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ABSTRACT

For an efficiently managed wind farm and wind power generation under adverse
weather, knowledge of meteorological parameters influencing wind speed is of
crucial importance for optimized and improved forecasts. We investigate tempo-
ral effects of wind speed related processes such as wakes within the wind farm
using the Heterogeneous Graphical Granger model. The ERA5 meteorological
reanalysis was used to generate wind farm power production data in Eastern Aus-
tria. We evaluated six different scenarios for the hydrological half-year period,
based on moderate wind speed and varying temporal intervals of low or high ex-
treme wind speed as target variables. This splitting in scenarios allows us to carry
out causal reasoning about possible causes of extreme wind speed in a wind farm.
The discovered set of causal parameters for each of the scenarios provides infor-
mation enabling future early warning as well as for taking management measures
for wind farm power generation management under adverse weather conditions.

1 INTRODUCTION

Recent years have shown a rapid increase in renewable energy generation, especially with the energy
crisis in the past years as well as with the aim of being fossil free in terms of energy generation by
latest 2040. However, with climate change already affecting various parts of daily life including
infrastructure and other sectors, the drivers and causal influence of weather to application sector
such as wind energy need to be investigated. Here, machine learning methods have proven to be very
useful. An important direction of recent ML research is on the interpretability and explainability of
methods. Graphical causal methods possess both properties. Recently, [6] introduced a taxonomy
of causal research questions in climatology. These are types of expert assumptions and properties of
the available time series data to provide a causal language in which researchers can define their study
questions. Graphical Granger causality and its non-linear modifications, due to its ability to express
relationships among temporal data, has been playing an ongoing role in climatological research over
decades [9], [1], [8], [6]. Focusing on the task of power generation in a wind farm and air flow
within, the main question of this contribution was to determine, how the relevant meteorological
parameters influence scenarios of a wind farm performance in Eastern Austria, under extremely
strong, extreme low, and moderate wind scenarios and to compare the differences. For this we
used the heterogeneous Granger causal model [5], allowing the determination of Granger-causal
connections among processes which follow exponential distributions. These do fit better with the
wind speed distriutions in some of the considered scenarios. The objective is to provide the wind
farm operators with more inside knowledge and a better understanding of the conditions leading to
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the extreme wind speed events and to take action to gain the most out of the prevailing conditions
in combination with wind farm management and power generation. The most related work for
causality among p ≥ 3 non-Gaussian processes is the PCMCI method from [7] developed for causal
inference in multivariate time series and applied to climatic data. To our best knowledge we are not
aware of any non-Gaussian multivariate causal inference method applied to a wind farm.

2 METHOD

2.1 HETEROGENEOUS GRAPHICAL GRANGER MODEL

The Heterogeneous Graphical Granger model (HGGM), [2], is an extension of the original bivariate
concept of causality for Gaussian processes defined by [3] to processes from exponential family.
It considers p ≥ 3 time series xi which follow a distribution from the exponential family using a
canonical parameter θi. The generic density form for each xi can be written as p(xi|XLag

t,d ,θi) =

h(xi) exp(xiθi − ηi(θi)) where XLag
t,d = (xt−d

1 , .., xt−1
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the generalized linear models to time series in the following form
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xt−l
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µi denotes the mean of xi and ηti is the t-th coordinate of ηi. The causal inference in (1) can be
solved as a maximum likelihood estimate for βi for a given lag d > 0, λ > 0 (a regularization
parameter), and all t = d + 1, . . . , n with added adaptive lasso penalty function [2]. One can state
that time series xj Granger–causes time series xi for a given lag d, and denote xj → xi, for
i, j = 1, . . . , p if and only if at least one of the d coefficients in j-th row of β̂i of the penalized
solution is non-zero. (β̂i is an estimate of βi). Replacing p penalized linear regression problems
by formulating (1) as a variable selection problem, [5] used the ”minimum message length” (MML)
to find causal connections in the HGGM. In this approach, the minimization of (1) with respect to
β values is done by using the MML principle. The minimum message length principle chooses the
model with the shortest message length as the best explanatory for the data [10]. For the equations
and criterion for computing the causal values explicitly we refer to [5]. We use the MML criterion
only for target variable wind speed (one i). As some climatological processes are better fitted by
exponential distributions than by a Gaussian one, HMML can be beneficial to inference on our data
set. As demonstrated in synthetic and real experiments in the same publication, HMML significantly
improved the causal inference precision of those in [2] especially for short time-series. This is our
case, where for wind speed and the wind related data, a short time series of 96 hour is relevant.

2.2 WIND FARM DATA AND HMML

Data used in this study are synthetically generated wind power production data plus accompanying
meteorological parameters from the ERA5 data [4]. This data set was generated by Geosphere
Austria for a wind farm located in Eastern Austria, consisting of 24 spatial and weather variables
related to 38 individual wind turbine covering 21 years (2000-2020) measured hourly. The following
variables are used: geopotential in m2s−2 (z), boundary layer height measured in m (blh), dew
point temperature at 2m in K (d2m), relative humidity in % (rel-h), wind speed at 135 m in ms−1

(wspeed135m), divergence in s−1 (d), cloud coverage in % (cc), ozone mixing ratio in kgkg−1

(o3), potential vorticity in m2s−1kg−1 (pv), temperature at 135 in K (t135m), relative vorticity in
m2s−1kg−1 (vo). The target variable is wind speed at 135m, corresponding to the hub height of the
turbines. Pressure (surface and at 1000 hPa) was not considered as feature as the idea was to look
into not-so-obvious causal relationships. So one can see the pressure variable more as a confounding
than causal variable to the target and other variables. The aim was to discover by HMML, which
of the meteorological variables have a causal effect on wind speed at 135m, and consequently on
power production. All time series were standardized. Due to the character of wind speed, only short
time series are relevant, so the previous 96 hours including wind speed (the selected scenario) and
the same length of time series for other variables. The HMML was used for each turbine separately
as well as the following six scenarios (at 135m): for a winter and summer hydrological half-year we
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consider low extreme wind, moderate wind and high extreme time periods. Our research objectives
were: Firstly, we identified the intervals of extreme events and moderate wind periods for each
turbine in the last 21 years (2000-2020) in the Andau wind farm. Then we applied HMML to find
corresponding β values for each meteorological parameters indicating how strong (if any) is the
causal relation of this parameter to wind speed in a concrete scenario and turbine. Further, to make
the values of β reliable over a period of 21 years, we executed a statistical validation of these values
by averaging the values over 21 years. Splitting experiments to six scenarios allows us to carry out
causal reasoning about the causal values obtained by HMML in these scenarios. Concretely, we
compared the β values of the variables over the scenarios, evaluated the differences among the β
variables in different scenarios and interpreted the plausibility of the results. To make the results of
HMML user-friendly for the wind power producers, we visualized the individual causal variables on
each of the 38 turbines in the farm.

2.3 SCENARIOS AND SELECTION OF THEIR TIME INTERVALS

As extreme events we consider a wind speed of ≥ 15m/s (for this value is a wind turbine producing
rated power before being turned off at higher wind speeds) as well as a wind speed of ≤ 2 m/s as
minimum value of wind speed. Interval of 6 m/s ≤ ws ≤ 8 m/s is considered a moderate wind.
For data pre-processing we first search for all of the occurrences of low/high wind or wind that
falls within the ’moderate’ category as denoted above. Then two suitable time intervals of 96 hours
are selected for the three scenarios in all years, separately for the summer and winter half-years as
illustrated in Table 1. The goal was to have at least 10% instances of extreme/moderate wind in each
96 hour intervals. Table 1 specifies wind-speed scenarios in time intervals in 2000.

half-years in 2000 Winter Summer
High extreme wind 01-16 - 01-19 10-28 - 10-31
Low extreme wind 01-01 - 01-04 07-22 - 07-25
Moderate wind 12-02 - 12-06 06-16 - 06-20

Table 1: Scenarios and time intervals considered for year 2000

2.4 BEST FITTING EXPONENTIAL DISTRIBUTION AND MAXIMUM LAG OF TIME SERIES

The best fitting distribution of wind speed in each of the intervals is found by the residual sum of
squares (RSS) and Kolmogorov-Smirnov test. The tested exponential distributions were Gaussian
distribution, inverse Gaussian distribution and gamma distribution.

Figure 1: Wind speed in year 2007

Different scenarios may have different best fit-
ting distributions, as can be seen by the exam-
ple in Figure 1 of wind speed w.r.t. time is
shown for year 2007. Here, for both extreme
scenarios, wind speed followed a Gaussian dis-
tribution whereas wind speed for the moderate
wind scenario followed a gamma distribution.
The maximum lag d in HMML was determined
by the AIC information criterion. We created a
number of AR(d) autoregressive models with
different d and chose that with minimal AIC
value.

2.5 EXPERIMENTS AND STATISTICAL VALIDATION OF CAUSAL VALUES

Our implementation in Python together together with implementation of HMML can
be found under https://anonymous.4open.science/r/Wind_farm_HMML--20BB/
README.md where also all figures of the wind farm for each scenario can be found. Method
HMML was used with the genetic search algorithm HMMLGA. We run HMML on the six scenarios
and provide a list of β values. The lists corresponds to the variables (11 variables in our case) which
we consider to find causal connection to the target variable wind speed at 135m. Each of the lists
contains d entries, where d corresponds to the lag value we have determined for each scenario. The
lag d varied from 2 to 10 for various scenarios. After the β values for each scenario were found,
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we computed βi-proportionality = maxk=1,...,d{βik}/(
∑11

j=1(maxk=1,...,d{βj,k}) which can be
understood as the relative strength of causality of i-th variable with respect to all 11 variables. To
achieve a statistical validity of the causal values, for all scenarios, each turbine and each variable i
we then calculate the corresponding arithmetical mean of βi-proportionality over all 21 years.

3 RESULTS AND THEIR INTERPRETATION

Each turbine in a scenario has been assigned a list of βi proportionality values of the most significant
causal variables for wind speed and a corresponding pie diagram. To visualize this information in
a farm, we created 38 interactive pie charts for each season using matplotlib pie charts. The end
output are six figures corresponding to the seasons, see an example for turbine 2 in Figure 2. As
an interactive feature or our python code, when a computer mouse enters the pie chart, function
hover(event) is triggered which shows a detailed pie chart with its respective beta values. When
the mouse leaves the event, the function leavePie(event) is triggered, which sets the pie chart
back to its original form. Different colors and a proportional size of chunk which corresponds to
its beta value are used to discriminate against other variables. The visual outputs of the farm with
the causal values for each scenario yield a lot of information to carry out causal reasoning. For
example, one could pose a question, about spacial interactions, namely how the values of causal
variables differ from one turbine to another one in a concrete scenario.

Figure 2: Interactive pie chart

One can see from Figure 3 that the causal values in
pies differ for turbines, e.g. cc (in pink) has differ-
ent values for turbine 2 and 26. This can be inferred
from the visual results. Additionally, the most in-
fluential variable is denoted at each turbine. Another
question can be to compare how do the causal values
of a particular turbine differ in various scenarios. For
the objective of this work and due to the page limit
we decided to compare average βi-proportionality
values for the whole farm of high extreme scenario
to moderate wind speed scenario for summer hydro-
logical year. The values of the three most signifi-
cant variables for each scenario can be found in Ta-
ble 2. Figure 3 illustrates the farm in high wind
extreme scenario in summer (only a half of pies vi-
sualized for readability reasons), the moderate and
low wind scenarios can be found in Appendix as well as the beta values for high wind (Table 3).
All figures for all scenarios and turbines and tables of βi-proportionality values are available under
https://anonymous.4open.science/r/Wind_farm_HMML--20BB/README.md.

Wind speed Winter half-year Summer half-year
High extreme wind rh (0.184), vo (0.153), cc (0.127) d (0.261), vo (0.231), rel-h (0.134)
Low extreme wind cc (0.212), rel-h (0.206), d (0.154) d (0.241), cc (0.212), rel-h (0.178)
Moderate wind d (0.363), vo (0.216), rel-h (0.193) cc (0.374), rel-h (0.183), d (0.141)

Table 2: Three most significant causal variables and their average values for ws135 for each scenario.

Table 2 indicates that mainly the changes in relative humidity (rel-h), in the winter season and the
dew point (d) in summer combined with vorticity (vo) can be used as indicators beforehand for
extreme/higher wind speed occurence whereas for the low wind scenarios the cloud cover (cc) is a
higher indicator in winter and dew point for summer cases. In general, vorticity, cloud cover, and
one of humidity indicators (dew point, relative humidity) are plausible indicators for extremes and
cloud cover, dew point and relative humidity are can be used for below production wind speeds.

The variations within the wind farm can be explained, to a large extend, by wake effects caused
by the turbines upfront the main wind direction and the position of the respective turbines within
the wind farm. Additional effects include the land-use structure (e.g. lakes, agriculture, forest) and
especially the build-area.
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Figure 3: The farm in high wind extreme scenario in summer

4 CONCLUSIONS

In this work we demonstrate that HMML algorithm can detect causal meteorological variables for
extreme wind speed using a wind farm in Eastern Austria as example. ERA5 reanalysis data was
used to generate the synthetic wind farm data using real wind farm data as proxy. Results of the
algorithm provide good indicators for the six selected scenarios, high, medium, and low wind in
two seasons and can be used to advice wind farm operators. Using this knowledge combined with
forecast planning of wind turbine non/production for those six scenarios can be made easier and
early onwards. Furthermore, what-if scenarios for repowering of existing wind farms or planning of
new wind farms can be calculated and used in the planning process. As next steps, the application
to both operational weather forecasting for wind farm operators as well as to climate scenarios to
detect future changes in operating conditions, is anticipated.

ACKNOWLEDGMENTS

This work was funded in part within the Austrian Climate and Research Programme (ACRP) project
KR19AC0K17614.

REFERENCES

[1] ATTANASIO, A., PASINI, A., AND TRIACCA, U. Granger causality analyses for climatic
attribution. Atmospheric and Climate Sciences 2013 (2013).
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A APPENDIX

Table 3 contains the βi- proportionality values for each variable under the high wind speed scenario
in summer, corresponding to Figure 3.

Table 3: βi-proportionality values for scenario winter half-year, high wind speed

βi proportionalities of all variables
Turbines z bhl d2m rel-h ws135m d cc o3 pv t2m vo
T0 0.051 0.000 0.010 0.162 0.148 0.230 0.129 0.000 0.050 0.000 0.220
T1 0.051 0.000 0.014 0.112 0.144 0.247 0.129 0.000 0.000 0.000 0.302
T2 0.100 0.000 0.000 0.116 0.112 0.222 0.223 0.000 0.000 0.000 0.228
T3 0.050 0.000 0.000 0.224 0.067 0.293 0.160 0.000 0.000 0.000 0.207
T4 0.050 0.000 0.000 0.212 0.143 0.216 0.128 0.000 0.000 0.016 0.234
T5 0.050 0.000 0.018 0.066 0.188 0.220 0.128 0.000 0.000 0.050 0.280
T6 0.051 0.000 0.020 0.113 0.138 0.318 0.129 0.000 0.050 0.000 0.181
T7 0.100 0.000 0.023 0.113 0.129 0.221 0.127 0.000 0.000 0.007 0.279
T8 0.050 0.000 0.021 0.113 0.138 0.329 0.129 0.000 0.000 0.000 0.220
T9 0.050 0.000 0.073 0.113 0.136 0.237 0.127 0.000 0.000 0.000 0.263
T10 0.050 0.000 0.073 0.114 0.137 0.293 0.127 0.000 0.000 0.050 0.157
T11 0.150 0.000 0.000 0.114 0.109 0.332 0.127 0.000 0.000 0.000 0.168
T12 0.100 0.000 0.020 0.114 0.139 0.292 0.127 0.000 0.050 0.000 0.158
T13 0.050 0.000 0.017 0.113 0.142 0.283 0.178 0.000 0.050 0.001 0.165
T14 0.050 0.000 0.000 0.120 0.109 0.277 0.171 0.000 0.050 0.000 0.223
T15 0.050 0.000 0.000 0.114 0.110 0.248 0.226 0.000 0.000 0.000 0.251
T16 0.100 0.000 0.015 0.113 0.194 0.249 0.128 0.000 0.000 0.000 0.200
T17 0.050 0.000 0.001 0.160 0.113 0.247 0.176 0.000 0.050 0.000 0.203
T18 0.050 0.000 0.000 0.114 0.109 0.300 0.127 0.050 0.000 0.000 0.250
T19 0.000 0.000 0.000 0.158 0.065 0.312 0.128 0.050 0.050 0.000 0.239
T20 0.050 0.000 0.000 0.113 0.109 0.293 0.128 0.000 0.000 0.000 0.307
T21 0.100 0.000 0.000 0.112 0.109 0.238 0.128 0.000 0.050 0.000 0.262
T22 0.050 0.000 0.006 0.162 0.153 0.235 0.129 0.000 0.000 0.050 0.214
T23 0.000 0.000 0.006 0.163 0.153 0.234 0.178 0.000 0.000 0.050 0.215
T24 0.050 0.000 0.000 0.202 0.118 0.226 0.080 0.000 0.000 0.000 0.324
T25 0.050 0.000 0.000 0.153 0.118 0.291 0.079 0.000 0.050 0.000 0.259
T26 0.050 0.000 0.000 0.112 0.109 0.291 0.129 0.000 0.050 0.050 0.208
T27 0.050 0.000 0.017 0.066 0.190 0.263 0.170 0.000 0.000 0.007 0.237
T28 0.050 0.000 0.014 0.113 0.145 0.254 0.128 0.000 0.050 0.000 0.246
T29 0.100 0.000 0.000 0.154 0.155 0.287 0.078 0.000 0.050 0.014 0.163
T30 0.100 0.000 0.000 0.113 0.150 0.255 0.128 0.000 0.050 0.009 0.195
T31 0.001 0.000 0.012 0.119 0.196 0.227 0.171 0.000 0.050 0.001 0.223
T32 0.050 0.000 0.050 0.117 0.109 0.283 0.174 0.000 0.000 0.000 0.217
T33 0.050 0.000 0.003 0.153 0.151 0.228 0.128 0.000 0.000 0.065 0.222
T34 0.100 0.000 0.000 0.153 0.154 0.204 0.079 0.000 0.000 0.064 0.246
T35 0.100 0.000 0.002 0.153 0.166 0.225 0.080 0.000 0.000 0.000 0.274
T36 0.050 0.000 0.001 0.203 0.167 0.230 0.080 0.000 0.000 0.000 0.269
T37 0.050 0.000 0.000 0.153 0.109 0.299 0.129 0.000 0.000 0.010 0.250
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Figure 4: The farm in moderate wind speed scenario in summer

Figure 5: The farm in low wind extreme scenario in summer
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