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Abstract—In the dynamic landscape of artificial intelligence
and machine learning, Reinforcement Learning (RL) has emerged
as a powerful paradigm for training intelligent agents in sequen-
tial decision-making. As RL architectures progress in complex-
ity, the need for informed decision-making regarding training
strategies and related consequences on the software architecture
becomes increasingly intricate. This work addresses this challenge
by presenting the outcomes of a qualitative, in-depth study
focused on best practices and patterns within training strategies
for RL architectures, as articulated by practitioners. Leveraging a
model-based qualitative research method, we introduce a formal
architecture decision model to bridge the gap between scientific
insights and practical implementation. We aim to enhance the
understanding of practitioners’ approaches in RL architecture.
The paper analyzes 33 knowledge sources to discern established
industrial practices, patterns, relationships, and decision drivers.
Based on this knowledge, we introduce a formal Architectural
Design Decision (ADD) model, encapsulating 6 decisions, 29 deci-
sion options, and 19 decision drivers, providing robust decision-
making support for this critical facet of RL-based software
architectures.

Index Terms—Machine Learning, Reinforcement Learning,
Grounded Theory, Software Architecture, Design Decisions

I. INTRODUCTION

In the fast-evolving realm of artificial intelligence and
machine learning, Reinforcement Learning (RL) has emerged
as a potent paradigm, enabling the training of intelligent agents
to make sequential decisions [1], [2]. As RL architectures
progress in complexity and scale, making pivotal decisions
regarding training strategies and related consequences on the
software architecture becomes progressively intricate. Several
authors have attempted to capture patterns and best practices
in training strategies within reinforcement learning architec-
tures [3], [4], [5], [6]. However, these works predominantly
concentrate on applying published patterns or scientific find-
ings. In contrast, we find prevalent industry practices predom-
inantly in grey literature, such as blogs, experience reports,
and system documentation. While these sources offer insights
into existing practices, they often need more systematic archi-
tectural guidance. The reported practices exhibit variation and
reliance on personal experiences, contributing to uncertainty
and risk in RL design. Addressing this necessitates extensive

experience or a comprehensive study of knowledge sources.
We aim to present a more comprehensive and consistent
perspective on current industrial practices, complementing
existing knowledge.

To achieve this, we conducted an in-depth qualitative study
of RL descriptions provided by practitioners, extracting in-
formal information about established practices and patterns in
RL training strategies. Employing a model-based qualitative
research method[7], we systematically analyzed practitioner
sources using coding and constant comparison methods [8],
followed by precise software modeling. This rigorous process
enabled the development of a detailed software model illustrat-
ing established practices, patterns, and their interrelationships.

This paper aims to study the following research questions:
• RQ1 Which patterns and practices do practitioners cur-

rently use for supporting training strategies in RL archi-
tectures?

• RQ2 What are the relations between existing training
patterns and practices? Specifically, which Architectural
Design Decisions (ADDs) are pertinent when designing
RL systems?

• RQ3 What are the influencing factors (i.e., decision
drivers) in architecting RL systems in the eye of the
practitioner today?

This paper makes three primary contributions. Firstly, we
conducted a qualitative study on reinforcement learning ar-
chitectures, analyzing 33 knowledge sources to discern estab-
lished industrial practices, patterns, relationships, and decision
drivers. Secondly, we developed a formal Architectural Design
Decision (ADD) model, encapsulating 6 decisions, 29 decision
options, and 19 decision drivers.

This paper is organized as follows: In Section II, we
describe RL and its role in software architecture. Section III
compares our work with related studies. Section IV presents
the research methods applied in our study and summarizes the
knowledge sources. Section V details our reusable ADD model
on RL architectures. Section VI evaluates and Section VII
discusses our results. Subsequently, Section VIII considers
potential threats to the validity of our study, and Section IX
summarizes our findings.



II. BACKGROUND: RL AND ITS ROLE IN SOFTWARE
ARCHITECTURE

RL, a paradigm for training intelligent agents via trial and
error in sequential decision-making, diverges from supervised
learning by enabling agents to learn optimal strategies through
interactions with an environment and receiving feedback as
rewards or penalties. This process involves formulating the
problem, defining state and action spaces, and establishing a
reward structure. Environment design is crucial, as it shapes
decision-making, actions, and feedback. The RL training
pipeline encompasses environment setup, policy definition,
algorithmic training, hyperparameter tuning, and policy evalu-
ation, emphasizing an iterative approach for continuous perfor-
mance enhancement via parameter adjustments and repeated
training iterations.

Incorporating RL into software architecture is pivotal, as
RL training strategy decisions significantly influence system
design. For instance, choosing between single-agent and multi-
agent RL models impacts system design by shaping commu-
nication channels and coordination mechanisms. Similarly, the
use of model checkpoints and multiple model versions affects
architecture, requiring a checkpoint management system that
influences storage, retrieval, and deployment processes.

III. RELATED WORK

In this section, we provide details on related works and
compare them. We discuss related studies for RL patterns,
practices, and approaches for decision documentation.

Several approaches that study RL patterns and practices
exist: Lee et al. [3] discuss the evolution of RL algorithms,
progressing from single-agent to multi-agent systems. The
focus is on a distributed optimization perspective. Canese
et al. [4] delineate multi-agent algorithms, comparing them
based on critical characteristics for multi-agent reinforcement
learning applications, including non-stationarity, scalability,
and observability. The description also encompasses the most
prevalent benchmark environments utilized to assess the per-
formance of the discussed methods. Zhu et al. [5] present
a framework for classifying state-of-the-art transfer learn-
ing approaches, through which they scrutinize their objec-
tives, methodologies, compatibility with reinforcement learn-
ing backbones, and practical applications. Additionally, they
establish links between transfer learning and other pertinent
topics from the reinforcement learning standpoint, delving
into potential challenges that await further research progress.
Eimer et al. [9] propose adopting best practices from Auto-
mated Machine Learning in RL, including separating tuning
and testing seeds and employing principled Hyperparameter
Optimization (HPO) across a broad search space. While these
works focus on specific aspects of RL, our work contributes
by conducting a comprehensive qualitative study to extract
best practices and patterns within training strategies for RL
architectures. Furthermore, the formal ADD model introduced
in our work provides a structured framework and a focus on
software architecture beyond these related works.

Washizaki et al. [10] present a comprehensive literature
review, revealing 15 software engineering design patterns
tailored to machine learning applications. The work by Sharma
and Bavuluri. [11] involves the identification and analysis
of design patterns and architectural patterns in two soft-
ware applications utilizing Machine Learning (ML) and Deep
Learning techniques, respectively. While these works focus on
design patterns in machine learning applications, the presented
work specifically addresses RL architectures, which are not yet
considered in the form of design patterns or ADDs.

Furthermore, numerous approaches exist for decision doc-
umentation, ranging from service-oriented solutions [12] and
service-based platform integration [13] to considerations of
REST vs. SOAP [14] and big data repositories [15]. How-
ever, these studies are not focussed on training strategies in
RL architectures or similar topics. Warnett and Zdun [16]
introduce a Grounded Theory-based approach, delving into
practitioners’ current understanding and architectural concepts
of machine learning solution deployment. They formulate
seven ADDs and various relationships, modeling twenty-six
decision options and forty-four decision drivers in machine
learning deployment. While other authors have combined de-
cision models with formal view models [17], our contribution
builds on these techniques by incorporating a formal modeling
approach rooted in a qualitative research methodology.

Our study scrutinizes practitioner methods and techniques,
aiming to bridge the gap between theory and practice in train-
ing strategies in RL. The resulting formal model encompasses
ADDs, decision options, practices, drivers, and relationships,
providing valuable insights to aid practitioners in making
informed training strategy decisions in RL.

IV. RESEARCH METHOD

This section discusses the research method followed in this
study and the modeling tool we used to create and visualize
the decision model.

A. Grounded Theory

This paper aims to systematically study the established
practices for training strategies in RL architectures. We follow
the model-based qualitative research method described in [7].
It is based on the established Grounded Theory (GT) [8]
research method in combination with methods for studying
established practices like pattern mining (see e.g. [18]) and
their combination with GT [19]. It involves iterative steps
of interpreting data, aiming to construct a theory rooted in
the collected data. Data analysis is conducted during data
collection rather than after.

Constant comparison is vital in GT, where researchers con-
tinuously compare existing data and concepts with new data to
identify emerging abstract concepts. These new concepts are
then compared with pre-existing ones and the collected data.
We organized concepts into categories (or codes) and linked
them with properties and relationships, guiding subsequent
research iterations.



In iterative cycles, we conducted knowledge-mining proce-
dures, searching for new sources and applying open and axial
coding to identify candidate categories. Continuously compar-
ing codes with the evolving model allowed for incremental
enhancements. The decision of when to conclude this process
is critical in qualitative methods, with theoretical saturation [8]
widely accepted as a stopping criterion. In our study, we
ceased analysis when an additional seven knowledge sources
failed to contribute new insights, demonstrating theoretical
saturation. Although this approach was conservative, our study
had already achieved convergence after twenty-six knowledge
sources. Source selection, detailed in Table I, drew upon our
experience with tools, methods, patterns, and practices encoun-
tered or studied previously. Our methodology encompassed
three coding activities: (1) Open coding involved developing
concepts from data with specific questioning, precise coding,
and minimal assumptions. (2) Axial coding focused on devel-
oping categories and linking data, concepts, categories, and
properties. (3) Selective coding aimed to integrate developed
categories in a core category.

B. Methodology

In Figure 1, we present an overview of our research method
steps followed in this study. To gather practitioner sources,
we utilized standard search engines like Google, StartPage,
Bing, and DuckDuckGo and topic portals such as InfoQ
and DZone. We utilized relevant initial search terms to align
with our work’s focus, such as “training strategies in RL",
"Transfer Learning in RL," "Checkpoints in RL," etc. We
have opted against a Multivocal Literature Review (MLR)
where scientific sources are included, as our research goals
focus on exploring practitioner views specifically. Our initial
data are from the keywords. After the coding process, further
data sources emerged in terms of new keywords or new
referenced sources. The data collection process is repeatable
with scanning and skimming techniques. During open and
axial coding, we studied each included source line by line
in-depth during open coding – for most sources in many
iterations. We chose this method over manually browsing
selected grey literature initially because it is replicable [20].
We employed GT coding practices and constant iterative
comparison to identify concepts, categories, properties, and
relationships. We developed our decision model using our
Python-based modeling tool, CodeableModels1.

For subsequent iterations, we conducted searches using
relevant terms based on the identified topics from previous
iterations, focusing on areas requiring coding and their po-
tential contribution to the model. Practitioner articles needed
to be relevant to the topic to be considered candidate sources
rather than primarily promotional. The authors reviewed and
approved each other’s selection of sources for suitability.

Open coding was utilized to translate conceptual details into
conceptual labels, while axial coding facilitated the identifica-
tion of categories based on recurring, synonymous, and related

1https://github.com/uzdun/CodeableModels
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Fig. 1: Research Method Steps

concepts. Each source underwent line-by-line examination
during both open and axial coding phases, with our thought
processes, conceptual understanding, interpretation, and rea-
soning documented in memos linked to the respective sources,
ensuring the traceability of codes to their origins. Selective
coding then focused on extracting the main ideas of the theory,
refining previous sources as necessary. Formal UML-based
modeling was employed for axial and selective coding, result-
ing in a precise and consistent theory represented as a formal
UML model. Notably, all relevant lines in the knowledge
source were coded, providing an initial interpretation through
open coding, followed by categorization and formalization via
axial coding. Python source code models2 were generated from
the information derived from the sources, facilitating further
analysis and refinement. This iterative process, summarized
in Table I, culminated in the identification of errors and
performance improvements during selective coding, ensuring
the accuracy and robustness of our findings.

V. REUSABLE ADD MODEL FOR TRAINING STRATEGIES
IN REINFORCEMENT LEARNING ARCHITECTURES

In this section, we introduce the reusable Architectural
Design Decision (ADD) model derived in our study (see the
replication package3). Figure 2 shows the metamodel for ADD
models. A decision has a name, a type, and a description.
The metamodel contains the Decisions of the ADD model.
The decision has a Context, which is described by a domain
object that denotes the system part or aspect in which the
decision is applied. Each Decision has Options. All Optios
are Solutions. An Option has Forces, which can have a force
impact. Finally, decisions, solutions, and options can have
Relations. A solution can relate to another solution, but the
relation’s source or target must be an option (relations such
as is-a, uses, can be combined with, typically realized with).
All solutions in the decision must be linked directly or via
other options to a decision. Decisions and options can have
next-decision relations, too. Decisions, contexts, solutions (and
options), forces, and relations are all named elements, meaning
they can have an optional name and an optional description.

The reusable ADD model consists of a single decision
Category, the Training Efficiency and Optimization Strategies
Category, which has six top-level decisions, as depicted in
Fig. 3. A Category can have one or more decisions. All
elements of our model are instances of the metamodel, with
meta-classes such as Decision, Category, etc. We denote the
meta-classes as stereotypes in the model descriptions below.

2See Data/Decisions/Generated Python Models from Sources directory in
https://doi.org/10.5281/zenodo.10624377

3https://doi.org/10.5281/zenodo.10624377
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https://doi.org/10.5281/zenodo.10624377
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TABLE I: Knowledge Sources Included in the Study

ID Description Reference

S1 What is Model-Based Reinforcement Learning? https://bit.ly/3MNg3iR

S2 Reinforcement Learning Meets Large Language Models (LLMs): Aligning Human Preferences in LLMs https://bit.ly/47EbKP3

S3 What Is Better: One General Model or Many Specialized Models? https://bit.ly/47gHtpJ

S4 Multi-Agent Reinforcement Learning with Coordination Graphs https://bit.ly/3sAHkhA

S5 Model-Based RL for Decentralized Multi-agent Navigation https://bit.ly/3sF42VV

S6 EFlow — Racing towards millions of ML flows https://bit.ly/49BARnj

S7 L33T M10y https://sforce.co/3MNfKom

S8 Generalists vs (Micro)Specialists in AI architectures https://bit.ly/49FxXhu

S9 Hierarchical Reinforcement Learning for Robustness, Performance and Explainability https://bit.ly/40CLNx3

S10 Hierarchical Reinforcement Learning https://bit.ly/3R17wLO

S11 Single agent vs multi agent system in AI https://bit.ly/40DwcNJ

S12 Train Agents Using Parallel Computing and GPUs https://bit.ly/49GQNVi

S13 Centralized Training and Decentralized Execution in Multi-Agent Reinforcement Learning https://shorturl.at/fpEN1

S14 Multi-Agent Reinforcement Learning (MARL) and Cooperative AI https://shorturl.at/bciM3

S15 Decentralized Multi-Agent Reinforcement Learning and Game Theory https://shorturl.at/fANQW

S16 What is Hierarchical Reinforcement Learning? https://shorturl.at/tGVW1

S17 The Promise of Hierarchical Reinforcement Learning https://shorturl.at/ekBN1

S18 Saving and Loading your RL Algorithms and Policies https://t.ly/8BaaS

S19 Running RLlib Experiments https://t.ly/DOnRn

S20 Accelerate Training in RL Using Distributed Reinforcement Learning Architectures https://t.ly/JmhJZ

S21 Parallelism Strategies for Distributed Training https://t.ly/Y9P7Q

S22 Deep Reinforcement Learning and Hyperparameter Tuning https://t.ly/FQe2V

S23 Hyperparameter Tuning in Reinforcement Learning is Easy, Actually https://rb.gy/3kj2hq

S24 Transfer Learning in Reinforcement Learning https://rb.gy/xi6q56

S25 RL — Transfer Learning https://rb.gy/a37rhn

S26 Introduction to Experience Replay for Off-Policy Deep Reinforcement Learning https://rb.gy/dh0l5d

S27 Understanding Gradient Clipping (and How It Can Fix Exploding Gradients Problem) https://rb.gy/2rdzuk

S28 How to Improve Your Network Performance by Using Curriculum Learning https://rb.gy/hnhh4d

S29 Curriculum Learning https://rb.gy/wgjs6p

S30 Parameter Sharing and Tying https://rb.gy/enucvc

S31 A Complete Guide to Data Augmentation https://rb.gy/so60h0

S32 Model Compression Techniques for Edge AI https://rb.gy/84ih5l

S33 Distributed training with TensorFlow https://urlis.net/myucb96s
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A. ADD: Model Architecture
Reinforcement learning model architectures are pivotal in

RL-based software architectures. There are various approaches
to model architecture (Fig. 4) [S1-S8, S10, S16, S17], each
with advantages and trade-offs.

One prominent option is the Monolithic Model where a

single, comprehensive RL model is trained centrally to make
all predictions. This approach is akin to having a centralized
decision-maker that handles all aspects of an operation. This
model can capture complex interdependencies effectively, en-
suring a holistic understanding of the environment [1]. This
pattern uses Single-Agent Reinforcement Learning.
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Fig. 3: Reusable ADD Model on Training Strategies in Reinforcement Learning Architectures: Overview

Specialized Models with Multi-Agent-Based Coordination
present an alternative perspective, using Multi-Agent Rein-
forcement Learning. This pattern involves multiple indepen-
dent agents that collaborate to achieve a common goal. Coor-
dination can be facilitated through shared rewards or market-
based systems, allowing for decentralized decision-making and
resource allocation [21].

The Specialized Models with a Coordinator Specialist intro-
duce a hybrid solution, combining the benefits of specialized
agents with the oversight of a central coordinator. This coor-
dinator specialist, often an AI system, possesses a broader
view of the entire process and makes high-level decisions
based on information collected from specialized models. This
architecture aims to strike a balance between distributed coor-
dination and centralized control [2]. This pattern uses Multi-
Agent Reinforcement Learning for training specialized models.

Hierarchical models offer another dimension to RL ar-
chitectures, featuring multiple levels of control. A top-level
controller manages the broader process, while lower-level
controllers handle specific sections or processes. This approach
provides a structured framework for decision-making, enabling
more efficient handling of complex systems [21].

The monolithic model gains its strength from the advantage
of lower complexity as it tackles the intricate challenges
of building and maintaining a comprehensive RL system.
However, a monolithic model’s flexibility may be limited,
especially in dynamic environments requiring rapid adjust-
ments. Adapting to changes may be more challenging due
to the model’s overarching nature. Specialized Models with
Multi-Agent-Based Coordination can enhance performance
and adaptability Specialized models can excel at their des-
ignated tasks, leading to efficient overall system performance
and can lead to more efficient resource utilization. In contrast,
the Specialized Models with a Coordinator Specialist can also
enhance performance. Specialized models and hierarchical
models may offer better scalability as they can be expanded
or adapted to support better modularity. The monolithic model
may offer better interpretability as it provides a unified struc-
ture, making it easier to understand and interpret the decision-
making process. Furthermore, it may support better training

efficiency as it requires less training time and computational
resources compared to more complex architectures.

B. ADD: Reinforcement Learning Model Training

There are several patterns and practices related to RL train-
ing strategies (Fig. 5) [S4-S21]. Single-Agent Reinforcement
Learning is a viable strategy for employing a monolithic
process control model. In this scenario, a singular model
undertakes the formidable task of learning to manage all facets
of production control. The technique of Parallel Training
of a Single Agent is employed to expedite learning without
introducing multiple agents interacting. This involves running
multiple instances of the same task in parallel, a process known
for its efficiency gains in reinforcement learning [22]. On
the other hand, the utilization of Multi-Agent Reinforcement
Learning (MARL) aligns with model architectures involving
specialized models with distributed coordination.

The training methods within MARL encompass distinctive
strategies, such as Centralized Training with Centralized Ex-
ecution, where agents are trained with access to a centralized
controller providing complete environmental state information.
This centralization extends to the execution phase, ensuring
consistent access to global information. Alternatively, Cen-
tralized Training with Decentralized Execution allows agents
to train with centralized information but execute decisions
independently. Additionally, the framework of distributed
MARL involves multiple agents being trained independently
on different computational nodes or devices, collaborating or
competing in a shared environment.

Another practice of RL training strategies is Market-Based
Learning, where agents engage in a market-like environment,
exchanging resources or making decisions based on mar-
ket dynamics. This practice can be combined with Single-
Agent Reinforcement Learning and Multi-Agent Reinforcement
Learning. This often involves mechanisms like auctions, ne-
gotiations, or trading. Another pattern, Hierarchical Rein-
forcement Learning, introduces a hierarchical decision-making
process, where high-level controllers set goals, and lower-level
controllers execute actions based on these goals [21].
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Single-Agent Reinforcement Learning, particularly with par-
allel training, benefits training efficiency through paralleliza-
tion techniques but may face challenges in highly complex
systems. As a structured approach, Hierarchical Reinforcement
Learning enhances scalability and mitigates complexity by
allowing agents to focus on localized adaptations within a
hierarchical framework. Parallel Training of a Single Agent
enhances training efficiency and performance by leveraging
parallelization techniques.

C. ADD: Reinforcement Learning Checkpoints

Checkpoints (Fig. 6) [S18, S19, S26] are a pivotal prac-
tice in RL model development. They serve a multifaceted
purpose, primarily enabling resumable training by saving the
model’s parameters, optimizer state, and related data at specific
intervals. This ensures that in the event of an interruption
or system failure, training can be seamlessly resumed from
the last checkpoint, promoting robustness in the training pro-
cess. Furthermore, Checkpoints play a crucial role in version
control, capturing the evolution of the model at different
stages of development. In collaborative settings, this allows for
easy tracking of changes and facilitates comparison between
different versions. Additionally, Checkpoints are instrumental
in the implementation of early stopping strategies, where the
model’s progress is periodically evaluated on a validation set.
If the model fails to improve over a set number of epochs,
training can be halted, and the model can be reverted to the
checkpoint representing its optimal performance. This practice
aids in preventing overfitting and ensures the development of
a well-generalized RL model. The decision is binary with two
main options: No Use of Checkpoints and Use of Checkpoints.

While this pattern enhances the robustness and efficiency of
workflows, it introduces considerations such as storage and
computation overheads, and complexity in implementation.
Despite these drawbacks, the benefits of preserving the model

state far outweigh the challenges, ensuring a more reliable and
flexible training process.

D. ADD: Transfer Learning in Reinforcement Learning

Transfer Learning [5] (Fig. 7) [S24, S25, S26] involves
leveraging knowledge gained from solving one problem and
applying it to a different but related problem. In the realm of
RL, transfer learning becomes a powerful tool when dealing
with new tasks or environments. The process typically involves
taking a pre-trained model, often trained on a large and diverse
dataset or a different but related task, and adapting it to the
target RL problem.

Transfer Learning is particularly beneficial when the source
task shares some underlying features or patterns with the target
task. It allows the RL agent to leverage relevant knowledge
from the source task, providing a head start in learning the
intricacies of the new environment. This approach is especially
valuable in situations where collecting large amounts of task-
specific data is expensive or time-consuming. This decision
includes two main options: No Use of Transfer Learning and
Use of Transfer Learning.

The utilization of transfer learning presents several advan-
tages that contribute to enhanced efficiency and adaptability.
One key benefit is data efficiency, where transfer learning
leverages knowledge from a pre-trained model trained on a
source task with abundant data. This knowledge encompasses
learned feature representations, diminishing the reliance on
extensive amounts of task-specific data. Resource efficiency is
another compelling advantage, as transfer learning allows for
the reuse of pre-trained model weights instead of training a
model from scratch. This significantly reduces computational
resources, leading to faster model convergence and decreased
hardware demands. The application of transfer learning also
results in improved generalization, as the model extracts high-
level features and representations from the source domain,
enhancing its capacity to generalize to new tasks, even when
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confronted with limited target data. Additionally, transfer
learning facilitates domain adaptation by enabling the model to
adapt to shifts in data distribution. The model identifies key
features and knowledge from the source domain, effectively
applying them to the target domain. These advantages make
transfer learning valuable, especially in scenarios with limited
data and computational resources, enhancing the model’s
adaptability and generalization capabilities.

E. ADD: Reinforcement Learning Distribution Strategy

In reinforcement learning, a resilient Distribution Strategy
(Fig. 8) [S12-S15, S20, S30, S33] is vital for efficiently
managing computationally demanding tasks [23]. Distributed
Reinforcement Learning incorporates strategies like Parameter
Server architectures and Distributed Experience Replay. Actor-
Critic architectures, exemplified by A3C and Ape-X, facili-
tate effective learning through a combination of independent
exploration and a central value function. Parameter sharing
architectures, as seen in D4PG, and policy gradient methods
like PPO and TRPO, can be parallelized for faster training. The
selection among these approaches hinges on factors such as
task complexity and available computational resources [23].
This decision includes two options: No Use of Distribution
Strategy and Use of Distribution Strategy.

From a software architecture perspective, developers often
contend with a variety of frameworks, such as parameter
servers, MPI-like collective communication primitives, and
task queues, to implement RL algorithms effectively (c.f. [24]).

As algorithms become more complex, there’s a tendency to
construct custom distributed systems, where processes oper-
ate autonomously and coordinate without centralized control.
This necessity arises from the irregular computational na-
ture of RL algorithms, challenging conventional distribution
frameworks and prompting developers to integrate various
solutions for efficient implementation. Consequently, a choice
emerges between Custom Distribution Frameworks for Each
RL Algorithm and Versatile Distribution Frameworks, like
Ray/RLlib and TensorFlow, which offer abstraction across
a wide range of RL algorithms. Most RL algorithms today
use a fully distributed style [24]. Distributed Control-Based
Distribution involves implementing RL algorithms with inde-
pendent, replicated processes that coordinate through various
means. This is suitable for algorithms with minimal interaction
and independent components. Logically Centralized Control
Distribution employs a central controller delegating tasks to
parallel processes, simplifying implementation. It suits sce-
narios where coordination is critical, and a single control
point can manage parallel execution effectively. Hierarchical
Parallel Task Distribution extends the logically centralized
model, allowing nested delegation for complex algorithms. It
enhances flexibility and scalability, making it suitable for tasks
with varying levels of parallelism and complex dependencies.

Relating to the choice between Custom Distribution Frame-
works for Each RL Algorithm and Versatile Distribution
Frameworks, Distributed Control-Based Distribution aligns
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with custom frameworks, offering precision for specific algo-
rithm needs [24]. Logically Centralized Control Distribution
and Hierarchical Parallel Task Distribution are usually em-
ployed by versatile frameworks, providing a unified solution
for diverse RL algorithms [24].

Distribution Strategy further enhances resource utilization
by dividing the training dataset among different machines, en-
abling simultaneous processing and aggregation of updates. To
coordinate this distributed effort, sophisticated distributed op-
timization algorithms ensure synchronized parameter updates,
preventing conflicts and promoting convergence. The amalga-
mation of these strategies results in accelerated training times
and scalability, making it particularly beneficial for handling
large datasets and complex reinforcement learning models.
This distributed approach represents a powerful paradigm shift
in the training of RL models, addressing the computational
challenges inherent in the development of sophisticated and
high-performance reinforcement learning systems.

F. ADD: Reinforcement Learning Hyperparameter Tuning

RL Hyperparameter Tuning [9] (Fig. 9) [S19-S23] is a
critical aspect of optimizing the performance and efficiency of
RL models. Hyperparameters are external settings that control
the behavior of the learning algorithm, and finding the right
combination of these hyperparameters is crucial for achieving
optimal results. This decision includes two options: No Use of
Hyperparameter Tuning and Use of Hyperparameter Tuning.

Optimizing hyperparameters in reinforcement learning mod-
els yields multifaceted benefits. The quest for optimal hyperpa-
rameters translates directly into improved model performance,
amplifying the learning capabilities of RL models and also
improving training efficiency. Additionally, the systematic
exploration of hyperparameter space contributes to efficient
resource utilization. By avoiding computational expenditures
tied to suboptimal configurations, these methods ensure that
computing resources are allocated judiciously, optimizing
both time and energy. Furthermore, the time savings afforded
by automated hyperparameter tuning is a crucial advantage. By
automating the tuning process, researchers and practitioners
can redirect their time and effort toward other critical facets
of model development, fostering a more streamlined and
productive workflow.

VI. EVALUATION

We systematically developed an ADD model by closely
aligning with the selected sources as outlined in Table I.
The nomenclature for the ADD model elements was derived
from the terminology employed in these sources, and we
established generic type names based on these element names.
When introducing a new type name, we conducted a thorough
comparison with existing names to ascertain its necessity. As
depicted in Figure 10, the point of theoretical saturation in
Grounded Theory [8] was reached after assimilating twenty-
six sources. Across the initial thirteen sources, frequent adjust-
ments to designated type names were necessary. However, in
the subsequent thirteen sources, such modifications occurred
less frequently. Notably, no further alterations were required
for the remaining sources.

In addressing the RQs, we employ the count of new model
element types and relation types introduced per source as an
indicator of theoretical saturation. This is reasonable, as theo-
retical saturation is reached when the researcher can no longer
uncover fresh concepts or relationships in the data. In our
models, the introduction of new model element and relation
signifies the emergence of novel concepts and relationships.

VII. DISCUSSION

This section discusses our findings for the research ques-
tions from Section I.
RQ1: After analyzing 33 practitioner knowledge sources, we
discovered evidence for 29 patterns and practices currently
used by practitioners for supporting training in RL architec-
tures, which we modeled as ADD decision options. These
patterns and practices are associated with ADDs and were
found to be independent of each other. An exception is the
Monolithic Model and Specialized Models with Multi-Agent-
Based Coordination patterns, which can use the Single-Agent
Reinforcement Learning practice. Another commonality is that
the Specialized Models with Multi-Agent-Based Coordination
and Specialized Model with Coordinator Specialist patterns
are used for training the Multi-Agent Reinforcement Learning.
The adoption of Specialized Models with Multi-Agent-Based
Coordination or Hierarchical Models is motivated by the
pursuit of adaptability and efficient resource utilization, albeit
with increased complexity. These strategies reflect the nuanced
decision-making landscape where practitioners balance archi-
tectural choices with the specific demands of their applications.
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Fig. 10: Number of Elements of Newly-Added Sources

Moreover, Single-Agent Reinforcement Learning is applied
to Monolithic Model, often with Parallel Training of a Single
Agent for efficiency gains. Multi-Agent Reinforcement Learn-
ing involves distinctive strategies like Centralized Training
with Centralized Execution and Centralized Training with

Decentralized Execution, as well as Distributed MARL where
agents train independently on different nodes. Market-Based
Learning introduces market dynamics, while Hierarchical Re-
inforcement Learning features a hierarchical decision-making
process. Furthermore, the implementation of Checkpoints is



crucial for resumable training, version control, and early stop-
ping strategies. The practice of Transfer Learning leverages
knowledge from one task to another. A Distribution Strategy
optimizes RL model training using Distributed Control-Based
Distribution, Logically Centralized Control Distribution and
Hierarchical Parallel Task Distribution. Hyperparameter Tun-
ing is essential for optimizing model performance and training
efficiency by systematically exploring hyperparameter space.
RQ2: Given the central Training Efficiency and Optimization
Strategies category, we identified 6 top-level ADDs for sup-
porting training in RL architectures. Our research revealed
subtle relations between ADDs and decision options. For
instance, Specialized Models with Multi-Agent-Based Coor-
dination leverage Multi-Agent Reinforcement Learning and
allow for decentralized decision-making through collabora-
tion. Single-Agent Reinforcement Learning is employed in a
monolithic setting, where a single model manages all facets
of production control and utilizes Parallel Training of a
Single Agent to expedite learning without introducing multiple
interacting agents.
RQ3: Through our research, we identified 19 influencing
factors (forces) relevant to architecting training in RL archi-
tectures from the practitioners’ perspective. While these forces
tended to be specific to individual ADDs and decision options,
we also recognized some commonalities.

The choice between a Monolithic Model, Specialized Mod-
els with Multi-Agent-Based Coordination and Specialized
Models with a Coordinator Specialist depends on factors such
as complexity, flexibility, performance, adaptability, resource
utilization, scalability, and interpretability. Hierarchical mod-
els provide a structured framework, contributing to decision-
making efficiency. Single-Agent Reinforcement Learning or
Multi-Agent Reinforcement Learning introduces further con-
siderations related to training efficiency, performance, scal-
ability, and modularity. The incorporation of Checkpoints
enhances robustness and efficiency, though challenges like
storage and computation overheads must be considered. Trans-
fer Learning and Distribution Strategy further influences effi-
ciency, adaptability, and resource utilization. Additionally, Re-
inforcement Learning Hyperparameter Tuning plays a critical
role in optimizing model performance, training efficiency, and
resource utilization.

Considering the crucial role of the mentioned forces in var-
ious ADDs and their associated decision options, practitioners
are advised to evaluate their significance early in the archi-
tectural planning phase. This assessment can guide informed
decision-making throughout the system’s development.

VIII. THREATS TO VALIDITY

We discuss the threats to validity based on the threat types
by Wohlin et al. [25].

To enhance internal validity, we included independent prac-
titioner reports alongside our study, minimizing potential bias
from participant awareness during interviews. While this mit-
igates bias, there’s a risk of missing crucial information in
reports that could have surfaced in interviews. To address this,

we extensively examined various sources, exceeding theoreti-
cal saturation requirements. Considering diverse sources mini-
mizes the chance of collectively overlooking vital information.

To mitigate researcher bias, different team members inde-
pendently cross-verified all models. However, a potential threat
to internal validity remains, as biases may persist within the
research team, impacting modeling. Despite potential varia-
tions in modeling approaches by other researchers, our study’s
overarching goal to establish a comprehensive model for all
observed phenomena reduces the significance of this threat.

We acknowledge the potential bias introduced by the ex-
perience and search-based procedure for identifying knowl-
edge sources. However, our research method, which relies
on additional sources meeting inclusion and exclusion crite-
ria rather than a specific distribution, largely mitigates this
threat. This approach aligns with common selection practices
for interview participants in qualitative research studies in
software engineering. Nevertheless, there’s a potential risk of
unintentional exclusion of specific sources, which we address
by forming an author team with extensive field experience and
conducting thorough, broad searches. Despite the diverse range
of included sources, our results likely have generalizability to
various architectures involving training strategies. However, a
threat to external validity persists, indicating that our findings
are specifically applicable to similar types of RL architectures.

We recognize the potential bias resulting from our study’s
restricted data scope and the absence of pertinent architectural
solutions. While our inclusion of numerous sources suggests
potential generalizability to various architectures requiring
training strategies, the threat to external validity persists. Our
findings may only be applicable to similar training strategies
in RL architectures, limiting their generalization to novel or
unconventional RL architectures without model modification.

IX. CONCLUSION

We conducted a literature study using Grounded Theory to
develop a model for training strategies in RL architectures,
encompassing ADDs, decision options, relations, and decision
drivers. Our research centered on supporting training strategies
in RL architectures and addressed three key research questions.
In RQ1, an analysis of 33 practitioner knowledge sources
revealed 29 options (patterns and practices) employed in
RL training. These were modeled as ADD decision options,
demonstrating a high degree of independence. RQ2 delved into
the top-level ADDs for training strategies in RL architectures,
identifying six key ADDs and uncovering subtle relationships
among them, providing crucial insights for RL architectural
planning. In RQ3, we identified 19 influencing factors (forces)
impacting training in RL architecture design, recognizing their
variations across individual ADDs and their options.
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