
Tero: Offloading CDN Traffic to Massively Distributed Devices
Juan Vanerio

University of Vienna

Lily Hügerich

TU Berlin

Stefan Schmid

TU Berlin & Fraunhofer SIT &

University of Vienna

ABSTRACT
To provide high performance and cope with ever-increasing traffic

demand, Content Delivery Network (CDN) providers have started

considering the use of multi-tier architectures, including simple

caching devices that can augment their server infrastructure,

resulting in a massively distributed caching network. These caching

devices are usually geographically distributed, although with

limited storage space and bandwidth (e.g., set-top boxes), potentially

alleviating the servers’ load.

This paper initiates the joint resource allocation and routing

problem underlying such networks while providing at least

a minimum bandwidth for each request. We present Tero, a system
that maximizes throughput in such scenarios and leverages

popularity forecasting to adapt to demand changes quickly.

In Tero, the CDN’s edge server decides whether to serve each

request locally or redirect it to a specific caching device, maximizing

overall system throughput by offloading traffic to the device caches.

To adjust to the highly dynamic nature of the demand patterns,

Tero performs frequent near-future content popularity predictions

and makes allocation decisions every few minutes. We model the

optimization problem under these constraints and derive optimality

properties using a Lagrangian formulation from which we design

heuristic algorithms.

We evaluate Tero on a synthetic and a real-world large CDN

request sequences, on ablation studies, and by comparing with

an upper performance bound. Tero can reduce the edge server’s

throughput and provide sufficient bandwidth to each request,

outperforming the competing baselines by up to 44% while being

close to the performance of the ideal upper bounds. Also, Tero takes
allocation decisions orders of magnitude faster than solving the

exact problem.

ACM Reference Format:
Juan Vanerio, Lily Hügerich, and Stefan Schmid. 2024. Tero: Offloading CDN

Traffic to Massively Distributed Devices. In 25th International Conference
on Distributed Computing and Networking (ICDCN ’24), January 4–7, 2024,
Chennai, India. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/

3631461.3631556

ACKNOWLEDGMENTS
Research partially funded by the German Research Foundation (DFG), grant

470029389 (FlexNets), 2021-2024 and the Vienna Science and Technology

Fund (WWTF) project, Fast and Quantitative What-if Analysis for

Dependable Communication Networks (WHATIF), grant 10.47379/ICT19045,

2020-2024.

ICDCN ’24, January 4–7, 2024, Chennai, India
2024. ACM ISBN 979-8-4007-1673-7/24/01.

https://doi.org/10.1145/3631461.3631556

1 INTRODUCTION
The Internet’s commercialization has led to themigration of content

and various applications online, such as video streaming, news, and

advertisements. In 2022, global Internet traffic surged by 23%. In

particular, video usage constituted 65% of all Internet traffic [32],

and this content is mostly served from CDNs.

The proximity between users and their requested content

is pivotal in enabling low-latency content delivery. Content

Delivery Networks (CDNs) are content-driven networks that

strategically store various objects in proximity to users, ensuring

high-performance video and web services [36]. A typical CDN

structure is composed of a first layer of origin servers maintaining

vast content catalogs encompassing a wide range of digital assets

and a second layer of edge servers (or just servers) of large capacity
that cache a substantial fraction of the whole catalog. The servers

are deployed at points of presence (PoPs) connected to Internet

Service Provider (ISP) networks, achieving proximity to users [20].

The CDN’s routing mechanisms direct users’ requests to the

nearest server, providing swift access to the cached content. Only

if the content is unavailable there it must be transferred from

the origin servers. This approach minimizes the need for long-

distance data transfer, reducing latency and overall completion

time of the content delivery process [20]. Nevertheless, nearest

server routing may run into bottlenecks on the path from users to

the edge servers [11].

An emerging optimization opportunity being explored by major

CDN providers, consists in deploying a third CDN layer with many

small caching devices that can be placed in block cabinets or users’

premises, e.g. set-top boxes and DVRs [11], for local caching of

popular content. An implementation of this idea in the context

of 5G and dense femtocells deployment is the usage of cache-

equipped base-stations, an attractive alternative to offload the

growing backhaul traffic in mobile networks [13]. A key benefit

of the distributed device constellation is the ability to serve more

traffic, and in general to alleviate the servers’ load. Also, as the

CDN has to pay the ISP for all transfers from the server, serving

traffic from the distributed devices may lower data transfer costs

as these leverage residential Internet services [11]. Users may be

offered benefits for their engagement. However, the devices are

usually heavily constrained in storage space and bandwidth, thus

introducing complexity in how to operate the caching system.

An enabler for such an approach is the HTTP Redirect message,

which allows the local server to redirect users to caching devices

without further DNS lookups. The server is then responsible for

request routing and logging, whichmakes it an ideal candidate to act

as a central controller for orchestrating the constellation of devices.

For instance, the controller could determine the optimal content of

a caching device and instruct it to update itself accordingly.

https://orcid.org/0000-0003-3120-5028
https://orcid.org/0000-0002-4358-1699
https://orcid.org/0000-0002-7798-1711
https://doi.org/10.1145/3631461.3631556
https://doi.org/10.1145/3631461.3631556
https://doi.org/10.1145/3631461.3631556


ICDCN ’24, January 4–7, 2024, Chennai, India Juan Vanerio, Lily Hügerich, & Stefan Schmid

In this context, two natural objectives for the CDN provider

are to minimize traffic costs and to extend system throughput

by offloading the egde server while providing satisfactory user

experiences. Therefore, two main sub-problems must be addressed:

first, decidewhich content object should be placed onwhich caching

devices (allocation problem), and second, decide which requests

should be directed to which devices (routing problem).

To address the allocation problem, it is beneficial to estimate

the traffic demand required for each content object (popularity
prediction sub-problem). The latter can be inferred from time-

stamped request access records stored in the servers’ log files.While

some methods predict long-term evolution of popularities [24, 33],

they are complex and expensive in terms of memory and processing.

They also require a considerable amount of data to fit, which may

not be available.

Nevertheless, long-term predictions are unnecessary as long

as the predictions and allocation mechanisms are fast enough

to be rerun every few minutes. Counting item requests on short

intervals is essentially a band-limited process: the number of hits

observed during the following time slot will not differ much from

the previous ones and can therefore be inferred from the immediate

past. This maps to a concept of smoothness in the demand, as it is

typically driven mainly by humans at scales much longer than just

a few minutes. A sharp and fast change in the number of requests

would be expected when this assumption does not hold (e.g., for

machine-generated traffic). In this case, predicting popularities

based on the recent past also helps as it can adapt to the new pattern

quickly. Given the dynamic and non-stationary nature of request

processes, making frequent short-term traffic demand predictions

is an interesting option.

For the routing problem, it is necessary to keep track of

the requests being served by each device in order to avoid

overwhelming them (load estimation subproblem). Implementing

tight monitoring would introduce high communication and

operational expenses while estimating it centrally may induce

a significant time and memory footprint.

There are many more challenges to overcome. The routing and

allocation problems are intertwined, as preventing excessive user

concurrence drives the placement of multiple replicas of the same

content along multiple devices. Also, the devices may be very

diverse regarding their capabilities, requiring careful consideration.

Similarly, there are different content items with their own size

and non-stationary demand patterns [12], and the past request

sequences required to forecast said patterns may be short-lived and

provide just timestamps.

Our contributions. This paper proposes Tero, a fast and

centralized control content delivery system for massively

distributed multi-tier cache networks comprising devices heavily

constrained in both storage space and bandwidth capabilities. To

the best of our knowledge, we are the first to address content

delivery while aiming at reducing costs and maximizing throughput

by offloading a large amount of traffic to such configuration of

caching devices while guaranteeing a satisfactory user experience

under dynamic demand patterns and diverse content sizes. We

provide a formal model of the CDN, and by careful analysis based

on a Lagrangian formulation, we characterize the properties of the

optimal solution.

Tero includes a novel allocation mechanism leveraging short-

term content popularity prediction, which relies on recent past

request process history readily available in log files of CDN

servers. We compared our simple prediction mechanism based

on short time intervals (a few minutes) against BHT-ARIMA [33],

a state-of-the-art approach for multi-valued time series forecasting,

and consistently outperformed it on the available datasets. The

allocation mechanism is a greedy heuristic algorithm developed

upon the optimal properties found in the model’s analysis. For

routing, Tero forwards requests online to those devices with the

lowest estimated relative concurrency.

We evaluate Tero empirically based on both synthetic and real-

world content request data by systematically replacing different

system components with alternatives. The latter dataset contains

a timestamped request sequence spanning over 18 hours of traffic

and involving more than a million content objects. As a reference,

in our measurements, allocations for a million content objects

and tens of thousands of devices take less than two minutes to

be computed in a single thread on a mildly provisioned virtual

server.We compared Tero against baselines constructed by replacing
a component with a simpler alternative (baseline) and evaluated

according to the 95-percentile (over time) of the throughput of the

edge server, the Byte-Hit-ratio (BHR), and the relative concurrencies

on caching devices. For instance, popularities are compared against

true popularities when available, a baseline for content placement

is getting replicas proportionally to the item popularity, and for

concurrencies we compare against a random-router that performs

optimally for load-balancing purposes but pays no attention to

each request offered bandwidth. Tero performs better than the

feasible baselines we compared against. Also, Tero keeps a small

performance gap with respect to a natural ideal performance upper

bound. In concurrency, we found improvements of up to 11 times.

In server throughput, we achieved a throughput reduction of up to

44% on the synthetic trace and 23% on the real-world trace.

The remainder of this paper is organized as follows. Section 2

describes the problem as an optimization model and analyzes it.

Section 3 presents Tero system’s design, and Section 4 provides

detailed evaluation of its performance. Finally, we review the

related work in Section 5 and provide the conclusions in Section 6.

Technical details can be found in the Appendix.

2 MODEL AND OPTIMIZATION
2.1 Model overview
We consider a multi-tier CDN delivering content to its users from

high-tier servers or ideally from caching devices installed in their

homes or neighborhood, making up the lowest CDN tier. These

devices could be set-top boxes, network-attached storage devices,

or other in-network devices [11, 13]. Although these devices are

limited in storage and bandwidth, they extend the overall system

capacity to the area covered by a CDN edge server.

To formalize the problem, consider that each content object or

item in the catalog is indexed by 𝑖 ∈ [1, 𝑀], has size 𝑠𝑖 (in bytes),

and popularity 𝑝𝑖 (its expected number of requests per time unit).



Tero: Offloading CDN Traffic to Massively Distributed Devices ICDCN ’24, January 4–7, 2024, Chennai, India

Items can be hosted in caching devices 𝑑 ∈ [1, 𝐷] and in the server

(𝑑 = 0). Each device 𝑑 is characterized by its bandwidth 𝐵𝑑 (used

to serve content to users) and storage capacity 𝐶𝑑 . The number of

concurrent requests is indicated by 𝑟𝑑 .

The model considers a single geographical area including the

lowest CDN tier (caching devices) and an edge server. The latter

hosts the whole item catalog [1, 𝑀] and has unlimited bandwidth.

The main objective is to collectively serve traffic 𝐻 correspond-

ing to the request sequence 𝜎 using as much traffic from the devices

as possible. Offloading the server traffic allows more content to be

served with less usage of the ISP’s backbone, which may reflect

a smaller cost per transferred byte. The cost of the involved requests

and messages is deemed negligible.

Matrix 𝑋 = {𝑥𝑖𝑑 } of binary control variables indicates whether

item 𝑖 is cached in 𝑑 (𝑥𝑖𝑑 = 1) or not (𝑥𝑖𝑑 = 0). Each device may

transfer data up to its bandwidth, and the accumulated size of its

cached items may never exceed its storage capacity. To fetch a new

item, a device downloads it from the server at finite (download)

bandwidth 𝑏𝑑 and may evict existing content to make enough space.

We model set of users as a single source of requests with

no preference for any caching device: they belong to the same

geographical area and experience similar delays from any device

or server. The fraction of traffic provided to the users from device

𝑑 for item 𝑖 is captured by the routing matrix 𝐴 = {𝛼𝑖𝑑 }.
Finally, for a satisfactory user experience every request should

enjoy at least bandwidth 𝛿 regardless of where it is served from.

The traffic served from the devices follows a processor-sharing

discipline, roughly mapping to having the device’s bandwidth 𝐵𝑑
split along concurrent requests. Thus, the number of concurrent

requests should not exceed 𝑅𝑑 =
𝐵𝑑

𝛿
. Table 2 (included in Appendix

A.1) summarizes the notation used in the problem.

2.2 System model
The objective of minimizing the traffic 𝐻𝑠 being delivered from

the server while serving sequence 𝜎 can be stated as the following

optimization problem:

min

𝑋,𝐴
𝐻𝑠 =

𝑀∑︁
𝑖=1

𝑠𝑖𝑁𝑖0 (1)

subject to:

𝐷∑︁
𝑑=0

𝛼𝑖𝑑 = 1 ∀𝑖 ∈ [1, 𝑀] (2)

𝑀∑︁
𝑖=1

𝑥𝑖𝑑𝑠𝑖 ≤ 𝐶𝑑 ∀𝑑 ∈ [1, 𝐷] (3)

𝑀∑︁
𝑖=1

𝑠𝑖𝑁𝑖𝑑 ≤ 𝑇𝐵𝑑 ∀𝑑 ∈ [1, 𝐷] (4)

𝑟𝑑 ≤ 𝑅𝑑 =
𝐵𝑑

𝛿
∀𝑑 ∈ [1, 𝐷] (5)

0 ≤ 𝛼𝑖𝑑 ≤ 𝑥𝑖𝑑 ≤ 1,∀𝑖 ∈ [1, 𝑀], 𝑑 ∈ [1, 𝐷] (6)

𝑥𝑖𝑑 ∈ {0, 1}∀𝑖 ∈ [1, 𝑀], 𝑑 ∈ [1, 𝐷], 𝑑 > 0 (7)

where 𝑁𝑖𝑑 be the number of requests to item 𝑖 served from device 𝑑

and 𝑇 the elapsed time.

We want to find the minimizers 𝑋 ∗ and 𝐴∗ that indicate optimal

allocation and routing parameters for the objective function (1),

which directly represents the number of bytes delivered from

the edge server. Constraint (2) represents demand conservation,

as fractions of traffic not served from any caching device are

delivered from the server. Constraint (3) and constraint (4) state

that devices must not exceed their storage capacity and their

bandwidth, respectively. Constraint (5) expresses the satisfactory

user experience condition by which all requests should enjoy at

least transfer rate 𝛿 . Finally, constraints (6) and (7) consider the

valid value ranges for the control variables.

2.3 Decomposing the problem and routing
Attempting to solve instances of this problem using off-the-

shelf solvers typically results in excessively long (hours or days)

execution times, rendering the solution unusable in real-world

deployments. Instead, we decompose the problem into smaller
subproblems, identify properties of the optimal solution and
use them to build heuristic algorithms.

First, we provide a solution for the routing with given allocations.

Note that the total traffic demand 𝐻 can be split into:

• Traffic 𝐻𝑐 served from the devices,

• Traffic 𝐻
(𝑢 )
𝑠 requesting unallocated items, flowing from the

server to the users,

• Excess traffic 𝐻 (𝑒 )𝑠 from the server due to devices hosting

replicas of the requested item being maxed out of concurrent

requests.

Then, for any given allocation 𝑋 , the optimal routing 𝐴 is the one

that minimizes excess traffic 𝐻 (𝑒 )𝑠 . This stems from the fact that

demand is conserved and that if the allocation is given, then so is

the traffic from unallocated items 𝐻
(𝑢 )
𝑠 . As excess traffic can only

be generated from devices operating at maximum concurrency,

the optimal routing policy 𝜋 can be achieved by forwarding new

requests to the devices with the smaller relative concurrency 𝑟𝑑/𝑅𝑑 .

2.4 Allocation model
To address the allocation problem, we focus on short time interval

of length 𝑇 during which the item popularities and the request

process do not observe large variations, i.e., the requests counting

signal is band-limited. This assumption holds when the number of

requests for an item on a time interval is similar to the previous ones.

This is to be expected of human-driven traffic, whose popularities

typically range in hours [2, 38]. It suffices then to consider time

intervals spanning a few minutes.

Let 𝜆 be the average request process intensity during the time

interval. We then replace the number of requests 𝑁𝑖𝑑 served for

item 𝑖 from device 𝑑 on equation (1) with 𝑇𝜆𝑝𝑖𝛼𝑖𝑑 and remove

constraints concerning only the routing to obtain an offline model:



ICDCN ’24, January 4–7, 2024, Chennai, India Juan Vanerio, Lily Hügerich, & Stefan Schmid

max

x
𝐻 (x|𝜋) =

𝑀∑︁
𝑖=1

𝜆𝑠𝑖𝑝𝑖 (1 − 𝛼𝑖0 |𝜋) (8)

subject to:

𝑀∑︁
𝑖=1

𝑥𝑖𝑑𝑠𝑖 ≤ 𝐶𝑑 ∀𝑑 ∈ [1, 𝐷] (9)

𝜆

𝑀∑︁
𝑖=1

𝑠𝑖𝑝𝑖𝛼𝑖𝑑 ≤ 𝐵𝑑 ∀𝑑 ∈ [1, 𝐷] (10)

𝐷∑︁
𝑑=0

𝛼𝑖𝑑 = 1 ∀𝑖 ∈ [1, 𝑀] (11)

0 ≤ 𝛼𝑖𝑑 ≤ 𝑥𝑖𝑑 ≤ 1,∀𝑖 ∈ [1, 𝑀], 𝑑 ∈ [1, 𝐷] (12)

In Tero, we use a Lagrangian formulation, which has already been

used in related optimization problems [3, 10, 23, 35]. According to

[8], the Lagrangian method is an efficient approach for solving

even large-scale instances. The fundamental concept underlying

the Lagrangian method involves reframing the constrained

optimization problem as an unconstrained one. The Lagrangian

for model 2.4 can be expressed as follows after introducing dual

variables {𝛾𝑑 }, {𝜇𝑑 } and {𝜃𝑖𝑑 }, 𝑖 ∈ [1, 𝑀], 𝑑 ∈ [1, 𝐷]:

L = −
𝑀∑︁
𝑖=1

𝑠𝑖𝑝𝑖𝛼𝑖0 +
𝐷∑︁
𝑑=1

𝛾𝑑

[
𝑀∑︁
𝑖=1

𝑠𝑖𝑥𝑖𝑑 −𝐶𝑑

]
+

𝐷∑︁
𝑑=1

𝜇𝑑

[
𝑀∑︁
𝑖=1

𝑠𝑖𝑝𝑖𝛼𝑖𝑑 −
𝐵𝑑

𝜆

]
+

𝐷∑︁
𝑑=1

𝑀∑︁
𝑖=1

𝜃𝑖𝑑𝛼𝑖𝑑 (𝛼𝑖𝑑 − 𝑥𝑖𝑑 )

(13)

We explore the Karush-Kuhn-Tucker (KKT) optimality conditions

to identify desirable properties in the solution. Then, the slacking

conditions for the bounds on the valid range of 𝐴 satisfy:

𝜃𝑖𝑑𝛼𝑖𝑑 (𝛼𝑖𝑑 − 𝑥𝑖𝑑 ) = 0 ∀𝑖 ∈ [1, 𝑀],∀𝑑 ∈ [1, 𝐷] (14)

and the stationary condition can be expressed as:

0 =
𝜕L
𝜕𝛼𝑖𝑑

= (𝜇𝑑 − 1)𝑠𝑖𝑝𝑖 + 𝜃𝑖𝑑 (2𝛼𝑖𝑑 − 𝑥𝑖𝑑 ) (15)

where we replaced the demand constraint (11) into the first term of

the right-hand side. Now if we multiply both sides of the stationary

condition by 𝛼𝑖𝑑 (𝛼𝑖𝑑 − 𝑥𝑖𝑑 ), and recall equation (14) and the fact

that 𝑠𝑖𝑝𝑖 > 0 we get:

(1 − 𝜇𝑑 )𝛼𝑖𝑑 (𝛼𝑖𝑑 − 𝑥𝑖𝑑 ) = 0 (16)

The slack for the bandwidth constraints satisfy:

𝜇𝑑

[
𝑀∑︁
𝑖=1

𝑠𝑖𝑝𝑖𝛼𝑖𝑑 −
𝐵𝑑

𝜆

]
= 0∀𝑑 ∈ [1, 𝐷], 𝑑 > 0 (17)

from which we know that if device 𝑑 has remaining bandwidth

on the optimal solution, then 𝜇𝑑 = 0, and after equation 16,

𝛼𝑖𝑑 (𝛼𝑖𝑑 − 𝑥𝑖𝑑 ) = 0. Otherwise, 𝑑 has no remaining bandwidth and

then 𝐵𝑑 − 𝜆
∑𝑀
𝑖=1 𝑠𝑖𝑝𝑖𝛼𝑖𝑑 = 0. Therefore, the following condition

holds in the optimal solution:(
𝐵𝑑 − 𝜆

𝑀∑︁
𝑖=1

𝑠𝑖𝑝𝑖𝛼𝑖𝑑

)
𝛼𝑖𝑑 (𝛼𝑖𝑑 − 𝑥𝑖𝑑 ) = 0 (18)

Optimality conditions. Two initial optimality conditions can

be inferred from the original model (Section 2.2). First, in the

optimal allocation, no device can cache an additional object (either

an unallocated item or a replica) without exceeding its storage

capacity or bandwidth. Second, swapping items between devices, or

dropping a cached item (or a replica thereof) to cache an unallocated

item, cannot improve the transfer rate.

Third, from equation (18) we can draw the following conclusions

for the optimal solution:

• Combining with the initial optimality conditions, if some

item 𝑖 has replicas (i.e., more than one allocated instance),

then it must have fractional routing (0 < 𝛼𝑖𝑑 < 1). Otherwise,

we could swap the unused replica with another item.

– The number of replicas must be kept to a minimum: the

more there are, the more storage space is needed without

producing more demand.

• If some device 𝑑 has remaining bandwidth available, then

every item 𝑖 allocated in 𝑑 has an integer routing factor

𝛼𝑖𝑑 ∈ {0, 1}.
– Due to equation 2 and the initial optimality conditions, it

follows that 𝑖 has no replicas.

• All devices holding a replica of an object must be operating

at full bandwidth.

Fourth, the optimal solution must keep oversubscription (traffic

demand exceeding the device’s bandwidth) as low as possible to

minimize excess traffic. Otherwise, dropping an item to make space

to spawn a replica of a highly-demanded object would provide

more throughput, which would contradict optimality. From these

considerations, if each device has allocations as close as possible to

simoultaneously fill its bandwidth and storage space, the system’s

throughput would be at its maximum.

2.5 Single Device Model
A natural performance upper bound for Tero is the Single Device
Model (SDM), composed by a single caching device whose

bandwidth is the accumulated bandwidths of all devices on the

original model: 𝐵𝑆𝐷𝑀 =
∑𝐷
𝑑=1

𝐵𝑑 and the same goes for the storage

space (𝐶𝑆𝐷𝑀 =
∑𝐷
𝑑=1

𝐶𝑑 ). As the SDM does not benefit from having

item replicas, its storage space is used more efficiently and may

output a larger throughput due to additional cached items. Also, the

allocation of the SDM is simply based on popularities (see appendix

A.4 for details) and there is no routing problem in the SDM.

There are two cases in which SDM and the original model

perform similarly: when the demand is small with respect to the

total system bandwidth and when it is too large. In the former

case, items can be cached on any device without maxing out their

bandwidth, avoiding replicas. In the latter, the traffic demand is

high enough to have all devices work at full bandwidth.

3 THE TERO SYSTEM
Tero is designed with one module for each task: popularity

prediction, allocation, routing, and concurrency estimation.

A central controller orchestrates the modules’ interactions. An

overview of Tero is shown in Figure 1. In the following paragraphs

and Sections, we describe each component.



Tero: Offloading CDN Traffic to Massively Distributed Devices ICDCN ’24, January 4–7, 2024, Chennai, India

concurrency
estimations

allocation 
map

predicted 
popularities

fetch(),
evict()

Figure 1: Tero design overview.

Short-time intervals (time slots) during which item popularity

and request intensity are assumed to be roughly constant are

considered (see Section 2.4 for details). At the beginning of each time

slot, the controller invokes the predictor component to estimate

the items’ intensities based on historical data. The allocator module

uses the predictions to compute a new allocation map. With the

updated allocation map, the controller instructs each caching device

which new content to fetch and which to evict.

On the other hand, the router and the concurrency estimator

module (CEM) operate online. Upon a new request, the router

identifies a set of devices holding a replica of the requested object

using the allocation map. Then, it queries the CEM for their

estimated relative concurrences and selects the least loaded one.

A redirect message is sent to the user to refer her toward the selected

device. If the requested item is not cached or no device caching the

item can serve an additional request, then the item is transferred

from the server.

There is an online mechanism to cope with prediction errors

on-the-fly. It detects any item transferred from the server too many

times and triggers an on-demand allocation request for the related

item into a device with a low load.

3.1 Popularity prediction
The problem. To place the content, Tero needs accurate

predictions of the items’ popularity and request intensities during

the next time slot. The available historical data only contains each

access request timestamp and item id. From the latter, the item size

can be obtained. There is no other available side information source

delta and exponential decay-type features [40] could be built from

the timestamp information, augmenting the data. There is though

a trade-off between holding richer data about fewer requested

content items, or simpler data on more items.

Also, the available dataset may span just a few hours, making

it impossible to learn any seasonality in the data, e.g., naturally

occurring daily, weekly, or monthly patterns. Given the small

amount of data available, it would be challenging to train deep

learning models. Even more, the full catalog is unknown and may

be dynamic, leaving historical log-based data as the only source of

catalog discovery.

Algorithm 1 Offline Allocation.

1: Initialize 𝑣𝑖 ← 𝜆𝑝𝑖𝑠𝑖 ∀𝑖 , 𝑏𝑑 ← 𝐵𝑑 , 𝑐𝑑 ← 𝐶𝑑 ∀𝑑 ,
2: while possible do
3: 𝑗 ← argmax {𝑣}
4: Let 𝐷′ = {𝑑′ : 𝑐𝑑 ′ ≥ 𝑠 𝑗 ∧ 𝑗 ∉ 𝑑′ ∧ 𝑏𝑑 ′ > 0}

5: Allocate 𝑗 in 𝑑∗ = argmax𝑑 ′∈𝐷 ′
𝑏𝑑 ′

𝑐𝑑 ′
.

6: 𝑐𝑑∗ ← 𝑐𝑑∗ − 𝑠 𝑗
7: if 𝑏𝑑∗ ≥ 𝑣 𝑗 then
8: 𝑏𝑑∗ ← 𝑏𝑑∗ − 𝑣 𝑗
9: 𝑣 𝑗 ← 0

10: else
11: 𝑏𝑑 ← 0

12: 𝑣 𝑗 ← 𝑣 𝑗 − 𝑏𝑑∗

The solution. We propose a simple approach capable of providing

speed and consistency to the predictions for as many popular items

as possible on each time slot. Start by creating a multi-valued time

series by counting the requests to each item seen more than once

during short time intervals of fixed length. Ignoring single-hit items

saves a significant caching space as most items are requested just

once [20]. Then, we use moving averages of the most recent 𝑥

time intervals as the next prediction. The justification is that if

the involved time intervals are short enough, then the request

process can be deemed as stationary for their duration, and in

such conditions the moving average is a good estimator of the true

intensity.

3.2 Allocation
The problem. We need to decide on item allocations based on

their popularity predictions, sizes and the previous allocation

decisions (brownfield scenario). Decisions must be made fast enough

to handle tens of thousands of devices and millions of items without

exceeding the duration of a time slot.

Knowing the expected demands, the problem can be formulated

as a linear integer problem and solved with an off-the-shelf solver.

Nevertheless, that computation would take a prohibitive amount

of time for the high number of items and devices.

The solution. We propose algorithm 1; a deterministic, greedy,

and fast algorithm to allocate items to devices for each time slot.

The algorithm considers the item’s requested demand and size in

an attempt to try to simultaneously fill the devices’ bandwidth

and storage space, as this concept captures the properties of the

optimum as discussed in Section 2.4.

First, we initialize variables 𝑣𝑖 with the expected unallocated

demand for item 𝑖 , the remaining device 𝑑’s bandwidth 𝑏𝑑 and its

remaining storage space 𝑐𝑑 . In (line 3) the algorithm picks the next

item 𝑗 with the largest unallocated demand and (line 4) identifies a

set𝐷′ of candidate devices for allocating it. Themembers of𝐷′ have
enough available bandwidth and storage space and still have not

cached 𝑗 . Then, (line 5) chooses the device 𝑑∗ in𝐷′ with the highest

ratio of remaining bandwidth over remaining storage space as the

best candidate. As discussed in Section 2.4, the ideal operational

point for the device is to be simultaneously at full bandwidth,



ICDCN ’24, January 4–7, 2024, Chennai, India Juan Vanerio, Lily Hügerich, & Stefan Schmid

space depleted and with no oversubscription. Tero places high-

demand items on devices with the largest ratio to aim at serving

more demand while minimizing the ratio, which in turn fosters

distributing elements along other devices. The remaining space of

𝑑∗ is updated in (line 6). If there is enough bandwidth available in the
device after the allocation, the algorithm updates it by subtracting

the item’s demand (line 8) and sets in zero the remaining traffic

demand for 𝑗 (line 9). Otherwise, the item’s demand is updated by

subtracting the last remaining bandwidth of the device (line 12),

and the device is declared as bandwidth-depleted (line 11). This last

step allows the item to spawn replicas to satisfy the demand.

Algorithm 1 provides a solution for an empty fleet of devices.

In practice, devices will already have cached items from previous

time slots. To cope with such scenarios, we introduce an additional

stickinessmechanism: once an item (or replica) is cached in a device,

the allocator remembers the placement and avoids executing the

item’s corresponding algorithm’s iteration in the next time interval.

The past allocation is cached until the replica or item is evicted

from a device. The stickiness scheme avoids reallocations, which

in turn minimizes fetching traffic from the server to the devices.

3.3 Routing
The problem. The allocation-aware router module is responsible

for deciding which device to forward a new request without

introducing a significant delay. Requests must be served by the

edge server if the item is not cached anywhere (unallocated) or if

the CEM warns that all devices containing an item’s replica are

serving their maximum number of concurrent requests (overload).

The solution. According to the analysis in Section 2.3, the router

should redirect the request towards the device with the lowest

current relative concurrency among those holding an item’s replica.

As the concurrency is not directly observable, the router queries

each device’s CEM estimated makespan as a proxy measurement

and forwards the request to one with the smaller value.

Finally, the router module also provides online resiliency to

prediction errors. For this, it keeps track of the times each item is

delivered from the server using a variant of Least Recently Used

(LRU) equipped with a hit counter per item (A counting-LRU ).

A Cache-on-second-hit rule[20] is implemented to avoid flooding

the LRU cache. As popular objects should have been cached on

the devices and served from there, a prediction error is assumed

if the LRU-counter value exceeds a predefined threshold. Tero
subsequently removes item 𝑖 from the counting-LRU and instructs

the device with the lowest makespan to fetch a replica. If additional

space is required, the chosen device evicts local content according

to a LRU-k rule [25]. This way, any unforeseen burst in popularity

can be corrected on-the-fly.

3.4 Concurrency estimation
The problem. A satisfactory user experience depends directly on

each request having sufficient bandwidth, i.e., at least 𝛿 . This re-

quirement maps to avoid serving too many requests simultaneously

from a caching device. As it would be comunicationally expensive

to inquire the devices’ load upon each new content request, the

router needs a local (indirect) method to estimate the number of

concurrent requests on each device.

Algorithm 2 Concurrency Estimation Module: Makespan estima-

tion

1: Inputs: inertia parameter 𝛾 , minimum bandwidth 𝛿 .

2: Initialize 𝑡𝑠𝑑 ← 0, 𝑠𝑑 ← 0,𝑚𝑑 ← 0∀𝑑 > 0,

3: procedure update_by_time(device 𝑑 , time 𝑡 )

4: 𝑚𝑑 ← max(0,𝑚𝑑 − 𝑡 + 𝑡𝑠 )
5: 𝑡𝑠𝑑 ← 𝑡

6: procedure update_upon_reqest(device 𝑑 , time 𝑡 , item 𝑖)

7: UPDATE_BY_TIME(𝑑, 𝑡)
8: 𝑠𝑑 ← 𝛾𝑠𝑑 + (1 − 𝛾)𝑠𝑖
9: 𝑚𝑑 ←𝑚𝑑 +

𝑠𝑖

𝐵𝑑

10: On each incoming request (𝑡, 𝑖) to item 𝑖 at time 𝑡 :

UPDATE_UPON_REQUEST(𝑑, 𝑡, 𝑖)
11: When CEM is queried about device 𝑑 at time 𝑡 :

12: UPDATE_BY_TIME(𝑑, 𝑡)
13: if 𝑚𝑑 >

𝑠𝑑

2𝛿
then

14: return “Device 𝑑 is overloaded.”

15: else
16: return𝑚𝑑 .

The solution. Tero computes a proxy metric: the estimated

makespan (𝑚) or time until completion of each device. This

computation requires a timestamp and two scalar values per device,

and updates are made on demand, resulting in a small footprint.

Algorithm 2 describes its working.

The algorithm has two input parameters: minimum bandwidth

𝛿 and tracking inertia 𝛾 (line 1), and defines three internal

parameters for each device; its estimated makespan 𝑚𝑑 , its

estimated average hosted items size 𝑠𝑑 and a timestamp 𝑡𝑠𝑑 .

There are two main procedures: “UPDATE_BY_TIME” (line 3) that

decreases the makespan estimation reflecting the elapsed time, and

“UPDATE_UPON_REQUEST” (line 6), which is called to update

average size tracker 𝑠𝑑 (line 8) and the makespan with the expected

time to serve the new request at full bandwidth (line 9).

Every time the CEM finds a makespan𝑚𝑑 above the threshold

𝑠𝑑

2𝛿
, the corresponding device is deemed overloaded by concurrent

requests and removed from the routing process (line 14). Otherwise,

its makespan𝑚𝑑 is returned to the router (line 16). The threshold

derivation is presented in Section A.2.

4 EVALUATION
In this section, we conduct experiments to evaluate the performance

of Tero on two traffic traces. The first is a synthetic trace consisting

of the superposition of multiple Poisson request processes, a well-

understood process family to test caching systems. The second

is a dataset extracted from real-world log files of a CDN server

spanning 18 hours (the log-based dataset).

Methodologically, we first perform an experiment to assess the

validity of Tero’s prediction method. Then, for each traffic trace, we

first perform an ablation study on each of Tero’s components and

compare the performance against an upper bound (the SDM).



Tero: Offloading CDN Traffic to Massively Distributed Devices ICDCN ’24, January 4–7, 2024, Chennai, India

We implement an event-driven simulator that captures the

request processes with variable interarrival times and item sizes. It

implements the server, the devices, and every component described

in section 3. For each ongoing request, it thoroughly keeps track of

the content download progress and status. Each device efficiently

implements a processor-sharing discipline to share the bandwidth

among concurrent requests on each device. The simulator is used on

the two datasets and keeps track of all relevant statistics, including

the throughput on the server, which also accounts for the traffic

due to item fetching by devices.

4.1 Settings
All experiments were executed using a single instance of a 64 GB

RAM virtual server running Ubuntu 22.04.2 LTS, Python 3.8. On all

the simulations, we defined a setup with a single CDN server and

two sets of caching devices called fleets. The first fleet is composed

of 7000 devices with 50 Mbps of bandwidth and 32 GB of storage

space, and the second fleet has 14000 devices of 20 Mbps and 32 GB.

The minimum request bandwidth was fixed at 𝛿 = 1 Mbps. This

setup closely mimics the one of the CDN that provided the log files.

For the predictions, unless otherwise stated, we counted requests

in 15 s time windows to create the time series and we used the

last 300 s moving average to predict item popularity. For the

synthetic source, we defined a catalog of𝑀 = 100000 items whose

popularities follow a Zipf distribution. Item sizes range between

100 KB and 1 GB (average: 7 MB) and the request process intensity

is set to 𝜆 = 10 kreq/s, matches the values of the log-based dataset.

We performed 12 independent simulations of 600 s (simulated time)

each and reported their results.

For the log-based experiments, we use the same setup as with the

synthetic source, although intensity, popularity distribution, and

numbers of cacheable items are implicit.We simulated different time

intervals during the day: 30 minutes (19:30-20), 15 minutes (16:00-

16:15), and 10-minute (8:00-8:10) intervals of log traffic from the

dataset. The warmup time, i.e., the time before gathering statistics,

was set at 120 s.

4.2 Content and popularity prediction
We compare the performance of the following popularity prediction

techniques in estimating the true item popularity of the log-based

dataset request process.

• Simple_x: per item incidence moving average on the last 𝑥

time slots, the method used by Tero.
• Linear: Linear extrapolation of the last 10 time slots used as

the next prediction.

• BHT-ARIMA [33]: A state-of-the-art method for high-

quality multivalued time series prediction. Performs

a sophisticated embedding of the series into a lower-

dimensional space and predicts using ARIMA.

Figure 2 shows the results for predicting the top 50 most popular

items using the different methods after 6 predictions and a window

of six time steps. It can be seen that the “simple” methods are

consistently more accurate than the other baselines, justifying our

decision to use them as fast predictors for the short term.

Figure 2: Average absolute error for different popularity
prediction schemes on identifying top 50 most popular
objects on the next time slot.

Additional indirect assessment of this method is subsequently

performed on experiments comparing against baselines leveraging

the true popularity of synthetic traces (see Section 4.3.4).

4.3 Poisson source evaluations
4.3.1 Allocator. We compare against an identical system in which

our allocator module is replaced with another module from:

• Allocator baseline: Instantiates replicas proportionally to the

item’s popularity.

• Allocate by popularity: Follows algorithm 1 but considers

items popularity alone instead of their traffic demand.

The latter is meant to be a very competitive variation that

may achieve as good results as Tero’s. In particular, allocating by

popularity is very good when the optimum has few replicas (e.g.,

SDM) or the demand is overwhelmingly intense for the system’s

bandwidth.

Figure 3 shows the 95-percentile (over time) throughput of the

CDN server. This percentile of traffic is chosen as ISPs usually

use it to charge customers. Each box extends from the first to the

third quartile of the experiment data, with a line at the median

(highlighted as a narrow waist on the box). The whiskers indicate

to the farthest data point within one and a half times the inter-

quartile range from the box boundaries.

In this case, the goal is to achieve low values. For the same request

sequences, the allocator achieves (in median) 44% less traffic than

the baseline and 20% less traffic than the popularity-based method.

It also experiences lower variance, reflecting a stable operation.

We also studied the Byte-Hit-ratio (BHR), i.e., the percentage

of bytes transferred from the caching devices over the full traffic

demand. For the same request pattern, a higher BHR indicates

a better performing cache system. Inmedian, the proposedAllocator

outperforms the alternatives by 1.39x (Allocate by Popularity) and

9.47x (Allocator Baseline).



ICDCN ’24, January 4–7, 2024, Chennai, India Juan Vanerio, Lily Hügerich, & Stefan Schmid

Tero

Figure 3: Edge Server 95-percentile Throughput with
synthetic source.

Tero

Figure 4: Relative Concurrency on caching devices for routers
with synthetic source.

4.3.2 Router. We compare the proposed allocation-awareminimum-

makespan router module against a random router that chooses ran-
domly between the devices holding a replica of the requested item.

In median, Tero’s router gets slightly higher (2 %) server through-

put than baseline. This is to be expected, as the random router is

optimal to balance the traffic without considering the concurrency
constraints, that is, the user experience for each request.

Figure 4 shows the 95-percentile (over time) of the concurrency

(on average over all devices), for both types of routers. The upper

zone in red shows the region that incurs a constraint violation by

overloading the caching devices. It can be seen that the makespan-

based router has approximately 11 times less occupancy than the

random router, between 0% and 10%, which results in a satisfactory

experience for the user.

Additional delay considerations. The router is an online

component, so it must be fast enough to avoid becoming

a bottleneck. We compare the additional delay introduced by

the makespan-based router on three different request process

intensities: 6 kreq/s, 12 kreq/s, and 24 kreq/s, which are below,

similar, and double the system bandwidth, respectively. We found

that the router can route in real time (below requests’ interarrival

time, RIT) for the first two, even with a single thread. The last

scenario required two threads to route below RIT. In all cases,

the delays introduced are below 1 ms per request. The processing

time increments for the router are sublinear, which enables

scalability. Further scalability can be achieved via straightforward

parallelization of the module.

Tero

Figure 5: Edge Server 95-percentil Throughput against SDM
with synthetic source.

4.3.3 Concurrency Estimator. We now evaluate the performance

of CEM against the true concurrency on the devices, which is too

expensive to use in an actual massive deployment. We compare

in terms of the system’s achieved throughput when using the

estimated or the real value. We found a difference (in median) below

1% than the traffic achieved using the true concurrency directly,

a result validating Tero’c CEM design.

4.3.4 Single Device Model. We now proceed to a full-system-wide

comparison. For this purpose, we evaluate the performance of Tero
against the Single Device Model (SDM), a natural bound for Tero’s
performance. For completeness, we use two versions of the SDM;

an idealized one that uses the true item popularities and another

that uses predicted popularities and item discovery as Tero does.
It is important to recall that given its characteristics, the SDM

using actual popularity information can approximate arbitrarily

close to the optimum performance. When the SDM uses predictions

instead, Tero performs very competitively; just 2% more traffic

(figure 5) and 3% less BHR (in median). These results show that the

performance of Tero is close to what can be achieved.

4.4 Log-Based Source Evaluations
To evaluate Tero’s performance on the real-world request sequence,

we follow the same evaluation methodology as with the synthetic

source whenever possible. As the log-based dataset has no fixed

intensities and popularities to compare against, some baselines are

no longer available.

4.4.1 Allocator. Figure 6 compares performance in terms of the

server’s throughput. There is a 23% traffic reduction for our

proposed Allocator with respect to the baseline. In particular,

Tero does slightly better (roughly 3%) than the popularity-based

allocation method, reflecting that the latter is a good alternative in

some scenarios.

4.4.2 Router. For the router, we observe the same pattern as for

the synthetic source: the random router baseline achieves slightly

less edge server throughput (again, as expected) but with a much

larger average system occupancy: 48% higher in median (Figure 7).

This translates to longer times for fetching content by the users

and frequent violations of the required minimum bandwidth per

request, resulting in a worse user experience.



Tero: Offloading CDN Traffic to Massively Distributed Devices ICDCN ’24, January 4–7, 2024, Chennai, India

Tero

Figure 6: Log-based server throughput for Allocators for log-
based source.

Tero

Figure 7: Relative Concurrency on caching devices for log-
based source.

Tero

Figure 8: Throughput aganst SDM for log-based sources.

4.4.3 Concurrency Estimator. The results obtained for the Poisson-

bases synthetic source are confirmed on the real-world log-based

dataset: less than 1% difference in edge server’s throughput. This

shows that Tero can accurately estimate the devices’ load and

redirect requests appropriately.

4.4.4 Single Device Model. In this context, as the true popularity is

unknown, we can only compare Tero against the inferred-popularity
SDM. The server throughput is shown in Figure 8. As with the

synthetic source, a performance gap of only 2% in server throughput

is observed, showing that Tero is performing close to the SDM.

4.5 Results Summary
On a component-by-component ablation study on both request

sources, every module of the Tero has outperformed the

corresponding baselines on all relevant metrics. In the synthetic

source experiments, the Allocator achieved up to a 44% traffic

reduction with respect to baseline systems. The router achieved

very similar throughput to the baseline but with one order of

magnitude lower relative concurrency on the devices. A special

note goes for the Concurrency Estimator Module, which for both

sources performed had less than 1% difference against knowing the

true concurrency. The router and the CEM make their estimations

in real-time and could serve a more extensive deployment through

parallelization.

Regarding system-wide performance, Tero exhibited comparable

performance to SDM using inferred popularity. Also, allocation

computations took under 10 s in the experiments with discovered

items, which are usually a few thousand, and less than two minutes

on the simulated one million items catalog. This is an encouraging

result, given that solving the problem exactly takes orders of

magnitude more time.

5 RELATEDWORK
Content distribution and its underlying optimization problems have

been studied intensively in the literature [20, 39, 42]. While classic

caching solutions often revolve around Least Recently Used (LRU)

and Least Frequently Used (LFU) strategies [18, 21], our focus is

on a distributed network setting with many heterogeneous caches,

leading to a different allocation and routing problem, as well as

a scalability requirement.

Learning approaches have also been considered in caching

systems before. A first type of works focuses on predicting content

objects’ popularity in order to prefetch the content [6, 24, 37, 41],

while others optimize a predefined cache utility function through

online learning [27, 31]. Popularity-estimation-based algorithms

are more adaptive versions of traditional caching policies and

tend to overlook temporal dynamics. A recent example is [24],

which approaches popularity prediction as a sequence classification

problem employing a deep-learning LSTM Encoder-Decoder model.

Nevertheless, the method requires a considerable spanned time on

the training dataset while assuming that items are independent.

Finally, the method was tested only on roughly 1500 content items.

The idea is similar to Tero popularity prediction, although the

former attempts to predict sequences for long periods, while we

focus on very short time scales instead, for which the band-limited

hypothesis on the request counting sequences greatly simplifies

the problem.

Online caching decision-making algorithms are often more

complex (e.g., they usually need to deal with delayed rewards)

and more sensitive to hyper-parameters [5, 17]. Several papers

get inspiration from Belady’s MIN algorithm [4] for eviction

decisions, either by emulating it directly [15, 30] or using machine

learning techniques like LFO [5] to imitate Belady’s decisions. In

contrast, LRB [34] predicts the next arrival time of the cached

objects and then evicts content using the Belady approach on the

estimations. LFO and LRB use manual feature engineering, limiting

its applicability and generalizability.



ICDCN ’24, January 4–7, 2024, Chennai, India Juan Vanerio, Lily Hügerich, & Stefan Schmid

Work

Popularity

Prediction

Load

Estimation

Routing Allocation

Hetero-

geneous

devices

Hetero-

geneous

items’ sizes

10K

scalability

fast

solving

per-request

bandwidth

support

[16, 28]

[12, 24, 34, 40]

[9]

[13, 14]

[29]

[19]

Tero (ours)

Table 1: Related works characteristics.

To be simple and fast, Tero uses a popularity-estimation method

that recalculates often enough to track temporal dynamics and

adjust for the traffic demand of each item, thus overcoming the

main difficulties of the method.

A recent interesting work in this line is Raven [12], which

learns the distribution of content objects next-request arrival time

from timestamped data and computes the probabilities of each

one being the last one to arrive, making it an eviction candidate.

Raven explicitly accounts for the stochastic, time-varying, and

non-stationary nature of object arrival processes and exhibited

good performance even on real-world traces. Nevertheless, Raven

does not address jointly optimizing bandwidth consumption while

simultaneously ensuring a sufficiently good user experience.

Finally, there is work on hierarchical caching. For instance,

[16] proposes an adaptive scheme for multi-tier CDN structure

and jointly addresses routing and allocation problems while

incorporating the concept of traffic classes to contemplate costly

inter-ISP traffic. The approach also uses Lagrange analysis.

Nevertheless, it makes some simplifications that may not hold in

reality, such as assuming full knowledge of the items’ popularities,

imposing fixed-size items, and a fixed transfer bandwidth from the

devices for each request, which does not reflect how TCP works

and changes the underlying optimization problems significantly.

Similarly, as shown in Table 1, [29] extends upon the previous

work by allowing heterogeneous item sizes, while [9, 13, 14]

does it by introducing considerations on parameters related to

quality of experience. Also, [13, 14, 19] provide approximation

methods capable of handling tens of thousands of devices (10K
scalability). All these works assume known popularities, which is

an unrealistic assumption. On the other hand, works addressing

popularity prediction fail to consider the networking aspects of the

problem [12, 24, 34, 40]. Tero extends upon these works by not only

addressing all the previously mentioned elements together (e.g.,

routing, allocation, bandwidth considerations, sufficient scalability)

but also reducing communication overheadwith the load estimation

module and solving the allocation fast enough.

6 CONCLUSIONS
We presented Tero, a system that performs fast cache routing

and allocation decisions for highly distributed content delivery

networks. It achieves high throughput from the CDN’s lower

tier, successfully offloading costly traffic from the regional CDN

server while at the same time providing sufficient bandwidth

to each request to provide a satisfactory user experience. Tero
leverages content popularity predictions to drive the allocation

decision process and performs these operations in seconds, starkly

contrasting traditional approaches to the problem.

These advantages stem from crucial design choices, such as

simple short-term predictions that leverage recent past behavior

and can adapt quickly to changes, a novel optimal-properties-

inspired heuristic allocation scheme, and an efficient mechanism to

estimate the devices’ current load and route requests accordingly.

Evaluations on synthetic and real-world CDN traces showed that

Tero can adapt to different workloads and consistently delivers good
performance in terms of traffic throughput with respect to upper

bounds. Finally, as future work, we plan to explore enhancements

of the components by introducing machine learning techniques.

REFERENCES
[1] Umit Akinc and Basheer M Khumawala. 1977. An efficient branch and bound

algorithm for the capacitated warehouse location problem. Management Science
23, 6 (1977), 585–594.

[2] Xuan Bao, Yin Lin, Uichin Lee, Ivica Rimac, and Romit Roy Choudhury. 2013.

DataSpotting: Exploiting naturally clustered mobile devices to offload cellular

traffic. In 2013 Proceedings IEEE INFOCOM. 420–424. https://doi.org/10.1109/

INFCOM.2013.6566807

[3] John E Beasley. 1988. An algorithm for solving large capacitated warehouse

location problems. European Journal of Operational Research 33, 3 (1988), 314–325.
[4] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-Storage

Computer. IBM Syst. J. 5, 2 (jun 1966), 78–101. https://doi.org/10.1147/sj.52.0078

[5] Daniel S. Berger. 2018. Towards Lightweight and Robust Machine Learning for

CDN Caching. In Proceedings of the 17th ACMWorkshop on Hot Topics in Networks
(Redmond, WA, USA) (HotNets ’18). Association for Computing Machinery, New

York, NY, USA, 134–140. https://doi.org/10.1145/3286062.3286082

[6] Livia Elena Chatzieleftheriou, Merkouris Karaliopoulos, and Iordanis Koutsopou-

los. 2017. Caching-aware recommendations: Nudging user preferences towards

better caching performance. In IEEE INFOCOM 2017 - IEEE Conference on Com-
puter Communications. 1–9. https://doi.org/10.1109/INFOCOM.2017.8057031

[7] Fabián A. Chudak and David P. Williamson. 1999. Improved Approximation

Algorithms for Capacitated Facility Location Problems. In Integer Programming
and Combinatorial Optimization, Gérard Cornuéjols, Rainer E. Burkard, and

Gerhard J. Woeginger (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

99–113.

[8] Gérard Cornuéjols, Ranjani Sridharan, and Jean-Michel Thizy. 1991. A

comparison of heuristics and relaxations for the capacitated plant location

problem. European journal of operational research 50, 3 (1991), 280–297.

[9] Mostafa Dehghan, Bo Jiang, Anand Seetharam, Ting He, Theodoros Salonidis,

Jim Kurose, Don Towsley, and Ramesh Sitaraman. 2017. On the Complexity

of Optimal Request Routing and Content Caching in Heterogeneous Cache

Networks. IEEE/ACM Trans. Netw. 25, 3 (jun 2017), 1635–1648. https://doi.org/

10.1109/TNET.2016.2636843

[10] A. Geoffrion and R.Me Bride. 1978. Lagrangean RelaxationApplied to Capacitated

Facility Location Problems. A I I E Transactions 10, 1 (1978), 40–47. https:

//doi.org/10.1080/05695557808975181

https://doi.org/10.1109/INFCOM.2013.6566807
https://doi.org/10.1109/INFCOM.2013.6566807
https://doi.org/10.1147/sj.52.0078
https://doi.org/10.1145/3286062.3286082
https://doi.org/10.1109/INFOCOM.2017.8057031
https://doi.org/10.1109/TNET.2016.2636843
https://doi.org/10.1109/TNET.2016.2636843
https://doi.org/10.1080/05695557808975181
https://doi.org/10.1080/05695557808975181


Tero: Offloading CDN Traffic to Massively Distributed Devices ICDCN ’24, January 4–7, 2024, Chennai, India

[11] Dongsu Han, David Andersen, Michael Kaminsky, Dina Papagiannaki, and

Srinivasan Seshan. 2011. Hulu in the neighborhood. In 2011 Third International
Conference on Communication Systems and Networks (COMSNETS 2011). 1–10.
https://doi.org/10.1109/COMSNETS.2011.5716501

[12] Xinyue Hu, Eman Ramadan, Wei Ye, Feng Tian, and Zhi Li Zhang. 2022. Raven:

Belady-Guided, Predictive (Deep) Learning for In-Memory and Content Caching.

In CoNEXT 2022 - Proceedings of the 18th International Conference on emerging
Networking EXperiments and Technologies. Association for Computing Machinery,

Inc, 72–90. https://doi.org/10.1145/3555050.3569134

[13] Lemei Huang, Sheng Cheng, Yu Guan, Xinggong Zhang, and Zongming

Guo. 2020. Consistent User-Traffic Allocation and Load Balancing in Mobile

Edge Caching. In IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). 592–597. https://doi.org/

10.1109/INFOCOMWKSHPS50562.2020.9162921

[14] Stratis Ioannidis and Edmund Yeh. 2018. Jointly Optimal Routing and Caching for

Arbitrary Network Topologies. IEEE Journal on Selected Areas in Communications
36, 6 (2018), 1258–1275. https://doi.org/10.1109/JSAC.2018.2844981

[15] Akanksha Jain and Calvin Lin. 2018. Rethinking Belady’s Algorithm to

Accommodate Prefetching. In Proceedings of the 45th Annual International
Symposium on Computer Architecture (Los Angeles, California) (ISCA ’18). IEEE
Press, 110–123. https://doi.org/10.1109/ISCA.2018.00020

[16] Wenjie Jiang, Stratis Ioannidis, Laurent Massoulié, and Fabio Picconi. 2012.

Orchestrating massively distributed CDNs. In Proceedings of the 8th international
conference on Emerging networking experiments and technologies. 133–144.

[17] Mathias Lecuyer, Joshua Lockerman, Lamont Nelson, Siddhartha Sen, Amit

Sharma, and Aleksandrs Slivkins. 2017. Harvesting Randomness to Optimize

Distributed Systems. In Proceedings of the 16th ACM Workshop on Hot Topics
in Networks (Palo Alto, CA, USA) (HotNets-XVI). Association for Computing

Machinery, New York, NY, USA, 178–184. https://doi.org/10.1145/3152434.

3152435

[18] Donghee Lee, Jongmoo Choi, Jong-Hun Kim, Sam H. Noh, Sang Lyul Min,

Yookun Cho, and Chong Sang Kim. 1999. On the Existence of a Spectrum of

Policies That Subsumes the Least Recently Used (LRU) and Least Frequently

Used (LFU) Policies. SIGMETRICS Perform. Eval. Rev. 27, 1 (may 1999), 134–143.

https://doi.org/10.1145/301464.301487

[19] Boxi Liu, Konstantinos Poularakis, Leandros Tassiulas, and Tao Jiang. 2019. Joint

Caching and Routing in Congestible Networks of Arbitrary Topology. IEEE
Internet of Things Journal 6, 6 (2019), 10105–10118. https://doi.org/10.1109/JIOT.

2019.2935742

[20] Bruce M. Maggs and Ramesh K. Sitaraman. 2015. Algorithmic Nuggets in

Content Delivery. SIGCOMM Comput. Commun. Rev. 45, 3 (jul 2015), 52–66.

https://doi.org/10.1145/2805789.2805800

[21] Dhruv Matani, Ketan Shah, and Anirban Mitra. 2021. An O (1) algorithm for

implementing the LFU cache eviction scheme. arXiv preprint arXiv:2110.11602
(2021).

[22] Sanjay Melkote and Mark S. Daskin. 2001. Capacitated facility location/network

design problems. European Journal of Operational Research 129, 3 (2001), 481–495.

https://doi.org/10.1016/S0377-2217(99)00464-6

[23] Pitu B Mirchandani and Richard L Francis. 1990. Discrete location theory.
[24] Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie, and Zhi-

Li Zhang. 2018. DeepCache: A Deep Learning Based Framework For Content

Caching. In Proceedings of the 2018Workshop on NetworkMeets AI &ML (Budapest,
Hungary) (NetAI’18). ACM, 48–53. https://doi.org/10.1145/3229543.3229555

[25] Elizabeth J. O’Neil, Patrick E. O’Neil, and Gerhard Weikum. 1993. The LRU-K

Page Replacement Algorithm for Database Disk Buffering. In Proceedings of the
1993 ACM SIGMOD International Conference on Management of Data (Washington,

D.C., USA) (SIGMOD ’93). Association for Computing Machinery, New York, NY,

USA, 297–306. https://doi.org/10.1145/170035.170081

[26] Georgios Paschos, George Iosifidis, Giuseppe Caire, et al. 2020. Cache

Optimization Models and Algorithms. Foundations and Trends® in
Communications and Information Theory 16, 3–4 (2020), 156–345.

[27] Georgios S. Paschos, Apostolos Destounis, Luigi Vigneri, and George Iosifidis.

2019. Learning to Cache With No Regrets. In IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications (Paris, France). IEEE Press, 235–243.

https://doi.org/10.1109/INFOCOM.2019.8737446

[28] Konstantinos Poularakis, George Iosifidis, and Leandros Tassiulas. 2014.

Approximation Algorithms for Mobile Data Caching in Small Cell Networks.

IEEE Transactions on Communications 62, 10 (2014), 3665–3677. https://doi.org/

10.1109/TCOMM.2014.2351796

[29] Konstantinos Poularakis, Jaime Llorca, Antonia M. Tulino, Ian Taylor, and

Leandros Tassiulas. 2020. Service Placement and Request Routing in

MEC Networks With Storage, Computation, and Communication Constraints.

IEEE/ACM Transactions on Networking 28, 3 (2020), 1047–1060. https://doi.org/

10.1109/TNET.2020.2980175

[30] Kaushik Rajan and Govindarajan Ramaswamy. 2007. Emulating Optimal

Replacement with a Shepherd Cache. In 40th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO 2007). 445–454. https://doi.org/10.1109/

MICRO.2007.25

[31] Alireza Sadeghi, Fatemeh Sheikholeslami, and Georgios B. Giannakis. 2018.

Optimal and Scalable Caching for 5G Using Reinforcement Learning of Space-

Time Popularities. IEEE Journal of Selected Topics in Signal Processing 12, 1 (2018),

180–190. https://doi.org/10.1109/JSTSP.2017.2787979

[32] Sandvine. 2023. 2023 Global Internet Phenomena Report. online. accesed on 18

Jun 2023.

[33] Qiquan Shi, Jiaming Yin, Jiajun Cai, Andrzej Cichocki, Tatsuya Yokota, Lei Chen,

Mingxuan Yuan, and Jia Zeng. 2020. Block Hankel tensor ARIMA for multiple

short time series forecasting. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 34. 5758–5766.

[34] Zhenyu Song, Daniel S Berger, Kai Li, Anees Shaikh, Wyatt Lloyd, Soudeh

Ghorbani, Changhoon Kim, Aditya Akella, Arvind Krishnamurthy, Emmett

Witchel, et al. 2020. Learning relaxed belady for content distribution

network caching. In 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20). 529–544.

[35] Ramaswami Sridharan. 1995. The capacitated plant location problem. European
Journal of Operational Research 87, 2 (1995), 203–213.

[36] Volker Stocker, Georgios Smaragdakis, William Lehr, and Steven Bauer. 2017. The

Growing Complexity of Content Delivery Networks: Challenges and Implications

for the Internet Ecosystem. Telecommunications Policy Journal 41, 10 (November

2017), 1003–1016.

[37] Linpeng Tang, Qi Huang, Amit Puntambekar, Ymir Vigfusson, Wyatt Lloyd,

and Kai Li. 2017. Popularity prediction of facebook videos for higher quality

streaming. In USENIX Annual Technical Conference.
[38] Alexandru Tatar, Marcelo Dias De Amorim, Serge Fdida, and Panayotis

Antoniadis. 2014. A survey on predicting the popularity of web content. Journal
of Internet Services and Applications 5, 1 (2014), 1–20.

[39] A. Vakali and G. Pallis. 2003. Content delivery networks: status and trends. IEEE
Internet Computing 7, 6 (2003), 68–74. https://doi.org/10.1109/MIC.2003.1250586

[40] Gang Yan and Jian Li. 2020. RL-Bélády: A Unified Learning Framework for

Content Caching. In Proceedings of the 28th ACM International Conference on
Multimedia (Seattle, WA, USA) (MM ’20). Association for Computing Machinery,

New York, NY, USA, 1009–1017. https://doi.org/10.1145/3394171.3413524

[41] Gang Yan, Jian Li, and Don Towsley. 2021. Learning from Optimal Caching for

Content Delivery (CoNEXT ’21). Association for Computing Machinery, New

York, NY, USA, 344–358. https://doi.org/10.1145/3485983.3494855

[42] Behrouz Zolfaghari, Gautam Srivastava, Swapnoneel Roy, Hamid R. Nemati,

Fatemeh Afghah, Takeshi Koshiba, Abolfazl Razi, Khodakhast Bibak, Pinaki

Mitra, and Brijesh Kumar Rai. 2020. Content Delivery Networks: State of the Art,

Trends, and Future Roadmap. ACM Comput. Surv. 53, 2, Article 34 (apr 2020),
34 pages. https://doi.org/10.1145/3380613

https://doi.org/10.1109/COMSNETS.2011.5716501
https://doi.org/10.1145/3555050.3569134
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162921
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162921
https://doi.org/10.1109/JSAC.2018.2844981
https://doi.org/10.1109/ISCA.2018.00020
https://doi.org/10.1145/3152434.3152435
https://doi.org/10.1145/3152434.3152435
https://doi.org/10.1145/301464.301487
https://doi.org/10.1109/JIOT.2019.2935742
https://doi.org/10.1109/JIOT.2019.2935742
https://doi.org/10.1145/2805789.2805800
https://doi.org/10.1016/S0377-2217(99)00464-6
https://doi.org/10.1145/3229543.3229555
https://doi.org/10.1145/170035.170081
https://doi.org/10.1109/INFOCOM.2019.8737446
https://doi.org/10.1109/TCOMM.2014.2351796
https://doi.org/10.1109/TCOMM.2014.2351796
https://doi.org/10.1109/TNET.2020.2980175
https://doi.org/10.1109/TNET.2020.2980175
https://doi.org/10.1109/MICRO.2007.25
https://doi.org/10.1109/MICRO.2007.25
https://doi.org/10.1109/JSTSP.2017.2787979
https://doi.org/10.1109/MIC.2003.1250586
https://doi.org/10.1145/3394171.3413524
https://doi.org/10.1145/3485983.3494855
https://doi.org/10.1145/3380613


ICDCN ’24, January 4–7, 2024, Chennai, India Juan Vanerio, Lily Hügerich, & Stefan Schmid

A APPENDIX
A.1 Model’s notation
Table 2 summarizes the notation used in the problem.

A.2 Indirect detection of excessive concurrency
To perform detection of excessive concurrency, the CEM uses a

threshold on the makespan estimation. All devices with makespan

above the threshold are declared overloaded and excluded from the

routing process to avoid generating excess traffic.

The threshold

𝑠𝑑

2𝛿
comes from assuming random arrivals at

unknown times. Proof sketch: When one checks the makespan

of a fair-queue sharing device with average item size 𝑠 and

no information whatsoever of when each request started to be

transmitted, one assumes an i.i.d. uniformly random distribution

over the remaining fraction to be transmitted for each ongoing

request: 𝑧𝑘 for request 𝑘 for 𝑟 concurrent requests. Value 𝑟 is

unknown. Then, 𝑧𝑘 ∼ 𝑈 [0, 1]∀𝑘 . Let 𝑧 = 𝑠
∑𝑟
𝑘=1

𝑧𝑘 be the total

number of bytes that remain to be transmitted.

Note that 𝑧/𝑠 follows an Irwin distribution of parameter 𝑟 .

Therefore, on expectation:

E[𝑧] = E[
∑︁
𝑘

𝑠𝑧𝑘 ] = 𝑠
∑︁
𝑘

E[𝑧𝑘 ] =
𝑠𝑟

2

Table 2: Notation of problem variables.

𝑖 ∈ [𝑀] content object or item index.

𝑠𝑖 item size.

𝑝𝑖
item popularity: expected number of

requests per time unit.

𝑑 ∈ [𝐷] caching device index.

𝑑 = 0 the server.

𝐶𝑑 device’s storage capacity

𝐵𝑑 device’s upload bandwidth

𝜎
Request sequence up to time 𝑇 .

Each request 𝜎𝑛 ∈ [𝑀].
𝜆 = 𝑁

𝑇
request process intensity.

𝐻 throughput towards the users.

𝐻𝑐 throughput from the cache devices.

𝐻𝑠 throughput from the server.

𝑋 = {𝑥𝑖𝑑 } Allocation matrix.

𝑥𝑖𝑑 ∈ {0, 1}
𝑥𝑖𝑑 = 1 if item 𝑖 is allocated

on device 𝑑 (𝑖 ∈ 𝑑).
𝐴 = {𝛼𝑖𝑑 } Routing matrix.

𝛼𝑖𝑑 ∈ [0, 1]
fraction of item 𝑖’s traffic

demand served from 𝑑 .

𝑁𝑖𝑑
Number of requests for

item 𝑖 served from 𝑑 .

𝛿 Minimum bandwidth per request.

𝑟𝑑 number of concurrent requests at 𝑑

𝑅𝑑
maximum allowed concurrent

requests at 𝑑 .

Now we want to make obtain the most likely value 𝑟 for an

estimation of 𝑟 , i.e., 𝑟 = argmax likelihood(𝑟 | 𝑧), which for a single
data point results in 𝑟 = argmax 𝑧 |𝑟 . As Irwin(𝑟 ) is a unimodal

distribution, symmetric around its mean 𝑟/2, then 𝑟 ≈ 2𝑧/𝑠 . Taking
𝑚 and 𝐵 as the device’s makespan and bandwidth respectively, we

canwrite 𝑟 ≈ 2𝑚𝐵/𝑠 . So the condition 𝑟 ≤ 𝑅 = 𝐵/𝛿 is approximately

satisfied when𝑚 ≤ 𝑠
2𝛿
, which is the threshold CEM uses.

A.3 Insights on system model
The model in Section 2.2 is a variant of the classical Capacitated

Facility Location Problem (CFLP, [1, 3, 22]). On its basic version,

the problem consists of choosing facility locations to minimize

transportation costs towards customers, subject to constraints

requiring demands to be serviced by the established facilities. In our

model, items are mapped to CFLP customers, devices to facilities,

and costs to sizes.

Our model differs from classical CFLP in the many aspects. First,

our version is doubly capacitated (in both bandwidth and storage).

Second, it introduces and admission constraint (QoE) which is

basically online in nature and constitutes an additional, novel

obstacle.

The CFLP problem is known to be NP-hard, and in general also

NP-hard to approximate, although under mild conditions there exist

approximation heuristics in polynomial time [7].

Already, joint routing and allocation for CDN was presented as a

CFLP in [26], in which it was also shown that under this context the

problem is NP-hard to approximate. Nevertheless, that formulation

does not have quality-of-experience-based constraints.

As far as we know, we are the first ones to address a CFLP with

this particular set of constraints. As a consequence, we deem the

original problem formulation as a hard problem which in order to

be solved fast would require a novel approach that we address in

the next section.

A.4 SDM optimal allocation
The model for the SDM can be derived from Tero’s model by

replacing𝐷 = 1, the corresponding bandwidth 𝐵 and capacity𝐶 and

realizing that there is no routing problem. Even more, given that

the SDM is intended as an upper bound on Tero, we also remove the

user satisfaction constraint to achieve even higher traffic. Finally,

we also simplify the notation and use 𝑦𝑖 = 𝑥𝑖1 to get: the resulting

SDM model:

max

𝑦

𝑀∑︁
𝑖=1

𝑠𝑖𝑝𝑖𝑦𝑖 (19)

subject to:

𝑀∑︁
𝑖=1

𝑦𝑖𝑠𝑖 ≤ 𝐶 (20)

𝑦𝑖 ∈ {0, 1}∀𝑖 ∈ [𝑀] (21)

Which is a knapsack problem. We relax the integrality condition

and using the Lagrangian formulation:

L = −
𝑀∑︁
𝑖=1

𝑠𝑖𝑝𝑖𝑦𝑖 + 𝜆0 (
𝑀∑︁
𝑖=1

𝑦𝑖𝑠𝑖 −𝐶) +
𝑀∑︁
𝑖=1

𝜆𝑖𝑦𝑖 (𝑦𝑖 − 1)

where the factors 𝜆𝑖 are non-negative Lagrangian multipliers,

𝜆0 corresponding to the storage constraint.



Tero: Offloading CDN Traffic to Massively Distributed Devices ICDCN ’24, January 4–7, 2024, Chennai, India

On one side we know that

𝜆𝑖 ≥ 0∀𝑖 ∈ [0, 𝑀]

and that the stationary condition becomes:

𝜕L
𝜕𝑦𝑖

= −𝑠𝑖𝑝𝑖 + 𝜆0𝑠𝑖 + 𝜆𝑖 (2𝑦𝑖 − 1) = 0

So,

𝑠𝑖𝑝𝑖 = 𝜆0𝑠𝑖 + 𝜆𝑖 (2𝑦𝑖 − 1)
Assume the SDM has remaining space. Then 𝜆0 = 0. As the left

side of this expression is non-negative and by equation A.4 we

know that 𝜆𝑖 > 0 and 2𝑦𝑖 − 1 > 0. This means that 𝑦𝑖 (𝑦𝑖 − 1) = 0, ie,

𝑦𝑖 ∈ {0, 1}. Now then 2𝑦𝑖 − 1 is positive only when 𝑦𝑖 = 1. We have

to conclude that 𝑦𝑖 = 1 for all 𝑖 , which is an impossibility as there is

not enough space in the device to hold all objects. The exact same

analysis holds if we just considered 𝜆0 = 0. So this case is infeasible

and we must conclude that 𝜆0 > 0 and the optimal solution the

device is filled up to its storage capacity.

Now consider any object 𝑖 such that 𝑝𝑖 > 𝜆0. Then to satisfy the

stationary condition we need 𝑦𝑖 = 1. Analogously, if 𝑝𝑖 < 𝜆0, 𝑦𝑖 = 0.

So if the SDM is allocated by item’s popularity ranking until no

other item fits in the storage space, we can approximate the optimal

solution.


	Abstract
	Acknowledgments
	1 Introduction
	2 Model and Optimization
	2.1 Model overview
	2.2 System model
	2.3 Decomposing the problem and routing
	2.4 Allocation model
	2.5 Single Device Model

	3 The Tero System
	3.1 Popularity prediction
	3.2 Allocation
	3.3 Routing
	3.4 Concurrency estimation

	4 Evaluation
	4.1 Settings
	4.2 Content and popularity prediction
	4.3 Poisson source evaluations
	4.4 Log-Based Source Evaluations
	4.5 Results Summary

	5 Related work
	6 Conclusions
	References
	A appendix
	A.1 Model's notation
	A.2 Indirect detection of excessive concurrency
	A.3 Insights on system model
	A.4 SDM optimal allocation


