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Abstract

Understanding complex dynamical systems, particularly in the realm of neuroscience,
poses significant challenges due to the high dimensionality and intricacy of available
data. While acknowledging the significance of establishing causal relationships, this
dissertation contends that a mere causal understanding may not suffice since it may be
too complex to be interpretable. Hence, we identify the need for causally consistent
abstractions. To address this, we present a mathematical framework outlining key
assumptions that facilitate the derivation of causally-consistent high-level models directly
from observational data. We then introduce BunDLe-Net – an architecture to learn
high-level models directly from neuronal and behavioural time-series data. The efficacy
of our architecture is demonstrated across various modalities of neuroscience data, which
consistently produces interpretable insights that not only align with existing knowledge
but also reveal novel insights about the data. Additionally, this thesis introduces a toolbox
for the implementation of BunDLe-Net. Finally, we discuss future avenues for research
that our work opens up in a variety of scientific domains, such as causality, data science
and neuroscience.
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Kurzfassung

Das Verständnis komplexer dynamischer Systeme, insbesondere im Bereich der Neurowis-
senschaften, stellt aufgrund der hohen Dimensionalität und Komplexität der verfügbaren
Daten eine große Herausforderung dar. In dieser Dissertation wird zwar die Bedeutung
des Nachweises kausaler Beziehungen anerkannt, doch reicht ein rein kausales Verständnis
möglicherweise nicht aus, da es zu komplex ist, um interpretiert werden zu können. Daher
sehen wir einen Bedarf an kausal konsistenten Abstraktionen. Um dies zu erreichen,
stellen wir einen mathematischen Rahmen vor, der die Ableitung von kausal konsistenten
Modellen auf hoher Ebene direkt aus Beobachtungsdaten ermöglicht. Anschließend stellen
wir BunDLe-Net vor - einen Algorithmus zum Lernen von High-Level-Modellen direkt
aus neuronalen und Verhaltensdaten. Die Wirksamkeit unserer Architektur wird anhand
verschiedener Modalitäten neurowissenschaftlicher Daten demonstriert, die durchweg
interpretierbare Erkenntnisse liefern, die nicht nur mit dem vorhandenen Wissen überein-
stimmen, sondern auch neue Erkenntnisse über die Daten offenbaren. Darüber hinaus
wird in dieser Arbeit eine Toolbox für die Implementierung von BunDLe-Net vorgestellt.
Schließlich diskutieren wir zukünftige Forschungsmöglichkeiten, die unsere Arbeit in
einer Vielzahl von wissenschaftlichen Bereichen wie Kausalität, Datenwissenschaft und
Neurowissenschaften eröffnet.
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1. Preamble

In recent times, we have been confronted with increasingly complex systems, such as the
brain (Shepherd et al., 1998; Akil et al., 2011), weather phenomena (Runge et al., 2019;
Chalupka et al., 2016a), and high-dimensional physical systems (Chen et al., 2022; Raissi
and Karniadakis, 2018). These systems, while diverse, share common characteristics such
as high dimensionality, stochastic dynamics and intricate causal interactions between
their constituent components and the surrounding environment. These traits render these
systems challenging to understand and explain in terms of their behaviours and outcomes.
Additionally, the complexity is compounded by the limited knowledge we often have about
the system’s state and its interactions with the external environment. The aim of this
dissertation, in its broadest terms, is to explore how one may gain an understanding of
complex dynamical systems.

We are particularly interested in understanding brains, where a vast amount of data
has become available in recent years (Sejnowski et al., 2014). With the development of
various data acquisition techniques like calcium imaging and electrophysiology, it is now
possible to collect data at the level of individual neurons, which can be considered the
fundamental building blocks of the brain (Wei et al., 2020; De Vico Fallani et al., 2015).
This presents the potential for entirely new avenues of insight into the brain’s functioning,
specifically how individual neurons collaborate to process information and generate
behaviour. Furthermore, a growing number of whole-brain recordings are becoming
accessible (Migault et al., 2018; Kato et al., 2015; Nguyen et al., 2015; Ahrens et al.,
2013). This means we are no longer limited, in terms of data, by partial observability
when it comes to describing how information is processed. Despite these advancements in
data quality and the abundance of data, the neuroscience community still faces challenges
in interpreting data and deriving meaningful and practical insights from it (Jonas and
Kording, 2017; Krakauer et al., 2017).

1.1. Outline

We begin this dissertation by formulating the research questions based on current academic
knowledge. We introduce our high-level conceptual framework in Section 1.2. After
a review of relevant literature in Section 1.3, we formally state our scientific research
questions in Section 1.4. We culminate this Chapter by presenting a list of my publications
during my doctoral studies that contribute to the theme of this dissertation in Section
1.5.

Chapter 2 presents our theoretical formalism, defining our central notions of dynamical
causal consistency and behavioural consistency and outlining the assumptions enabling
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1. Preamble

the inference of causal abstractions from observational data. To strengthen intuition of
these concepts, an example of an analytical solution is provided in Section 2.4. Building
on our theoretical formalism, we introduce our novel algorithm BunDLe-Net in Chapter
3, where we use it for Neuronal Manifold Learning. Chapter 4 presents a Python toolbox
for BunDLe-Net, emphasising its functionalities for abstracting and visualising complex
neuronal and behavioural datasets. Chapter 5 showcases the adaptability and robustness
of BunDLe-Net through two variants and experiments on diverse datasets and settings.
Concluding this dissertation, Chapter 6 delves into our results and contributions, re-
addressing the initial research questions (Section 6.1), highlighting contributions to various
fields (Section 6.2), and discussing new research avenues opened by our work (Section
6.3).

1.2. Conceptual Framework

Here, we dissect what it means to understand a complex dynamical system and outline
its fundamental elements. Understanding a system implies having the capability to
reasonably predict its outcomes or dynamics. However, a comprehensive understanding
extends beyond mere predictability; it encompasses a causal knowledge of the system’s
interactions, i.e. it involves understanding how various components causally influence
each other to generate its dynamics in time. The strength of a causal understanding lies
in its capacity to predict the consequences of alterations to the system (Schölkopf et al.,
2021). Moreover, a causal understanding becomes indispensable when we seek to engineer
specific behaviours or outcomes within the system.

In this thesis, we adopt the formal language of structural causal models (SCMs), as
introduced by Pearl. Causality theory is a framework that describes the mathematics
of cause and effect. Conventional statistical models describe associations between a
set of variables and are used in machine learning to make predictions. A causal model
goes beyond this and describes the system in terms of the causal relationships between
its variables. Structural causal models (SCMs), in particular, offer a mathematical
framework for modelling a system’s variables in terms of their causal interactions. It
involves the notion of a directed acyclic graph (DAG) where each of the system’s variables
is represented by a node, and a directed edge represents a causal interaction between a
given pair of variables. In this way, we can reason about what would happen if we made
changes, such as removing some variables, severing certain causal links, or intervening to
fix the values of some variables (Spirtes et al., 2001).

While the causality theory and the SCM framework are powerful tools, they were
primarily developed to deal with independently and identically distributed (iid) data.
They do not account for the temporal structure of the data or investigate how causality
unfolds in the dynamics of a system. In contrast, the field of physics employs a distinct
approach known as dynamical systems, where the time evolution of a system’s variables
is captured using differential equations (Strogatz, 2019). These equations determine
the trajectory of the high-dimensional system in its state space. Unlike the causality
framework, the dynamical systems approach lacks the concept of cause and effect and relies

2



1.2. Conceptual Framework

on fundamental physical variables. Knowledge of these variables enables the complete
determination of a system’s past and future trajectories through differential equations
that can be derived from physical laws.

To establish a comprehensive notion of understanding a complex dynamical system,
such as the brain, we recognise the need for a framework that combines the robust
causal semantics of SCMs with the time-trajectory perspective from the dynamical
systems approach. In this thesis, we endeavour to construct a mathematical framework
that leverages the strengths of both domains to enhance our understanding of complex
dynamical systems.

Thus far, we have discussed what constitutes an understanding of a dynamical system.
However, some systems are so complex that even knowledge of its complete SCM or
system of differential equations may not greatly further our understanding (Hoel et al.,
2016; Hoel, 2017). While causality is a powerful tool in explaining systems with a small to
moderate number of variables, more is needed to gain a comprehensive picture of a system
with a vast number of variables like the brain. Since causal models at such fine-grained
levels can be challenging to interpret, we require simplified models that are not only adept
at explaining the phenomena of interest but are also human-interpretable. Consequently,
there arises a need to abstract useful concepts either from the complex model or directly
from data generated by the system.

To illustrate this, consider the field of neuroscience. The brain can be studied at varying
levels of granularity, right from individual neurons to brain regions to cognitive concepts,
each serving a specific purpose (Grosse-Wentrup et al., 2023; Haueis, 2022). For instance,
causation can be discussed at the individual neuronal level, where we may reason, ‘Neuron
A causes neuron B to fire’. However, a psychologist would be less concerned with the
firing patterns in neuronal circuits and more focused on the cognitive states of their
patient, which determine behaviour and responses to stimuli. These cognitive states serve
as abstractions of brain neuronal activity. While they lack the fine-grained detail of the
neuronal level, they are of immense value for explaining high-level phenomena. Though
these models are of great practical use, they have a limitation in that they lack causal
consistency and are not derived from the neuronal level.

To address this, we look to the field of machine learning and data science, where
dimensionality reduction techniques have been extensively employed to simplify vast
datasets (Lee et al., 2007). Reduced dimensionality allows for more straightforward
visualisation, which may, in turn, lead to valuable insights about the system. It is
important to note, however, that the majority of existing methods compress data into fewer
dimensions in an unsupervised setting, thus potentially discarding relevant information.

Having introduced the problem and identified domains that may offer solutions, we aim
to establish theoretical principles that guide us in obtaining meaningful representations
tailored to the neuroscience setting. These representations should align with causality,
ensuring that they are consistent with the underlying data. In doing so, we strike a
balance between simplification for explainability and preserving the integrity of the
complex system’s causal relationships.

3



1. Preamble

1.3. Background

This review presents an overview of the current state of knowledge in key domains
relevant to this thesis. It assumes a basic understanding of causality, in particular, the
Structural Causal Model framework (also known as Structural Equation Model). A
concise explanation of causality is included, tailored to the requirements of this thesis.

1.3.1. Causality

Causality is a fundamental concept that plays a pivotal role in various domains, including
artificial intelligence science (Schölkopf, 2022), neuroscience (Chen et al., 2023; Banerjee
et al., 2023), weather (Runge et al., 2019). In essence, it addresses the fundamental
question of cause and effect – understanding how one event or variable influences another.
Causality provides a powerful lens through which to dissect complex systems and extract
meaningful insights. A common challenge in data analysis is distinguishing causality from
mere correlation. While correlation implies a statistical association between two variables,
causality delves into the mechanisms behind this association. Consider an example where
ice cream sales and drowning incidents are correlated, both peaking during the summer.
Without causal analysis, one might mistakenly infer that ice cream consumption causes
drownings. In reality, both are independently influenced by high temperatures. This
example illustrates the dangers of assuming causality solely from correlation (Pearl, 2009).

Causal analysis surpasses purely statistical approaches by offering a deeper understand-
ing of the relationships within a system. Statistical correlations can provide valuable
insights, but they often lack the explanatory power needed to make informed decisions
or interventions. Causal models, on the other hand, allow us to discern not just that
events are correlated but also why they are related, facilitating informed decision-making
(Spirtes et al., 2001).

Structural causal models

While several definitions and frameworks of causality exist, we choose to work with
the Structural Causal Models framework (Pearl, 2009). For this thesis, we pre-suppose
familiarity with basic causality see references. Nevertheless, we still review some basic
terms and concepts that are essential for the thesis with the help of an example. This is
not meant to be a rigorous but rather an intuitive presentation of the topic. For a more
extensive exploration, readers are directed to (Pearl et al., 2016).

Structural causal models are a framework for causality which uses a system of equations
to describe causal relations between a given set of variables. Consider a set of variables
X1, .., X6 depicted as nodes in the graph (Figure 1.1). These variables can be real-valued,
vector-valued, discrete, or categorical. The edges in the graph depict causal relationships
between the variables. For instance, an edge from X1 to X3 indicates that X1 directly
influences X3. We refer to these direct influences as parents, denoted as Pa(.). A variable
can have zero to multiple parents.

4



1.3. Background

X1 X2

X3

X4

X5

X6

Figure 1.1.: A Directed Acyclic Graph describing the causal structure between variables
X1, ..., X6

Figure 1.1 is a directed acyclic graph (DAG) and depicts the causal structure between
the variables in our set. The graph is acyclic because one cannot have cycles in the causal
graph. This would lead to a variable being a cause of itself which is not permitted in this
framework1. In our example, X1, X2, and X5 are exogenous variables because they have
no parents within this set of variables. Variables with parents within the set, like X3, X4

and X6 are referred to as endogenous variables.
A structural causal model (SCM) on the variables X1, ..., X6 is a set of equations, one

for each variable, of the form, Xi = f(Pa(Xi), ϵi), where Pa(Xi) denotes the parents of
Xi and ϵi denotes a noise variable corresponding to variable Xi. It is assumed that we
do not have access to these noise terms and that the noise terms are independent of one
another. This gives rise to a probabilistic distribution over the variables.

Interventions An intervention involves making a deliberate alteration to one or more
variables within the system. In the context of our example, we could intervene by setting
X3 to a specific value. Such an intervention effectively severs the causal links between
X3 and its parents X1 and X2, disrupting the normal course of causation. This means
that changes in the intervened variable can no longer be attributed to its parents or their
causal influence. Interventions play a crucial role in causal modelling, allowing us to
explore the effects of controlled changes within a system and assess how these changes
propagate through the causal network.

Causal inference at different scales

A major application of causality theory is to infer causal structure between a set of
variables from a given dataset. There are a range of causal inference algorithms (Spirtes
and Glymour, 1991; Verma and Pearl, 1990). These algorithms take as input the data and
output causal structure(s)2 that are compatible with the observed statistical relationships
between variables.

1This does not preclude the possibility of a pair of variables mutually influencing each other. In such
instances, one must examine their temporally unrolled graph to model their interactions — which
means considering the evolution of these variables over time

2Sometimes it is not possible to uniquely determine the causal structure from a given dataset, but rather
the algorithms would determine an equivalence class of compatible causal structures

5



1. Preamble

Causal structure algorithms assume prior knowledge of what the causal variables
are. When it comes to complex systems with high-dimensional variables, it is not
straightforward how to choose the variables. To illustrate, we take an example from
physics. Consider two containers, A and B, in thermal contact, each containing a gas
with several molecules undergoing random thermal motion. Let’s say we heat container
A, increasing the average momentum of its molecules. This leads to a change in container
B, with their average momenta rising. If we approach this as a causality problem based
on individual variables like position and momentum, it becomes unclear which molecules
in container A affect those in container B through this intervention. Even if we infer a
causal structure suggesting all variables related to container A influence container B, it
offers limited insights. A more effective approach is to focus on the macroscopic level.
Instead of examining individual molecule momenta, we could use macrovariables like
temperature. Coarse-graining might allow causal statements at the macro-level, which,
in some cases, may even offer further insights into the causal mechanisms of the system
(Hoel et al., 2013, 2016; Hoel, 2017). Yet, it is unclear how a complex system should
be coarse-grained while preserving causal relationships. If we coarse-grain away relevant
causal information, we may end up with inconsistencies (Weichwald et al., 2015), and
paradoxes against the Causal Markov Condition3 (Gebharter and Retzlaff, 2020).

Example of a causally inconsistent coarse-graining

As a contribution of this dissertation and to causal abstractions, we present here an SCM
scenario of bad coarse-graining. It illustrates how coarse-graining can render variables
unfit for causal inference. This example provides insights as to why one should not
arbitrarily coarse-grain data or models if one wants to make causal claims. This includes
dimensionality reduction techniques like PCA, autoencoders, UMAP, t-SNE, and isomap,
which do not take causality into consideration.

Consider the following SCM with three variables,

X1 = ϵ1, ϵ1 ∼ U({1, 2, ..., 10})
X2 = 2X1 + ϵ2, ϵ1 ∼ U({0, 1})

X3 = ϵ3 +

{︄
0 if X1 mod 2 = 0

5 if X1 mod 2 = 1
, ϵ3 ∼ N (0, 1)

where U(S) signifies a uniform distribution over elements of the set S. Let τ be a
transformation that is given by Xi ↦→ Yi = Xi + ⌊Xi⌋ mod 2 for i ∈ {1, 2, 3}.

For the true model at the microscopic level, we can derive the following conditional
independencies (X2 ⊥ X3|X1), (X1 ̸⊥ X3|X2), (X1 ̸⊥ X3). However, after coarse-graining,
Y1 loses information about X3, while Y2 still holds some information about Y3. Thus the
conditional independencies become (Y2 ̸⊥ Y3|Y1), (Y1 ⊥ Y3|Y2), (Y1 ⊥ Y3). This would

3The Causal Markov Condition is a fundamental assumption made by several causal inference algorithms.
It asserts that a given variable is probabilistically independent of all its non-descendant variables
when conditioned on its parents in a causal DAG.

6



1.3. Background

lead to learning the wrong Markov equivalence class of DAGs (or causal skeleton) on the
macroscopic level.

X1

X3X2

Y1

Y3Y2

Figure 1.2.: Left: True causal structure. Right: Wrongly inferred causal skeleton after
coarse-graining

1.3.2. Abstraction of causal systems

From the previous examples, we have seen that coarse-graining can throw away causal
information from the system, leading to inconsistencies, paradoxes, erroneous causal
inference and simply wrong models at the abstract level. Abstractions are nevertheless
an essential tool for understanding complex systems. To address this, the authors of
(Rubenstein et al., 2017) present a mathematical definition of causal consistency between
a pair of SCMs. This definition serves to test the compatibility of a high-level SCM
with a low-level SCM, determining whether the former can be regarded as a causally
consistent abstraction of the latter. However, it does not prescribe a specific recipe for
appropriately abstracting a high-level model from low-level dynamics; rather, it provides
a means for testing. Later in Chapter 2, we build upon the notion of causal consistency
and create a framework for abstracting SCMs from time-series data, which is later used in
our Publication (Grosse-Wentrup et al., 2023) to bridge the neuronal and cognitive levels.

In a series of papers (Chalupka et al., 2017, 2015, 2016b), Chalupka et al. develop
a practical method called causal feature learning (CFL). They present an algorithm to
learn discrete causal macrovariables on high-dimensional cause-effect pairs. The causal
feature learning algorithm succeeded in learning causal macrovariables in weather science
corresponding to the El Nino and La Nina phenomena in the Pacific (Chalupka et al.,
2016a). While the visual CFL framework is well-suited for independently and identically
distributed (iid) image data, there is no straightforward way to extend it to multivariate
time-series data, which is typical in neuronal studies. Moreover, the CFL framework
makes the rather strict assumption that the macrovariable is discrete, which may not
always be the case. Therefore, it is preferable to begin with a continuous macrovariable
and observe whether a discrete structure naturally emerges. Such is the approach taken
in this thesis.

1.3.3. Dynamical Systems

Dynamical systems are a mathematical framework to describe how variables evolve over
time (Strogatz, 2019). It uses a set of differential equations to model the time dynamics
of a complex system. It differs significantly from the Structural Causal Model (SCM)
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approach, which is directed more towards the iid setting (independently and identically
distributed data) and does not take time into account. The dynamical systems approach
can offer interesting insights by considering the temporality of the data; for example,
we can study the recurrence of certain behaviours or bifurcations in dynamics. While
dynamical systems excel at capturing the temporal evolution and patterns of variables,
they do not inherently address causality.

There has been theoretical research in deriving structural causal models for dynamical
systems4, thus attempting to bridge these fields that grew out of very different disciplines.
The authors of (Mooij et al., 2013; Rubenstein et al., 2018; Bongers et al., 2022) provide
a set of assumptions under which an SCM can be derived from a set of differential
equations in an equilibrium setting. Janzing et al. derive an analytic macrovariable SCM
by coarse-graining variables in a time-series with linear dynamics. While these works offer
useful insights into how one can think about dynamical systems in a causal way, they all
presuppose knowledge of the underlying dynamics in the form of differential equations.
This makes it difficult to apply them to data obtained from experimental studies, where
we have little to no prior knowledge of the system’s mechanism and dynamics.

1.3.4. Representation Learning in Reinforcement Learning

Several representation learning approaches exist within the field of reinforcement learning.
The authors of (Wahlström et al., 2015; Watter et al., 2015; Hafner et al., 2019; Jaques
et al., 2020) use generative models to learn low-dimensional variables from pixel data
for the control of non-linear dynamical systems. These algorithms use autoencoder-like
components which rely on reconstruction of the microscopic state. While this may give us
a lossless representation of the data, it may keep unnecessary information thus limiting
the compression. In (Zhang et al., 2021), the authors use bisimulation metrics to learn
invariant representations without reconstruction of the original state. Impressively, it is
able to discard extraneous details and retain only information relevant to the task at hand.
Contrastive learning (Kipf et al., 2020; Anand et al., 2019) is yet another method that
is able to learn structured world models by its ability to extract objects from pixel data.
While several of the above works learn representations that are useful for certain tasks
such as control or dynamical modelling, few of them allow for a causal semantics. Causal
representation learning (Schölkopf et al., 2021) stresses the need to learn high-level causal
variables from low-level observations. Our framework takes care of this and also endows a
lot of the above-mentioned work with causal interpretations if certain assumptions are
fulfilled.

1.3.5. Abstractions in Cognitive Neuroscience

A central question in the field of neuroscience is how neuronal activity generates cognition
and behaviour. With the emergence of sophisticated neuro-imaging techniques, there is
a vast amount of data available with which we can probe this question. Despite this,
bridging the neuronal and cognitive levels remains a challenge.

4systems in which the variables have a definite time-structure
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Marr’s three levels

For a comprehensive understanding of the brain as an information processing system,
Marr posited a three-level scheme of understanding: the computational, algorithmic and
implementational level, each at a different level of abstraction.

1. Computational level: This level addresses the why question. It focuses on the
high-level function or purpose of a system, abstracting away from the specifics of
implementation. At this level, we define what the system is supposed to do and
what problems it should solve.

2. Algorithmic Level: This level answers the how question. It delves into the step-
by-step processes and algorithms that the system uses to achieve its computational
goals. Here, we break down the system’s function into a series of understandable
computational steps.

3. Implementational Level: This level deals with the how it’s done question. It
deals with details of how the system is physically or biologically realised.

To illustrate, we take the example of a pocket calculator. At the implementation level,
we have transistors and diodes that operate on the principles of physical laws. At the
algorithmic level, we would have the software, operating system, and algorithms that are
required to perform computations. And then, at the computational level, we have the
task that the calculator is supposed to accomplish – to perform arithmetic operations
between numbers. As we see, this framework is not limited to brains and is generic for
information processing systems.

Neuronal manifold learning

Neuronal manifold learning algorithms seek to understand the underlying low-dimensional
structure within the high-dimensional neuronal activity. They operate under the assump-
tion that the intrinsic dimensionality of neuronal data is notably lower than the actual
number of neurons. Efforts have been made to establish a link between the manifold’s
dimension and the complexity of the task being studied (Gao et al., 2017). Several
widely used algorithms for neuronal manifold learning include PCA (Kato et al., 2015;
Ahrens et al., 2012), demixed PCA (Brendel et al., 2011; Kobak et al., 2016), UMAP
(McInnes et al., 2018), t-sne (Van der Maaten and Hinton, 2008) autoencoders (Kingma
and Welling, 2013), pi-VAE (Zhou and Wei, 2020), and CEBRA (Schneider et al., 2023).
The majority of these approaches are unsupervised, focusing on data compression to
enable faithful reconstruction. Subsequently, unsupervised methods seek to establish any
potential correlations between neuronal activity and behaviour (Rubin et al., 2019).

While unsupervised methods may provide visualisations of the data, they often erro-
neously discard important information for a specific behaviour. Moreover, the brain is
capable of dealing with several processes at once. Hence, an unsupervised approach may
only uncover an entangled mesh of processes that is barely interpretable. A study by
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Krakauer et al. emphasised that studying the brain in isolation may provide far fewer in-
sights than when complemented with behavioural information. To use Marr’s terminology,
the implementational level alone might not give us a comprehensive understanding but
should rather be supplemented with the computational level so as to reveal underlying
algorithms.

Another study by Jonas and Kording posed the question, ‘Could a neuroscientist under-
stand a microprocessor? ’, where the authors used neuroscience techniques to investigate a
microprocessor. Since the algorithms and implementations in a microprocessor are already
known, one would hope that neuroscience techniques could be applied to reveal them and
thus validate the efficacy of these methods. Unfortunately, aside from revealing some
interesting structure in the data, the techniques revealed no meaningful understanding. It
notably failed to describe the hierarchy of information processing in the microprocessor.
Both these studies highlight the inadequacy of current techniques to reveal insights into
the workings of neuronal systems. In our work, we heed the precautions of Krakauer et al.
and Jonas and Kording by explicitly considering the behaviour.

C. elegans - the model organism

The roundworm C. elegans is a model organism for neuroscience research due to its
small nervous system of 302 neurons. All the connections between the neurons have
been mapped out and published as a connectome (Varshney et al., 2011). Though we
know the entire map, and thus in some sense the causal structure between the neurons,
we are still far from understanding how the worm’s neurons process information and
generate behaviour (Jabr, 2012). This goes to illustrate our point in section 1.2 that even
a complete causal characterisation may not greatly increase our explainability of a system.
Ideally, we would like to model the neuronal system at the three levels of abstraction as
outlined in Marr’s framework. Owing to the limited number of neurons, rich behavioural
repertoire, and high-quality calcium-imaging data from whole brain recordings (Kato
et al., 2015), we choose C. elegans neuronal and behavioural data to test and validate our
methods in Chapter 3.

1.4. Research questions

The central question of this thesis can be broadly stated as follows:

What constitutes a comprehensive understanding of a complex dynamical system like the
brain?

In Section 1.2, we introduced a conceptual framework for approaching our central
question at a high level. Building upon the research context discussed in the preceding
section, we are now prepared to refine our central question into a set of specific scientific
inquiries. We split our central question into three research questions.
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Q1: Under what conditions can we infer causal abstractions from purely
observational data of a dynamical system?

Learning causal models solely from observational data is challenging, as it typically requires
interventions and experiments to determine the true causal relationships. However, in
fields like neuroscience, ethical and technological constraints often make interventions
unfeasible. Causal inference methods can discover some relationships between already
identified causal variables. Yet, the challenge remains: How can one directly abstract such
causal variables from observational data?

While Rubenstein et al. present a notion of causal consistency between two SCMs,
their work does not tell us whether one can infer such causally consistent abstractions
from purely observational data. They also do not deal with dynamical systems but rather
with SCMs in the independently and identically distributed (iid) setting. As we have seen
in Section 1.3, dynamical systems possess unique causal information in their temporal
structure that may be exploited to gain more useful abstractions (for example, capable of
making predictions of the dynamics).

This indicates the need for a specialised framework designed for dynamical systems.
Within this framework, the objective is to establish a set of assumptions under which an
observationally consistent abstraction (inferred from non-interventional data) can also
support causal claims. The advantage of an abstraction that supports causal claims lies
in its ability to function as an autonomous model directly at the abstract level. This
would allow researchers to gain insights into the dynamics of the system and foster a
more robust causal understanding of its behaviour.

We tackle this question by first defining and developing a mathematical framework in
Chapter 2. Within our framework, we are better equipped to answer this question.

Q2: Given these conditions, how can we learn causal abstractions directly
from time-series data?

Existing studies have focused on deriving causal models from dynamical systems, mainly
by attempting to construct a structural causal model (SCM) from differential equations
(Janzing et al., 2018; Rubenstein et al., 2018; Bongers et al., 2022). However, in practical
applications, the equations governing a dynamical system are often unknown. Lacking
information on the exact physical equations governing the system, researchers have to
rely on raw time-series data from the system.

Causal Feature Learning (CFL) is a more practical approach which is successful
at learning abstractions from single, cause-effect pairs in independent and identically
distributed (iid) data settings (Chalupka et al., 2015, 2017),. However, these iid approaches
overlook relevant temporal information in time-series data commonly encountered in
neuroscience. Furthermore, in complex systems, the identification of well-defined cause-
effect pairs is often elusive, given the dense and global nature of interactions, as is the
case in the brain. Hence CFL approaches would be inadequate to deal with data from
complex dynamical systems. This creates the need for an algorithm that can learn causally
consistent abstractions from time-series data. We address this question in Chapter 3
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where we develop a data-driven approach to learn causally consistent abstractions.

Q3: How can causally consistent abstractions be used to gain meaningful
insights into complex neuronal datasets?

Neuroscience data can pose several challenges for learning causally consistent abstractions.
Aside from most of the datasets being observational data (i.e. without interventions), we
also have to deal with relatively limited data (for the machine learning setting). Further
challenges include the presence of time-correlated noise due to imaging artefacts, partially
observable systems, and the individuality of animals and recording sessions. Additionally,
multiple abstractions may be causally consistent with the underlying neuronal dynamics.
However, not all of them may be relevant to our specific research objectives. Conversely,
there might be certain abstractions that capture vital information, such as the behaviour
of interest but are not causally consistent, or even derivable, from the ground-truth system.
Krakauer et al. emphasise the indispensability of behaviour in gaining meaningful insights
into a system. Hence, we would need to learn abstractions that preserve behavioural
information.

The diverse forms, shapes, and sizes of neuroscience data present yet another challenge.
Behavioural data, in particular, is collected in various formats, encompassing granular
details about position, direction, and body configuration, as well as broader information
like locomotor states and high-level behaviours. In this context, the aim is to develop a
model capable of explaining multimodal behaviours and, in doing so, capture some of
the common representations that come into play. This would shed insights into the way
information is processed. Hence, to deal with multimodal data, a specific algorithm for a
given setting would be inadequate. Rather, we require a flexible architecture that defines
a class of algorithms that can be readily tailored to each setting.

We answer this question in Chapter 3, where we use our mathematical framework to
develop a Neuronal Manifold Learning algorithm. We perform experiments to investigate
this question further in Chapter 5 and demonstrate our method’s robustness and flexibility
on various data and settings. We make use of our mathematical framework in Publication
(Grosse-Wentrup et al., 2023) to bridge the neuronal and cognitive levels.
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1.5. Publication list

The following list comprises my research works during my doctoral studies, all contributing
to the themes explored in this dissertation. While some works are not yet published, they
have been submitted to peer-reviewed journals or are currently in preparation.

1. Akshey Kumar and Moritz Grosse-Wentrup. Learning Cognitive State Represent-
ations from Neuronal and Behavioural Data. In 2023 Conference on Cognitive
Computational Neuroscience, 2023. (accepted)

2. Akshey Kumar, Aditya Gilra, Mauricio Gonzalez-Soto, Anja Meunier and Moritz
Grosse-Wentrup. BunDLe-Net: Neuronal Manifold Learning Meets Behaviour.
bioRxiv doi:10.1101/2023.08.08.551978 version 3, 2023. https://www.biorxiv.or
g/content/10.1101/2023.08.08.551978v3. (submitted)

3. Moritz Grosse-Wentrup, Akshey Kumar, Anja Meunier, and Manuel Zimmer.
Neuro-Cognitive Multilevel Causal Modeling: A Framework that Bridges the Ex-
planatory Gap between Neuronal Activity and Cognition. bioRxiv, 2023. doi:
10.1101/22023.10.27.564404 https://doi.org/10.1101/2023.10.27.564404.

4. Pascal Weber, Lukas Miklautz, Akshey Kumar, Moritz Grosse-Wentrup, and Claudia
Plant. CaFe DBSCAN: A Density-based Clustering Algorithm for Causal Feature
Learning. The 10th IEEE International Conference on Data Science and Advanced
Analytics. DSAA, 2023. http://eprints.cs.univie.ac.at/7860/. (accepted)

5. Akshey Kumar and Moritz Grosse-Wentrup. BunDLe-Net: A Python toolbox for
Neuronal Manifold Learning, 2023. (in preparation)

We have chosen to include Publication 2 in this thesis in Chapter 3. We intend to
publish the contents of Chapter 4 as Publication 5.
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2. Theoretical formalism

In this chapter, we present the first main contribution of this thesis: a theoretical
framework for abstracting causally consistent models from dynamical systems. This
chapter assumes familiarity with basic probability theory and structural causal models
(SCM) (Pearl et al., 2016).

We begin with the definition of the fundamental elements of our framework and
our main criteria: dynamical observational consistency (DOC) and dynamical causal
consistency (DCC) in Section 2.1. Following these definitions, we present our main
theoretical results in the form of two theorems in Section 2.2. Subsequently, in Section 2.3,
we define behavioural consistency and discuss its relevance for the neuroscience setting.
We conclude this Chapter with the analytical derivation of an abstraction in Section 2.4.1,
which demonstrates all of the theoretical concepts introduced in the previous sections.

The two central theorems presented here serve as the foundation of the Behaviour
and Dynamics Learning Network (BunDLe-Net) algorithm that we present in Chapter 3.
The contents of this chapter are also used as the theoretical foundations for our other
Publication, Neuro-Cognitive Multilevel Causal Models Grosse-Wentrup et al. (2023),
that bridges the gap between the neuronal and cognitive level.

2.1. Preliminary definitions

Let EX = (ϵt : t ∈ T ) be an indexed set of exogenous noise variables1 and let (Xt ∈ X :
t ∈ T ) be an indexed set of endogenous variables2.

Definition 1. (Dynamic SCM) A dynamic SCM (dSCM) is a tuple {T , PEX
, SX , IX }

where,

• T ⊆ N is an index set where the indices correspond to instances in time.

• PEX
is the joint probability distribution over the exogenous variables such that for

all t, t′ ∈ T such that ϵt and ϵt′ are independent.

• SX is a set of equations Xt+1 = f [Pa(Xt), ϵt] for t ∈ T where Pa(Xt) ⊆ {Xt′ |t′ <
t}.

• IX is a set of allowed interventions3 on the endogenous variables Xt : t ∈ T .
1Exogenous variables are variables that we cannot access
2Endogenous variables are variables that we can access and make interventions on.
3An intervention on variable Xt is defined as setting the variable Xt to a specific value, say x, and is

denoted do(Xt = x)
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The essence is that in a dSCM, the parents of a variable Xt are restricted to variables
that lie in the temporal past of Xt. In our framework, we allow all possible complete
interventions, IX = {do(Xt = x) : t ∈ T , x ∈ X}. In other words, if Xt is a high-
dimensional vector, we consider interventions on Xt as a whole. Interventions on individual
components of Xt is left as an avenue for future work.

Note that the distribution over the exogenous variables, together with the structural
equations, induce a distribution over the endogenous variables. We will refer to the latter
distribution in our definition of dynamic causal consistency.

Definition 2. (Markov dSCM) A dSCM is said to be Markov if Pa(Xt) = {Xt−1} for
all t ∈ T .

... Xt−1 Xt Xt+1 ...

Figure 2.1.: Causal structure of a Markov dSCM

We denote the conditional probability distribution over endogenous variables by the
transition matrix4 TX which is given by [TX ]ij = P (Xt+1 = j|Xt = i) where i, j ∈ X . We
assume a time-homogeneous Markov process, which means the transition matrix does not
change with time.

Definition 3. (Macroscopic interventions) Let MX = {T , PEX
, SX , IX} be a dSCM and

let τ be a surjective mapping from the state space X to some macrovariable space Y.
We define interventions on the macroscopic level do(Yt = y) for y ∈ Y as choosing any
intervention in the set {do(Xt = x)|do(Xt = x) ∈ IX , y = τ(x)}. The set of all possible
macrovariable interventions is then given by IY = {do(Yt = y) : t ∈ T , y ∈ Y}.

Overloading the notation a bit, we denote IY = τ(IX)

Definition 4. (Dynamic observational consistency of dSCMs)
Let MX = {T , PEX

, SX , IX} and MY = {T , PEY
, SY , IY } be two dSCMs that share the

same index set and let τ : X → Y be a surjective mapping between the state spaces of MX

and MY . We say that the triple {MX ,MY , τ} is dynamically observationally consistent
iff for all t ∈ T we have, Yt = τ(Xt), and for all x′ ∈ X , y ∈ Y we have5,

P (Yt+1 = y|Xt = x′) = P (Yt+1 = y|Yt = τ(x′)). (2.1)
4Note that the transition matrix need not uniquely determine the Markov dSCM since different structural

equations SX and exogenous distributions Pϵ may induce the same distribution and thus the same
transition matrix.

5To be more mathematically precise the LHS of the following expression would be
P (Xt+1 ∈ τ−1(y)|Xt = x′). However, since this is less readable, we shall use P (Yt+1 = y|Xt = x′)
as shorthand for it. This is possible since Yt+1 = y and Xt+1 ∈ τ−1(y) are equivalent statements if
τ links their spaces. Thus, the LHS lives in the probability space of X while the RHS lives in the
probability space of Y.
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... Xt−1 Xt Xt+1 ...

... Yt−1 Yt Yt+1 ...

τ τ τ

Figure 2.2.: Existence of DCC transformation τ between two dSCMs

Definition 5. (Dynamic causal consistency of dSCMs)
Let MX = {T , PEX

, SX , IX} and MY = {T , PEY
, SY , IY } be two dSCMs that share the

same index set and let τ : X → Y be a surjective mapping between the state spaces of MX

and MY . We say that the triple {MX ,MY , τ} is dynamically causally consistent iff for
all t ∈ T we have, Yt = τ(Xt), and for all x′ ∈ X , y ∈ Y we have5,

P (Yt+1 = y|do(Xt = x′)) = P (Yt+1 = y|do(Yt = τ(x′))). (2.2)

Note that on the right-hand side, the macroscopic intervention do(Yt = τ(x′)) comprises
any intervention from a set of microscopic interventions as in Definition 3, and not just
the intervention do(Xt = x′).

2.1.1. Intuitive meaning of DCC and DOC

Figure 2.2 demonstrates the case when two dSCMs in combination with a mapping τ
are DCC. The solid arrows represent causal links, and the dotted arrows represent the
mapping τ . Later in theorem 2, we will prove that this diagram commutes.

The DOC criterion can be thought of as a conditional independence statement,
(Yt+1 ⊥ Xt|Yt). It ensures that the dynamics at the Y -level is sealed-off from the ex-
plicit microvariable state at the X-level. In this way, the dynamics at the Y -level is
self-contained, and no additional information from the X-level could tell us anything
more about the Y -level dynamics. Thus, the Y-level can be thought of as an independent
process in its own right. The DCC criterion makes sure that the above is valid even when
performing interventions, thus making the model at the Y -level causal.

Although we have considered a very simple causal structure, namely, the Markov chain,
these principles are quite generic and applicable to any kind of time-series causal structure.
This includes causation between subsystems of a dynamical system. Such generalisations
are beyond the scope of this chapter but will be discussed in Section 6.3.

2.2. Central theorems

The following lemma and theorem establish how we may learn dynamically causally
consistent transformations from purely observational data in a Markov setting.

Lemma 1. Let MX be a Markov dSCM and let τ : X → Y be a surjective mapping. Let
MY be a dSCM that describes the dynamics of Yt := τ(Xt). If {MX ,MY , τ} is DOC,
then MY is also a Markov dSCM.
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Proof. 6 The theorem states that a sufficient condition for MY to be a Markov dSCM is
dynamical observational consistency, i.e for all x ∈ X , y′ ∈ Y, t ∈ T we have,

P (Yt+1 = y′|Xt = x) = P (Yt+1 = y′|Yt = τ(x)). (2.3)

To prove that MY is Markov, we will show that the term

P (Yt+1 = y′|Yt = yi, Yt−1 = yj , ...)

equals to
P (Yt+1 = y′|Yt = yi)

under the assumption of DOC. First, we note the equivalence between the statements
Yt = y and Xt ∈ τ−1(y) and use this to expand,

P (Yt+1 = y′|Yt = yi, Yt−1 = yj , ...) = P (Yt+1 = y′|Xt ∈ τ−1(yi), Xt−1 ∈ τ−1(yj), ...)

Using the Bayes rule, the additivity rule for mutually exclusive events, and again the
Bayes rule, we express the term as a sum over past trajectories,

=

. . .
∑︁

xj∈τ−1(yj)

∑︁
xi∈τ−1(yi)

P (Yt+1 = y′|Xt = xi, Xt−1 = xj , ...)P (Xt = xi, Xt−1 = xj , ...)

. . .
∑︁

xj∈τ−1(yj)

∑︁
xi∈τ−1(yi)

P (Xt = xi, Xt−1 = xj , ...)

(2.4)

Now consider the term, P (Yt+1 = y′|Xt = xi, Xt−1 = xj , ...). Since (Xn) is a Markov
process, it can be simplified as follows,

P (Yt+1 = y′|Xt = xi, Xt−1 = xj , ...) =
∑︂

x′∈τ−1(y)

P (Xt+1 = x′|Xt = xi, Xt−1 = xj , ...)

=
∑︂

x′∈τ−1(y)

P (Xt+1 = x′|Xt = xi)

P (Yt+1 = y′|Xt = xi, Xt−1 = xj , ...) = P (Yt+1 = y′|Xt = xi) (2.5)

Using Equation (2.5), the term (2.4) becomes,

=

. . .
∑︁

xj∈τ−1(yj)

∑︁
xi∈τ−1(yi)

P (Yt+1 = y′|Xt = xi)P (Xt = xi, Xt−1 = xj , ...)

. . .
∑︁

xj∈τ−1(yj)

∑︁
xi∈τ−1(yi)

P (Xt = xi, Xt−1 = xj , ...)
(2.6)

=

∑︁
xi∈τ−1(yi)

P (Yt+1 = y′|Xt = xi)

(︄
. . .

∑︁
xj∈τ−1(yj)

P (Xt = xi, Xt−1 = xj , ...)

)︄

∑︁
xi∈τ−1(yi)

(︄
. . .

∑︁
xj∈τ−1(yj)

P (Xt = xi, Xt−1 = xj , ...)

)︄ (2.7)

6 Note: This proof is done for the case of discrete state space X . The statement is also thought to hold
for continuous state spaces, but the proof would be considerably more involved and is hence omitted.
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Now, if we assume that DOC holds, for a given value of Yt = yi, the distribution
P (Yt+1 = y′|Xt = xi) is the same constant as long as xi ∈ τ−1(yi). It only depends on
the value of yi, and is thus given by P (Yt+1 = y′|Yt = yi). Since the first summation
sums over xi for a fixed value of yi, we have,

=

P (Yt+1 = y′|Yt = yi)
∑︁

xi∈τ−1(yi)

(︄
. . .

∑︁
xj∈τ−1(yj)

P (Xt = xi, Xt−1 = xj , ...)

)︄

∑︁
xi∈τ−1(yi)

(︄
. . .

∑︁
xj∈τ−1(yj)

P (Xt = xi, Xt−1 = xj , ...)

)︄ (2.8)

= P (Yt+1 = y′|Yt = yi) (2.9)

Thus, we started with the term P (Yt+1 = y′|Yt = yi, Yt−1 = yj , ...), used DOC to show
that it simplifies to P (Yt+1 = y′|Yt = yi), which means that DOC is a sufficient condition
for MY to be Markov

Theorem 1. Let MX and MY be two dSCMs such that Yt = τ(Xt) where τ is a
surjective mapping. A sufficient condition for dynamical causal consistency of the triple
{MX ,MY , τ}, is for MX to be a Markov dSCM and for DOC to hold.

Proof. Since MX is a Markov dSCM and {MX ,MY , τ} statisfies DOC, it follows from
Lemma (1) that MY is also a Markov dSCM.

We proceed by showing that the RHS of Equations (2.1) and (2.2) are equal if MX

and MY are Markov. Then we show that the LHS of these equations are also equal, thus
concluding our proof.

Since MY is a Markov dSCM, we have Pa(Yt+1) = {Yt}. Since Yt is the only parent of
Yt+1 we have,

P (Yt+1|do(Yt = x)) = P (Yt+1|Yt = x) (2.10)

Similarly, since MX is also a Markov dSCM, we have.

P (Xt+1|do(Xt = x)) = P (Xt+1|Xt = x) (2.11)

Now consider the LHS of equations (5) and (4). We define the pre-image of y ∈ Y with
respect to the mapping τ as the set τ−1(y) = {x ∈ X |τ(x) = y}. Consequently for any
choice of y ∈ Y,

P (Yt+1 = y|do(Xt)) = P (Xt+1 ∈ τ−1(y)|do(Xt)) (2.12)

=
∑︂

x∈τ−1(y)

P (Xt+1 = x|do(Xt)) (2.13)

The summation follows since all the states x ∈ τ−1(y) ⊆ X are mutually exclusive. In a
similar way we also have for any y ∈ Y,

P (Yt+1 = y|Xt) =
∑︂

x∈τ−1(y)

P (Xt+1 = x|Xt) (2.14)
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Since the summands in RHS of equations (2.13) and (2.14) are equal by equation (2.11),
it follows that,

P (Yt+1|do(Xt = x)) = P (Yt+1|Xt = x) (2.15)

Thus from equations (2.11) and (2.15), we see that the DOC is sufficient for DCC in our
prescribed framework of a Markov microscopic model MX .

Lemma 1 tells us that our DOC requirement ensures that the macroscopic level is
Markov. This is an associational statement and not a causal one. Theorem 1 elevates
this to a causal statement under certain conditions. This means that we can talk about
macroscopic interventions in terms of the do-operator.

Moreover, our theorem means that under the assumption of Markov dynamics on the
X-level, a causally consistent transformation can be identified from purely observational
data if DOC holds. The resulting macroscopic model would have an identical causal
structure to the microscopic model. i.e. they both have the same Markov causal structure
as in Figure 2.1.

The following theorem will enable us to construct an algorithm for learning DOC
transformations from data.

Theorem 2. If the following diagram commutes, DOC is fulfilled.

Xt Xt+1

Yt Yt+1

TX

τ τ

TY

Proof. For this proof, consider a probability vector PX ∈ [0, 1]|X | which represents the
probability mass function at time t over all possible microstates in space X . We are
now interested in how this probability vector can be transformed to give us a probability
mass function PY ∈ [0, 1]|Y| over the macrostates in Y at the time t+ 1. If the diagram
commutes, then we may either perform the dynamics on the X-level and then τ transform,
or first τ transform and then perform the dynamics on the considerably lower-dimensional
Y -level.

˜︂TY ˜︁τPX = ˜︁τ˜︂TXPX (2.16)

where ˜︂TX , ˜︂TY and ˜︁τ denote matrix representations7 of the transition and coarse-graining

7Note that matrix representations in the probability space [0, 1]|X| and [0, 1]|Y| do not necessarily mean
linear-functions in the state space X and Y. Thus we are not making any restrictions on TX and τ ,
which are free to be non-linear on the state spaces
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2.3. The behavioural setting

models in the probability spaces of states. We define them as follows,

[˜︁τ ]ij := δ(yi, τ(xj)) (2.17)

[˜︂TX ]ij := P (Xt+1 = xi|Xt = xj) (2.18)

[˜︂TY ]ij := P (Yt+1 = yi|Yt = yj) (2.19)

Note that fixing τ and TX induces a transition matrix TY on the Y-level, which is given
by TY = τTXτR, where τR is the right inverse of non-square matrix τ . For the remainder
of the proof, however, it suffices to consider the form in Equation 2.19.

Since Equation 2.16 must hold for any possible choice of the initial probability vector
PX , we have,

˜︂TY ˜︁τ = ˜︁τ˜︂TX (2.20)

We can simplify this as follows (using the laws of matrix multiplication, the definitions
and probability rules),

∑︂

l

[˜︂TY ]il[˜︁τ ]lk =
∑︂

j

[˜︁τ ]ij [˜︂TX ]jk (2.21)

∑︂

l

P (Yt+1 = yi|Yt = yl)δ(yl, τ(xk)) =
∑︂

j

δ(yi, τ(xj))P (Xt+1 = xj |Xt = xk) (2.22)

P (Yt+1 = yi|Yt = τ(xk)) =
∑︂

xj∈τ−1(yi)

P (Xt+1 = xj |Xt = xk) (2.23)

P (Yt+1 = yi|Yt = τ(xk)) = P (Xt+1 ∈ τ−1(yi)|Xt = xk) (2.24)
P (Yt+1 = yi|Yt = τ(xk)) = P (Yt+1 = yi|Xt = xk) (2.25)

Hence the diagram commuting implies DOC.

This theorem forms the theoretical basis of the architecture for the learning algorithm
that we introduce in Chapter 3.

2.3. The behavioural setting

DOC and DCC ensure that our transformations preserve the dynamical causal structure
of the ground truth model. In many cases, there may be an enormous number of possible
abstractions that fulfil DCC, many of which may not be useful for our specific needs. For
example, one possible transformation that respects DCC but tells us nothing interesting
about the dynamics is a function mapping every element of X to a constant.

To demonstrate how DCC models can be made useful and interpretable, we need to
consider the neuroscience setting. Neuronal activity serves an organism the purpose of
interacting with its environment. A good cognitive model would summarise the neuronal
dynamics while preserving information about how it interacts with its environment.
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2. Theoretical formalism

Krakauer et al. suggest studying neuronal activity in the context of the organism’s
behaviour instead of studying it in isolation. Following this, we supplement our notion of
a dSCM to include a behaviour that results from the neuronal activity.

Let MX = {T , PEX
, SX , IX} be a dSCM. Let (Bt ∈ B : t ∈ T ) be an indexed set

of behaviour variables. SB is a set of equations Bt = g(Xt, ϵB) for t ∈ T . MB
X =

{T , PEX
, SX , IX , SB} is defined as the corresponding dSCM in a behavioural context.

Definition 6. (Behavioural consistency) Let MB
X and MB

Y be two dSCMs in the same
behavioural context. The triple {MB

X ,MB
Y , τ} are said to be behaviourally consistent (BC)

iff for all t ∈ T we have Yt = τ(Xt) and for all b ∈ B, x ∈ X we have,

P (Bt = b|Xt = x) = P (Bt = b|Yt = τ(x)) (2.26)

Our definition ensures that both the microscopic and macroscopic level contain the
same amount of information about the behaviour. In the neuroscience setting, we assume
that the behaviour is always an effect of the neuronal activity, i.e. Bt = g(Xt, ϵB), and not
vice-versa. Making the assumption allows the macroscopic level to be causal with respect
to the behaviour as well. Subsequent work could extend this framework to scenarios
involving feedback loops where the behaviour can further act as a stimulus and induce
neuronal activity.

... Xt Xt+1 ...

Bt Bt+1

τ

... Yt Yt+1 ...

Bt Bt+1

Figure 2.3.: Abstraction of a Markov dSCM while preserving behavioural information

2.4. Analytical solution example

Here, we demonstrate how one can construct a macroscopic dSCM for any system
with linear dynamics. Note that this is not a unique solution, and there may be other
abstractions that fulfil our requirements. We use the theoretical devices developed in the
previous sections to present an analytical solution for the linear case and prove how it
satisfies our criteria. The resulting macrovariable preserves the Markov causal structure
and is sealed off from the microscopic dynamics since it preserves sufficient information
about its own dynamics.
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2.4. Analytical solution example

2.4.1. Analytic solution for linear models

Here, we present a transformation of a linear dynamical system in a behavioural context
and prove that it is both DCC and BC. Let MX = {T , PEX

, SX , IX} be a Markov dSCM
where Xt, µ, ϵXt are vectors in Rn and M , Σ are n× n matrices:

T : N (2.27)

SX : Xt+1 = Xt +MXt + ϵXt (2.28)

PEX
: ϵXt ∼ N (µ,Σ) (2.29)

IX : {do(x)|x ∈ Rn} (2.30)

M represents the adjacency matrix of directed connections between various Xi i.e. Mij ̸= 0

iff there is a causal connection, Xj
t → Xi

t+1. We do not allow any cycles in graph defined
by M . We also define a behaviour based on the microvariable state as follows,

Bt = g(KTXt) + ϵB, K ∈ Rn (2.31)

where g can be any arbitrary functional mapping and ϵB is a noise variable. Note that
the behaviour depends on Xt only through the linear combination KTX.

Now let τ : Rn → F be a surjective coarse-graining8 to F ⊆ Rm, a lower-dimensional
space. We choose m to be equal to the length of the longest path in the DAG defined by
M . We represent τ as an m× n matrix such that Yt := τ(Xt).

τ =

⎛
⎜⎜⎜⎝

KTM
KTM2

...
KTMm

⎞
⎟⎟⎟⎠ (2.32)

Let MY = {T , PEY
, SY , IY } be a Markov dSCM

T : N (2.33)

SY : Yt+1 = TY Yt + ϵYt (2.34)

PEY
: ϵYt ∼ N (τµ, τΣτT ) (2.35)

IY : {do(x)|τ(x) ∈ Rm} (2.36)

where TY is an m×m matrix

TY =

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 . . . 0
0 1 1 0
0 0 1 0
...

. . .
...

0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

(2.37)

Proof. We begin by showing that the diagram in Theorem 2 commutes, thus ensuring
dynamical observational consistency (DOC). We then invoke Theorem 1 to prove dynamical
causal consistency (DCC).

8mapping to a lower dimensional space
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2. Theoretical formalism

Upper arm of the commutativity diagram First, we apply the transition model as
stipulated by MX to Xt, followed by coarse-graining with τ to obtain,

Y
(U)
t+1 = τXt+1 =

⎛
⎜⎜⎜⎜⎜⎝

KTXt +KTMXt

KTMXt +KTM2Xt

KTM2Xt +KTM3Xt
...

KTMmXt

⎞
⎟⎟⎟⎟⎟⎠

+ τϵXt (2.38)

Note that the final entry in the column vector simplifies to KTMmXt since Mm+1 = 0.
This is because M is the adjacency matrix of an acyclic graph and m is the length of the
longest possible walk in the graph.

Lower arm of the commutativity diagram For this path, we first coarse-grain Xt with
τ followed by applying the transition model on the Y -level as stipulated by MY to obtain,

Y
(L)
t+1 = TY Yt+1 + ϵYt = TY τXt + ϵYt =

⎛
⎜⎜⎜⎜⎜⎝

KTXt +KTMXt

KTMXt +KTM2Xt

KTM2Xt +KTM3Xt
...

KTMmXt

⎞
⎟⎟⎟⎟⎟⎠

+ ϵYt (2.39)

By definition of ϵYt , Y (U)
t+1 and Y

(L)
t+1 are identically distributed, thus concluding our

proof of DOC. Since MX is a Markov dSCM by definition, we invoke Theorem 1 to prove
DCC. Behaviour causal consistency is ensured since the first component of Yt is KTXt,
which contains all information about Bt in Xt.

For an arbitrary coarse-graining of variables at the X-level, it may not be possible to
have a description of the variables on the Y-level in terms of a dSCM. In some cases, a
dSCM description might be possible, but only with a different causal structure or with
latent confounders. With the above example, we have clearly shown how a dSCM can be
abstracted to the Y-level in such a way that causal structure and behavioural information
are preserved.

Having seen that it is possible to construct consistent transformations for linear
dynamical systems, we now move on to the non-linear case, where a closed-form analytical
solution may not be possible. To tackle this, we develop a generic architecture for learning
dynamically consistent macroscopic models in Chapter 3 based on the commutativity
diagram of Theorem 2.
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3. BunDLe-Net: Neuronal manifold
learning meets behaviour

In this chapter, we leverage our theoretical formalism and the commutativity diagram
of Theorem 2 to construct an architecture that facilitates learning causally consistent
abstractions from time-series data. The following publication introduces this advancement
to the neuroscience community as BunDLe-Net, a Neuronal Manifold Learning algorithm.
Validating its efficacy, we assess its performance using neuronal and behavioural data
obtained from the roundworm C. elegans (Kato et al., 2015). Additionally, we conduct
comparative analyses, pitting BunDLe-Net against other widely-used dimensionality
reduction techniques and state-of-the-art neuronal manifold learning methods applied
to the same dataset. We extensively discuss the insights gained from BunDLe-Net’s
abstractions that reveal distinct topologies of the neuronal manifold. While some findings
reinforce existing knowledge, confirming the validity of our method, we also unveil novel
insights in this work.

3.1. Bibliographic information

Akshey Kumar, Aditya Gilra, Mauricio Gonzalez-Soto, Anja Meunier and Moritz Grosse-
Wentrup. BunDLe-Net: Neuronal Manifold Learning Meets Behaviour. bioRxiv,
doi:10.1101/2023.08.08.551978 version 3, 2023. https://www.biorxiv.org/content/10
.1101/2023.08.08.551978v3.

3.2. My contribution

• Creating the algorithm

• Implementing the algorithm in Python and conducting various experiments

• Creating an evaluation scheme for comparisons between algorithms

• Writing the manuscript (except the Introduction and Discussion sections)
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Abstract

Neuronal manifold learning techniques represent high-dimensional neuronal dynamics in
low-dimensional embeddings to reveal the intrinsic structure of neuronal manifolds. Com-
mon to these techniques is their goal to learn low-dimensional embeddings that preserve
all dynamic information in the high-dimensional neuronal data, i.e., embeddings that allow
for reconstructing the original data. We introduce a novel neuronal manifold learning tech-
nique, BunDLe-Net, that learns a low-dimensional Markovian embedding of the neuronal
dynamics which preserves only those aspects of the neuronal dynamics that are relevant
for a given behavioural context. In this way, BunDLe-Net eliminates neuronal dynamics
that are irrelevant to decoding behaviour, effectively de-noising the data to reveal better
the intricate relationships between neuronal dynamics and behaviour. We demonstrate the
quantitative superiority of BunDLe-Net over commonly used and state-of-the-art neuronal
manifold learning techniques in terms of dynamic and behavioural information in the learned
manifold on calcium imaging data recorded in the nematode C. elegans. Qualitatively, we
show that BunDLe-Net learns highly consistent manifolds across multiple worms that reveal
the neuronal and behavioural motifs that form the building blocks of the neuronal manifold.

1 Introduction

Advances in neuronal imaging techniques have increased the number of neurons that can be
recorded simultaneously by several orders of magnitude [1, 2]. While these advances greatly
expand our abilities to study and understand brain function, the complexities of the result-
ing high-dimensional data sets pose non-trivial challenges for data analysis and visualisation.
Fortunately, individual neurons are embedded in brain networks that collectively organise their
high-dimensional neuronal activity patterns into lower-dimensional neuronal manifolds [3, 4].

This work was supported under the CHIST-ERA grant (CHIST-ERA-19-XAI-002), by the Austrian Science
Fund (FWF) (grant reference I 5211-N) and the Engineering and Physical Sciences Research Council United King-
dom (grant reference EP/V055720/1), as part of the Causal Explanations in Reinforcement Learning (CausalXRL)
project.
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To understand the collective organisation of individual neurons into brain networks, we require
algorithms that learn neuronal manifolds from empirical data.

The goal of neuronal manifold learning is to find low-dimensional representations of data that
preserve particular data properties. In neuroscience, a broad range of classical dimensionality
reduction techniques is being employed, including but not limited to principal component analy-
sis (PCA), multi-dimensional scaling (MDS), Isomap, locally linear embedding (LLE), Laplacian
eigenmaps (LEM), t-SNE, and uniform manifold approximation and projection (UMAP) [5].
More recently, advances in artificial intelligence in general and deep learning methods, in par-
ticular, have given rise to a new class of (often non-linear) dimensionality reduction techniques,
e.g., based on autoencoder architectures [6, 7, 8] or contrastive learning frameworks [9].

Common to all these techniques is their goal to reduce the data dimensionality while preserving
particular properties of or information in the data. For instance, autoencoder-based frame-
works typically focus on finding low-dimensional data representations that allow a good (or even
perfect) reconstruction of the original, high-dimensional data. In contrast, we argue that re-
construction quality is only one out of several desirable features for neuronal manifold learning.
First, and in line with the argument by Krakauer et al. [10] that neuroscience needs behaviour,
we argue that a neuronal manifold learning algorithm should not aspire to represent all but only
those characteristics of high-dimensional neuronal activity patterns that are relevant in a given
behavioural context. For instance, when studying an animal’s ability to navigate a maze using
visual cues, neuronal activity patterns that carry auditory or olfactory information are irrelevant
in the behavioural context and should be abstracted away to better reveal the intricate rela-
tionships between neuronal representations of the visual cues and motor behaviour. Second,
we argue that the reconstruction of the dynamics of the neuronal activity patterns should also
take into account whether the low-dimensional embedding is causally sufficient in terms of the
system’s dynamics. To elaborate on this issue, consider the example of using a dimensionality
reduction technique to learn the physical state description of a simple pendulum from a video
stream showing the pendulum in action. Ideally, the dimensionality reduction technique should
learn to represent the position and momentum of the pendulum for each video frame because
these two variables constitute a full description of the system’s physical state. In contrast, a
dimensionality reduction technique that learns to represent the positions of the pendulum in the
current and the past video frame only (without representing the pendulum’s momentum) would
also allow for a good reconstruction of the dynamics of the pendulum. This is the case because
the pendulum’s momentum, which is required to predict in which direction it will swing, can be
approximately reconstructed from the difference in position across two video frames. However,
this representation would not constitute a complete description of the actual physical state of the
system. In analogy, a neuronal manifold learning technique should attempt to learn a complete
physical state description of the underlying neuronal dynamics. Mathematically, this goal can
be formulated as learning neuronal state trajectories that form a Markov chain because, in a
Markov chain, the current state of the chain is causally sufficient for predicting the next state (in
mathematical terms, the past and future states of the chain are statistically independent given
the current state).
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Figure 1: The BunDLe-Net architecture

Here, we introduce a novel framework for neuronal manifold learning, termed the Behaviour and
Dynamics Learning Network (BunDLe-Net). BunDLe-Net learns a low-dimensional Markovian
representation of the neuronal dynamics while retaining all information about a given behavioural
context. It is based on the architecture shown in Fig. 1, which consists of two branches. In the
lower branch, the high-dimensional neuronal trajectories Xt are first projected via a mapping τ
to a lower-dimensional, latent trajectory Y L

t . A first-order transition model TY then predicts
the difference ∆Y L

t between the current and the next state to arrive at an estimate Y L
t+1 of

the latent state at time t + 1. This predicted latent state is compared to the true latent state
at time t + 1 in the upper branch, which is obtained by mapping the observed neuronal state
Xt+1 at time t + 1 via the same τ as in the lower branch to the latent state Y U

t+1 via the
loss function LMarkov. By jointly learning the mapping τ and the first-order transition model
TY that minimise the loss function LMarkov we obtain a latent, low-dimensional time-series Yt

that is Markovian by construction. This is the case because the transition model TY acts as
a bottleneck that constrains the class of functions for τ for which the current state of the
system is sufficient to predict the next state, in the sense that previous states do not provide
any additional information. However, this architecture is not yet sufficient to learn a meaningful
latent data representation because a mapping τ that projects the neuronal state trajectories to a
constant (Yt = c) would also fulfil the criterion of Markovianity. To obtain a meaningful latent
representation, we also require that the behavioural context must be decodable from the latent
representation Yt by adding the loss function LBehaviour that measures the reconstruction error
between the true behavioural labels (Bt+1) and those predicted from the latent representation
(B̃t+1). By jointly learning that mapping τ and the first-order state transition model TY that
minimise the two loss functions LMarkov and LBehaviour, the BunDLe-Net architecture learns low-
dimensional Markovian representations of those aspects of the high-dimensional neuronal state
trajectories that are relevant for a given behavioural context.

We remark that BunDLe-Net is a generic architecture in the sense that each of its modules
(the mapping τ , the state transition model TY , and the prediction model for the behaviour)
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can be realised by whatever models, e.g., linear or non-linear mappings which may be realised
via (deep) neuronal networks or other modelling techniques, are most suitable for a certain type
of neuronal data. The BunDLe-Net architecture is available as a Python toolbox at https:

//github.com/akshey-kumar/BunDLe-Net.

In the following, we compare the BunDLe-Net architecture with other state-of-the-art neuronal
manifold learning techniques on calcium imaging data recorded in the nematode C. elegans [11]
and demonstrate its ability to uncover intricate relationships between neuronal activity patterns
and behaviour that are not revealed by competing techniques.

2 Results

Here, we demonstrate how BunDLe-Net preserves vital information about behavioural dynamics
while simultaneously enabling visually interpretable insights into the data. We start with a
quantitative evaluation of BunDLe-Net and compare it with existing state-of-the-art neuronal
manifold learning techniques. We then examine the visual interpretability of the embeddings
of BunDLe-Net and competing algorithms. To ensure the robustness of our findings, we apply
BunDLe-Net to five different worms and analyse the consistency of the embeddings in terms
of their topology. The results highlight the generalisation abilities of BunDLe-Net, revealing
similar patterns while maintaining individual differences across recordings. Finally, we show that
BunDLe-Net is capable of embedding behaviours in distinct motifs based on the neuronal basis
of the behaviour and its dynamics.

2.1 Description of data

We apply BunDLe-Net to calcium-imaging whole brain data from the nematode C. elegans from
the work by Kato et al. [11]. This dataset is ideal for demonstrating the capabilities of BunDLe-
Net due to its high-dimensional neuronal recordings labelled with motor behaviour1, multiple
animal recordings, eight different behavioural states, and multiple repetitions of behavioural
states over time. It includes time-series recordings of neuronal activation from five worms with
human-annotated behaviours for each time frame. The recordings consist of approximately 2500-
3500 time samples, spanning around 18 minutes (sampled at ∼ 2.9 Hz) in which around 100
- 200 neurons are recorded. A low-pass filter with a cut-off frequency of 0.07 Hz is applied to
mitigate high-frequency noise in the raw neuronal traces. Not all recorded neurons could be
identified; hence, only a subset is labelled for each worm, with different yet overlapping subsets
identified across worms. The human-annotated behaviours B denote the motor state of the
worm at a given instant of time and can take on one of eight states: forward, slowing, dorsal
turn, ventral turn, no-state, sustained reversal, reversal-1, and reversal-2.

2.2 Quantitative evaluation against competing methods

We evaluate a latent space representation based on how well it preserves behavioural and dynam-
ical information. To estimate the behavioural information of an embedding, we train a simple

1The motor behavioural labels were inferred from the activity of the neurons AVAR, AVAL, SMDVR, SMDVL,
SMDDR, SMDDL, RIBR, RIBL while the worms were immobilised. Hence, we removed these neurons from the
dataset to ensure we are not inferring behaviours directly from these neurons.
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Figure 2: Quantitative comparison of BunDLe-Net with other commonly-used manifold learning
techniques. (left) Evaluation of how well dynamical information is preserved in the embedding.
The dashed line represents a baseline autoregressor which copies its input to the output. (right)
Evaluation with respect to how well behavioural information is preserved. The dashed line
represents the chance decoding accuracy, estimated by randomly shuffling the behavioural labels.
The solid line represents the behaviour decoding accuracy from the raw neuronal traces.

feed-forward neural network in a supervised setting2 to predict behaviour from the embedding.
The decoding accuracy is then used as a metric for the information content about B in the
embedding, with the decoding accuracy obtained on the raw, high-dimensional neuronal traces
serving as the baseline. To evaluate the dynamical information in the embedding, we train an
ANN autoregressor to predict Yt+1 from Yt. The mean squared error between the predicted and
true Yt+1 is estimated. From this, we compute a predictability metric for the dynamics, defined
as 1−MSEm/MSEio, where MSEm is the mean squared error of the model, and MSEio is the
mean squared error of a trivial autoregressor that copies its input to the output. We trained all
evaluation models on a training set of the embedded data and performed the evaluation on a
held-out test set to prevent overfitting (for more details, see Model validation in Section 4.3).

With the stage for evaluation set, we compare BunDLe-Net with other algorithms that are com-
monly used to learn high-level representations in the field of neuroscience such as PCA, t-SNE,
autoencoder, an ANN autoregressor with an autoencoder architecture (ArAe)3 and CEBRA-
hybrid4. A description of these methods can be found in Section 4.4. All embedding spaces
were chosen to be 3-dimensional for ease of comparison across algorithms and visualisation
purposes.

Figure 2 presents the outcomes of our quantitative comparison, showcasing dynamical and be-
havioural prediction metrics in the left and right panels, respectively. Each panel depicts the

2We use a simple architecture consisting of a single linear layer since it already demonstrated a high decoding
accuracy (∼ 0.94) on the raw neuronal traces. Hence, more complex models are not required to evaluate the
embeddings.

3The ArAe would preserve dynamical information and embed it in a lower dimensional space due to the
autoencoder architecture.

4Note that CEBRA as an algorithm was designed for continuous-valued behaviours. We cast our categorical
behaviour (int) into a continuous behaviour (floating-point) and ran CEBRA on it.
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predictability metric on the y-axis and the manifold learning technique on the x-axis, while the
violin plots portray the metric’s distribution across all five worm datasets. The substantial vari-
ability across these plots underscores the diverse behavioural and dynamical attributes inherent
in the dataset of each worm. For the dynamics evaluations, we compare all the models to a
baseline model, which simply copies the input Yt to the output as the predicted value for Yt+1.
For the behaviour evaluation, we compare with a chance level behavioural decoding accuracy
obtained by randomly shuffling the behavioural labels. We also compare it with the behavioural
decoding accuracy from the raw neuronal traces.

Turning to the results, we see that BunDLe-Net outperforms all other methods, including the
state-of-the-art CEBRA, by a large margin. In the left panel, unsupervised methods like PCA,
t-SNE, and the autoencoder show limited improvement over the baseline in predicting dynamics.
Since they try to preserve maximum variance in the data in a low-dimensional space, they neglect
to preserve minor details that may be crucial in determining future time dynamics. CEBRA-
hybrid, which also takes temporal information into consideration, does not perform better than
the baseline model. The autoregressive-autoencoder, which seeks to reconstruct Xt+1 from
Xt, preserves some dynamical information and is seen to outperform PCA, t-SNE, and the
autoencoder. Nonetheless, ArAe’s reconstruction of the entire neuronal state at time t+ 1 can
lead to irrelevant details persisting in latent space embedding. In contrast, BunDLe-Net’s design
focuses exclusively on retaining information pertinent to the latent space state at time t + 1,
which results in a markedly superior performance even compared to ArAe.

Shifting our attention to the right panel, all models surpass chance-level behaviour decoding
accuracy. Notably, both CEBRA-h and the unsupervised methods (PCA, t-SNE, autoencoder)
exhibit roughly the same performance on average. Despite this, their average decoding ac-
curacy remains notably lower than neuronal-level decoding accuracy, indicating an inability to
capture behavioural information at the neuronal level completely. Although ArAe worked slightly
better at preserving dynamical information, it falls short in preserving behavioural information.
This suggests that unsupervised preservation of dynamical attributes alone does not suffice for
constructing behaviourally relevant models. In this regard, BunDLe-Net stands out by retain-
ing all behavioural information, as originally intended. On average, it even rivals the decoding
performance achieved with raw neuronal data.

Of particular interest is the comparison between CEBRA-h and BunDLe-Net in terms of their
respective performances. Despite incorporating behavioural information in addition to dynamics,
CEBRA-h demonstrates only marginal improvements over other models. In contrast, BunDLe-
Net rises above all other methods, excelling in both behavioural and dynamical metrics. This
highlights BunDLe-Net’s proficiency in effectively retaining crucial neuronal-level information
relevant to behaviour analysis and modelling. For further evaluation of behavioural and dynamical
performance of BunDLe-Net’s embedding, please refer to Appendix A.

2.3 Visual interpretability of embeddings

In this section, we analyse the embeddings of BunDLe-Net and other competing neuronal man-
ifold learning techniques. We visualise the embeddings of the Worm-1 in 3D and evaluate them
qualitatively based on their structure and interpretability. We generalise the insights to all worms
in the next section. Figure 3 shows the embeddings of Worm-1 by a) PCA, b) t-SNE, c) Au-
toencoder, d) Autoregressor-Autoencoder (ArAe), e) CEBRA-hybrid, and f) BunDLe-Net. In a),
b) and c), we observe a noticeable drift in the PCA, t-SNE, and autoencoder embeddings. This
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a) PCA b) t-SNE c) Autoencoder

d) ArAe e) CEBRA-hybrid f) BunDLe-Net

Dorsal turn

Forward

No state

Reverse-1

Reverse-2

Sus. reversal

Slowing

Ventral turn

Figure 3: Neuronal manifolds learnt by various algorithms viz. a) PCA b) t-SNE c) Autoencoder
d) Autoregressor-Autoencoder (ArAe) e) CEBRA-hybrid f) BunDLe-Net.

drift drags out the dynamics in time, which is undesirable since we are searching for consistent
mappings independent of time. The drift is also seen to obscure the recurrent nature of the
dynamics to a large extent in b). The source of this drift could be a calcium imaging artefact
or some neuronal dynamics irrelevant to our behaviour of interest. Since these models aim to
preserve maximum variance for full-state reconstruction, they inadvertently embed the drift.

In contrast, in Figure 3 d), e), f), we see that this drift is largely absent, and the recurrent dy-
namics are more evident. These models have a common characteristic: they consider dynamics
without attempting to reconstruct the entire neuronal state. Among the three methods shown,
ArAe is unsupervised, while CEBRA and BunDLe-Net take behaviour into account. In both d)
and e), we observe reasonably separated behaviours with minor trajectory overlaps. However,
both embeddings demonstrate high variance within a trajectory of a given behaviour. In con-
trast, BunDLe-Net produces compact bundles that are well-separated from one another. The
variance is low within each bundle, while a high variance is observed between different bun-
dles. Consequently, BunDLe-Net’s embedding exhibits distinct behavioural trajectories that are
well-separated and along which the dynamics recur in an orbit-like fashion.

Additionally, in e), we observe that CEBRA-h tends to embed the neuronal activity on the surface
of a sphere, which may be an artefact resulting from the contrastive learning paradigm. As a
consequence, trajectories may be forced to intersect at certain points. Such intersection points
are generally undesirable because they introduce ambiguity about the future trajectory. Ideally,
intersection points should only occur when there is genuinely no information available about the
subsequent behavioural trajectory.

In stark contrast, BunDLe-Net’s trajectories demonstrate a markedly different pattern, charac-
terised by high compactness and sparse intersections. Figure 3 f) reveals precisely three intersec-
tion points: sustained reversal , ventral turn , and forward . (See supplementary material
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https://github.com/akshey-kumar/BunDLe-Net/tree/main/figures/rotation_comparable_

embeddings for rotating 3-D plots). These intersections and bifurcations could be interpreted
as instances where BunDLe-Net encountered a lack of information about future trajectories.

2.4 Consistency of neuronal manifolds across worms

Worm-3Worm-2Worm-1

Worm-5Worm-4

Dorsal turn

Forward

No state

Reverse-1

Reverse-2

Sus. reversal

Slowing

Ventral turn

Figure 4: BunDLe-Net embeddings on five different C. elegans worm datasets which include
neuronal recordings and behavioural labels. 3-D animations are available in the supplementary
section.

Here, we apply BunDLe-Net to all five worms in the dataset to visually compare the embeddings
regarding their consistency and/or any differences that arise across worms.

To produce comparable embeddings5, we first trained a model on each worm separately. We then
extracted the TY layer and behaviour predictor layer from the model with the least loss (Worm-1,
in this case). We then trained fresh models on each worm, with the chosen TY and behaviour
predictor layers from Worm-1 frozen in, until the losses converged. Thus the new models would
only have to learn the mapping τ for each worm while the other layers remained unchanged
throughout the learning process. Notably, this approach was feasible despite recording different
neurons from each worm. By adopting this strategy, we ensured consistent geometries across
the worms, allowing us to effectively compare differences in topology, should they be present.

The embeddings are illustrated in Figure 4. A latent dimension of three was again chosen
for ease of visualisation, and can also be justified by a graph-theoretical argument detailed

5We could also simply fit separate models on each worm’s data, as was done for the evaluation in Figure
2. Due to differing initialisations of BunDLe-Net this would result in visually different embeddings. These
embeddings however, share the same topology independent of the initialisation. For ease of visual comparison
between embeddings, we adopt the above procedure to have latent spaces that can be mapped to one another.
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in Section 4.3. Examining Figure 4, we observe a branching structure in the trajectories of
all the worms. For now, let us consider Worm-1. The dynamics exhibit bundling of several
segments, leading to recurring patterns along these bundles. Within each branch, the dynamics
are predominantly deterministic, while probabilistic decisions occur only at specific bifurcation
points in the trajectories. We disregard bundles consisting of fewer than one or two segments
and identify five prominent bundles in Worm-1, which can be described as follows,

(C1) : sustained reversal → ventral turn

(C2) : ventral turn → slowing → reversal-1 → sustained reversal

(C3) : ventral turn → forward

(C4) : sustained reversal → dorsal turn → forward

(C5) : forward → slowing → reversal-2 → sustained reversal

These five motifs define the generic building blocks of the neuronal manifold in the sense that the
neuronal trajectories are almost deterministic within each motif, and probabilistic bifurcations
occur at the transitions between motifs. As can be readily checked in Figure 4, these building
blocks are highly consistent across worms, with similar behavioural motifs emerging across all
worms. For example, motif C2 is consistently present in the embeddings of all worms, forming
a loop ( → → → ). The same holds true for motifs C1 and C5. However, motif
C4 is not present in all worms and is notably absent in Worm-4. Instead, both Worm-4 and
Worm-5 exhibit a slightly different motif (sustained reversal → dorsal turn → slowing ).
This variation in motifs may be due to the recording times, which may have been too short to
capture all possible transitions for a given animal.

It is noteworthy that even though the individual worm recordings do not share an identical subset
of neurons, the embeddings share a basic topological structure with only minor variations in tran-
sitions and bifurcation points. These results demonstrate consistency in the embeddings across
worms while preserving individuality in the behavioural dynamics in each worm and recording
session.

2.5 Embedding of states in distinct behavioural motifs

Dorsal turn

Forward

No state

Reverse-1

Reverse-2

Sus. reversal

Slowing

Ventral turn

Figure 5: (left) BunDLe-Net trajectory of Worm-1 highlighting the embedding of slowing
behaviour (in pink) within two distinct bundles or behavioural motifs. (right) In contrast, the
sustained reversal state (in brown) is represented by a single intersection point on the right side.

Behaviour can be modelled at different levels of granularity. In the present data set, the worms’
behaviour is described in terms of high-level behavioural patterns such as forward and reversal
movements. Alternatively, one could analyse the angular positions and velocities of the various
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segments of the worms’ bodies, resulting in a more fine-grained representation. Both fine-grained
and coarse-grained models hold value in specific contexts. However, it is crucial to maintain
consistency within a model’s state space to describe the dynamics accurately. If we utilise a
model to understand fine-grained elements but only have access to coarse-grained information,
the resulting model will be incomplete or inconsistent in the sense that it lacks the essential
information required to predict features of the behavioural dynamics at the desired level of
granularity. Here, we demonstrate how BunDLe-Net adeptly handles the coarse-graining of data
while still preserving the crucial distinctions between states that are instrumental in explaining
the overall dynamics.

We present the discovery of two distinct behavioural states with identical labels based on
BunDLe-Net’s neuronal embedding concerning the given set of behaviours. Consider branch
C2 ( → → → ) and C5 ( → → → ) of the trajectory in Figure 5. The
slowing behaviour (in pink) occurs in both these branches, i.e., they are represented distinctly
in the latent space and are not fused together even though they have been assigned the same
behavioural label. Branch C2 has a much shorter slowing segment than branch C5. We name
the new behavioural states corresponding to C2 and C5 as slowing 1 and slowing 2, respec-
tively. These different types of slowing movements are embedded in distinct behavioural motifs
since they differ in their neuronal realisation and their relevance for the model dynamics, i.e.,
one would predict different future trajectories depending on whether the state is slowing 1 or
slowing 2. We note that this is not the case for other behavioural states, e.g., the sustained
reversal (in brown) for which all trajectories form one coherent bundle in the embedding. This
implies that in the behavioural state of a sustained reversal BunDLe-Net found no information
at the neuronal level to predict whether a dorsal or ventral turn is more likely to occur next.
In summary, BunDLe-Net can maintain distinct representations or fuse trajectories depending
on whether dynamical information about future behaviours is present. Accordingly, if provided
with a set of behaviours that are not consistent or complete for the construction of a full dy-
namical model, BunDLe-Net can discover extra distinctions or states that complete this set of
behaviours, provided this information is present in the neuronal level.

3 Discussion

We have demonstrated the superiority of BunDLe-Net to other neuronal manifold learning tech-
niques on calcium imaging data recorded in C. elegans. However, BunDLe-Net can easily be
extended to other imaging modalities and model organisms by adapting its learning modules (for
the latent embedding function τ , the state transition model TY , and the behavioural decoding
layer) while maintaining the overall structure shown in Figure 1. As such, BunDLe-Net is not one
algorithm but a generic architecture for learning consistent state representations from neuronal
data based on simple but vital principles. In the following, we further elaborate on the relevance
of these principles for neuronal manifold learning.

On a fundamental level, the concept of a neuronal manifold can be interpreted as a scientific
discovery that sheds new light on how large numbers of neurons coordinate their activities
to represent information, implement computations, and generate behaviour. In this view, the
goal of neuronal manifold learning techniques is to reveal the true, intrinsic structure of the
neuronal manifold from empirical data. Alternatively, neuronal manifold learning algorithms
can be interpreted as data compression and visualisation techniques. In this view, the particular
shape of a neuronal manifold results from a model-based dimensionality-reduction technique that
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attempts to preserve certain data properties. Notably, these two viewpoints are not mutually
exclusive, i.e., the observed shape of the neuronal manifold may be influenced by its intrinsic
structure as well as by the particularities of the dimensionality reduction technique.

Indeed, our results in Figure 3 show substantial qualitative differences in the manifolds across
various learning techniques, indicating that different model assumptions inherent to the various
algorithms influence the shapes of the learned manifolds. On the other hand, the results obtained
by BunDLe-Net shown in Figure 4 demonstrate that highly consistent manifolds can be learned
across multiple animals, supporting the concept of an intrinsic structure of the neuronal manifold.

Remarkably, BunDLe-Net achieves this consistency despite only 22 out of more than 100 neurons
per animal being shared across the five data sets. We attribute this ability to reconstruct
consistent manifolds to the time-delayed embedding of the neuronal dynamics for learning the
latent dynamics (cf. Section 4.1), which due to Taken’s theorem [12] allows the reconstruction of
a Markovian representation of a dynamical system (i.e., the neuronal dynamics on the manifold)
regardless of the specific observation function (i.e., the recorded neurons for each worm). We
note that the number of time lags that need to be considered in this embedding is determined
in BunDLe-Net by minimising the Markovian loss function LMarkov, i.e., the number of time lags
is increased until no further decrease in the loss function is observed.

Together with the constraint that the behavioural information must be preserved, BunDLe-Net’s
ability to learn a Markovian latent embedding results in almost deterministic trajectories that only
exhibit a high degree of randomness at a discrete number of bifurcation points (cf. Section 2.3
and Figure 4). This distinction in the neuronal dynamics between periods of high certainty with
apparently random behaviour at a discrete number of bifurcation points renders the neuronal
manifold of C. elegans particularly interesting. Specifically, we interpret the almost deterministic
trajectory bundles as the basic building blocks of the neuronal manifold that are fused together
at the bifurcation points to create the manifold’s intrinsic structure.

The bifurcations act as decision points regarding the worm’s future behaviour. However, it
is presently unclear how C. elegans makes these decisions. In general, the randomness in the
bifurcation points could be due to intrinsic randomness in the neuronal activity or due to latent,
unobserved neurons, i.e., observing these neurons could disentangle the bifurcation points and
again result in deterministic trajectories. However, BunDLe-Net’s ability to learn Markovian
representations would disentangle the bifurcation points if such information were present in the
time delay embeddings of the neuronal dynamics. Because this is not the case, our empirical
results align with an interpretation in which the randomness in the bifurcation points is intrinsic
neuronal noise. However, we remark that such randomness might be overwritten by external
stimuli, which were not part of the experimental design.

Regardless of the nature of the noise in the bifurcation points, the learned neuronal manifolds
reveal the behavioural flexibility of C. elegans in the context of its neuronal dynamics. In
particular, they reveal when, i.e., at which points on the neuronal manifold, C. elegans makes
decisions about its future behaviour. As such, we predict that external perturbations of the
neuronal activity, e.g., by optogenetic stimulation, are most effective when applied at times
when the neuronal state is in one of the bifurcation points. Conversely, we hypothesise that the
neuronal dynamics are more robust against external perturbations if these are applied when the
neuronal dynamics follow one of the highly deterministic trajectory bundles. To generalise from
this argument, we consider neuronal manifold learning algorithms in general and BunDLe-Net
in particular to be of extraordinary utility in neuroscience because these methods allow us to
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make empirically testable predictions on how large-scale neuronal dynamics are coordinated to
generate behavioural flexibility.

To conclude this article, we outline several potential extensions of BunDLe-Net. First, we note
that we have only presented the application of BunDLe-Net to discrete behaviours. Extensions
to continuous behaviours can be implemented by adapting the behavioural prediction layer or,
in a less elegant fashion, by discretising continuous behaviours. Second, it would be interest-
ing to consider the extension of BunDLe-Net to multiple non-mutually exclusive behaviours to
study how large-scale neuronal activity coordinates multi-dimensional behaviours. Naturally, this
approach could be extended to include stimuli to study how external information is encoded in
neuronal manifolds and translated into behaviour. Each of these changes would merely require
adapting the behavioural prediction layer. Regarding the learning module for the latent embed-
ding, we note the growing body of literature on the topic of (causal) representation learning.
Representation learning addresses the problem of learning high-level (causal) variables from low-
level observations [13, 14]; a topic with potentially rich synergies with neuronal manifold learning
that are yet to be explored.

4 Methods

In this section, we first provide further information on the theoretical principles that motivate
BunDLe-Net. Subsequently, we elaborate on the architectural framework that arises from these
principles. We then proceed to provide a comprehensive overview of BunDLe-Net’s implemen-
tation, encompassing the learning modules and the details of the training process. Finally, we
present the competing methods that serve as benchmarks for evaluating the performance of
BunDLe-Net.

4.1 Theoretical principle

BunDLe-Net employs a fundamental theoretical principle to embed neuronal data with respect
to a given set of behaviours. The core idea is to ensure that the resulting embedding Y contains
all information about the dynamics and behaviour that is present at the neuronal-level X. To
elucidate this concept, consider the diagram in Figure 6, where TX denotes a transition model
at the X level. For illustrative purposes, we presently assume that the X level is Markov, but
will later relax this assumption. The embedding Y is obtained by applying a function τ on the
X level. Generally, the resulting transition model at the Y level may not be Markov, implying
that Yt might not fully capture the information about Yt+1 present in the system, either at the
X level and/or in the past states Yt−n, where n ∈ Z+. Such an embedding would be of limited
use since one might need to refer back to the X level to answer certain questions about the Y
level.

Xt Xt+1

Yt Yt+1

TX

τ τ

TY

Figure 6: Commutativity diagram where the X and Y level signify the neuronal and latent
space dynamics respectively.
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To ensure a more comprehensive and self-contained embedding, we aim for Y to be Markov
and independent of the X level. This requires the diagram (Figure 6) to commute, i..e. it
should not make a difference if we first time-evolve and then transform with τ , or the other way
round. Put in terms of conditional independence, our requirement takes the form Yt+1 ⊥ Xt|Yt,
meaning that knowledge of Xt provides no additional information about Yt+1 beyond what is
already known from Yt. In this way, the dynamics at the Y level are self-contained and sealed-off
from the details at X level. This is what makes our embedding so useful and interpretable: our
embedding has all the relevant information from the X level, enabling it to be viewed as a
distinct and meaningful dynamical process in its own right.

Non-Markovian neuronal dynamics To handle non-Markov neuronal dynamics at X, we
consider time windows that include the previous n time steps, i.e., (Xt, ..., Xt−n) as input to
our model. By choosing a large enough value for n, we can ensure that the resulting process
becomes Markov [12], allowing us to model it in the same way as described above. Note that
while earlier we were mapping a single time slice to a point in latent space, now we are mapping
an entire time window of length n to a single point in latent space. Such a transformation
does not merely coarse-grain over the neuronal or spatial level of granularity but also over the
temporal domain of patterns.

Learning meaningful embeddings While the requirement of a Markov embedding may be
very useful in terms of elegance and interpretability, it is not sufficient to ensure meaningful
embeddings. For example, consider a transformation τ that uniformly maps every neuronal state
to a constant. In this scenario, the resultant process would exhibit Markov dynamics as a single-
state process. However, such an embedding fails to yield any meaningful insights regarding the
underlying dynamics or behaviour. Remarkably, for BunDLe-Net, such a process would yield a
perfect LMarkov loss, irrespective of the input data.

An additional requirement must be imposed to avoid such trivial embeddings. We demand that
the behaviour B can be decoded from the embedding, thereby preventing the transformation
from reducing everything to a mere constant. By upholding this crucial condition, we preserve
the behavioural intricacies that render the embedding purposeful and informative, aligning with
the ideals espoused by Krakauer et al. [10].

4.2 BunDLe-Net architecture

Here, we explain how the BunDLe-Net’s architecture in Figure 1 arises from the commutativity
diagram of Figure 6. The upper and lower arms in the architecture correspond to the possible
paths from Xt to Yt+1 in the commutativity diagram. The lower arm in the architecture involves
first coarse-graining Xt, followed by implementing a transition model on the Y-level. In practice,
the transition model outputs ∆Yt from which Yt+1 is estimated as Yt+∆Yt. Since the transition
model TY outputs Yt+1 with only Yt as input, the Y-level is first-order Markov by construction.
The upper arm of BunDLe-Net coarse-grains the time-evolved Xt+1

6. Both arms result in
estimates of Yt+1 which we distinguish by upper indices Y L

t+1 and Y U
t+1. We add a mean-squared

error term to our loss function LMarkov that forces Y
L
t+1 and Y U

t+1 to be equal, thus ensuring that

6Since we have time-series data, we need not learn TX of the commutativity diagram, but simply feed Xt+1

directly into the network.

13



our requirement of commutativity in Figure 6 is satisfied,

LMarkov(Y
U
t+1, Y

L
t+1) =

∥∥Y U
t+1 − Y L

t+1

∥∥2.

The estimated Yt+1 is then passed through a predictor layer which learns to output the behaviour
Bt+1 given Yt+1. Correspondingly, we add a term LBehaviour to our loss function, which forces the
predicted behaviour to match the true behaviour. This ensures that Yt contains the same amount

of information about Bt as Xt. Here, we use the cross-entropy loss where B
(j)
t+1 represents the

j-th component of a one-hot encoded label vector of Bt+1, and B̃j
t+1 is the softmax output of

the predicted B̃t+1.

LBehaviour(Bt+1, B̃t+1) = −
8∑

j=1

B
(j)
t+1log(B̃

(j)
t+1).

Both terms are weighted by a hyper-parameter γ and the loss function is given as,

L = (1− γ)LMarkov + γLBehaviour.

All the layers in BunDLe-Net are learned simultaneously, and both loss terms ensure that
the learned τ and TY preserve information about the behavioural dynamics. An open-source
Python implementation of the BunDLe-Net architecture is available at https://github.com/
akshey-kumar/BunDLe-Net.

4.3 Learning modules

Architecture parameters The τ layer (encoder) of our network consists of a series of ReLU
layers [15], followed by a normalisation layer. An encoder of identical architecture is used later
in the autoregressor-autoencoder (ArAe) model to facilitate comparison across models. For the
predictor and TY layer, we use a single dense layer each. In the case of our dataset, this sufficed
to achieve good performance. For other data sets, more complex layers may be required. For TY ,
we also add a normalisation layer so that the output remains in the scaling of the latent space
learned by τ . The details of the individual layers are provided in the Python code in Appendix
B.

Gaussian noise against overfitting To safeguard against overfitting of the model, we in-
troduce Gaussian white noise in the latent space by incorporating it in the τ layer. Injecting
Gaussian white noise is a well-established regularisation technique that makes the model robust
to overfitting [16, 17]. Since we are working with relatively limited data in the context of artificial
neural networks, guarding against overfitting becomes particularly crucial.

Latent space dimensionality We choose the dimensionality of the Y -level to be three. This
is because, in 3-D, we can connect any finite number of points without the edges crossing each
other. This allows for embeddings of neuronal activity in the form of trajectories with nodes and
edges that do not intersect. This might not always be possible in 2-D, where one can have a
constellation of data points that cannot be connected without crossings. It is possible however,
to embed any arbitrary graph in three dimensions without the edges having to intersect. [18].

Intersection points are undesirable for the embedding of a dynamical process due to the am-
biguity they introduce. A meaningful embedding should exhibit smooth trajectories without
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self-intersections. An intersection point of two trajectories would mean that the past state at
time (t − 1) contains additional information about the future state (t + 1) than the present
state at (t), thus rendering the dynamics non-Markovian. Avoiding such intersections and non-
Markovian dynamics enhances the interpretability of the embedded data and allows an enhanced
prediction of future dynamics.

Model validation / parameter tuning To determine the optimal parameters for the model,
including the number and types of layers, we use a held-out validation set on Worm-1. The
neuronal and behavioural data of Worm-1 is partitioned into seven folds along the time axis,
and one fold is randomly selected as the validation set from the time-ordered dataset. The
remaining data forms the training set. By choosing an entire fold in the data as a validation
set, we ensure that the model performs as well on unseen data. This would not be the case if
we created our validation set by iid (independent and identically distributed) sampling due to
high time correlations in the time series. After selecting the optimal model parameters through
validation on Worm-1, we train models with the same parameters on the other worms. Since we
only use Worm-1 for parameter tuning, if the model performs well on other worms, we can be
confident that its success is not due to overfitting.

0 200 400 600 800 1000
Training epochs

10 2

10 1

Markov

Behavior

Total loss 

Figure 7: Markov and behavioural loss during training of BunDLe-Net
on a log plot

Training details Since the neuronal data was found to be non-Markovian7, we use time-
windows of length 15 as input to BunDLe-Net. Reducing the window length decreased model
performance while increasing it further had no significant effect. Training was performed with
the ADAM optimiser [19] with a learning rate of 0.001 and batch size of 100. The γ parameter
of BunDLe-Net was chosen to be 0.9 to ensure that LMarkov and LBehaviour are roughly the same
order of magnitude during training (see Figure 7). We trained BunDLe-Net until the losses
converged.

7We tested for non-Markovianity using an autoregressor model and found that including multiple time steps
from the past boosted the prediction performance of the model.
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4.4 Description of competing methods

Here, we describe the other commonly-used neuronal manifold learning algorithms used in
the comparison. All models are used to project the C. elegans data to a three-dimensional
space for purposes of fair comparison. A full implementation of the various models, training
process, and evaluation procedures can be found at https://github.com/akshey-kumar/

comparison-algorithms.

PCA Principal component analysis [20] has been applied to neuronal datasets to enable visu-
alisation and interpretation of the data. It is a linear transformation that aligns the data along
the directions of maximum variance. Typically, the first three principal components are chosen
and plotted in 3-D space [11]. The resulting trajectories can provide a rough perspective of the
neuronal dynamics at a high level. Since this is a commonly-used method to coarse-grain data,
we use PCA as our first baseline model.

t-SNE t-distributed stochastic neighbour embedding is a popular tool for visualising high-
dimensional data, including neuronal data [21, 22]. It is essentially a non-linear dimensionality
reduction method that tries to preserve distances between the data points.

Autoencoder Arguably, autoencoders (or some variant thereof) are currently one the most
predominant method for learning low-dimensional representations of data [6, 7]. Typically, an
autoencoder learns a representation by attempting to reconstruct the training data using an
ANN composed of an encoder and decoder [23]. Here, we consider the deterministic vanilla
autoencoder with a deep encoder and decoder. The depth of the layers, number of neurons, and
other training-related hyperparameters were tuned to obtain reasonably optimal performance.

Autoregressor-autoencoder (ArAe) An autoregressor is generally used on time-series data to
predict the future state based on the past. Here we implemented an autoregressor with an ANN
with an autoencoder-like architecture8 and refer to it as ArAe. Such architectures have been
used before to learn low-dimensional representations of time-series data [6, 24]. We implement
our ArAe as an ANN with a deep encoder and decoder that tries to predict Xt+1 given Xt as
input with Yt as the latent space as seen in Figure 9.

CEBRA CEBRA [9] is a state-of-the-art neuronal manifold technique. It uses contrastive
learning to optimise the encoding of data by maximising the similarity between related samples
and minimising the similarity between unrelated samples. The algorithm employs neural network
encoders and a similarity measure to optimise the embeddings based on user-defined or time-
only labels. In our experiments, we used CEBRA-hybrid, which takes both behaviour and time
dynamics into account for the embedding.
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A Further evaluation of BunDLe-Net’s embedding
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Figure 8: (left) Confusion matrix of behaviour predictions from BunDLe-Net’s embedding for
Worm-1 (right) True dynamics and dynamics predicted by BunDLe-Net for Worm-1.

In the following, we provide further information to build an intuition for the behavioural and
dynamic prediction performance of BunDLe-Net. In Figure 8 a), we present the confusion
matrix for BunDLe-Net’s behavioural prediction layer from the ANN architecture. BunDLe-Net
achieves a decoding accuracy of 94.3%, with the few decoding errors dominated by confusion of
forward and slowing, two behaviours that are qualitatively similar and only quantitatively differ
in the speed of the motion. To evaluate the dynamical performance of the model, we use the
transition model layer TY to estimate Yt+1 from Yt and compare it with the true Yt+1, obtained
as τ(Xt+1). Figure 8 b) shows that the predicted dynamics indeed track the true dynamics
rather well. These results indicate that the behaviour predictor and transition model within
BunDLe-Net do well to preserve dynamical and behavioural information as intended.
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B BunDLe-Net architecture

class BunDLeNet(Model):

""" Behaviour and Dynamical Learning Network ( BunDLeNet ) model.

This model represents BunDLe -Net ’s architecture for deep

learning and is based on the commutativity diagrams. The

resulting model preserves information relevant to the

behavioural dynamics

Args:

latent_dim (int): Dimension of the latent space.

"""

def __init__(self , latent_dim):

super(BunDLeNet , self).__init__ ()

self.latent_dim = latent_dim

self.tau = tf.keras.Sequential([

layers.Flatten (),

layers.Dense(50, activation=’relu’),

layers.Dense(30, activation=’relu’),

layers.Dense(25, activation=’relu’),

layers.Dense(10, activation=’relu’),

layers.Dense(latent_dim , activation=’linear ’),

layers.Normalization(axis=-1),

layers.GaussianNoise(0.05)

])

self.T_Y = tf.keras.Sequential([

layers.Dense(latent_dim , activation=’linear ’),

layers.Normalization(axis=-1),

])

self.predictor = tf.keras.Sequential([

layers.Dense(8, activation=’linear ’)

])

def call(self , X):

# Upper arm of commutativity diagram

Yt1_upper = self.tau(X[:,1])

Bt1_upper = self.predictor(Yt1_upper)

# Lower arm of commutativity diagram

Yt_lower = self.tau(X[:,0])

Yt1_lower = Yt_lower + self.T_Y(Yt_lower)

return Yt1_upper , Yt1_lower , Bt1_upper
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B.1 BunDLe-Net loss function

def bccdcc_loss(yt1_upper , yt1_lower , bt1_upper , b_train_1 , gamma):

""" Calculate the loss for the BunDLe Net

Args:

yt1_upper : Output from the upper arm of the BunDLe Net.

yt1_lower : Output from the lower arm of the BunDLe Net.

bt1_upper : Predicted output from the upper arm of the BunDLe Net.

b_train_1 : True output for training.

gamma (float): Tunable weight for the DCC loss component.

Returns:

tuple: A tuple containing the DCC loss , behaviour loss , and total

loss.

"""

mse = tf.keras.losses.MeanSquaredError ()

scce = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

DCC_loss = mse(yt1_upper , yt1_lower)

behaviour_loss = scce(b_train_1 , bt1_upper)

total_loss = gamma*DCC_loss + (1-gamma)*behaviour_loss

return gamma*DCC_loss , (1-gamma)*behaviour_loss , total_loss

C Other architectures of ANN models

Figure 9: Architecture of Autoencoder and autoencoder-autoregressor (ArAe)
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4. BunDLe-Net toolbox

In Chapter 3, we presented the algorithm BunDLe-Net and demonstrated its performance
on embedding neuronal data. Here, we present a Python toolbox which includes an
implementation of BunDLe-Net along with other tools to process and visualise neuronal
data. This toolbox is intended to assist neuroscientists in the analysis of high-dimensional
neuronal recordings and gain automated visual insights about the data.

4.1. Dependencies

BunDLe-Net is implemented using an Artificial Neural Network (ANN) architecture,
which was created using TensorFlow (Abadi et al., 2015) and Keras (Chollet et al., 2018)
modules. We extensively utilise NumPy (Harris et al., 2020) and SciPy (Virtanen et al.,
2020) for numerical operations. To facilitate various visualisations, including embeddings
and other plots, we use Matplotlib (Hunter, 2007). Given that the C. elegans data is
stored in MATLAB files, we use the Mat73 library to load and process them. Additionally,
for algorithm comparison and evaluation purposes, we rely on functionalities provided by
scikit-learn (Pedregosa et al., 2011).

4.2. Features of the toolbox

To demonstrate the toolbox’s capabilities, we provide a concise showcase of BunDLe-Net’s
functionality, covering the entire process from initial data loading and preprocessing
to model training, data embedding, and subsequent visualization. A schematic of the
data processing and code structure can be found in Figure A.1 in the appendix. The
following code snippets, extracted from the main.py file, offer a glimpse into BunDLe-Net’s
capabilities.

1 import sys
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import tensorflow as tf
5 from sklearn.decomposition import PCA
6 from functions import Database , preprocess_data , prep_data , BunDLeNet ,

train_model , plotting_neuronal_behavioural , plot_latent_timeseries ,
plot_phase_space , rotating_plot

7

8 sys.path.append(r’../’)

We begin by importing essential modules. All the functions and classes that are contributed
as part of the BunDLe-Net toolbox are located in the function.py script. To use these
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functionalities, we import them into our main.py script.

4.3. Loading neuronal datasets

1 ### Load Data (excluding behavioural neurons) and plot
2 worm_num = 0
3 b_neurons = [
4 ’AVAR’,
5 ’AVAL’,
6 ’SMDVR ’,
7 ’SMDVL ’,
8 ’SMDDR ’,
9 ’SMDDL ’,

10 ’RIBR’,
11 ’RIBL’
12 ]
13 data = Database(data_set_no=worm_num)
14 data.exclude_neurons(b_neurons)
15 X = data.neuron_traces.T
16 B = data.states
17 state_names = [’Dorsal turn’, ’Forward ’, ’No state ’, ’Reverse -1’, ’

Reverse -2’, ’Sustained reversal ’, ’Slowing ’, ’Ventral turn’]

Here, we demonstrate a class specifically designed for loading standard neuronal time-
series recordings, along with associated behavioural data, while enabling the selective
identification of individual neurons by their designated names. The neuronal data is
retrieved from .mat files, which is a common format for calcium imaging recordings from
neuroscience research labs.

Database Class This class is responsible for loading data associated with one of the
five worms within our dataset. The data_set_no argument specifies the worm number,
ranging from 0 to 4. This class loads time-series neuronal and behavioural data, including
corresponding neuronal labels. In the above code, the neuronal data, X is an array of
shape (t, n), and B is an array of shape (t), where t is the number of time steps, and n
is the number of neurons.

Excluding Neurons For the convenience of investigation, we provide a method called
exclude_neurons that allows the exclusion of specific neurons from our analysis. For
instance, in Chapter 3, certain neurons were excluded because they were directly related
to behavioural inference. This exclusion capability is valuable for neuroscientists seeking
to examine the influence of specific neurons or neuron groups on behavioural dynamics.

4.4. Pre-processing and data preparation

1 ### Preprocess and prepare data for BundLe Net
2 time , X = preprocess_data(X, data.fps)
3 X_, B_ = prep_data(X, B, win =15)



preprocess_data: The preprocess_data function is responsible for implementing any
required pre-processing steps on the neuronal traces X. In this particular case, we applied a
low-pass filtering technique. If further pre-processing steps are required for different data-
sets, they can easily be incorporated into the preprocess_data function to accommodate
specific data needs.

prep_data This function takes the pre-processed neuronal data X and behavioural data B
and transforms them into a format suitable for input into the BunDLe-Net model. The
parameter win allows us to select a window of width win for embedding into the latent
space. This means that, apart from the capability of embedding a single time-slice of
neuronal activity, we also have the option to embed an entire window of time-slices. To
embed a single time-slice, set win=1. The prep_data function arranges the neuronal data
X_ in a shape (t - win, 2, win, n) and B_ behavioural data in a shape (t - win)
such that they are synchronised. In the second dimension of X_, we have X[:,0,:,:]
and X[:,1,:,:] corresponding to Xt and Xt+1, respectively, where one is a time-delayed
version of the other. This relation holds for all t , X[t+1, 0, :, : ] = X[t, 1, :, : ].

4.5. Training BunDLe-Net on the data

1 ### Deploy BunDLe Net
2 model = BunDLeNet(latent_dim =3)
3 model.build(input_shape=X_.shape)
4 optimizer = tf.keras.optimizers.legacy.Adam(learning_rate =0.001)
5

6 loss_array = train_model(
7 X_,
8 B_,
9 model ,

10 optimizer ,
11 gamma =0.9,
12 n_epochs =2000,
13 pca_init=False ,
14 best_of_5_init=False
15 )
16

17 # Training losses vs epochs
18 plt.figure ()
19 for i, label in enumerate (["$\mathcal{L}_{{ Markov }}$", "$\mathcal{L}_{{

Behavior }}$","Total loss $\mathcal{L}$" ]):
20 plt.semilogy(loss_array [:,i], label=label)
21 plt.legend ()
22 plt.show()

First, the BunDLeNet model needs to be instantiated. While doing this, we need to set
the hyper-parameter of the model, latent_dim, which corresponds to the latent dimension
of the embedding space. The latent dimension is fixed to be three for graph theoretical
reasons that are detailed in the methods section (4.3) of the publication in Chapter 3.
Hence, for neuronal manifold learning, we advise leaving the latent dimension unchanged.



The model is then built, for which it requires the input shape (t-win, 2, win, n).
We use Adam optimiser (Kingma and Ba, 2014) with a fixed learning rate of 0.001.

Finally, we begin training by calling train_model function on the prepared neuronal
X_ and behavioural data B_, the optimiser, and other hyper-parameters. The gamma
hyper-parameter is the weight that balances the effect of the behavioural and dynamics
loss. For all experiments in this thesis, we have kept gamma fixed at 0.9 since it ensures
that both losses are in the same order of magnitude. The number of epochs is chosen to
be 2000, which was chosen to ensure convergence of the losses.

Initialisation schemes : We offer two novel initialisation schemes for the parameters
(weights and biases) of BunDLe-Net, aside from the default randomised initialisation of
TensorFlow networks (Glorot initialization).

• pca_init=True uses PCA initialisation of the network. It initialises the tau layer
of BunDLe-Net in such a way that the embedding (output of tau) corresponds to
the principal components of the input neuronal data. Even though PCA may not
be the best final embedding, it may give a good starting point from where to search
for better embeddings of the data. This may save time when compared with a
randomised initialisation. The idea of PCA initialisation has been applied to neural
networks where it was shown to improve stability and generalisation (Suzuki and
Sakanashi, 2019; Ren et al., 2016). However, to the best of our knowledge, it has
not yet been applied to manifold learning techniques.

• best_of_5_init=True uses the initialisation of the best of 5 runs (in terms of their
loss functions). Whether or not BunDLe-Net converges to a good solution (with a
low loss) can often strongly depend on the initialisation of the network parameters.
This could be due to the highly non-linear and non-convex landscape of the loss
functions, replete with local minima. To deal with this, we allow for 5 random
initialisations of BunDLe-Net and train for 200 epochs. Our rationale is that if the
initialisation is a good one, the loss functions should begin to converge after a few
epochs of training; fine-tuning can then be done in further training. From these
5 initialisations, we then pick the one with the lowest loss. This is then used to
instantiate BunDLe-Net, after which training proceeds for 2000 epochs. Thus, we
use a mix of randomised trial-and-error and gradient descent to reach an optimal
solution.

• If both pca_init and best_of_5_init are set to False, BunDLe-Net is initialised
with the default TensorFlow initialiser.

After training is complete, we plot the training curves to inspect the training process.
For BunDLe-Net to have successfully fitted, we expect both the losses to converge to a
constant value that is close to zero.



4.6. Embedding the neuronal data

1 ### Projecting into latent space
2 Y0_ = model.tau(X_[:,0]).numpy ()

Following successful training of BunDLeNet, we use the tau layer of the fitted model to
embed the neuronal data into the latent space.

4.7. Plotting functions

1 ### Plotting latent space dynamics
2 plot_latent_timeseries(Y0_ , B_ , state_names)
3 plot_phase_space(Y0_ , B_, state_names = state_names)
4 rotating_plot(Y0_ , B_ ,filename=’figures/rotation_ ’+ algorithm + ’_worm_ ’+

str(worm_num) +’.gif’, state_names=state_names , legend=False)
5

6 plotting_neuronal_behavioural(X, B, state_names=state_names)

One of the powers of our method is that it enables neuroscientists to gain visual insights
about their data. plot_latent_timeseries plots the three latent dimensions as a time-
series with time along the x -axis and the behavioural label B_ as the background colour.
plot_phase_space space produces a 3-dimensional plot of the trajectory in latent space.
The parameter state_names is meant to provide the behavioural labels so that the
trajectory is coloured according to the behavioural state at that time point. This allows
one to understand the connection between behaviour and neuronal activity through the
embeddings. rotating_plot produces a rotating plot of the same and saves it as a .gif
file.

4.8. Experimental and future developments

Future developments will focus on extending the architecture of BunDLe-Net to various
settings. While the behaviour in the present datasets has been discrete, extensions would
involve accommodating continuous-valued behaviours, angular data, and multimodal
behavioural data within the architecture. The first experiments have been carried out
and documented in Section 5.1.

Currently, all neuronal dimensions are jointly embedded into the three-dimensional
latent space. By adjusting BunDLe-Net’s architecture, specific neuronal components
could be mapped to designated dimensions, providing interpretability to the latent space.
Pertaining to this, axis decomposition experiments have been conducted, as outlined in
5.2.

Further adaptations could augment the BunDLe-Net architecture with more sophistic-
ated layers, including convolutional layers and probabilistic layers (Kingma and Welling,
2013). This would expand the domain of BunDLe-Net into the computer vision domain
and open avenues for simulating high-dimensional systems in the latent space.





5. Applications of BunDLe-Net
architecture

In Chapter 3, we introduced the BunDLe-Net architecture and used it as a Neuronal
Manifold Learning technique on Calcium imaging data from the roundworm C. elegans,
with a single discrete-valued behavioural variable. This revealed an intricate structure of
the underlying neuronal manifold and surpassed other state-of-the-art methods in terms
of behavioural decoding performance and dynamical predictability. In this Chapter, we
broaden the scope of BunDLe-Net, demonstrating its ability to generalise well both to new
kinds of data and new behavioural settings, with minimal adaptation. This demonstrates
that BunDLe-Net is not merely a superior algorithm but rather a versatile and flexible
architecture that is easily adapted to different data modalities.

While calcium imaging is a widely used method for acquiring single-neuron data,
it represents just one of many approaches. Electrophysiology techniques, capturing
spiking activity in individual neurons, offer qualitatively distinct data (Wei et al., 2020).
Furthermore, neuroscience experiments span various modalities, often involving the
simultaneous recording of multiple behaviours or continuous-valued behaviour variables
like the position of an animal.

5.1. BunDLe-Net on multimodal behavioural data

Since BunDLe-Net was originally developed and validated using the C. elegans calcium
imaging data, our aim was to assess its performance in a markedly distinct neuronal
dataset and experimental setting. This exploration not only tests the robustness of our
theoretical foundations but also its ability to generalise to novel datasets. For this purpose,
we have chosen the rat hippocampus dataset (Grosmark and Buzsáki, 2016) that has
often been used to validate other embedding techniques (Schneider et al., 2023; Zhou and
Wei, 2020).

5.1.1. Spiking neuronal vs. Calcium-imaging data

The C. elegans data was obtained through calcium imaging. This method uses a calcium-
sensitive indicator (GCaMP), which fluoresces when the calcium concentration within a
neuron changes (de Melo Reis et al., 2020). When a neuron fires, calcium ions enter the
neuron, causing fluorescence, which is then detected by a microscope. In this way, it is
possible to obtain time-series recordings of populations of neurons at the single-neuron
resolution. An advantage of calcium imaging is that it allows a large number of neurons to
be recorded simultaneously, like the whole brain imaging in C. elegans (Kato et al., 2015).
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Figure 5.1.: Calcium imaging activity of a neuron from the C. elegans dataset (Kato et al.,
2015).

However, this method has a lower signal-to-noise ratio when compared to electrophysiology
data. This is because it records the spikes indirectly, and hence it results in a non-linear,
low-pass filtered, and time-delayed version of neuronal activity (Wei et al., 2020). This
may have implications in the behaviour decoding accuracy and introduce artefacts in
understanding the time dynamics. In terms of data, calcium-imaging data consists of
continuous-valued, slowly-modulating time-series data, as can be seen in Figure 5.1.
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Figure 5.2.: Spiking activity of a neuron from the rat hippocampus dataset (Grosmark
and Buzsáki, 2016).

Another widely used technique of recording neuronal data is through electrophysiology
experiments. This method uses electrodes to directly measure the electrical activity of
individual neurons, offering us information about the spiking activity of a neuron. An
advantage is that this method has a better signal-to-noise ratio compared to Calcium
imaging and often better temporal resolution (Wei et al., 2020). However, this method
usually only records sparse subsets of neurons in specific brain regions. Consequently, the
data is generally lower-dimensional and does not constitute whole-brain imaging.

In terms of data, spiking data is a time-series of spike events (discrete-valued), as can be
seen in Figure 5.2. Note that this publicly available spiking data has been pre-processed,
which included binning the ensemble spike activities into 25 millisecond intervals. This
binning process transforms the data from a binary-valued time series (representing either
a spike or no spike) into a format where each interval may contain varying numbers of
spikes, such as two spikes, three spikes, and so on.

5.1.2. Challenges for BunDLe-Net in a new context

Since spiking data differs significantly from neuronal data, we would expect BunDLe-Net
to face a number of challenges in this new domain. Firstly, unlike continuous-valued data



from calcium imaging, spiking data is discrete-valued. Secondly, the sampling time in
relation to the rate of the activity is different, affecting the data’s time resolution. Aside
from these aspects, there is a crucial difference in these data modalities. While the C.
elegans dataset is whole-brain imaging, the spiking data has been recorded from a small
subset of neurons within a sub-region of the rat’s brain. With whole-brain imaging, one
could still argue that there is no missing information about the system or, to use the
language of causality, no unobserved hidden confounders. However, when recording only
a small subset of neurons, it is likely that they are substantially influenced by neurons
and circuits lying beyond the scope of our dataset.

Consequently, certain aspects of the dynamics may remain inaccessible due to a lack
of information, and this may render the dynamics non-Markovian. This qualitative
distinction presents a significant challenge for any neuronal manifold learning technique.
However, it is worth noting that BunDLe-Net incorporates past time steps into the
embedding process. According to Taken’s theorem (Shalizi, 2003), there may be theoretical
promise for reconstructing some of this missing information.

5.1.3. Description of the data

In this study, we used a publicly available rat electrophysiology dataset from a study
conducted by Grosmark et al. (Grosmark and Buzsáki, 2016). This dataset has been
widely employed to assess different neural embedding techniques (Schneider et al., 2023;
Zhou and Wei, 2020). It contains both spiking neuronal data and behavioural data that
are simultaneously recorded as the rat navigates a 1.6-meter linear track. The neuronal
activity was recorded from putative pyramidal neurons in the hippocampal CA1 area.
Such recordings have been carried out on four rats (named Achilles, Gatsby, Cicero and
Buddy) from between 48 - 120 neurons.

For our analysis, we use the pre-processed data sourced from (Schneider et al., 2023)
to facilitate a fair comparison. The dataset was curated to encompass the periods during
which the rat actively traversed the track. Then, the ensemble spike activities were
discretised into 25-millisecond intervals through a binning process.

Both the neuronal and behavioural data can be seen in Figure 5.3. The rat’s position
and running direction (left or right) were encoded as three separate behaviour variables,
one containing continuous-valued position information and the other two being binary
variables indicating the running direction. Note that the last two behaviours contain the
same information and can thus be merged into a single variable. However, for purposes of
consistency to compare with other algorithms, we keep them as distinct behaviours, as in
the original paper.

5.1.4. Adapting BunDLe-Net for multiple and continuous-valued behaviours

In previous work, BunDLe-Net was applied to a dataset with a single discrete behavioural
variable. However, in the rat hippocampus dataset, we encounter a different scenario with
three behavioural variables, one of which is continuous, while the others are discrete. To
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Figure 5.3.: Spiking neuronal and behavioural data recorded from rat-1 (Achilles). Neur-
onal activity was recorded simultaneously with three behavioural variables,
position (continuous-valued), direction-left (binary) and direction-right (bin-
ary)



accommodate this new behavioural modality, we make minimal adaptations to BunDLe-
Net’s architecture. We augment the behaviour predictor unit of BunDLe-Net (see
architecture in Chapter 3) with three output channels, each corresponding to one of the
three behaviours. We then modify the behaviour loss LB to a mean squared error loss to
accommodate the continuous-valued behaviour. Apart from these adjustments, all other
aspects of BunDLe-Net, including the hyperparameters, remain unchanged. The adapted
BunDLe-Net is separately trained on each of the rat datasets1.

5.1.5. Results - Comparison of the BunDLe-Net and CEBRA embeddings

We compare BunDLe-Net with CEBRA, a state-of-the-art algorithm for neuronal manifold
learning (Schneider et al., 2023). CEBRA uses contrastive learning to embed neuronal
activity based on behaviour, time, or a hybrid of both. For this comparison, we use the
CEBRA-hybrid setting to ensure a fair assessment with BunDLe-Net, which inherently
considers both dynamics and behaviour in its learning process. CEBRA-hybrid was
trained on all rat datasets using parameters identical to those specified in the original
demo notebook from CEBRA’s webpage https://cebra.ai/docs/demo_notebooks/Dem
o_hippocampus.html. Since the CEBRA publication demonstrated their algorithm on
the same rat hippocampus data, we can be fairly certain that the parameters for CEBRA
are optimally tuned.

Figure 5.4, shows the BunDLe-Net and CEBRA-hybrid embeddings of all four rat
datasets (each in separate gray boxes). For each algorithm, we have plotted the same
embedding twice, with one labelled with a gradient and the other with a binary colour
map, which correspond to the position and direction behaviour variable, respectively. We
do this in order to visualise how behaviours relate to the embedded neuronal activity.
In the first plot, we plot the embedded data points, and in the second, we plot line
segments between data points at time t and t+ 1. The former plot helps us visualise the
distribution of the embedded points in latent space, and the latter lets us visualise how
their trajectories evolve with time.

From the embedding of rat-1 (Achilles), we see that embeddings are geometrically
different, with CEBRA embedding on the surface of a sphere and BunDLe-Net embedding
on a plane. Despite these geometrical differences, BunDLe-Net and CEBRA’s embedding
manifest the same topological structure – a single closed loop. This is noteworthy, as it
suggests that both algorithms effectively capture the underlying topological structure of
neuronal activity concerning the associated behaviour. In contrast to the embedding of
C. elegans in Chapter 3, there are no discernible bifurcations in the trajectory of the rat’s
neuronal dynamics. Instead, a single deterministic loop is apparent, reflecting the rat’s
straightforward task of moving back and forth along the track to obtain rewards from
either end, as indicated by human-annotated behaviour data.

1Note that here we fitted BunDLe-Net on each of the rats separately. This is different from our methods
in publication 3 on the C. elegans data where we used a specific training sequence to ensure comparable
embeddings. For the rat data, the embeddings revealed considerably simpler topologies, which were
easier to compare to one another. Hence, the more sophisticated fitting pipeline used in Chapter 3
were not required.

https://cebra.ai/docs/demo_notebooks/Demo_hippocampus.html
https://cebra.ai/docs/demo_notebooks/Demo_hippocampus.html
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Figure 5.4.: BunDLe-Net and CEBRA-hybrid embeddings of four rats in the rat hippo-
campus dataset. The embeddings are colour-labelled with the behavioural
variable of interest. The continuous gradient colour corresponds to the po-
sition variable, and the discrete (blue, orange) corresponds to the binary
variable of direction (right, left).



Further, we see from BunDLe-Nets embeddings that both position and direction are
well-preserved, as can be seen by the coloured labelling of the points. This implies that the
recorded neurons indeed encode information about both the rat’s position and direction
in their spiking patterns. Our implicit behaviour decoding module within BunDLe-Net
is clearly able to decode the positional and directional information from the neuronal
activity. This finding is consistent with what is known about the hippocampus from
decades of biological research (Grosmark and Buzsáki, 2016).

Now, turning our attention to the embeddings of the other three rats, named Gatsby,
Cicero, and Buddy, we see that BunDLe-Net’s embedding remains quite consistent in
terms of topological structure, i.e. we see a rectangle where one dimension encodes position
and the other encodes direction. In contrast, CEBRA’s embedding becomes obscured by
noise, resulting in a topological structure that is barely discernible. The data points in
CEBRA’s embedding are dispersed diffusely, while in BunDLe-Net, they follow a more
compact trajectory2. Additionally, we observe that BunDLe-Net’s trajectories (upper left
in each of the three boxes) are far smoother in terms of transition from time step t to
t + 1. In contrast, CEBRA’s embeddings (lower left in each of the three boxes) show
numerous discontinuous jumps in the trajectory that obscure any discernible dynamic
structure. This contrast may be attributed to BunDLe-Net’s dynamical loss function LD

and its very architecture, which is designed to preserve dynamical information.
These results demonstrate several strengths of BunDLe-Net over CEBRA: the ability

to capture the underlying topological structure, robustness to noise in the data, smoother
trajectories in terms of dynamics, orthogonal embedding of independent behaviours, and
consistency of embeddings over animals.

5.2. Interpretability of latent dimensions

Thus far in our explorations of neuronal data with BunDLe-Net, we have embedded all
the features (neurons) jointly into a three-dimensional latent space3. All three dimensions
jointly contain information about the dynamics of the system. Such an embedding was
seen to be interpretable in terms of the system’s dynamics as a whole by revealing bundled
trajectories with distinctive topologies.

However, this joint embedding tells us little about the interactions of the parts of the
system. Complex systems often consist of various fairly modular subsystems, and we may
be interested in studying how these subsystems interact in terms of their information.
For example, in the context of the brain, neuroscientists are keen to understand how
various regions of the brain interact with one another to process sensory information and
generate behaviour.

To address this, we propose endowing each latent dimension with interpretability by

2It should be noted that CEBRA’s tendency to embed data over the surface of a sphere is an inherent
feature of the algorithm itself and should not be interpreted as a specific characteristic of the neuronal
manifold associated with this data.

3Three dimensions were seen to be sufficient since we can always embed a finite graph in three-dimensional
space, without the edges intersecting.



relating it to a known subsystem of interest. To this end, we embed the features of
each subsystem into a separate dimension of the latent space. Previously, we had a
high-dimensional vector X that we jointly embedded to a three-dimensional vector Y
through a transformation Y = τ(X). We now consider n subsystems within the original
system, which splits our feature space X into smaller feature spaces X (1),X (2), ...X (n)

where X (i) is a subspace of X . Now, to map each subsystem to a separate latent dimension,
we use several τ (i) such that Y (i) = τ (i)(X(i)). In this way, we maintain distinctions
between subsystems of interest and move towards making causal statements between
various components of the system.

5.2.1. Subsystems - neuron categories

Traditionally, in neuroscience, neurons have been categorised into three types based on
their functional role in the nervous system. Sensory neurons are responsible for detecting
external stimuli and relaying them to other neurons. Motor neurons are responsible for
executing commands of the nervous system by conveying them to muscles that then get
actuated into physical movement. Interneurons have neither sensory detectors nor muscle
connections; instead, they process information received from sensory neurons within their
circuits and subsequently relay it to motor neurons. This classical view of neuronal
information processing suggested a linear pathway: sensory neuron → interneuron →
motor neuron.

However, a recent study (Kaplan et al., 2018) has challenged this linear information
processing model, proposing a more integrated pathway with feedback mechanisms among
these neuronal units. Here, we use these sensory, inter- and motor categories to partition
the set of neurons into three subsystems. We then embed the neuronal data accordingly
and investigate how information is processed and relayed between these groups.

5.2.2. Description of the data

We use the same C. elegans data (Kato et al., 2015) as in Chapter 3. In addition, we
utilise the categories of neurons – sensory, motor and interneuron. Since only a few
neurons were identified in the original dataset, we could only reliably label the categories
of these identified neurons. This substantially reduced the number of neurons from which
we could learn an embedding as compared to Chapter 3. Based on the categories, we
partition the set of identified neurons into three subsets X (1), X (2) and X (3) corresponding
to the sensory neuron, interneuron, and motor neuron, respectively.

5.2.3. BunDLe-Net with anatomically interpretable latent layers

To further enhance the interpretability of the BunDLe-Net architecture, we introduce a
novel adaptation that allows for the separate embedding of distinct feature subsets as
seen in Figure 5.5. The full implementation and code can be found in the BunDLe-Net
GitHub repo https://github.com/akshey-kumar/BunDLe-Net/tree/main/experimen
tal/anatomical_interpretability_of_axes.

https://github.com/akshey-kumar/BunDLe-Net/tree/main/experimental/anatomical_interpretability_of_axes
https://github.com/akshey-kumar/BunDLe-Net/tree/main/experimental/anatomical_interpretability_of_axes
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Figure 5.5.: BunDLe-Net adaptation for embedding distinct subsets of features (neurons)
into separate latent dimensions

We modify the τ layer to incorporate three independent mappings denoted by τ (1),
τ (2) and τ (3). These mappings operate on the vectors X(1), X(2), and X(3) respectively.
Each τ (i) consists of a series of dense layers with ReLu activation that map the input to
a single-dimensional output (see GitHub implementation for further details). The output
from all three τ (i) are then passed through another layer, post-τ , which concatenates the
three outputs, normalises it, and adds Gaussian noise4.

The same three τ (i) along with the post-τ layer are applied to both Xt and Xt+1.
This ensures that we have a consistent embedding across time-steps. Apart from the
modification to the τ mapping, all other aspects of the architecture remain unchanged
from our previous work.

5.2.4. Results - Anatomically interpretable latent dimensions

Figure 5.6 shows the embedding of worm-1 with each axis explicitly labelled according
to the neuron subset it encodes. The colour coding correspond to the behavioural label
(sustained reversal , ventral turn , dorsal turn , forward , slowing , reverse-1 ,
reverse-2 , no state ). For 3-D rotating plots of all five worms, please see https://gi
thub.com/akshey-kumar/BunDLe-Net/tree/main/figures/rotation_axis_decomp.

Remarkably, we observe the same branching structure and topology as in Chapter 3,
despite embedding only a much smaller subset of identified neurons from the dataset.
This observation underscores the presence of globally encoded dynamics within the entire

4The incorporation of normalisation and Gaussian noise aligns with our previous work in Chapter 3 and
serves the same purpose of regularisation to reduce overfitting.

https://github.com/akshey-kumar/BunDLe-Net/blob/main/experimental/anatomical_interpretability_of_axes/axis_decomp.py
https://github.com/akshey-kumar/BunDLe-Net/tree/main/figures/rotation_axis_decomp
https://github.com/akshey-kumar/BunDLe-Net/tree/main/figures/rotation_axis_decomp


Figure 5.6.: Embedding of C. elegans neuronal data in three-dimensional latent space
where each dimension corresponds to a specific subset of neurons.

neuron population, indicating robust representations in the data. This finding aligns
with existing knowledge in neuroscience concerning C. elegans neuronal circuitry (Kaplan
et al., 2018).

While the overall structure of the dynamics is maintained, the embedding is seen to
be more noisy. This could be attributed to the reduced number of neurons mapped into
each embedding dimension. Another potential factor is that different dimensions may
encode varying amounts of information about specific behaviours. For instance, some
behavioural trajectories may be tightly bundled along certain dimensions while being
more loosely bundled along others. This suggests that dimensions with tighter bundling
may contain predictive information about the dynamics of those behaviours.

We do not attempt a rigorous analysis of the embeddings in this section but point out
some noteworthy observations that can spark future research along these lines. Firstly,
note how certain behaviours are projected along a specific direction or confined to a
given plane. For example, we see that the slowing and sustained reverse are mostly
separated along inter-neurons axis. This is something we observe across all worms. On
the other hand, when the dorsal turn occurs, it differs from the other behaviours along
the sensory neuron axis. Secondly, notice how the dynamics often switches its orientation



and alignment with axes through the evolution. For example, consider the transition from
sustained reversal to ventral turn . Initially, the ventral turn dynamics progresses
vertically along the motor neuron axis. It then makes a sharp turn and continues along the
inter-neuron axis for the latter phase, before which it segues into the slowing movement .

This may allow us to make statements such as, The dynamics is initiated in neuron-
subset X (1), which then relays the information to neuron-subset X (2); the information is
then shared with neuron-subset X (3) which jointly orchestrates the behaviour with neurons-
subset X (2) which is then again relayed to X (1), and so on.... From such embeddings, one
could thus investigate interactions between various subsystems, their relationships with
one another, and the flow of information between them. Such an approach builds up
to uncovering algorithms within neuronal systems. A further and more comprehensive
biological and information-processing analysis of these embeddings is beyond the scope
of this thesis. Instead, this experiment serves as a foundational step for future research
endeavours. Further discussions can be found in Section 6.3.





6. Discussion

We begin this section by answering the original research question posed in 1.4. By
answering these specific questions, we show how we have contributed to various domains
such as causality, data science, and neuroscience in Section 6.2. The implications of our
research pave the way for several novel avenues of exploration, some of which we discuss
in Section 6.3. This includes extensions of BunDLe-Net, further techniques to improve
causal attractions and generalisations of our theoretical framework. We finally summarise
the scope and achievements of this research project and conclude this dissertation in
Section 6.4.

6.1. Research questions answered

Q1: Under what conditions can we infer causal abstractions from purely
observational data of a dynamical system?

From our theoretical framework, we see that Markovianity at the X-level is sufficient
to infer causally consistent abstractions from purely observational data of a dynamical
system. This is a direct consequence of Theorem 1, which states that Markovianity and
dynamical observational consistency are jointly sufficient conditions for dynamical causal
consistency. This means that if we are able by any means to obtain an observationally
consistent abstraction (see def. 4) of the X-level, then if the X-level is Markov, we can
directly conclude that our abstraction is dynamically causally consistent as well. This
allows us to talk about interventions directly at the Y-level without referring to the
ground-truth X-level.

Our main contribution is to identify a setting where it is possible to make causal
abstractions from purely observational data. This setting includes our definitions of
Markov dSCM (def. 2), our notion of DOC (def. 4) and DCC (def. 5), and Macroscopic
intervention (def. 3). With these definitions in place, we can prove our causal claims
in Lemma 1 and Theorem 1. In general, inferring DCC from DOC may not always be
possible. For example, suppose our model MX at the X-level is not Markov. In that
case, even if the Y-level MY is compatible with Yt = τ(Xt) for all t, it is not guaranteed
to preserve causal information about the dynamics at the of X-level. Note that our
requirement of Markovianity at the X-level is weaker than requiring Markovianity both
at the X and Y levels (which would intuitively mean the same linear causal structure at
both levels). This is due to the elegant way that DOC is defined. Lemma 1 ensures that if
observational consistency is fulfilled, then the Y-level automatically takes on the Markov
causal structure of the X-level. Thus, we have presented a minimal set of conditions,
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which, up to our knowledge, are the first of their kind, which allow causally consistent
abstractions of data from dynamical systems.

Q2: Given these conditions, how can we learn causal abstractions directly
from time-series data?

As an answer to this question, we present the learning algorithm BunDLe-Net in Chapter
3 which is designed specifically to extract causally consistent abstractions from time-series
data in a behavioural context. Here, we outline how this question is tackled through
this thesis. First, in our theoretical framework, we present and prove Theorem 2. This
theorem is based on the commutativity diagram, which says that it does not make a
difference between first abstracting with τ and then time-evolving or first time-evolving
and then abstracting. If the commutativity diagram is satisfied, then DOC is fulfilled.
Guided by this principle, we design an architecture specifically tailored to learn DOC
transformations as outlined by Theorem 2. If the Markov condition of the X-level is
fulfilled, we invoke Theorem 1 which guarantees that the learned abstraction is not only
observationally but also causally consistent.

Additionally, we provide an analytical solution within our mathematical framework,
catering to systems characterised by linear dynamics and linear behaviour. This gives us a
closed-form solution for abstracting a Y -level that is dynamically causally consistent with
the underlying dynamics. Hence, if we have data from a linear dynamical system and
can determine its transition model (say through a linear autoregressor), we can construct
such an abstraction directly from data.

For non-linear systems that show much more complex and interesting dynamics, ob-
taining an analytical closed-form solution may not be feasible in most cases. Hence, we
leverage the architecture based on the Theorem 2. This architecture is flexible and can
be equipped with arbitrarily non-linear layers for the abstracting layer τ , the transition
model TY and/or the behaviour predictor. Since neural networks offer an innate flexibility
of adding arbitrarily non-linear layers, we utilise them in our architecture in Chapter
3. BunDLe-Net is, therefore, a generic architecture that can be endowed with layers of
desirable non-linearity in order to learn abstractions directly from time-series data.

Q3: How can causally consistent abstractions be used to gain meaningful
insights into complex neuronal datasets?

We were previously faced with the challenge that there may exist several causally consistent
abstractions, most of which may not be useful; for example, a mapping to a single-
state Markov process. Hence, we require that behaviour should be decodable from the
abstraction. Causally consistent abstractions that preserve behavioural information prove
to be a powerful tool to gain insights into neuronal data. This is demonstrated in
both Chapters 3 and 5. Since they preserve behavioural information, they serve as a
high-level model of behaviour that is derived from neuronal activity. We can use this to
understand the way information is represented and processed in the brain. Our theoretical



framework in Chapter 2 is used to bridge the neuronal and cognitive levels in our joint
work (Grosse-Wentrup et al., 2023).

To make sense of how BunDLe-Net’s abstraction helps us understand neuronal data,
we consider the various components of BunDLe-Net (see architecture in Chapter 3) and
see what it learns about the data. Firstly, since BunDLe-Net has a behaviour predictor,
it is implicitly endowed with the ability to decode behavioural information from neuronal
data. This tells us about how representations of the behaviour are encoded at the
neuronal level. The abstracting layer τ distils neuronal activation patterns down to a low-
dimensional space which yields powerful visual insights into the data, such as bifurcations
and convergences that can be related to decision-making. Finally, the transition model,
allows us to predict the trajectory of the embedded brain state in latent space giving us
insights into the dynamics of the system. In the experiments with C. elegans data, we
saw how BunDLe-Net neatly separates out the deterministic parts of the dynamics from
the probabilistic ones which other methods fail to do.

The versatile nature of the BunDLe-Net architecture allows it to handle neuronal data,
which comes in a variety of shapes and sizes. In Chapter 5, we demonstrate BunDLe-
Net in diverse settings involving discrete-valued neuronal data, continuous-valued and
multimodal behaviours. It outperforms state-of-the-art methods and reveals consistent
embeddings on both roundworm and rat data. Finally, we show how BunDLe-Net can
incorporate anatomical information about various subsystems in the brain in Section 5.2.
Hence, we show that BunDLe-Net is a flexible architecture to gain robust and consistent
results that broaden our understanding of neuronal data.

6.2. Contributions to various fields

In this section, we reflect upon the scope of our work and discuss its impact across multiple
fields. The interdisciplinary nature of this project contributes to various domains such as
causality, data science, and neuroscience and, in doing so, enriches the broader field of
artificial intelligence.

6.2.1. Statistics and Causality

From our brief survey of causality in Section 1.3, we saw that it is poorly understood
how to define (high-level) causal variables in complex systems. We presented a case to
illustrate how coarse-graining causal variables may lead to variables that are unfit for
causality. Thus, we found that the variables resulting from an arbitrary coarse-graining
are not causal. Only certain transformations preserve the causality in the system.

Also, the majority of causal models focus on the independent and identically distributed
(iid) causal variables. We argue that temporal information often contains valuable causal
information. On this basis, we develop a framework for causally consistent abstractions
of dynamical systems in Chapter 2. The crux of our contribution lies in a simple but
vital principle – preserving dynamical information and, in doing so, preserving temporal
causality. We formalise this insight through our mathematical framework and prove two



theorems. The first theorem gives us conditions under which it is possible to learn a
causally consistent transformation of a dynamical system from purely observational data,
should such a transformation exist. Our second theorem provides the basis for constructing
a generic architecture to learn DOC abstractions from purely observational data. If the
data fulfils the Markov assumption, then we are assured by the first Theorem that the
learned abstraction is also dynamically causally consistent (DCC). While this architecture
is not a causal inference algorithm in a traditional sense, it provides a new causal way
to think about time-series data. This can be a valuable new perspective that works in
settings where causal inference may not be feasible or informative (high-dimensional
systems with dense causal interactions).

6.2.2. Machine learning and Data Science

Our contribution to the field of data science is a novel architecture for dimensionality
reduction and manifold learning. While most previously existing methods are tailored
to independent and identically distributed (iid) data within unsupervised settings, few
protocols are designed for time-series data. Even among the limited methods targeting
time-series data, many still incorporate iid-based approaches such as PCA within their
pipelines, which results in a loss of valuable information inherent in the system’s dynamics
(Ali et al., 2019). Our BunDLe-Net architecture addresses this critical gap by preserving
these intricate temporal relationships. In this dissertation, we have implemented BunDLe-
Net with a neural net, but in general, our contribution is a generic architecture that is
readily adaptable to a variety of modalities.

In recent times, autoencoder architectures have gained prominence for dimensionality
reduction and representation learning. These methods encode information to optimise the
reconstruction of the original data. They prove effective when the data exhibits significant
redundancy, as is often the case in image and video data. However, it is important to note
that autoencoders are primarily designed for scenarios where the data naturally conforms
to a low-dimensional manifold, which does not always hold true for all high-dimensional
data. In complex information-processing systems, such as the brain, there are numerous
processes occurring simultaneously. Therefore, it is not a reasonable assumption that
the data strictly conforms to a low-dimensional manifold. More often, we are interested
in specific aspects of the system, and while other information is not redundant, it is
not relevant to our objectives. This is where our algorithm’s strength lies because it
is a supervised algorithm designed to decode a specific behaviour1. In the context of
neuroscience and causality, the supervisory variable is chosen as behaviour, but in other
applications, it could be any target variable of interest, such as an external stimulus,
a response, an internal system component, or any human-annotated aspect of interest.
BunDLe-Net would then provide a lower-dimensional embedding that can be used to

1If one wishes to use the BunDLe-Net architecture in the unsupervised setting, it can be readily adapted.
Instead of decoding a behavioural variable, the network can be configured to reconstruct the entire
system state at time t+ 1. This would still preserve dynamical information but of the system as a
whole rather than for a specific component. This adaptation would render BunDLe-Net equivalent to
an autoencoder setting where we input Xt and reconstruct Xt+1



model the target variable.
Besides the supervised component, BunDLe-Net has autoregressive capabilities. Each

of the components of BunDLe-Net, viz. a behaviour decoder, τ and TY , can be used
individually for specific tasks, including decoding behaviour from the low-dimensional
representation, embedding new data and simulating the system in the embedded space.
In particular, we shall discuss future avenues of research which relate to simulating
complex systems on a low-dimensional manifold in Section 6.3. Aside from contributing a
dimensionality reduction technique, our method serves as a powerful visualisation tool
for complex time-series data. These visualisations provide insights into the topological
structure of the dynamics with regard to a specific task or behaviour.

6.2.3. Neuroscience

Our first contribution to the field of neuroscience is a Neuronal Manifold Learning technique
that takes into account behaviour in accordance with the guidelines of Krakauer et al..
This method is not merely a visualisation tool but a means to gain automated insights
about how the brain processes information. Our algorithm is particularly developed to deal
with multimodal neuronal data that often involves simultaneous neuronal and behavioural
recordings. Such data, combined with the abstraction techniques of BunDLe-Net, can
reveal intriguing insights about information processing in the brain. This would reduce
efforts of manual data processing and searching for patterns by automating it to a certain
degree. Among the various insights we can gain from studying the dynamics of neuronal
activity are decision making. For example, the application of BunDLe-Net on C. elegans
data revealed an intricate branching trajectory that was not evident from the neuronal
traces or a pure behavioural analysis. The bifurcations could be linked to decision-making.
Several interesting questions remained to be explored in this direction. Furthermore,
BunDLe-Net is not restricted to calcium imaging data but works equally well on spiking
data from the rat hippocampus and outperforms all state-of-the-art methods as shown in
Figure 5.4.

On a higher level, we offer the theoretical foundations that give rise to the NC-MCM
framework to bridge the neuronal and cognitive levels (Grosse-Wentrup et al., 2023). This
builds on our theoretical framework and presents a mathematically grounded definition of
a cognitive state so that we can learn it from data. It also presents the basis for learning
discrete cognitive concepts from the BunDLe-Net’s embeddings in latent space.

6.2.4. Artificial Intelligence

An important and vital component of an intelligent agent is the ability to reason in
terms of abstract concepts or representations. This includes the ability to group diverse
instances into higher-level abstract concepts, reason at the abstract level and, subsequently,
make predictions or decisions in the real world. By abstracting, we essentially discard
information to the extent that we can make generalisations that can then be reused in
different scenarios. In general, there is an entire hierarchy of levels of abstraction that
can be present, but the essence is the ability to reason at varying levels of abstraction



(Hofstadter, 1979). Schölkopf et al point out that a central challenge for AI pertains
to causal representation learning (Schölkopf et al., 2021). This challenge involves the
discovery of high-level causal variables from low-level observations.

By specifically contributing a framework for learning causal high-level variables in the
time-series setting, we directly make a contribution to the field of Causal representation
learning, which is a step towards artificial intelligence. While this thesis focuses on
dynamical systems, it lays the foundation for work in more generic settings, which will be
discussed in Section 6.3.2. We also locate this research amidst representation learning
work in reinforcement learning (Zhang et al., 2021).

6.3. Outlook

This section explores various new research directions unveiled by this dissertation. Addi-
tionally, we highlight the current work’s limitations and delineate future research prospects.
Our discussion of future research is structured into three categories: extensions of the
BunDLe-Net architecture, generalisations of the mathematical framework, and other
potential avenues for exploration.

6.3.1. Extensions of BunDLe-Net architecture

Simulating high-dimensional dynamics in the latent space

In all current versions of BunDLe-Net, we used a linear and deterministic transition model
TY at the Y-level (latent space). A linear model was chosen, so we had the simplest
model that would not be prone to overfitting. For our purposes of learning a DCC and
BC embedding of the neuronal data, a linear TY is seen to suffice, as the dynamics are
approximately linear for small differences.

However, working with a linear TY considerably limits the complexity of dynamics
that we can have at the Y-level. While a linear model suffices for ensuring short-term
predictability of the dynamics, it is prone to fail in making long-term predictions. Long-
term predictability will be an important aspect if we want to simulate the dynamics
in the latent space. Apart from having good long term-predictability, we would also
need to allow for probabilistic transitions. From the C. elegans embeddings in 3, we
see several bifurcations in dynamics. Hence, we would also need to supplement TY with
probabilistic layers, such as in a variational autoencoder (Kingma and Welling, 2013).
Thus, endowing TY with nonlinear and probabilistic layers for TY would open avenues to
creating simulations at the latent space.

Simulating the system in latent space would allow us to capture complex dynamics of the
neuronal activity in a much lower dimensional latent space. This is also computationally
much lighter than attempting a full dynamical simulation of a high-dimensional system
such as the brain. Simulations would also enable us to test the robustness of our method
by comparison with real experiments. For example, one could simulate interventions in
the model and check if the resulting dynamics align with interventional experiments.



Embedding subsystems separately

In Section 5.2, we saw how BunDLe-Net’s architecture τ layer can be readily adapted
to embed sub-systems separately. In doing so, the dimensions in latent space acquire
further interpretability since we can relate them to specific components of the system.
In this way, we can study how various subsystems interact with one another in terms of
the dynamics since BunDLe-Net’s embedding gives us a way to visualise the presence (or
absence) of information in a given subsystem. We can potentially use this to study how
information is processed and relayed between various components.

In our proof-of-principle example, we considered three subsystems based on the neuron
category (sensory, motor and interneurons) with a single embedding dimension for each
subsystem. Future work would involve creating ways to visualise and/or quantify results
in systems containing more than three subsystems. One can then ask the question of
how the subsystem embeddings causally interact with each other. Two approaches can be
taken here: one could try to infer causal interactions directly from the transition model
TY . Alternatively, we could engineer TY to match the known rules of how the subsystems
interact (domain knowledge) and learn embeddings consistent with this.

So far, we have discussed cases where we already had clear demarcations of subsystems
of our interest. These demarcations could be on the basis of anatomical, functional
modularity, or simply convention. In general, for unexplored complex systems, it may
not be obvious how to partition them into separate subsystems. To tackle this, future
research can incorporate disentanglement methods along with traditional causal inference
into our architecture to identify modular subsystems in an automated way.

BunDLe-Net on video data

Our work can potentially address questions in the domain of computer vision and the
analysis of complex systems. Specifically, we envision its applicability in the context of
extracting fundamental variables from video frames (pixel data), which has garnered
much attention in recent times (Chen et al., 2022; Kipf et al., 2020). This has widespread
applicability, starting from simple physics-based systems to more general artificially
intelligent computer vision systems. A simple physics-based example would be learning
variables such as position and momentum from the video of an oscillating pendulum.
Learning high-level representations of video data that are dynamically consistent would
enable us to simulate the system, identify important image features and understand how
different image features affect the dynamics.

Our architecture can be readily adapted to this problem setting by using convolutional
layers, which have been seen to excel at learning features from image data. The flexibility
offered by our method is that we do not need to reconstruct the entire original video
frame, as most existing methods do. Rather, we can use a behaviour of interest (or any
target variable) to determine the level of granularity of our embedding. This allows us to
ignore irrelevant details or other processes that co-occur but are not of interest in the
video.



Topological data analysis

Figure 6.1.: Cognitive state transition diagram from BunDLe-Net’s embedding of C.
elegans data

It is evident from Figures 5.3, 5.6 and Chapter 6.1 that the BunDLe Net embeddings
exhibit a definite topological structure. While the rat embeddings took the topological
form of a loop, the C. elegans embeddings showed a more complex topology with several
bifurcations and holes. In both cases, the dynamics were seen to recur along this topological
form.

In Chapter 3 we used each branch of the trajectory to naturally define a set of discrete
cognitive states C1, ..., C5. Our reasoning was that, along each branch of the trajectory,
the dynamics were predominantly deterministic. Probabilistic decisions occurred only at
the bifurcations. Hence, we could simplify our embedding to a Markov transition process
that stochastically switches between deterministic nodes if we take each branch to be
a node in our graph. In our publication, we manually annotated the branches of the
embedding (see left Figure 6.1).

One can automate this process by harnessing Topological Data Analysis (TDA) to infer
the topological structure directly from the embedding. There are a host of existing TDA
methods (Chazal and Michel, 2021; Skaf and Laubenbacher, 2022), but most of them
are for iid data. One could either use a TDA method as it is or refine it to a time-series
setting. Either way, we can determine the topology of our trajectories and thus obtain a
state-transition diagram over the discrete states, as seen in Figure 6.1.

While this is not an extension of the BunDLe-Net architecture, it would supplement
the analysis pipeline and enhance the capabilities of the BunDLe-Net toolbox. In this
way, we would not only obtain continuous-valued embeddings from BunDLe-Net but also
obtain a discrete high-level model. These discrete models can be interpreted as cognitive
states through the NC-MCM framework. Discrete cognitive states offer the advantage of
familiarity within the field of cognitive science, rendering them notably more useful and
easier to interpret.



6.3.2. Generalisations of the mathematical framework

In our current mathematical formalism, we have considered the dynamical setting where
Xt → Xt+1 and settings where transformations τ preserve this causal structure. Future
work may attempt to generalise this formalism to settings with more complex causal
structures. For example, one may have already identified a causal structure at the X-level
(such as the connectome at the neuronal level) and wish to learn a Y-level in such a way
that it respects the original causal structure. By doing this, we would create a set of
high-level causal variables that model causal relationships between real-world entities.

Our current requirement of DOC requires that P (Yt+1|Xt) = P (Yt+1|Yt). This can be
viewed as a conditional independence statement that says: (Yt+1 ⊥ Xt|Yt), which means
that Yt screens off Yt+1 from the X-level. In this way, we obtain a self-contained model
within the Y-level. This reasoning can be generalised as follows.

Consider a given causal structure at the X-level (determined by experiments, for
example). The causal Markov condition (CMC) on the X-level states that every variable
is independent of its non-descendants when conditioned on its parents: Xi ⊥ Xj |Pa(Xi)
where Xj ∈ ND(Xi). This CMC thus yields a set of conditional independence relations
that follow from a graph (identical to the CIs obtained by d-separation) (Scheines, 1997).
Intuitively, the CMC means that given the direct causes, a variable is screened off from all
other variables except its effects. Now, let’s say we want to create a Y-level Yi = τi(Xi)
such that the Causal Markov Condition also holds on the transformed variables at the
Y-level. i.e. Yi ⊥ τj(Xj)|τ(Pa(Xi)) where Xj ∈ ND(Xi), where we use the shorthand
τ(Pa(Xi)) = {τ(Xk) : Xk ∈ Pa(Xi)}. For the CMC to be valid at the Y-level, we would
need to ask the question: What is a sufficient condition or set of assumptions on the
transformation τ such that the Causal Markov Condition on the X-level holds on the
holds Y-level as well?

We would then get a series of conditional independencies (similar to DOC in the dynam-
ical setting). It may then be possible to impose the dependencies in the transformations
through certain architectures, as was possible in the dynamical setting. Generalisations
of our framework have the potential to give general and direct answers to paradoxes
such as (Gebharter and Retzlaff, 2020) and may help avoid causal inconsistencies on
coarse-graining (Weichwald et al., 2015). It would also greatly broaden the application
beyond the time-series chain to causally interacting subsystems of dynamical systems
that allow interventions on parts of the system.

6.3.3. Other research directions

Decision-making in neuroscience

The BunDLe-Net trajectories on C.elegans reveal a mixture of deterministic and prob-
abilistic dynamics. Along a given branch, the trajectory was nearly deterministic, while
the probabilistic choices were confined to the bifurcation regions in the trajectory. We
could use this to study decision-making within neuronal circuits. Notably, we observe
from the embeddings that a bifurcation may occur even before the new behaviour is
externally observed. For example, in Figure 6.1, see the sustained reversal ( ) branching



off into the dorsal turn ( ) and ventral turn ( ). This can indicate that the information
of the decision is present in the neuronal activity even before we observe it externally
as a locomotory behaviour. This can be investigated more rigorously using tools from
statistical testing to validate such claims.

Future research could address questions such as: Are these decisions truly probabilistic,
or are there some hidden factors that influence these decisions? One could conduct
experiments by comparing an embedding of the total neuron population with an embedding
of a subset of neurons. We can then study the effect of the inclusion of these neurons on
the bifurcations, which would then give us information such as whether the given subset
of neurons influences the given decision. Of course, causal statements can only have a
grounding under very specific settings or with interventional experiments, which lead us
to our next direction.

Interventional experiments and BunDLe-Net

While it is still challenging to perform interventions at the neuronal circuit level, there are
an increasing number of experiments that offer this ability. By optogenetic techniques, one
can even stimulate single neurons in a controlled setting (Antinucci et al., 2020; Shemesh
et al., 2017). Interventional experiments offer us a much richer range of possibilities than
purely observational data. Such experiments would be a perfect test bed to check whether
BunDLe-Nets’ embeddings are indeed causal at the level of subsystems. Furthermore,
we could adapt BunDLe-Net to take into account the experimental interventions and
accordingly adjust the embedding. In Chapters 3, 5, we had to rely on the assumption
that the underlying data is Markov. With interventional data, we would not need
this assumption. This would broaden the scope of our algorithm since, with access to
interventional data, we are not bound to the causal sufficiency assumption and, hence,
apply our methods to settings where whole-brain imaging is not always available settings,
viz. in more complex brains like that of zebrafish, mouse, monkey, and ultimately the
human brain.

Future research could also incorporate our representation learning method into closed-
loop settings with neuronal stimulation. This would involve learning the embedding
dynamically and adapting it when we gain new interventional information. This is an
exciting avenue of research where one can try to engineer interventions on the basis of
the embeddings (and vice-versa).

Explainable AI on RL agents

Thus far, we have focussed on understanding brains through our formalism and BunDLe-
Net algorithm. However, we can also apply the same models to understand and explain
the behaviour of artificially intelligent agents. The need for explanations may be crucial
in certain scenarios where human life may depend on AI decisions, such as in self-driving
cars or healthcare applications. While AI has been seen to achieve a range of complex
activities, it currently lacks the ability to explain its actions in terms that are interpretable
by a human being.



It is envisionable that BunDLe-Net can be applied to a reinforcement learning agent
to understand its interactions with an environment. By doing so, we can gain access to
internal representations of the reinforcement learning agent and observe how it processes
information. In place of the behaviour B, we could decode human-annotated actions of
interest. This would then give us a model that preserves information about the actions of
interest while also giving insights into how these decisions are arrived at and at which
point in time such decisions are reached within the agent.

6.4. Conclusion

We commenced this dissertation with a fundamental question: What does it take to
gain an understanding of a complex dynamical system like the brain? This question
is motivated by the enormous amounts of data available from complex systems. Yet,
it is unclear how to use this data to gain a holistic understanding of the system. We
proposed a conceptual framework to deal with this problem and identified the need for
causally-consistent abstractions to gain an understanding of the system. After thoroughly
reviewing existing literature and state-of-the-art methods, we recognised a research gap:
the need for a framework and algorithm to learn causally consistent abstractions from data.
To address this research gap, we broke down our problem into three research questions,
each of which falls into the domain of causality, algorithms and cognitive neuroscience.

To address our first question, that of inferring causal abstractions of dynamical systems
without access to interventions, we develop a mathematical framework. This introduces
the notion of Dynamical Causal Consistency (DCC) of a low-level system with an abstract
model. Within our mathematical framework, we prove a theorem that allows a causal
interpretation of the model derived from purely observational data under specific conditions
(Markovianity), thus answering the first question. Unlike previous works, our framework
also offers an elegant solution of how to learn causally consistent abstractions from data
through our commutativity diagram Theorem.

Based on our mathematical framework, we create a learning architecture called BunDLe-
Net and implement it in a Python toolbox in Chapter 4, thus effectively answering our
second question. BunDLe-Net is presented as a neuronal manifold learning in Chapter 3,
where we use it to learn causal abstractions of neuronal activity of the nematode C. elegans
in a behavioural context. Quantitative evaluations of BunDLe-Net based on behavioural
decoding and autoregressive capabilities show that it outperforms other state-of-the-art
techniques. Our embedding also provides the most visually interpretable embeddings,
which is a direct consequence of being a causal abstraction that preserves behavioural
information. The topology of the trajectory tells us about behavioural decision-making
at the level of neuronal activity. Our analysis in the publication both confirms existing
knowledge and reveals novel insights.

Apart from validating our algorithm on Calcium imaging from C. elegans, we tested
it on different settings, including rat data. Despite encountering spiking neuronal data
and a distinct behavioural paradigm, BunDLe-Net outperforms state-of-the-art methods.
In our subsequent experiments, we employ a novel approach, adapting BunDLe-Net



to embed subsystems separately, thus providing each embedding axis with anatomical
interpretability. Throughout these experiments, BunDLe-Net consistently reveals a clear
topology of the dynamics that is seldom captured by other methods. The underlying
topology of the manifolds provides insights into the encoding and dynamic processing of
information in the brain, along with the decision-making process. Comparable topologies
in the neuronal activities of different individuals within the same setting indicate a
similar information processing approach, with occasional minor individual differences.
BunDLe-Net’s capacity to visually illuminate how neuronal circuits process information
and generate behaviour effectively addresses our third research question.

Our exploration of the research questions has yielded contributions across the domains
of causality, computer science, and neuroscience while opening up numerous avenues for
new research. While our focus was on dynamical systems in neuroscience, there exists
potential for further extension of our work into more generalised settings and the broader
field of artificial intelligence. Starting from basic but vital foundational principles, we
created a mathematical framework, paving the way for developing a class of computational
algorithms. This convergence of mathematical and computational methodologies found
its purpose in the domain of neuroscience, offering insights into the complexities of
real-world neuronal data. Thus, this interdisciplinary work of research has made the long
journey from fundamental principles to mathematical framework to algorithm to practical
application in neuroscience.

Understanding the complexities of the human brain is a challenging pursuit, with no
clear consensus on what constitutes a comprehensive understanding. Amidst the various
approaches, this thesis introduces our unique perspective through causal abstractions. We
view this work as a small but foundational step in contributing to the broader question of
deciphering systems as complex and intricate as the human brain.
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A. Appendix

A.1. Links

BunDLe-Net toolbox
https://github.com/akshey-kumar/BunDLe-Net

Code for experiments - anatomical interpretable latent dimensions
https://github.com/akshey-kumar/BunDLe-Net/tree/main/experimental/anatom
ical_interpretability_of_axes

BunDLe-Net - Rotating plots for all worm embeddings - comparable embeddings
https://github.com/akshey-kumar/BunDLe-Net/tree/main/figures/rotation_co
mparable_embeddings

BunDLe-Net - Rotating plots for all worm embeddings - independent embeddings
https://github.com/akshey-kumar/BunDLe-Net/blob/main/figures/worms_separ
ately/rotation_BunDLeNet_worm_3.gif

BunDLe-Net - Rotating plots for all worm embeddings - interpretable latent dimensions
https://github.com/akshey-kumar/BunDLe-Net/tree/main/figures/rotation_ax
is_decomp

Competing Neuronal Manifold Learning techniques - comparison and evaluation
https://github.com/akshey-kumar/comparison-algorithms

A.2. Evaluation pipeline for BunDLe-Net

This schematic shows the pipeline that we used for the evaluation of BunDLe-Net, and
various other embedding algorithms in Publication 3. The flow of information processing
in the schematic is from top to bottom. The code for the implementation can be found
at https://github.com/akshey-kumar/comparison-algorithms. Note that in the
BunDLe-Net toolbox Chapter 4 however, we are not performing evaluation, but only
embedding. Hence the train and test set of the schematic will be the same dataset here.
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Figure A.1.: Schematic of BunDLe-Net toolbox pipeline and evaluation
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