollary 17. For any ε > 0, one can compute an ε-AMWVD of size Od(n log(1/ε)/εd−1).480

The construction time is OD(log(n)/ε(d+5)/2) times the output size.481

The query time of the search structure is O(d log(n) + d2 log(1/ε)).482

Proof. Applying Theorem 6 on the bisector coresets that are obtained from Theorem 16, the483

construction time of the ε-AMWVD is a factor Od (|Ai| + log(n/ε)) = Od

(
log(n/ε)/ε(d+3)/2)

484

over the output size bound. Hence, construction time is dominated by computing the bisector485

coreset, taking a factor OD

(
n log(n)/ε3(d+1)/2

n log(1/ε)/εd−1

)
= OD(ε−(d+5)/2 log(n)/ log(1/ε)) over the486

output size bound. ◀487

SoCG 2024

XX:14 Approximate Multiplicatively Weighted Voronoi Diagrams with Optimal Size

References488

1 Mohammad Ali Abam, Mark de Berg, Mohammad Farshi, Joachim Gudmundsson, and Michiel489

H. M. Smid. Geometric spanners for weighted point sets. Algorithmica, 61(1):207–225, 2011.490

doi:10.1007/s00453-010-9465-2.491

2 Mohammad Ali Abam and Sariel Har-Peled. New constructions of SSPDs and their applications.492

Comput. Geom., 45(5-6):200–214, 2012. doi:10.1016/j.comgeo.2011.12.003.493

3 Boris Aronov, Gali Bar-On, and Matthew J. Katz. Resolving SINR queries in a dynamic494

setting. SIAM J. Comput., 49(6):1271–1290, 2020. doi:10.1137/19M128733X.495

4 Sunil Arya and Theocharis Malamatos. Linear-size approximate Voronoi diagrams. In Proc.496

13th ACM-SIAM Symposium on Discrete Algorithms (SODA’02), pages 147–155, 2002. URL:497

http://dl.acm.org/citation.cfm?id=545381.545400.498

5 Sunil Arya, Theocharis Malamatos, and David M. Mount. Space-time tradeoffs for approximate499

nearest neighbor searching. J. ACM, 57(1):1:1–1:54, 2009. doi:10.1145/1613676.1613677.500

6 Franz Aurenhammer. The one-dimensional weighted Voronoi diagram. Information Processing501

Letters, 22(3):119–123, 1986. URL: https://www.sciencedirect.com/science/article/pii/502

0020019086900554, doi:https://doi.org/10.1016/0020-0190(86)90055-4.503

7 Franz Aurenhammer and Herbert Edelsbrunner. An optimal algorithm for constructing504

the weighted Voronoi diagram in the plane. Pattern Recognit., 17(2):251–257, 1984. doi:505

10.1016/0031-3203(84)90064-5.506

8 Franz Aurenhammer, Rolf Klein, and Der-Tsai Lee. Voronoi Diagrams and Delaunay Triangu-507

lations. World Scientific, 2013. doi:10.1142/8685.508

9 Bernard Chazelle. Filtering search: A new approach to query-answering. SIAM J. Comput.,509

15(3):703–724, 1986. doi:10.1137/0215051.510

10 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational511

geometry: algorithms and applications, 3rd Edition. Springer, 2008. URL: https://www.512

worldcat.org/oclc/227584184.513

11 Chenglin Fan and Benjamin Raichel. Linear expected complexity for directional and mul-514

tiplicative Voronoi diagrams. In Proc. 28th European Symposium on Algorithms (ESA’20),515

pages 45:1–45:18, 2020. doi:10.4230/LIPIcs.ESA.2020.45.516

12 Sariel Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proc. 42nd517

Symposium on Foundations of Computer Science (FOCS’01), pages 94–103, 2001. doi:518

10.1109/SFCS.2001.959884.519

13 Sariel Har-Peled. Geometric approximation algorithms. Number 173 in Mathematical Surveys520

and Monographs. American Mathematical Society, 2011.521

14 Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neighbor: Towards522

removing the curse of dimensionality. Theory Comput., 8(1):321–350, 2012. doi:10.4086/toc.523

2012.v008a014.524

15 Sariel Har-Peled and Nirman Kumar. Approximating minimization diagrams and generalized525

proximity search. SIAM J. Comput., 44(4):944–974, 2015. doi:10.1137/140959067.526

16 Sariel Har-Peled and Benjamin Raichel. On the complexity of randomly weighted multi-527

plicative Voronoi diagrams. Discret. Comput. Geom., 53(3):547–568, 2015. doi:10.1007/528

s00454-015-9675-0.529

17 Martin Held and Stefan de Lorenzo. An efficient, practical algorithm and implementation for530

computing multiplicatively weighted Voronoi diagrams. In Proc. 28th European Symposium531

on Algorithms (ESA’20), pages 56:1–56:15, 2020. doi:10.4230/LIPIcs.ESA.2020.56.532

18 Yogish Sabharwal, Nishant Sharma, and Sandeep Sen. Nearest neighbors search using point533

location in balls with applications to approximate Voronoi decompositions. J. Comput. Syst.534

Sci., 72(6):955–977, 2006. doi:10.1016/j.jcss.2006.01.007.535

https://doi.org/10.1007/s00453-010-9465-2
https://doi.org/10.1016/j.comgeo.2011.12.003
https://doi.org/10.1137/19M128733X
http://dl.acm.org/citation.cfm?id=545381.545400
https://doi.org/10.1145/1613676.1613677
https://www.sciencedirect.com/science/article/pii/0020019086900554
https://www.sciencedirect.com/science/article/pii/0020019086900554
https://www.sciencedirect.com/science/article/pii/0020019086900554
https://doi.org/https://doi.org/10.1016/0020-0190(86)90055-4
https://doi.org/10.1016/0031-3203(84)90064-5
https://doi.org/10.1016/0031-3203(84)90064-5
https://doi.org/10.1016/0031-3203(84)90064-5
https://doi.org/10.1142/8685
https://doi.org/10.1137/0215051
https://www.worldcat.org/oclc/227584184
https://www.worldcat.org/oclc/227584184
https://www.worldcat.org/oclc/227584184
https://doi.org/10.4230/LIPIcs.ESA.2020.45
https://doi.org/10.1109/SFCS.2001.959884
https://doi.org/10.1109/SFCS.2001.959884
https://doi.org/10.1109/SFCS.2001.959884
https://doi.org/10.4086/toc.2012.v008a014
https://doi.org/10.4086/toc.2012.v008a014
https://doi.org/10.4086/toc.2012.v008a014
https://doi.org/10.1137/140959067
https://doi.org/10.1007/s00454-015-9675-0
https://doi.org/10.1007/s00454-015-9675-0
https://doi.org/10.1007/s00454-015-9675-0
https://doi.org/10.4230/LIPIcs.ESA.2020.56
https://doi.org/10.1016/j.jcss.2006.01.007

	1 Introduction
	2 Preliminaries
	2.1 Voronoi Maps, Apollonian Balls, and the Core

	3 Small Approximate Voronoi Diagrams using (n choose 2) Bisectors
	3.1 Assembling the Approximate Diagram from Cubes

	4 A Matching Lower Bound for Diagram Size
	5 Approximate Cores: Computing Bisector Coresets Efficiently
	5.1 Computing Approximate Cores: SSPDs and Conic Space Partitions
	5.2 Correctness: Choosing Sufficient β, σ, and εC

