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Abstract—Machine Learning Operations (MLOps) is the prac-
tice of streamlining and optimising the machine learning (ML)
workflow, from development to deployment, using DevOps (soft-
ware development and IT operations) principles and ML-specific
activities. Architectural descriptions of MLOps systems often
consist of informal textual descriptions and informal graphical
system diagrams that vary considerably in consistency, quality,
detail, and content. Such descriptions only sometimes follow
standards or schemata and may be hard to understand.

We aimed to investigate informal textual descriptions and
informal graphical MLOps system architecture representations
and compare them with semi-formal MLOps system diagrams for
those systems. We report on a controlled experiment with sixty-
three participants investigating the understandability of MLOps
system architecture descriptions based on informal and semi-
formal representations.

The results indicate that the understandability (quantified by
task correctness) of MLOps system descriptions is significantly
greater using supplementary semi-formal MLOps system dia-
grams, that using semi-formal MLOps system diagrams does not
significantly increase task duration (and thus hinder understand-
ing), and that task correctness is only significantly correlated
with task duration when semi-formal MLOps system diagrams
are provided.

Index Terms—controlled experiment, empirical software en-
gineering, empirical study, distributed system modelling, dis-
tributed system architecture, understandability, machine learn-
ing, MLOps

I. INTRODUCTION

A. Problem Statement

MACHINE Learning Operations (MLOps) is centred
around rapid deployment and is similar in many re-

spects to DevOps (software development and IT operations)
but also introduces additional machine learning (ML)-specific
activities [1]. It is a multidisciplinary engineering practice that
intersects ML, software engineering, and data engineering.
MLOps involves specific practices and concepts with respect
to end-to-end activities such as conceptualisation, implemen-
tation, monitoring, deployment and scaling of ML prod-
ucts. It also utilises continuous integration/continuous delivery
(CI/CD), workflow orchestration, reproducibility, data, model
and code versioning, continuous training, and monitoring,
among other practices [2]–[4]. While conducting previous re-
search [3], [4], we noticed that MLOps system descriptions in
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grey literature are typically composed of informal textual de-
scriptions and informal graphical system diagram representa-
tions. Based on our observations, the textual descriptions vary
considerably in tone, detail, and content and do not always
closely correspond to the accompanying informal MLOps
system diagrams. We noted that the diagrams themselves do
not usually follow consistent standards or schemata and may
exhibit any of the following characteristics:

• Inconsistencies in, e.g. terminology, relationships be-
tween elements, and visual features.

• Lack of standardisation of, e.g. terminology, relationships
between elements, and visual features.

• Lack of clarity.
• Varying levels of detail or abstraction.
• Omission or inclusion of relevant or irrelevant system

aspects, technologies, and other details.
Indeed, in practice, system architecture descriptions are

customarily of an informal nature [5]–[7], such as ad-hoc box-
and-line or arrow diagrams, and this appears to be the case
still, despite the prevalence of modelling languages such as
the Unified Modeling Language (UML) [8] or domain-specific
languages (DSLs) for specifying architectures [9].

B. Research Objectives

We conducted an empirical study on the understandability
of MLOps system descriptions. Our study aimed to determine
whether and to what extent the provision of additional, semi-
formal MLOps system diagrams improves understanding of
MLOps system descriptions. In software architecture, informal
system diagrams are graphical representations of a software
system or its components that are typically created with
a focus on conveying high-level or conceptual information.
These diagrams are often intended for quick communication
and understanding among team members and stakeholders or
initial design discussions. Informal diagrams may lack strict
adherence to standardised notations, and they can be hand-
drawn, sketched, or created using simplified drawing tools.
Their primary purpose is to illustrate the system’s structure
and major components without going into exhaustive detail.
Semi-formal system diagrams, on the other hand, are more
rigorous and structured graphical representations of a software
system. They follow standardised notations and conventions,
and they are often used for detailed design, documentation, or
analysis purposes. Semi-formal diagrams provide a compre-
hensive and unambiguous depiction of the system, including
its architecture, components, relationships, and behaviours.
These diagrams are typically expected to adhere to specific
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Fig. 1: Redrawn excerpt of a build pipeline from an informal
MLOps system diagram.

modelling languages, such as UML [8], or specialised no-
tations tailored to software architecture. They can be used
for precise communication analysis and as a basis for further
system development and implementation.

We deemed UML a good choice for the visual system
representations in this study since it is familiar, widely un-
derstood, and has been utilised in the related work described
in Section II. UML activity diagrams for the pipeline repre-
sentations were ruled out because they were not considered
precise or detailed enough for the study. Despite the variable
nature of the formality of UML diagrams (see Rumpe and
France [10], Whittle [11] and France et al. [12]), ours still
create an improved commonality of communicating architec-
ture decisions and intent since they are UML representations
generated from coded models based on a precisely defined
MLOps metamodel that ensures no variability or ambiguity in
the models themselves.

Figure 1 depicts a redrawn excerpt of a build pipeline from
an example MLOps system1 and the figure in Appendix B
shows the informal diagram for this pipeline excerpt. Please
note that, like the UML-based diagram, the informal excerpt
does not include any aspects unrelated to the build pipeline.
In the original informal diagram, all pipelines and components
are depicted in a single diagram, whereas our UML-based
diagrams are separated into multiple component and pipeline
diagrams. Aspects not present include the Azure Blob Storage
Component, the Azure Machine Learning Pipeline endpoint,
the Azure Machine Learning retraining pipeline, and the Azure
DevOps build pipeline.

As in our previous work [13]–[15], we defined the exper-
iment goal using the Goal Question Metric [16] template as
follows: analyse MLOps system descriptions for the purpose
of their evaluation with respect to their understandability
from the viewpoint of both novice and moderately advanced
software architects, designers or developers in the context
(environment) of the Advanced Software Engineering (ASE),
Distributed Systems Engineering (DSE) and Software En-
gineering 2 (SE2) courses offered by the Research Group
Software Architecture2 at the University of Vienna3.

We conducted an empirical study (to our knowledge, the
first of its kind) as a controlled experiment on the under-

1Source for the complete diagram from which we took the excerpt: https:
//tinyurl.com/mlops-system-ma

2https://swa.cs.univie.ac.at
3https://www.univie.ac.at

standability of MLOps system description representations,
incorporating our novel, semi-formal, UML-based MLOps
system diagrams. Our main contribution is the result of the
controlled experiment: that the understandability (quantified
by task CORRECTNESS) of MLOps system descriptions is
significantly greater using our semi-formal MLOps system di-
agrams, that using semi-formal MLOps system diagrams does
not significantly increase task DURATION (and thus hinder un-
derstanding), and that task CORRECTNESS is only significantly
correlated with task DURATION when semi-formal MLOps
system diagrams are provided.

Our research makes significant contributions to the MLOps
field by advocating the adoption of semi-formal diagrams
as a best practice to enhance task correctness estimation.
These findings not only catalyse further scientific investiga-
tions into the cognitive aspects of correctness estimation but
also offer practical guidance to MLOps practitioners. They
underscore the potential advantages of incorporating semi-
formal diagrams and underscore the significance of realistic
self assessment. Our results highlight the value of visual
representations in improving correctness estimation.

Moreover, they have the potential to reshape the way soft-
ware architecture is taught in university courses. Leveraging
semi-formal MLOps system diagrams can empower educators
to enhance learning outcomes, address prevalent misconcep-
tions, accommodate diverse learning styles, and facilitate a
deeper comprehension of intricate architectural concepts. Fur-
thermore, our study encourages a more comprehensive and
interdisciplinary approach to teaching software architecture,
aligning it with the evolving needs of the industry.

Overall, our work contributes towards a solid foundation
for further empirical work in the domain of architectural
modelling of MLOps systems and represents a positive initial
step towards determining how helpful semi-formal MLOps
system diagrams may be in understanding MLOps system
architecture.

We structured the rest of this paper as follows: Section II
describes related work and compares it to this study. Section III
covers the guidelines and design of our study, describes
the participants, the materials and the experiment tasks, our
dependent and independent variables, our hypotheses and the
research question. Section IV documents the preparation and
procedure of the experiment sessions. Section V describes the
processing and analysis of the dataset resulting from the exper-
iment sessions. We also discuss the participant demographics
and descriptive statistics for the experiment data before testing
our hypotheses and addressing our research question based
on the experiment results. Section VI discusses our results,
including their interpretation and the threats to the validity
of our study. We conclude in Section VII by discussing the
impact and relevance of our study, as well as suggestions for
future work that could build on our study.

II. BACKGROUND

A. Background and Motivation

Comprehending ML systems is notably more challenging
than traditional software architecture due to the intricate inter-
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play of software development, data science, and data engineer-
ing [17]. Various authors have identified significant challenges
in the software structure of ML applications, such as complex
software modules and their dependencies [18], technical debt
and anti-patterns [17], and design issues in ML models, such
as model selection and reuse [19], [20]. These challenges
highlight the intricacies of organising and decomposing ML
systems, which have led to the introduction of Automated
ML [21], [22] and MLOps [2], [23] as a sub-discipline of
DevOps [24] and Continuous Delivery [25]. It has been shown
in various studies of open source systems [26], scientific liter-
ature [27] and interviews with practitioners [28] that DevOps
and Continuous Delivery lead to a complex deployment and
delivery architecture that is hard to comprehend and needs to
be understood in addition to the software architecture of the
system to be deployed. This problem worsens for ML systems
deployed with MLOps as, in addition to the complex model
and system deployments, component architectures, and CI/CD
pipeline behaviours, the ML pipeline behaviours and ML-
specific components need to be understood [2], [23], [29]. For
example, consider a model retraining step in a CI/CD pipeline
that invokes a model retraining ML pipeline and must work
harmoniously with model versioning and registry services. In
a survey of case studies, Paleyes et al. identified significant
practical challenges in deploying machine learning systems
specific to ML architecture [30]. Some relate to tools, services,
and architectures used in the deployment architecture; others
relate to the potential disconnect between ML/data science
experts and software engineering practices.

We investigate whether the provision of semi-formal, UML-
based MLOps system diagrams can enhance the clarity and
comprehensibility of these systems, potentially bridging the
gap between these two domains and thereby enhancing overall
MLOps efficiency. Our research motivation is based on observ-
ing inconsistencies in existing MLOps system descriptions and
the complete lack of relevant studies, including controlled ex-
periments, focusing on studying the understandability of semi-
formal MLOps system models. We are unaware of any other
empirical study that systematically investigates the understand-
ing of system architectures based on informal textual descrip-
tions and informal graphical system diagrams compared to
semi-formal model diagrams in the context of MLOps. This
study unifies these aspects and, to our knowledge, is the first
study of its kind. While the work described below is relevant
to various degrees, the studies differ in several respects from
ours. By conducting this study, we wish to contribute towards
building a scientific body of work in a new area of research.

Our study results confirm our suspicions and show that
the understandability of informal system descriptions used
in practice could be improved. In summary, our motivation
to study whether semi-formal models can enhance MLOps
system description understandability is that MLOps systems
are significantly more complex than ordinary DevOps-based
systems and need to be understood by software engineers and
relatively untrained ML/data science experts.

B. Experimental Studies

Various studies have utilised controlled experiments, but we
could not source any involving MLOps. The studies mentioned
below are provided for comparison because they are similar
to ours to varying degrees in describing user experiments
involving software systems. However, they do not focus on
MLOps, do not compare semi-formal and informal MLOps
system models and descriptions, or do not focus on quantifying
user understanding of system properties and behaviour.

Allodi, Cremonini et al. [31] compare how accurately secu-
rity professionals and students with further technical education
could assess the severity of software vulnerabilities based on
various attributes, totalling seventy-three participants. Their
focus was not on comparing different system description
methods but on participants’ background knowledge and ed-
ucation. One major difference in methodology in this study
is that participants were divided into three groups - students
with a BSc in information security enrolled on an MSc in
information security degree course, students enrolled on an
MSc in computer science course and security practitioners.
Another difference is that they specifically recruited students
with no professional expertise.

Allodi, Biagioni et al. [32] also conducted a controlled
experiment with twenty-nine MSc students to determine how
difficult it is for participants to assess system vulnerabilities
when security requirements change. Thus, their comparisons
were based on system requirement variations rather than
modelling variations. Unlike our study, they opted for a within-
subject design, but similarly, they formulated hypotheses,
which were then tested using statistical methods.

Labunets et al. [33] report on a controlled experiment with
twenty-nine MSc students to compare participants’ perceptions
of visual versus textual methods for security risk assessment
in the context of effectiveness. This experiment is relevant to
our study since it compares textual and visual representations.
Still, it does not focus on the differences between semi-formal
and informal representations, nor does it focus on system
understanding. Also, it is concerned with security aspects
rather than MLOps. Regarding methodology, the authors chose
a within-subject design, unlike our study. They used Grounded
Theory during a qualitative analysis phase of their process to
explain the possible difference between the two methods of
being considered. This is interesting because we also used
Grounded Theory in our previous work upon which this study
was partially based (see [3], [4] and our research process
in Section 2). They translated their research questions into
hypotheses that were statistically tested, which is another
methodological similarity to our approach.

A more closely related study is described by Sharafi et
al. [34], who conducted an experiment with twenty-eight
participants and studied the impact of structured textual versus
graphical representations on efficiency while completing re-
quirement comprehension tasks. This study has some similar-
ities with ours. It featured graphical system representations and
measured CORRECTNESS and task DURATION. Still, it differed
because it emphasised visual effort, the impact of native
language, education and gender. It also utilised eye-tracking
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and focused on requirements rather than MLOps systems. A
difference in methodology was the use of a within-subject
design, but similarities were the definition of hypotheses and
the statistical testing of the hypotheses using R.

A similar study to ours involving a controlled experiment
is that of Heijstek et al. [35]. They conducted a controlled
experiment with forty-seven participants from industry and
academia to study whether visual or textual artefacts are
more effective at communicating architectural software design
decisions to software developers. They used UML representa-
tions for the diagrammatic representations and informal textual
descriptions. They found that neither diagrams nor textual
descriptions proved to be significantly more efficient in terms
of communicating software architecture design decisions, that
diagrams are not more suited to convey design decisions of
a topological nature, and that participants who predominantly
used text scored significantly better than their counterparts.
They also found that diagrams were not able to alleviate
the difficulties non-native English speaker participants had in
extracting information from the documentation. Some differ-
ences with this study compared to ours are that all participants
assessed both representations (i.e. a within-subject approach
was followed), the focus was not MLOps, and data was col-
lected by filming participants and encouraging them to think
aloud. A similarity to our approach included the definition
of hypotheses that were statistically tested and the use of
questionnaires.

Another similar study is the controlled experiment involv-
ing student participants by Jolak et al. [36]. Similarly, they
compared textual and graphical (UML) representations. They
focused not just on understanding but also on explainability,
recall and communication. Their work was in the context
of a mobile application, which contrasts with the focus of
our study, which is MLOps. Like our study, they followed
a between-subject design to minimise learning and transfer
effects, gathered descriptive statistics to understand the data,
and statistically tested their hypothesis. Their results spoke in
favour of the graphical design decisions as opposed to the
textual representations.

C. Studies on System Properties and Behaviour

There is much related work focusing on quantifying system
properties and behaviour or providing alternatives or enhance-
ments to UML, which bear similarities to our study, but again
lack a focus on MLOps. Some notable examples are described
below. These studies focus on quantifying architectural proper-
ties rather than user understanding of system descriptions, even
if the properties were related to understanding. In contrast, we
are interested in comparing semi-formal and informal MLOps
system descriptions.

The selected studies described below propose various meth-
ods to model system architectures, provide alternatives or
enhancements to UML, or derive improved architectures. Al-
though some of the artefacts resulting from these contributions
may be generally applicable, we are explicitly focused on
MLOps system architecture. Nevertheless, these studies are
still related to our work since our study involves the devel-

opment of a Python-based metamodel for modelling MLOps
systems and the subsequent generation of UML-based model
visualisations.

Pradella et al. [37] describe a new temporal logic language
that combines UML notation with a formal semantics and
provides a formal notation, allowing developers to model non-
critical system aspects in either UML or using the provided
formal notation. Modelling system aspects is relevant to our
work, as is the provision of complementary formal or semi-
formal notation (since we also used our own existing DevOps
metamodels for modelling systems in UML in this study
and extended them with MLOps-specific metamodel types);
however, the focus of their work was not within the context
of understandability and MLOps.

Lavazza et al. [38] describe an approach whereby developers
model systems in UML, and the models are then automatically
translated into a formal notation which can subsequently be
used to verify various properties of systems such as safety,
utility, and liveness. They propose enhancements to UML and
provide a formal semantics for some UML constructs. Again,
the focus on system properties and formal or semi-formal
modelling is relevant, but this study did not specifically focus
on understandability or MLOps systems.

Rodano and Giammarco [39] use a general logical notation
to formalise architectural models of systems and quantify
system characteristics and quality attributes (such as perfor-
mance) to ascertain the quality of architectural models (as
opposed to quantifying user understanding). They suggest that
their general notation can be combined with many system
architecture tools and adapted to suit specific architectural
frameworks or projects rather than MLOps systems directly.

Li and Horgan [40] discuss systematic and quantified archi-
tectures of software systems and present a method to construct
formal models of software architectures and simulate them
to predict behaviour, reliability, and performance. They then
use the quantified simulation results to evaluate alternative
software architectural designs. This is interesting since we
are also concerned with system properties and behaviour.
However, we would like to determine user understanding of
systems with informal text and semi-formal architecture view
descriptions rather than generate alternative architectures and
predict system qualities.

III. EXPERIMENT PLANNING

A. Research Process

Figure 2 overviews our overall research process. In the
pursuit of our research objectives, the research methodology
unfolded through a series of carefully orchestrated steps. These
steps encompassed diverse aspects, from initial data collection,
described in Sections IV and V-A to the rigorous analysis
and interpretation of the experiment’s outcomes documented
in Sections V and VI.

Our journey commenced with us iteratively and systemati-
cally scouring online resources for MLOps systems. Through
each iteration, we applied meticulous inclusion-exclusion cri-
teria (described in Section III-B until three suitable MLOps
systems emerged, forming the foundational pillars of our study.
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Fig. 2: Overview of the research process followed in this
study.

Subsequently, we outlined the guidelines for our research
and the planning of the experimental design, which we de-
scribe in Sections III-D and III-E, respectively. This crucial
stage laid the groundwork for the controlled and structured
study execution, ensuring the integrity of the results.

A pivotal phase of our research involved the intricate
modelling of the selected MLOps systems, as described in
Section III-C. This modelling endeavour was intertwined with
developing a comprehensive metamodel for MLOps, creating a
set of intricate MLOps system models comprising component
and pipeline diagrams, and providing a detailed and holistic
representation of MLOps systems.

To provide study participants with the necessary resources
for a successful engagement with the experiment, we dedicated
much effort to preparing and producing the study material. We
meticulously crafted this material, including the information
sheets and experiment task sheets, to facilitate a comprehen-
sive understanding of MLOps systems and document it in
Section III-G.

A critical milestone in our research journey was the execu-
tion of a pilot study, which we describe in Section IV-A. This
pilot study was a vital validation step, employing the study
material and MLOps system models to ensure their clarity,
comprehensibility, and suitability for the main experiment.

To maximise accessibility and ensure participants were well-
prepared, we published the experiment information sheets on
our online learning platform. This platform served as a central
hub for disseminating essential information to participants.

The core of our research was embodied in the execution of
the experiment sessions. We carried out the experiment ses-
sions meticulously with precision and adherence to predefined
procedures and protocols, as described in Section IV.

After the experimental sessions, the research entered the
data compilation and preparation phase. We carefully curated
the result dataset in preparation for analysis. We document

these activities in Section V-A.
With datasets in hand, we performed comprehensive data

analysis, unearthing valuable insights, demographic informa-
tion, quantitative findings, and meaningful statistical relation-
ships. This analysis, which we detail in Section V, provided the
groundwork for our hypothesis testing, enabling the rigorous
assessment of observed differences and checking our research
hypotheses.

In the final stretch of our research journey, we diligently
interpreted the experiment results. This interpretive phase
allowed us to synthesise the accumulated knowledge and
insights, gaining a comprehensive understanding of the re-
search’s overarching outcomes and implications. These con-
cluding insights provided the foundation for our contributions
to the field of MLOps and our research’s broader significance.
The interpretation and implications are discussed in Sections
VI and VII-A.

B. System Selection Method

We utilised popular search engines like Google and Duck-
DuckGo, along with topic portals such as InfoQ and DZone,
to source pertinent MLOps systems. The selection of each
system adhered to predefined inclusion-exclusion criteria.

Inclusion criteria encompassed:
• commercial products/platforms, open source systems,

workflows featuring architectural descriptions, and com-
prehensive examples or tutorials that facilitated the
derivation of system architectures;

• demonstrations or example projects by individuals or
companies with high ratings on GitHub;

• the need to originate from reputable authors, companies,
or publishers;

• the need for practitioners to be the intended audience.
Conversely, exclusion criteria encompassed:
• student projects, including those from universities,

coursework, pet projects, or experimental examples;
• open-source projects categorised as tools or libraries,

distinct from MLOps implementations or system descrip-
tions;

• tutorial articles lacking examples or containing only code
snippets;

• sources focusing solely on specific detailed aspects of
the ML workflow, as opposed to the overall workflow or
system;

• sources describing the ML workflow exclusively in a
theoretical context (e.g., for informational or educational
purposes)

• sources that served as advertisements or did not describe
real architectural examples applicable in an industrial
context;

• sources detailing the consulting approaches of companies
without accompanying example projects.

The first selected MLOps system4 is a guide based on
Amazon AWS intended for data scientists and ML engineers
looking to implement DevOps principles in the context of ML

4https://tinyurl.com/mlops-system-ap
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systems, i.e. MLOps, endorsing the automation and continuous
monitoring of every phase in the construction of ML systems,
and covering areas such as integration, testing, release man-
agement, deployment, and infrastructure administration.

Our second selected MLOps system5 by Google describes
their level 1 architecture, the primary objective of which is to
ensure uninterrupted model training through the automation of
the ML pipeline, facilitating the seamless deployment of model
prediction services. The pipeline includes automated data and
model validation procedures to streamline the incorporation
of new data for model retraining within a production environ-
ment. It encompasses triggers and metadata management to
ensure efficient workflow automation.

Our final selected MLOps system6 was a reference archi-
tecture outlining the procedures for establishing a continuous
integration (CI), continuous delivery (CD), and retraining
pipeline for an AI application through the utilisation of
Microsoft Azure DevOps and Azure Machine Learning. A
practical demonstration of this architectural framework was
accessible via a reference implementation on GitHub.

The selected MLOps systems are representative of real-
world MLOps systems. We achieved this through the metic-
ulous application of our inclusion-exclusion criteria, which
guided the selection of systems offered by notable vendors,
including Amazon (AWS), Google and Microsoft.

C. Modelling Method

To create our models of the selected systems, we harnessed
Codeable Models, an effective modelling tool available in
Python, allowing us to specify metamodels and model in-
stances. In this study, we initiated the development of an
MLOps system architecture metamodel for the specification
of components, connectors, and their relationships. Our meta-
model serves as the cornerstone for the semi-formal repre-
sentation of MLOps systems, utilising modelling primitives
derived from our understanding of various aspects of the
MLOps systems described in Section III-B.

The semi-formal, UML-based MLOps system representa-
tions in this study typically encompass component views and
pipeline views, each consisting of nodes and connectors of
various types. In component views, nodes represent different
component types or pipeline types, with connectors delin-
eating their relationships. These component nodes may sig-
nify various entities, including execution environments, cloud
components, platforms, orchestrators, repositories, clusters,
pipelines, etc. Connectors within a component view articulate
relationships like artefact providers, data triggers, deployment
targets, and pipeline triggers, among others.

Pipeline nodes describe the internal workings of the pipeline
and consist of an initial node, a sequence of intermediate
pipeline nodes, and a concluding node. The relations between
these nodes establish the execution order. To address deci-
sions or branching within pipelines, we utilise fork nodes
followed by parallel pipeline nodes culminating in a joint
node. This approach represents diverse pipeline aspects and

5https://tinyurl.com/mlops-system-gm
6https://tinyurl.com/mlops-system-ma

steps, encompassing pipeline triggers, data processing, model
training, container image creation, testing, model registration,
and deployment. Pipeline nodes also house metadata detailing
information like automatic execution invoked pipeline tasks or
execution environments.

To visualise our models, we employed PlantUML7 to gener-
ate the corresponding UML diagrams. Examples of a compo-
nent and pipeline diagram for the Microsoft Azure DevOps
and Azure Machine Learning system described in Section
III-B may be found in Appendices A and B respectively.

D. Guidelines

When planning our study, we followed the template pro-
vided by Jedlitschka et al. [41], which details robust guidelines
for empirical research in software engineering. Additionally,
we adhered to guidelines according to Kitchenham, Pfleeger
et al. [42], who offer overarching guidelines for conducting
software engineering experiments and provide recommenda-
tions related to the design, implementation, analysis, and
presentation of empirical research studies, Wohlin et al. [43],
who go into more detail, and discuss statistical tests and
their suitability for various study types, and Juristo and
Moreno [44], who also offer valuable insights into conducting
empirical research in software engineering. We also used the
robust statistical method guidelines for empirical software
engineering by Kitchenham, Madeyski et al. [45] as a basis
for evaluating the data from the experiment sessions.

E. Study Design

Conducting a controlled experiment to evaluate the impact
of providing semi-formal MLOps system diagrams has distinct
advantages, ensuring causal relationships and facilitating fu-
ture research replication. This method allows for the collection
of quantitative data and the generalisation of findings to
broader populations. Other methods, such as observational
studies, eye tracking, surveys, comparative studies, qualitative
interviews, and usability studies, were considered but ruled
out due to limitations in establishing causality and controlling
biases. Given the need for reliable, objective, and causal
inferences, a controlled experiment was deemed the most
appropriate for this study, providing the necessary control over
variables and ensuring the validity of the results.

We deliberately chose a between-subject [46] experimental
design, which involves distinct groups of participants exposed
to different conditions, for several reasons. Firstly, within-
subject designs, where the same participants experience all
conditions in sequence, are susceptible to order effects like
practice improvement and fatigue decline, which can confound
results. Using a between-subject design, we ensured that each
group encountered only one condition, effectively mitigating
these order-related biases.

Secondly, within-subject designs can be problematic in
studies where participants learn from the first condition and
apply that learning to subsequent conditions. Opting for a
between-subject design allowed us to start each group with

7https://plantuml.com
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a clean slate, minimising the influence of habituation on our
findings.

Thirdly, random group assignment enhanced internal valid-
ity, mitigating bias due to participant demographics, such as
prior knowledge or exposure to different experiment material.
Finally, equal incentives for all participants reduced the like-
lihood of participants biassing the survey and self assessment
responses.

F. Participants

The study consisted of controlled experiment sessions with
seventy-two participant submissions. After applying the ob-
jective inclusion-exclusion criteria described in Section V-A,
we included sixty-three unique participant contributions for
evaluation.

Notably, much widely-cited related work either used even
smaller sample sizes (see Allodi, Biagioni et al. [32]: n = 29,
Labunets et al. [33]: n = 29, Shafari et al. [34]: n = 28,
Heijstek et al. [35]: n = 47) or similar sample sizes (see
Allodi, Cremonini et al. [31]: n = 73).

We randomly assigned each participant to one of two
groups: a control group (nCONTROL = 31) and an experimental
group (nEXPERIMENTAL = 32), hereafter referred to as CONTROL
and EXPERIMENTAL, respectively. Each group had a different
experiment sheet, as detailed in Section III-G. All participants
were either BSc or MSc students enrolled in at least one of
three different courses spanning two semesters:

• In the summer and winter semesters of 2022, we invited
students enrolled in Distributed Systems Engineering
(DSE)89 to participate. This is an optional bachelor and
master-level course.

• In the summer semester of 2022, students enrolled in
Advanced Software Engineering (ASE)10, which is a
mandatory master-level course, could also take part.

• In the winter semester of 2022, students enrolled in Soft-
ware Engineering 2 (SE2)11 were also able to participate.
SE2 is a mandatory bachelor-level course.

We obtained written consent from all participants, participation
was entirely voluntary, and we awarded students extra credit
in the form of bonus points on top of the standard course
points as an incentive to participate. The material covered in
the study was related to the subjects of the various courses
(software engineering and distributed systems). However, it
was not integral to the course material, i.e. we didn’t teach the
students the material in classes or lectures, nor did we expect
them to learn it for the courses, and it was not examinable.
Thus, it made sense for us to offer students taking part in
the study bonus points rather than standard course points, also
meaning that we were not disadvantaging those students who
opted not to participate at all since they could still earn the
full standard course points. It was also possible for students
to receive the bonus points by carrying out the experiment

8https://ufind.univie.ac.at/en/course.html?lv=052500&semester=2022S
9https://ufind.univie.ac.at/en/course.html?lv=052500&semester=2022W
10https://ufind.univie.ac.at/en/course.html?lv=053020&semester=2022S
11https://ufind.univie.ac.at/en/course.html?lv=051050&semester=2022W

tasks but opt out of having their contribution included in the
experiment.

We pseudonymised the participants’ submissions after each
experiment session so their identities could not influence the
evaluation of their submissions. Similarly, their participation,
non-participation or opting out of including their submissions
in the experiment results did not affect their grading other than
the awarding or non-awarding of bonus points at the end of
the semester.

Please note that a vote by the University of Vienna’s Ethics
Committee12 was according to their guidelines not necessary,
as our study could not threaten the research subjects’ physical
and psychological integrity, the right to privacy was preserved
through complete anonymisation through double-blinding (we
used a procedure that was checked by University of Vienna’s
data protection officer), and the participants could participate
in the bonus point activity of the class but opt out of the
experiment without any possible negative consequences (due
to the double-blinding neither the course instructors nor the
authors of the study knew who has opted out).

Including participants from courses at different stages of the
degree programmes allowed us to use the participants as prox-
ies for novice (SE2), novice to moderately advanced (DSE),
and moderately advanced (ASE) software architects, designers,
or developers. While our study did not specifically involve
software architects or ML engineers, the demographic data
we collected supports the idea that the students who partici-
pated in our experiment can effectively represent professional
software developers. These students possess a broad spectrum
of knowledge and experience in software development. To
illustrate, when we compare their demographics to those of a
2016 survey that encompassed fifty thousand developers on the
online platform Stack Overflow13, we observe similarities in
the most pertinent demographics compared to our participants,
particularly that all of our participants had some degree of
programming experience (please refer to Section V-B).

Kitchenham et al. [42] provide further justification for
using students in research experiments and state that using
students “is not a major issue as long as you are interested
in evaluating the use of a technique by novice or nonex-
pert software engineers. Students are the next generation of
software professionals and, so, are relatively close to the
population of interest”. Furthermore, as noted in Höst et
al. [47], Runeson [48], Svahnberg et al. [49], Salman et
al. [50], and Falessi et al. [51], students may also represent
professionals in empirical software engineering studies. We
further discuss the use of students in our study in Section VI-B.

G. Material and Tasks

Material
We based the experiment on a selection of publically
available MLOps system descriptions, which we describe
in Section III-B. The systems and subject matter were
relevant to the topics covered in SE2, DSE, and ASE but not

12https://www.qs.univie.ac.at/services/ethikkommission
13https://insights.stackoverflow.com/survey/2016
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formally part of the course content. The study consisted of
the following material14:

• An experiment information document, providing back-
ground information on MLOps concepts and informal
MLOps system descriptions and diagrams, and an ex-
ample system description.

• An experiment document containing a survey requesting
participant background information (such as age, gen-
der, education level, programming and industry expe-
rience), three informal textual system descriptions and
corresponding informal MLOps system diagrams with
associated tasks (described below), task surveys (also
described below), and a concluding survey (we did not
use this in the final evaluation). We did not release this
document to participants until the start of their experiment
session. A brief excerpt from an informal textual system
description follows15:

Release pipeline

This pipeline shows how to operationalize and
promote the scoring image safely across different
environments. This pipeline is subdivided into two
environments, QA and production:

QA environment:
– Model Artifact trigger. Release pipelines get

triggered every time a new artifact is available.
A new model registered to Azure Machine
Learning Model Management is treated as a re-
lease artifact. In this case, a pipeline is triggered
for each new model is registered.

– Create a scoring image. The registered model
is packaged together with a scoring script and
Python dependencies (Conda YAML file) into
an operationalization Docker image. The im-
age automatically gets versioned through Azure
Container Registry.

– Deploy on Container Instances. This service
is used to create a non-production environment.
The scoring image is also deployed here, and
this is mostly used for testing. Container In-
stances provides an easy and quick way to test
the Docker image.

– Test web service. A simple API test makes sure
the image is successfully deployed.

Production environment:
– Deploy on Azure Kubernetes Service. This

14All relevant artefacts are available in our replication package,
which we will publish as an open access dataset on the long
term archive https://zenodo.org upon acceptance, but make
available for review as an anonymously accessible link here:
https://ucloud.univie.ac.at/index.php/s/lzxEa8smkmhL8Ug – password:
gZCUDSczwaxf

15We took the excerpt from the following source, which provides the full
text and a corresponding informal MLOps system diagram: https://tinyurl.
com/mlops-system-ma

service is used for deploying a scoring image
as a web service at scale in a production envi-
ronment.

– Test web service. A simple API test makes sure
the image is successfully deployed.

The release pipeline publishes a real-time scoring
web service. A release to the QA environment is
done using Container Instances for convenience, but
you can use another Kubernetes cluster running in
the QA/staging environment.

• We provided EXPERIMENTAL with supplementary infor-
mation, including a description of how to understand
semi-formal MLOps system diagrams with reference to
UML-based generic component and pipeline diagram-
sWe also provided participants in EXPERIMENTAL with
UML-based semi-formal MLOps system component and
pipeline diagrams for each of the three systems, which are
described in Section III-B, and examples of a component
and pipeline diagram for one of the systems may be found
in Appendices A and B respectively.

We provided two types of semi-formal, UML-based MLOps
architecture diagrams (component and pipeline), rather than
just a single diagram, as they represent the high-level con-
structs resulting from our prior empirical studies of archi-
tectural design decisions (ADDs) for the ML workflow and
deployment [3], [4]. We automatically annotated the UML
diagrams with behaviour and properties via stereotypes and
connectors and generated them based on the Python-based
model, similar to how we generated the ADD diagrams in
those studies.

As discussed in Section II-A, MLOps systems are inherently
intricate, often characterised by a high degree of complexity
due to the amalgamation of ML models, data pipelines,
deployment processes, and other aspects. Semi-formal UML-
based MLOps systems diagrams, such as those provided in
the experiment document and depicted in Appendices A and
B, are invaluable tools for breaking down this complexity into
more manageable components and are pivotal in enhancing
understanding of MLOps-specific challenges.

One notable benefit of UML-based MLOps system diagrams
is that they can be designed to emphasise best practices and
principles specific to MLOps. They are a visual guide for
ensuring the system is implemented consistently with industry
standards. This alignment with known practices, including
those presented in our previous work [3], [4], contributes to
the efficiency and reliability of the system.

These diagrams incorporate annotations or labels that bring
known anti-patterns, such as those described by Sculley et
al. [17], to the forefront. Practitioners can promptly recognise
anti-patterns in the system’s design, simplifying the process
of identifying and addressing problematic structural elements.
When visualised within the broader context of the system, anti-
patterns become more apparent, aiding practitioners in under-
standing their implications and addressing them effectively.

As in other areas of software engineering, the use of semi-
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formal representations has been shown to improve understand-
ing (see Stevanetic et al. [52] and Haitzer and Zdun [53]),
and we speculate that ML practitioners may also benefit
when utilising semi-formal representations, for instance, to
identify areas where technical debt (see Sculley et al. [17])
may accumulate within the system. These diagrams offer a
visual guide to software modules and their dependencies,
making recognising segments that may require refactoring
or enhancements easier. Annotations or metadata within the
diagrams can highlight potential sources of technical debt,
providing a visual cue for practitioners to focus on addressing
these areas effectively.

Lastly, semi-formal MLOps system architecture view de-
scriptions serve as instrumental tools in illustrating the use
of ML models, including the strategies for model selection,
storage, versioning and reuse. This visual representation gives
practitioners insights into the criteria and processes guiding
model choices and their integration into the system. Practition-
ers can discern how models interact with various components,
facilitating their comprehension of the design and decision-
making processes related to model selection and reuse.

Tasks
We associated each of the three systems with three tasks
relating to aspects common to MLOps systems, to be
answered after reading and understanding each system
description. An example of each task type follows:

Pipeline behaviour: a “select the true statements”-style
question with four statements to choose from, for example:

• “Please keep time records and tick (✓) the true state-
ments:

□ The retraining pipeline always finishes by regis-
tering a model.
□ The retraining pipeline can be triggered via a
suitable API call to an appropriate component.
□ The build pipeline can trigger the retraining
pipeline.
□ In the release pipeline, releases of images to pro-
duction can be approved independently of whether
the images were first deployed to staging and QA.”

Components: a “list all components...”-style question with
four different types of components to list, for example:

• “Please keep time records and list all components that...

...are cloud components:
.

...are orchestration components:
.

...provide an artefact to another component:
.

...receive trigger data from another component:
.”

Pipeline properties: an “enter the correct number”-style ques-
tion, for example:

• “Please keep time records and enter the correct number
for each of the following statements:

The various pipelines can be triggered by
type(s) of trigger in total.

The pipelines contain node(s) responsible for
testing.
The pipelines contain step(s) that do not run
automatically.
The total number of pipelines triggered via a commit
to the code base is .”

The task design in the controlled experiment, encompass-
ing questions related to pipeline behaviour, components, and
pipeline properties, is based on findings from our previous
grey literature studies [3], [4] on architectural design decisions,
patterns and practices for MLOps. Technical components
and their related pipelines are important in various MLOps
practitioner roles for task execution and the successful imple-
mentation of MLOps principles such as automation, workflow
orchestration, and reproducibility, as discussed by Kreuzberger
et al. [2]. Thus, we consider our study tasks to be relevant to
factors important for the decision-making processes regularly
undertaken by practitioners, particularly those engaged in
MLOps, as part of their routine work. These tasks serve as
a bridge between the higher-level architectural understanding
and the low-level implementation details, rendering them
highly pertinent to real-world engineering practice.

Practitioner sources from our prior studies [3], [4] and
others, such as Lakshmanan et al. [54] and Treveil et al. [55],
highlight the importance and relevance of pipelines to MLOps.
Unlike traditional CI/CD setups, such as those described by
Humble and Farley [25] and Shahin et al. [27], MLOps
architectures may consist of a wider variety of interconnected,
fundamental ML-specific pipeline types and steps, such as
data preprocessing pipelines, model training and evaluation
pipelines, data ingestion steps, feature engineering steps and
hyperparameter tuning steps, as well as pipeline trigger types
for new training data availability, model performance degrada-
tion and changes in the data distribution. We put forth that our
tasks concerning pipeline behaviour facilitate the assessment
of the extent to which participants comprehend the functioning
of MLOps systems for their pipelines. They shed light on,
for instance, how pipelines register models, trigger other
pipelines, or release images to different environments, thereby
ensuring the correct and reliable operation of the system. This
knowledge is highly representative of the insights required by
practitioners, particularly those specialising in MLOps, within
real-world contexts.

Counting, for instance, different trigger types, testing nodes,
non-automatic steps, or pipelines initiated through code com-
mits mirrors the evaluation of specific properties within the
system. We regard such evaluations as a common practice
among developers and conjecture that they are integral to
comprehending system behaviour when undertaking activities
such as identifying bottlenecks and ensuring the accurate
configuration of pipelines. The tasks directly correlate with the
decisions developers make when configuring and automating
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various facets of MLOps systems. For instance, the process
of determining how pipelines are triggered and specifying
the actions they should take is a practical necessity when
constructing dependable CI/CD pipelines.

The task of quantifying the number of specific properties
within the pipelines aligns with the practical requirement to
evaluate these properties for quality assurance and system
performance. Developers routinely perform such assessments
to unearth areas for improvement or potential issues.

According to Humble and Farley [25], almost all modern
software systems consist of a collection of components, and
the relations between them in build and deployment processes
can influence the complexity of a system. They state that
considering the interactions between them when implementing
a deployment pipeline is challenging. The relations they de-
scribe between components and pipelines are also relevant for
MLOps, for instance, how a deployment pipeline interacts with
an artefact repository component or the level of interaction
between a version control system and build infrastructure
components. On this basis, we regard understanding MLOps
components and their relations as important to MLOps prac-
titioners, and our study task involving identifying components
and their interactions should help assess how well participants
understand relevant aspects of the system architectures de-
scribed in the experiment.

Identifying distinct component types and articulating their
roles mirror the real-world decisions developers frequently
make when selecting and integrating components within a
system. This process of identification is a pivotal aspect of
ensuring that the selected components work harmoniously
together.

The assigned tasks exhibit parallels with high-level architec-
tural analysis, a sphere in which developers strive to grasp the
general structure and behaviour of MLOps systems. Questions
pertaining to the understanding and identification of pipeline
behaviours and components are expected, in our considered
opinion, to be suited to ascertaining the comprehension of a
system’s overarching architecture. Concurrently, these tasks
delve into the minutiae by considering properties like the
number of trigger types or steps that do not run automatically.
In our view, analysing such low-level details is pivotal in
system implementation and fine-tuning.

Tasks for both groups were identical. Each task concluded
with a SELF-ASSESSMENT survey on a Likert scale, represent-
ing a subjective evaluation of each participant’s performance.
The survey questions, to be answered on a scale from “strongly
agree” to “strongly disagree” were as follows:

• “I am confident that my provided answers and solutions
for this task are correct.”

• “It was easy for me to understand the textual system
description.”

• “It was easy for me to understand the system diagram(s).”
• “It was easy for me to identify pipelines.”
• “It was easy for me to identify components.”
• “It was easy for me to understand pipeline behaviour.”
• “It was easy for me to understand components and their

relations.”

• “It was easy for me to understand properties of pipelines.”

H. Variables, Hypotheses and Research Questions

The independent variable is the provision or non-provision
of the supplementary material (formal MLOps system dia-
grams). Two dependent variables are defined: the CORRECT-
NESS of the answers provided to the tasks and the DURATION,
i.e. the time taken to complete the tasks.

The two dependent variables, particularly the CORRECT-
NESS, may be used to gain insight into the overall under-
standability of system descriptions [13]–[15], [56], [57]. In the
context of our experiment, CORRECTNESS measures whether
the experiment participants could correctly identify and under-
stand the different components, pipelines, architectural roles,
behaviour, properties and relations in the described software
architecture. A high level of CORRECTNESS indicates that the
architecture is easy to understand and navigate. By contrast,
a low level of CORRECTNESS suggests that the architecture
is more complex and challenging to comprehend. DURATION
measures the time it takes participants to complete the tasks
assigned to them in the experiment. A shorter DURATION
indicates that the participants could quickly and efficiently
understand the software architecture, while a longer DURA-
TION suggests that the architecture is more challenging to
comprehend.

We hypothesised that MLOps system descriptions are easier
to understand when semi-formal MLOps system diagrams are
provided in addition to informal textual system descriptions
and informal MLOps system diagrams. Thus, for under-
standing, we defined the following null and corresponding
alternative hypotheses:

• H01: There is no significant difference in task COR-
RECTNESS when semi-formal MLOps system diagrams,
in addition to informal textual descriptions and informal
graphical system diagrams, are provided.

• Ha1: Task CORRECTNESS increases significantly when
semi-formal MLOps system diagrams, in addition to in-
formal textual descriptions and informal graphical system
diagrams, are provided.

Furthermore, we wished to investigate the effects of providing
supplementary material in the form of semi-formal MLOps
system diagrams to EXPERIMENTAL on task DURATION. We
formulated the following null and alternative hypotheses ac-
cordingly:

• H02: There is no significant difference in task DURATION
when semi-formal MLOps system diagrams, in addition
to informal textual descriptions and informal graphical
system diagrams, are provided.

• Ha2: Task DURATION increases significantly when semi-
formal MLOps system diagrams, in addition to informal
textual descriptions and informal graphical system dia-
grams, are provided.

Finally, we wished to investigate any relationship between task
DURATION and task CORRECTNESS, and thus formulated the
following null and alternative hypotheses:

• H03: There is no significant increase in task CORRECT-
NESS as task DURATION increases when only informal
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textual descriptions and informal graphical system dia-
grams are provided.

• Ha3: Task CORRECTNESS increases significantly as task
DURATION increases when only informal textual de-
scriptions and informal graphical system diagrams are
provided.

• H04: There is no significant increase in task CORRECT-
NESS as task DURATION increases when semi-formal
MLOps system diagrams, in addition to informal textual
descriptions and informal graphical system diagrams, are
provided.

• Ha4: Task CORRECTNESS increases significantly as task
DURATION increases when semi-formal MLOps system
diagrams, in addition to informal textual descriptions and
informal graphical system diagrams, are provided.

We were also interested in how confident participants of
each group were in their performance, and defined a suitable
research question:

• RQ How does the exclusion or inclusion of semi-formal
MLOps system diagrams affect the accuracy with which
participants assess their performance in the context of
their perceived task correctness?

IV. EXPERIMENT EXECUTION

A. Pilot Test

After preparing our experiment materials, we conducted
preliminary tests involving student tutors from our research
group. Much like the participants in the subsequent stages, we
gave the tutors the information sheet two weeks in advance,
allowing them to acquaint themselves with the necessary
knowledge to address the tasks. We randomly allocated one
tutor to each of the CONTROL and EXPERIMENTAL groups.
They engaged in the experiment under the same conditions we
had planned for the official experiment sessions. These con-
ditions included the option to seek clarifications regarding the
experimental procedure, a seventy-five-minute timeframe for
responding to the experiment questions, and no supplementary
support beyond the provided materials.

After the pilot tests, we sought feedback from the tutors
regarding their experiences. Their responses indicated that
we had crafted the information sheet exceptionally well and
had offered ample guidance for addressing the experiment
questions. They found the experiment to be straightforward
to navigate, and they noted that even participants who were
new to the subject matter and concepts would likely find it
accessible, primarily due to the comprehensive materials and
examples provided. Given this positive feedback, we made no
alterations to our experiment design.

B. Preparation

To help participants prepare for their experiment sessions,
we provided registered participants with the information doc-
ument described in Section III-G via our e-learning platform16

two weeks before their session. The purpose of providing the
information sheet was to ensure that the participants had the

16https://moodle.univie.ac.at

same minimum prerequisite knowledge and understanding of
the subject matter to reduce the in-session learning curve and
reduce potential bias among the participants due to factors
such as education level, prior knowledge, and programming
or industry experience. All participants worked through three
tasks per the described MLOps system. Once we had con-
cluded all experiment sessions, we consolidated the collected
data and derived and analysed descriptive statistics. The anal-
ysis aimed to determine whether the statistics supported or
refuted the hypotheses defined in Section III-H. At various
stages in the experiment sheets, we also asked participants
to complete short surveys to describe how well they believed
they had performed on a Likert scale. We used these survey
responses to gain insight into how well participants thought
they had performed compared to how well they actually per-
formed (in terms of CORRECTNESS) and answer our research
question.

C. Procedure

We conducted the experiment sessions as a pen-and-paper
exercise under controlled conditions akin to a traditional
closed-book written examination, with no supplementary tools
or resources permitted except for the information sheets dis-
tributed in advance. To ensure equal access to the supple-
mentary information, we provided copies of these sheets in
case participants had not brought their own. We set an upper
limit on the DURATION, which was the same for all partic-
ipants; we did not allow collaboration between participants;
we alternately assigned participants to either CONTROL or
EXPERIMENTAL, and we ensured that participants sat at a
sufficient distance from one another to prevent collaboration or
copying. After being provided with a fifteen-minute overview
of the experimental procedure and the structure of the ex-
periment sheets at the start of the session, we issued each
participant with an experiment sheet associated with either
EXPERIMENTAL or CONTROL. We instructed participants to
enter their background information and complete the tasks
and embedded surveys in consecutive order. We allowed the
participants a maximum of seventy-five minutes to do so and
required them to record time intervals for reading the system
descriptions and completing tasks. We projected a clock with
seconds granularity onto a screen to facilitate the participants’
recording of timestamps.

V. ANALYSIS

A. Dataset Preparation

We could not include all participants’ contributions in the
study and defined objective exclusion criteria as follows:

• Participants recorded timestamps but made systematic
errors throughout the experiment, meaning that we could
not infer the timestamps’ correct values (n = 1). This
single participant excluded for this reason did not record
timestamps correctly, recording them to whole minutes
rather than whole seconds.

• Participants systematically recorded timestamps through-
out the experiment that led to obviously implausible DU-
RATION values (n = 1). The single participant excluded
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for this reason recorded taking four seconds to read
the supplementary material, seven to thirteen seconds to
read the system descriptions, and times ranging from
zero seconds to five seconds to complete the tasks. In
contrast, most other participants would typically take
several minutes for these activities.

• Participants did not confirm reading and understand-
ing the information sheet before the experiment session
(n = 3). This involved ticking the relevant checkbox on
the initial survey page of the experiment document.

• Participants did not consent to their contribution being
used in the study (n = 1). This likewise involved ticking
the relevant checkbox on the initial survey page of the
experiment document. The single participant who opted
out of having their contribution included didn’t confirm
reading and understanding the information sheet before
the experiment session either. We would have excluded
them anyway for that reason and also included them in
the three students counted above.

• Students could participate in both semesters to gain extra
credit in multiple courses. However, in such cases of
repeated participation, we only included the contribution
from the first experiment session the student participated
in (n = 4).

Thus, we excluded nine out of seventy-two contributions,
leaving contributions from sixty-three unique participants for
inclusion. Of the included contributions, we conducted some
necessary further manual processing:

• If an individual timestamp for a task was missing but
could be inferred, then we used the inferred value.

• If at least one timestamp for a task was missing and could
not be inferred, then we excluded the time for this task.

• If a task had not been attempted, we excluded it.
• If a survey response wasn’t completed, then we excluded

this individual survey response from the overall results.
However, we still included the remainder of the partic-
ipant’s survey responses (barring any other incomplete
survey responses).

• One participant misunderstood a task and communicated
this in writing on the experiment sheet. We excluded their
contribution for this individual task from the results but
still included the remainder of their contribution (barring
any other excluded tasks).

The implications of excluding individual tasks and survey
responses are as follows: if we excluded a task for any reason,
then we recorded no score for the task and did not use it
when calculating the average CORRECTNESS, nor did we use
it when calculating the total DURATION; if a survey response
was missing, then we did not use it to gain insight into
how well participants thought they had performed compared
to how well they actually performed. We entered the data
from the contributions to be included in the study, including
the participants’ background information, survey responses,
time intervals, and task answers, into a LibreOffice [58]
OpenDocument Spreadsheet (ODS)17 file. We converted the

17https://www.oasis-open.org/committees/tc home.php?wg abbrev=office

participants’ start and stop timestamps into a DURATION in
seconds.

We exported the ODS file to a comma-separated value
(CSV) [59] file and, having already installed the necessary
R18 [60] dependencies, we then input the CSV file into an R
script, which performed some initial processing and generated
an RDS [61] file. We then input the RDS file into a different R
script, which analysed the data and generated plots and tables
of statistics.

B. Participant Demographics

Participants’ background information that we collected in-
cluded age (see Figure 319), gender, course, education level,
programming experience (see Figure 4), modelling experience,
software industry experience (see Figure 5), hardware in-
dustry experience, and programming and modelling language
experience. We also collected data on whether participants
had prior knowledge of ML, CI/CD, and CI/CD for ML.
Neither group appeared to have an unfair advantage over the
other, and any imbalances for specific demographics were
compensated elsewhere. Of the sixty-three participants, thirty-
four had no higher education qualifications (nCONTROL = 15,
nEXPERIMENTAL = 19)20, twenty-six had a bachelor’s degree
(nCONTROL = 14, nEXPERIMENTAL = 12), and three had a master’s
degree (nCONTROL = 2, nEXPERIMENTAL = 1).

Across both groups, forty-two (nCONTROL = 19,
nEXPERIMENTAL = 23) participants had prior knowledge
of ML, thirty-four (nCONTROL = 13, nEXPERIMENTAL = 21)
had prior knowledge of CI/CD, and two (nCONTROL = 0,
nEXPERIMENTAL = 2) had prior knowledge of CI/CD for
ML. Thirty-five (nCONTROL = 19, nEXPERIMENTAL = 16) had
prior knowledge of modelling. Seven (nCONTROL = 5,
nEXPERIMENTAL = 2) participants had no prior knowledge of
any of the above.

Regarding education level, CONTROL was slightly better
qualified, having four fewer participants without a university
education, two more with a bachelor’s degree and one more
with a master’s degree. Regarding prior knowledge of ML,
CI/CD, EXPERIMENTAL appeared to be more experienced
since that group had eight more participants with prior knowl-
edge of CI/CD and two more with prior knowledge of CI/CD
for ML. On the other hand, CONTROL had three more par-
ticipants with prior modelling knowledge. The average age in
CONTROL was 24.43. In Experimemtal 25.16, i.e. roughly the
same, the mean number of years of experience in the software
industry was very similar, with 1.34 for CONTROL and 1.25
for EXPERIMENTAL. The number of years of programming
experience was also similar between groups, with CONTROL
having an average of 3.85 and EXPERIMENTAL having an
average of 3.62. Thus, neither of the groups had an overall

18We used the programming language R (https://www.r-project.org) for
the statistical analysis. We will publish the source code in our replication
package on https://zenodo.org upon acceptance, but for review we have made
it available as an anonymously accessible link here: https://ucloud.univie.ac.
at/index.php/s/lzxEa8smkmhL8Ug – password: gZCUDSczwaxf

19Two participants did not provide their ages.
20nCONTROL is the number of observations in CONTROL and nEXPERIMENTAL

is the number of observations in EXPERIMENTAL.
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Fig. 3: Kernel Density Plot of Participants’ Ages.
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Fig. 5: Kernel Density Plot of Participants’ Software Industry Experience.

advantage over the other in multiple demographic aspects, and
any advantage that a group may have had in one area was
balanced in a different area for the other group.

C. Descriptive Statistics

CORRECTNESS
In Table I, We note the group-specific statistics for the

dependent variable CORRECTNESS, which we define within
the range [0, 1] ∩ R. This table presents the number of obser-
vations along with measures of central tendency and dispersion
for each group. In this paper, we use various representations
of the data, each offering important information for under-
standing the data and guiding our selection of the appropriate
statistical tests. The kernel density plots reveal insights into
the distribution, the Q-Q plots are used to assess normality,
the box plots are used for summary statistics, the scatter
plots reveal any potential correlation between two dependent
variables, and the tables display a variety of descriptive
statistics. These statistics can be viewed as a kernel density

plot presented in Figure 6, as well as a box plot provided
in Figure 7. In the box plot displayed in Figure 7, it’s clearly
noticeable that the median and the entire interquartile range of
EXPERIMENTAL exceed those of CONTROL and even surpass
the maximum value of CONTROL. The boxes, which do not
overlap, emphasise the difference between the two groups
in terms of CORRECTNESS. Furthermore, EXPERIMENTAL
features an extended lower whisker due to some participants’
underperformance compared to other group members. Addi-
tionally, EXPERIMENTAL exhibits two outliers with notably
low CORRECTNESS values21. Upon visually examining Figure
6 and considering the skew values provided in Table I, it
becomes evident that the distribution of CONTROL closely ap-
proximates a nearly symmetrical or lightly negatively skewed
form. In contrast, EXPERIMENTAL’s distribution displays a
highly negative skew. The kurtosis values, both < 3, suggest

21It’s worth noting that we identified these outliers as natural variations
within the population rather than arising from measurement, data entry, or
data processing errors, thus representing true outliers.
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Fig. 8: Normal Q-Q Plot of CORRECTNESS per Group.

that the distributions in both groups are platykurtic.
Examining the normal Q-Q plots in Figure 8 for both groups

and CORRECTNESS, it appears that the data from CONTROL
exhibits a visual resemblance to a normally distributed pattern.
However, the normality of EXPERIMENTAL’s data remains
inconclusive based on these visual cues. To test for normality,
we chose the Shapiro-Wilk [62] normality test since, according
to Razali and Yap [63], it is more potent than alternatives (such
as Anderson-Darling [64], Lilliefors [65], and Kolmogorov-
Smirnov [66]). Assuming α = 0.05, this test indicated that
the CONTROL’s distribution is not significantly different from
the normal distribution, with a value p > α, whereas EXPER-
IMENTAL’s distribution significantly deviates from the normal
distribution, with a value p ≤ α.

DURATION
Table I shows the number of observations, central tendency,

and dispersion measures per group for the dependent variable
DURATION22 These statistics are visualised as a kernel density
plot in Figure 9 and as a box plot in Figure 10. The skews
shown in Table I indicate that CONTROL’s distribution is
nearly symmetrical to lightly negatively skewed, whereas EX-
PERIMENTAL’s distribution is moderately negatively skewed.
The kurtosis values < 3 for both groups indicate that the
groups’ distributions are platykurtic.

In the box plot of Figure 10, the groups’ interquartile
ranges overlap, with EXPERIMENTAL’s interquartile range
almost being contained entirely within CONTROL’s, with a

22We denote DURATION in seconds.
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Fig. 11: Normal Q-Q Plot of DURATION per Group.

slightly higher median. EXPERIMENTAL’s box plot’s whiskers
indicate a smaller spread of values than CONTROL’s, which
is also confirmed by the lower standard deviation (478.73 for
EXPERIMENTAL versus 621.19 for CONTROL). While both
groups’ minimum values were similar, CONTROL’s maximum
value was relatively high, but we did not deem it an outlier
for that group.

Visual inspection of the normal Q-Q plots for both groups
for DURATION, visible in Figure 11, was insufficient for
us to determine whether each group’s data were normally
distributed. The Shapiro-Wilk normality test indicated that,
for DURATION, neither group’s distribution is significantly
different to normal, with values p > α for both groups.

D. Hypothesis Testing

CORRECTNESS and DURATION
When comparing two or more groups on two or more metric

dependent variables, and provided certain other assumptions
are met, it is usually possible to apply the Multivariate Anal-
ysis of Variance (MANOVA) [67] statistical test to determine
whether independent variables on their own affect dependent
variables. As noted in Section V-C, CONTROL’s distribution
is not significantly different from the normal distribution for
CORRECTNESS and DURATION, whereas EXPERIMENTAL’s
distribution is significantly different from the normal dis-
tribution for CORRECTNESS but not for DURATION. Still,
MANOVA requires all distributions to be normally distributed.
It was thus necessary for us to compare the variances of both
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TABLE I: Descriptive Statistics per Group of Dependent
Variables CORRECTNESS and DURATION.

CORRECTNESS
CONTROL EXPERIMENTAL

Observations 31 32
Mean 0.3553 0.6947

Standard deviation 0.0721 0.1643
Median 0.3676 0.7183

Median abs. deviation 0.0728 0.1431
Minimum 0.2083 0.2292
Maximum 0.4884 0.9167

Skew -0.3261 -1.0567
Kurtosis -0.8388 0.4515

Shapiro-Wilk Test p 0.4359 0.0056

DURATION
CONTROL EXPERIMENTAL

Observations 24 25
Mean 1806.88 1861.56

Standard deviation 621.19 478.73
Median 1916.50 1994

Median abs. deviation 436.63 416.61
Minimum 744 668
Maximum 2989 2523

Skew -0.1642 -0.7997
Kurtosis -0.9032 -0.2763

Shapiro-Wilk Test p 0.2826 0.0711

groups for both dependent variables to determine their equality
since this would further inform our choice of statistical tests.
We selected Bonett’s [68] method as a two-sided test to
compare variances. This was a suitable choice since even
though EXPERIMENTAL’s CORRECTNESS data was heavily
skewed, the sample sizes for all four combinations of group
and variable was n ≥ 20. Had the latter condition not been
the case, then another test, such as Levene’s [69] or Brown-
Forsythe’s [70] method, may have been more appropriate to
reduce the risk of a high type I error rate when data is
highly skewed and n < 20. Bonett’s test is also accurate for
any continuous distribution of quantitative values and does
not require that the data be normally distributed. Given the
above conditions, it is usually more powerful and reliable than
Levene’s or Brown-Forsythe’s tests.

For CORRECTNESS, the estimated ratio is 2.143862, with
a 95% confidence interval of [1.401176, 3.280205] and
p = 0.0004406616 with α = 0.05. Since p ≤ α, the estimated
ratio of the groups’ standard deviations is statistically sig-
nificant, i.e. the variances for CORRECTNESS differ between
the groups. For DURATION, the estimated ratio is 0.76211,
with a 95% confidence interval of [0.4590661, 1.265203] and
p = 0.2935268 with α = 0.05. Since p > α, the estimated
ratio of the groups’ standard deviations for DURATION is not
statistically significant, i.e. the variances for DURATION do not
differ.

Given that the dependant variable CORRECTNESS had differ-
ing variances between groups, we could not use the Kruskal-

Wallis [71] test or Wilcoxon’s [72] rank sum test [45], [73].
Welch’s [74] t-test is suitable for unequal population variances
but assumes normally distributed data, so this was not an
option either.

Cliff’s δ [75] is a robust, nonparametric test that makes no
assumptions about data distribution, differing distributions be-
tween populations, or unequal variances and is recommended
as a suitable method in this scenario by Kitchenham [45]. Even
though Cliff’s δ was originally intended to measure ordinal
data, it is equally applicable [76], [77] to the quantitative,
continuous data in this study. Cliff’s δ estimates the probability
that a randomly selected observation from one group is larger
than a randomly selected observation from a second group,
subtracting the reverse probability [78].

When testing multiple hypotheses with a single method (we
applied Cliff’s δ twice), it is necessary to lower the level
of α to avoid type I errors23. Various methods to adjust α
can be chosen from, such as the false discovery rate [79], or
the Bonferroni-Dunn [80], [81] correction. The latter is the
strictest form of correction and is given by Equation 1:

α′ =
α

n
(1)

where n is the number of times a test was applied. In our
study, this results in α′ = 0.05

2 = 0.025 where α = 0.05 and
n = 2. The results of the one-tailed Cliff’s δ test are shown
in Table II for CORRECTNESS and Table II for DURATION.
For CORRECTNESS, Cliff’s δ indicates by p ≤ α′ that EX-
PERIMENTAL scored significantly higher than CONTROL. For
DURATION, Cliff’s δ yielded p > α′, so we cannot conclude
that EXPERIMENTAL took significantly longer than CONTROL
to complete the experiment. To verify these results, we ran
a one-tailed Brunner-Munzel [82] test for each dependent
variable. This test is suitable for differing distributions and
can also be applied to arbitrary data distributions. Adjusting α
to derive α′ for repeated tests via Bonferroni-Dunn correction
as previously described, the results for the Brunner-Munzel
test as indicated in Table II align with those of Cliff’s δ, with
p ≤ α′ for CORRECTNESS and p > α′ for DURATION.

Based on both tests, concerning CORRECTNESS, we can
reject the null hypothesis H01 and thus accept the alternative
hypothesis Ha1. Thus, we found a significant difference in task
CORRECTNESS in favour of providing semi-formal MLOps
system diagrams in addition to informal textual descriptions
and informal graphical system diagrams.

Conversely, concerning DURATION, we must accept the null
hypothesis H02 and reject the alternative hypothesis Ha2, since
we found no significant difference in task DURATION between
CONTROL and EXPERIMENTAL.

Correlation Between CORRECTNESS and DURATION
Visual inspection of the scatter plot depicting any potential

correlation between the two dependent variables CORRECT-
NESS and DURATION in Figure 12 per group didn’t reveal an
apparent linear correlation. For CONTROL, the CORRECTNESS
barely increased with time. In the case of EXPERIMENTAL,

23Note that the α adjustment is not necessary when testing for normality
or when comparing variances.
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TABLE II: Hypothesis Tests per Group Combination of the
Dependent Variables CORRECTNESS and DURATION.

CORRECTNESS (H01)
EXPERIMENTAL vs CONTROL

Cliff’s δ Test
Cliff’s δ -0.8633

sδ 0.0886
vδ 0.0079
zδ -9.7401

CIlow -0.9528
CIhigh -0.6359

P (X > Y ) 0.9317
P (X = Y ) 0.0000
P (X < Y ) 0.0683

p 3.719e−13
Brunner-Munzel Test p 3.063e−10

DURATION (H02)
EXPERIMENTAL vs CONTROL

Cliff’s δ Test
Cliff’s δ -0.0767

sδ 0.1688
vδ 0.0285
zδ -0.4542

CIlow -0.3434
CIhigh 0.2015

P (X > Y ) 0.5383
P (X = Y ) 0.0000
P (X < Y ) 0.4617

p 0.3259
Brunner-Munzel Test p 0.3275

despite an apparent increase in CORRECTNESS with DURA-
TION, the data points lie so far from the indicated reference
line that we cannot assume a linear correlation. Following this
visual inspection, we deemed it prudent to test for correlation.
Various tests were available, with three well-known ones being
Pearson’s correlation coefficient, Kendall’s τ , and Spearman’s
ρ.

Pearson’s [83] correlation coefficient is suitable for con-
tinuous variables that are both normally distributed. We es-
tablished earlier in this section that this is not the case for
EXPERIMENTAL’s CORRECTNESS data; thus, we disregarded
Pearson’s correlation coefficient.

The Kendall [84] rank correlation coefficient (Kendall’s τ )
measures the relationship between two variables. It is suitable
for our purposes since it may be used with continuous data
and is non-parametric. We calculated the one-tailed Kendall
rank correlation coefficient. For confirmation, we also calcu-
lated the one-tailed Spearman [85] rank correlation coefficient
(Spearman’s ρ), which is similar to Kendall’s τ and makes
similar assumptions about the provided data.

For CONTROL, Kendall’s τ and Spearman’s ρ coefficients
indicated a very weak positive association between CORRECT-
NESS and DURATION. However, as signified by p > α′ (where
α′ is derived from the adjustment of α as described earlier in

this section) for both tests, we must accept the null hypothesis
H03 and thus reject the alternative hypothesis Ha3, since we
found that there was no significant positive correlation between
CORRECTNESS and DURATION.

For EXPERIMENTAL, both Kendall’s τ and Spearman’s ρ
coefficients indicated a moderate positive association between
CORRECTNESS and DURATION. The p-value p > α′ for both
tests indicates that the observed association is statistically
significant, i.e. that there is a significant positive correlation
between CORRECTNESS and DURATION, so we must reject the
null hypothesis H04 and thus accept the alternative hypothesis
Ha4. Furthermore, the large z-value for Kendall’s τ indicates
that the observed value for this measure is quite far from the
expected value under the null hypothesis, which supports our
conclusion that there is a true association between CORRECT-
NESS and DURATION for this group. Additionally, the value
of S yielded by Spearman’s ρ test indicates that the observed
ranks of the two variables under test are not identical, which
provides further evidence still that a true association between
the variables exists.

TABLE III: Correlation per Group of the Dependant
Variables CORRECTNESS with DURATION per Group.

CONTROL (H03) EXPERIMENTAL (H04)
Kendall’s τ 0.0580 0.3105

p 0.3457 0.0149
z 0.3969 2.1726

Spearman’s ρ 0.0504 0.4339
p 0.4075 0.0151
S 2184 1471.7830

E. Research Question

As described in Sections III-H, we defined a research
question where we expressed our interest in how accurately
participants predicted their correctness.

As described in Section III-G, we required participants to
complete a survey after each task, assessing their CONFIDENCE
that their answers were correct so that we could determine a
SELF-ASSESSMENT score. We derived a formula that considers
both the CORRECTNESS of each participant’s answers and the
CONFIDENCE they had in the CORRECTNESS of their answers
to arrive at an overall SELF-ASSESSMENT score. We give the
formula we derived in Equation 2:

selfASSESSMENT = selfCORRECTNESS −
5− selfCONFIDENCE

5
(2)

where selfCORRECTNESS represents the participants’ average
CORRECTNESS as defined in V-C, with 0 indicating entirely
incorrect answers and 1 indicating completely correct answers.
selfCONFIDENCE ∈ [0, 5] ∩ R represents the participant’s aver-

age CONFIDENCE according to a survey on a five-point Likert
scale. We assigned each scale point an equidistant value within
this range. A value of 0 indicates that a participant had high
CONFIDENCE in the CORRECTNESS of their answers, whereas
a value of 5 indicates low CONFIDENCE.
selfASSESSMENT ∈ [−1, 1] ∩ R represents the participant’s av-

erage SELF-ASSESSMENT score. A value selfASSESSMENT < 0
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Fig. 12: Scatter Plot of the Dependent Variables CORRECTNESS to DURATION per Group.
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indicates that a participant overestimated the CORRECTNESS
of their answers, selfASSESSMENT = 0 indicates that a participant
correctly estimated the CORRECTNESS of their answers and
selfASSESSMENT > 0 indicates that a participant underestimated
the CORRECTNESS of their answers.

Figure 13 depicts the participants’ overall SELF-
ASSESSMENT score per group as a kernel density plot
and indicates that CONTROL slightly overestimated their
CORRECTNESS on average across all tasks, whereas
EXPERIMENTAL slightly underestimated theirs.

VI. DISCUSSION

A. Discussion of the Results

CORRECTNESS and DURATION
Overall, our results strongly support the assertion that the
provision of semi-formal MLOps system diagrams signifi-
cantly aids the understanding of MLOps system descriptions
when understanding is quantified by CORRECTNESS. Provid-
ing practitioners with semi-formal MLOps system diagrams is
advantageous when asking them to understand MLOps system
descriptions and complete tasks based on them. This result
aligns with our expectations.

Participants in EXPERIMENTAL did not take significantly
longer to complete the tasks compared with CONTROL once
they had initially read and understood the material, despite
having more reference material during task completion. A
possible explanation for no significant difference in DURA-
TION is that, when completing the tasks, participants in
EXPERIMENTAL might have mainly consulted the UML-based
MLOps system diagrams to locate the relevant information
and were satisfied that they had found it relatively quickly.
This contrasts with participants in CONTROL, who could
only search for details in informal textual descriptions and
informal graphical system diagrams. Assuming that DURA-
TION is inversely correlated with understanding, this result
shows that providing semi-formal MLOps system diagrams as
supplementary material does not hinder understanding. Had it
taken participants in EXPERIMENTAL significantly longer to
complete the tasks (independent of their CORRECTNESS), then
this would potentially have indicated that semi-formal MLOps
system diagrams can represent a barrier to, or steepen the
learning curve of, understanding MLOps system descriptions,
at least to some extent. Consequently, when first attempting
to understand a system and complete such tasks, practitioners
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should not expect to take significantly longer when provided
with semi-formal MLOps system diagrams (and, in combi-
nation with the findings for CORRECTNESS, they can expect
better results than if they had not been provided with the
semi-formal MLOps system diagrams). This result did not
align with our expectations – we expected to see participants
taking significantly longer to complete the tasks with semi-
formal MLOps system diagrams due to the greater amount of
reference material to look through when completing the tasks –
but it is, in fact, a positive result since it is a strong argument
for providing practitioners with semi-formal MLOps system
diagrams.

Correlation Between CORRECTNESS and DURATION
Intuitively, one would expect CORRECTNESS and DURA-

TION to be strongly correlated, and this was our assumption. In
contrast to our expectations, there was no significant positive
correlation between CORRECTNESS and DURATION for CON-
TROL. This suggests that participants in CONTROL believed
that they had found the correct answers within a reasonable
DURATION24 and moved on to the next task. Thus, practition-
ers completing tasks based on informal system descriptions
are advised that consuming excessive time to complete such
tasks does not necessarily yield better performance in terms
of CORRECTNESS.

Conversely, and more closely aligned with our expectations,
we note a significant positive correlation between CORRECT-
NESS and DURATION for EXPERIMENTAL. There are multiple
possible explanations for this correlation. It could indicate that
members of EXPERIMENTAL applied a different methodology
when completing the tasks. Given that the only difference
between CONTROL and EXPERIMENTAL was the presence of
semi-formal MLOps system diagrams, we might assume that
members of EXPERIMENTAL mainly relied on the semi-formal
MLOps system diagrams as a resource. Alternatively, the posi-
tive correlation between CORRECTNESS and DURATION might
be explained by the participants first checking the informal
textual descriptions and informal graphical system diagrams
for answers and then subsequently checking and correcting
their answers using the semi-formal MLOps system diagrams
(hence leading to an improved CORRECTNESS on average with
increased DURATION). This result greatly strengthens the case
for providing practitioners with semi-formal MLOps system
diagrams - the additional time involved in studying semi-
formal MLOps system diagrams has a direct positive correla-
tion with the correct understanding of the modelled systems.
So practitioners are advised to make use of such model-based
architectural documentation where at all possible. In our study,
providing semi-formal MLOps system diagrams appears to be
the decisive positive factor, given equal time constraints, with
members of EXPERIMENTAL taking a similar DURATION on
average to those in CONTROL before being satisfied with their
answers, but with EXPERIMENTAL nevertheless performing
significantly better in terms of CORRECTNESS.

24Any “reasonable DURATION” in this context has, broadly, two potential
aspects: (a) the overall time allocated for the experiment session and (b) a
possible self-imposed time limit for an individual task, given that participants
were conscious that they did not have unlimited time to complete the tasks.

Self Assessment
In Section V-E, we observed after processing participants’

survey responses that the participants whom we did not pro-
vide with semi-formal MLOps system diagrams slightly over-
estimated their performance, and conversely. We speculate that
the additional semi-formal MLOps system diagrams reduced
the CONFIDENCE of those participants whom we provided
with them. Those participants possibly felt overwhelmed by
the supplementary material or did not feel they had fully un-
derstood the semi-formal MLOps system diagrams. Again, this
appears to be a counterintuitive result since we would expect
these participants to be more confident than their counterparts,
especially given that they had performed much better. We posit
that this result is neutral in arguing for or against semi-formal
MLOps system diagrams since the preference for practitioners
to be overconfident, underconfident, or somewhere in between
is more context-dependent, qualitative, and subjective than
CORRECTNESS and DURATION. We consider this a neutral
observation and result with no positive or negative impact
or influence on the results of the hypothesis tests or our
conclusions. Still, we nevertheless view it as a factor to bear
in mind and deem our associated research question answered
within the context of the study.

B. Threats to Validity

Various kinds of threats to validity must be considered
when conducting controlled experiments. We follow the threat
classification schemes for experiment validity described by
Cook and Campbell [86] and Haynes et al. [87].

Threats to Internal Validity
Threats to internal validity encompass variables or circum-
stances that can potentially generate inaccurate conclusions re-
garding a cause-and-effect relationship. These elements serve
as plausible sources of error that can compromise the capacity
to deduce that alterations in the independent variable directly
influenced changes in the dependent variable. Threats to
internal validity encompass various factors, such as historical
events (external influences), maturation (natural changes in
subjects over time), or testing effects (how repeated testing
impacts outcomes).

During the experiment sessions, no disturbances or interfer-
ence occurred. We provided participants with an introduction
and an opportunity to answer questions. No questions that
affected the entire sessions arose, and we answered any of
the participants’ questions individually.

Due to the restricted time allocated to each session, the
risk of maturation effects was limited, and indeed, we did
not observe such effects. Owing to the experimental design,
each participant contributed only once to the experiment
results. Thus, learning between sessions could be ruled out.
We consider any learning effect within a session across the
three tasks to favour neither CONTROL nor EXPERIMENTAL.
Each participant could score an equal number of bonus points
for their course, regardless of group. This reward equality
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precluded instrumental bias, and we prevented selection bias
thanks to the random assignment of participants to groups.

There may have been potential for cross-contamination
between experimental sessions and groups since preventing
participants from discussing the experiment with future par-
ticipants was impossible. Still, since we did not permit the
participants to take a copy of the experiment sheet with them
after their experiment sessions, we did not permit the use
of electronic devices during the experiment; the systems and
tasks were quite complex. We scheduled the sessions either
consecutively or several weeks apart; we think it is unlikely
that participants gained knowledge unfairly in advance of their
sessions. Furthermore, any advantage would likely be roughly
even across both groups due to the random group assignment,
thus not favouring either group. As described in Section
IV-C, the ban on electronic devices also ensured that par-
ticipants could not consult external information sources. The
only reference material allowed was the printed information
document described in Section III-G so that potential effects
of participants consulting other sources could be prevented.
Lastly, based on the participant demographics described in
Section III-F, we think it is unlikely that either group had
an unfair advantage due to neither group dominating the most
relevant demographics.

There is a potential risk to internal validity associated
with the MLOps system architecture metamodel development
and modelling process, and, as a consequence, the models
we developed and the resulting diagrams we then generated
from the models and provided to the participants. Although
the authors are highly experienced in the applied modelling
procedure, the potential for interpretive bias remains. Different
researchers may have understood or modelled the MLOps
systems differently, resulting in a dissimilar metamodel or
system models. However, since the modelling involved devel-
oping metamodel constructs that accurately represent observed
phenomena found within the informal system descriptions, and
we successfully used them to model the selected systems, we
do not think that this risk significantly impacts our study,
even if the models created by other researchers may appear
different.

The informal diagrams as source material may also threaten
internal validity since we relied on their accuracy as source
material for the study. Since textual descriptions accompanied
the informal diagrams, we could disambiguate any inclarities
in the original informal diagrams. The disambiguation process
required a degree of subjectivity, and other authors may have
had differing opinions on how to interpret some aspects of the
original diagrams. However, since the UML-based diagrams
generated from our models accurately reflected the informal
descriptions, we anticipate that this phenomenon is insignifi-
cant regarding its impact on our methods and positive findings.

Threats to External Validity
Threats to external validity pertain to constraints on the extent
to which study findings can be extended to contexts beyond the
specific conditions in which the research was conducted. These
threats to external validity raise questions about the broader ap-
plicability of the results to different populations, environments,

or timeframes. Notable concerns regarding external validity
include selection bias (where the sample may not accurately
reflect the larger population) and interaction effects (indicating
that the treatment’s impact might differ across various groups).

An external validity concern regarding the applicability of
our study’s findings in practical settings arises from using
students rather than non-student professionals. To address this
concern, we took measures to educate the students about
MLOps-related concepts in the experiment. Participants pos-
sessed varying levels of theoretical knowledge in software
engineering, distributed systems, programming experience and
industry experience, and we are not aware of factors that
preclude a student population of this nature from being rep-
resentative of a broader population of software developers.
Considering the Stack Overflow industry survey mentioned in
Section III-F in more detail, sixty-nine per cent of respondents
to the Stack Overflow survey stated that they are at least
partially self-taught, and only forty-five per cent of developers
stated they have a bachelor’s degree in computer science or
a related field, with only thirteen per cent of respondents
declaring that they have a master’s degree and two per cent
stating that they have a PhD. Thus, most developers partic-
ipating in this industry survey of fifty thousand developers
conducted by a well-respected software development portal
were self-taught. Most did not even have a bachelor’s degree,
so these factors do not appear to be requisite for qualifying
as a professional developer, further supporting our claim that
students may serve as substitutes for developers in our study.
Consequently, our findings may be extended to professional
software developers, at least to some extent. However, to
ascertain no significant differences in comparison with the
population of professional developers, it would be necessary
to replicate similar experiments with practitioners.

A further threat to external validity involves the risk that the
tasks we designed may lack relevance to the complexities and
nuances of industry practices. This risk introduces a potential
limitation that could undermine the generalisability of the
study’s findings to real-world scenarios in the industry. We
assert that this risk is possible but not likely since we are an
experienced author team, and our perspectives in the study
were based on findings in practitioner and scientific literature
(see Section III-G).

Threats to Construct Validity
Threats to construct validity revolve around uncertainties re-
garding the degree to which the measurement and operational-
isation of variables faithfully reflect the theoretical constructs
under investigation. These threats to construct validity pertain
to the suitability of the chosen measurement methods. They
encompass issues such as insufficient operational definitions,
instrumentation lacking the necessary sensitivity, or potential
biases introduced by the experimenter.

As described in Section III-H, we considered CORRECT-
NESS and DURATION, which are two dependent variables
customarily used when measuring understandability. Still, we
cannot exclude the possibility that other metrics may be more
appropriate for determining understandability. Similarly, more
suitable methods may exist for assessing the participants’
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confidence when addressing our research question.
When participants record times themselves, as in this study,

it is vital to ensure that the measurements taken during the
experiment accurately represent the time taken for them to
complete the tasks. In this context, various threats to construct
validity may arise.

One possibility is that ”task completion” was ambiguous
or imprecisely defined, leading to inconsistent timekeeping by
individual participants across tasks and comparatively between
participants. We mitigated this risk by instructing participants
at the start of each experiment session on precisely when to
start and stop recording task time.

Regarding the threat of self timing to reliability, we assessed
the reliability of each recorded timestamp during the dataset
preparation phase based on objective exclusion criteria as
described in Section V-A. We determined, for each partici-
pant, whether their systematic recording of timestamps was
consistent and realistic. If we determined that a participant’s
timekeeping was systematically inconsistent or unrealistic,
then we excluded this participant’s timestamps. For each
timestamp, if its value was missing, incomplete or could not be
inferred (e.g. due to illegible handwriting), then we excluded
the time for the whole task. If an individual timestamp led to
an implausible DURATION, we likewise excluded the time for
the whole task. By following this methodology, we reduced
the risk of unreliable timekeeping adversely affecting our
conclusions.

Erroneous measurement accuracy may pose yet another
threat to construct validity in the context of self timing. Due
to participants being instructed to use a single, common clock
under our control, with high readability due to being projected
onto a large screen and an accuracy of seconds, we eliminated
the risk of inaccurate timekeeping, e.g. due to participants
having to start or stop a timer manually, misread the time due
to poor readability, or enter in accurate times due to using
different clocks.

A threat to construct validity arises through the potential
for interpretation inconsistencies among participants when
understanding UML diagrams, stemming from factors such as
diverse interpretations of UML symbols, ambiguity in diagram
elements, subjectivity in stereotype usage, varied understand-
ing of relationships, and participants’ prior experience with
UML. To mitigate this threat, participants in EXPERIMENTAL
received supplementary information, including a detailed de-
scription of how to interpret the UML-based MLOps system
diagrams. Additionally, a pilot study was conducted, which
did not highlight any ambiguities in the UML diagrams. The
statistically significant results favouring the provision of UML
diagrams suggest a consistent understanding among partici-
pants in EXPERIMENTAL, providing reassurance regarding the
effectiveness of the mitigation strategies.

Threats to Content Validity
Content validity refers to the extent to which the experi-
mental tasks, measurements, and materials used in the study
accurately and adequately represent the research questions or
objectives. In other words, it assesses whether the content of
the experiment, including the variables, tasks, and instruments,

is relevant and comprehensive enough to measure what the
study aims to investigate.

We thoroughly considered the concept of content validity
in our study design, evaluating the alignment between the
experimental tasks, measurements, and materials with the
research questions and objectives. In our meticulous planning,
we scrutinised the relevance and comprehensiveness of the
variables, tasks, and instruments employed in the experiment
to ensure they effectively capture and measure the aspects un-
der investigation. Consequently, after a comprehensive review,
we couldn’t identify any discernible threats to content validity,
as our focus has consistently been on crafting an experimental
framework that authentically addresses the problem statement
and research objectives outlined in Section I.

Threats to Conclusion Validity
Threats to conclusion validity pertain to the extent to which
the conclusions derived from a study align with the findings
and can be considered well-founded. In essence, it scrutinises
the accuracy of deducing a causal connection. Threats to
conclusion validity may include insufficient statistical power,
sampling discrepancies, or the excessive extrapolation of re-
sults.

Following the experiment sessions, a certain degree of
inference and interpretation was necessary, mainly due to the
pen-and-paper nature of the experiment, allowing handwritten,
free-text responses to some survey and task questions rather
than selection from pre-prepared responses. We deliberately
made the pen-and-paper format a fundamental part of the
experiment design: we did not want to provide pre-prepared
answers to select from since we wanted participants to dis-
cover, e.g. component and pipeline names for themselves.
Also, for some values, it simply made more sense to allow
for free text. For instance, for the tasks involving identifying
and counting element types, free text made more sense than
providing a list of integers to choose from.
Any interpretations or inferences were as follows:

• We interpreted ranges for prior experience in the form of,
e.g. “2-3”, as “2.5”.

• Some participants selected “none” for university educa-
tion but wrote that they have an unspecified degree in
“telecommunications engineering”, “business analytics”,
“biomedical engineering” or “business administration”.
We recorded these students as having no prior university
qualifications since we were only interested in computer
science qualifications.

• If a participant left the university education field blank,
we assumed they had no relevant university education.

• Some participants entered a non-zero value for the num-
ber of years of modelling experience but did not tick
the box signifying prior knowledge of system modelling.
These students may have understood these modelling
activities as distinct.

• Since participants could enter free text, they often re-
named components and pipelines (“elements”) when
completing the tasks. There were also slight name varia-
tions within the source material (both within and between
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informal textual descriptions and informal graphical sys-
tem diagrams). Indeed, this is one of the issues that arise
with informal MLOps system descriptions and informal
MLOps system diagrams. We used consistent, standard-
ised naming in our UML-based MLOps system diagrams.
Still, where names were vague or inconsistent in partici-
pants’ answers, we inferred the referenced element when
evident. We omitted the element from the answer for
ambiguous, non-existent or unreadable element names.
We also omitted catch-all answers (such as “all model-
building components”). We corrected obvious spelling
mistakes, applying this strategy consistently for both
groups, thus eliminating the risk of bias.

An improvement to increase the construct validity of the
study could be to survey the participants for their knowledge
of MLOps-specific technologies. We used the same list of
technologies as in our previous studies for consistency and
potential comparison with our previous work.

VII. CONCLUSION

A. Impact and Relevance

We report on a controlled experiment with sixty-three partic-
ipants on the understandability of MLOps system architecture
descriptions. Our study focuses on whether providing semi-
formal MLOps system diagrams supplementary to informal
textual descriptions and informal graphical system diagrams
affects the understanding of the described systems.

Our findings support our assumption that providing sup-
plementary semi-formal MLOps system diagrams significantly
aids understanding system descriptions. The respectable score
for CORRECTNESS achieved by EXPERIMENTAL, which on
average (xEXPERIMENTAL = 0.6947), was around double that
of CONTROL (xCONTROL = 0.3553), whose members scored
relatively poorly, provided supporting evidence for this as-
sertion. In practical MLOps contexts, the implications are
profound. The use of semi-formal MLOps system diagrams
can significantly enhance task CORRECTNESS, which directly
relates to operational efficiency and quality. Practitioners
should consider integrating semi-formal diagrams into their
documentation and communication practices. The significant
difference in task CORRECTNESS in favour of providing semi-
formal MLOps system diagrams suggests that researchers
should consider the inclusion of semi-formal diagrams in their
studies. This finding encourages further exploration into how
visual aids, such as diagrams, can enhance performance in
similar activities.

The outcome of our study indicates that, when provided
supplementary semi-formal MLOps system diagrams, it does
not take significantly longer to complete tasks of the nature
of those in the study once the provided material has been
read and understood. For practitioners, it is thus vital to
remember that this additional information provided in the form
of semi-formal MLOps system diagrams should not lead to the
expectation of extra time being necessary when understanding
a system.

We also found no correlation between task CORRECTNESS
and task DURATION when no semi-formal MLOps system

diagrams are provided. This signifies that the time invested in
understanding MLOps system descriptions is not necessarily
worthwhile if the representation of the system itself is not
explicitly designed to enhance understanding. Practitioners
should invest their time in developing and using semi-formal
MLOps system diagrams of their MLOps systems since our
results indicated a significant increase in CORRECTNESS and a
measurable positive return in terms of CORRECTNESS for the
time spent using our semi-formal MLOps system diagrams
when understanding MLOps system descriptions. This insight
is vital for project planning and resource allocation in real-
world MLOps scenarios. The correlation between CORRECT-
NESS and DURATION in EXPERIMENTAL also highlights an
exciting avenue for further research. Investigating the relation-
ship between task CORRECTNESS and task DURATION with
a focus on the impact of semi-formal diagrams can yield
valuable insights into optimising MLOps system descriptions
for better task outcomes.

We noted that members of CONTROL slightly overestimated
their CORRECTNESS, whereas their counterparts slightly un-
derestimated their CORRECTNESS. This serves to remind prac-
titioners not to assume, given informal textual descriptions and
informal graphical system diagrams, that they will sufficiently
understand the described system. Conversely, practitioners
faced with semi-formal MLOps system diagrams that are per-
haps complex in appearance should not necessarily find them
daunting. They should be confident that the information they
seek lies within the semi-formal MLOps system diagrams. Ob-
serving CORRECTNESS estimation behaviour also highlights
the importance of self assessment in practice. Practitioners
should be aware of potential bias in their self assessments
and adopt strategies for more accurate self evaluation.

The use of semi-formal diagrams can be considered a best
practice in the description of MLOps systems in research stud-
ies. This approach aligns with the broader scientific principle
of improving the replicability and reliability of experiments
by providing a standardised visual framework.

We are unaware of previous empirical studies on how best to
represent MLOps system architectures to foster understanding.
The findings of this study are an indication that practitioners
should feel confident in adopting a semi-formal MLOps graph-
ical architecture view representation of their MLOps system
architectures as a supplementary resource and that they should
expect such diagrams to enhance understanding without the
expectation of having to spend significantly more time gaining
that understanding.

The results of our controlled experiment investigating the
impact of using semi-formal MLOps system diagrams have
several implications in education. The significant difference in
task CORRECTNESS favouring the inclusion of semi-formal di-
agrams suggests that incorporating this visual aid in university
courses can substantially enhance students’ understanding of
MLOps system architectures. Students exposed to semi-formal
diagrams are more likely to grasp the concepts accurately and
apply them effectively. The observation that participants not
provided with semi-formal diagrams tended to overestimate
their CORRECTNESS indicates that they may have miscon-
ceptions or gaps in their understanding. This underscores
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the importance of semi-formal diagrams in preventing the
overconfidence effect, which can hinder learning. By including
these diagrams, instructors can ensure that students’ self
assessments are more closely with their actual knowledge.
While there was no significant difference in task DURATION
between CONTROL and EXPERIMENTAL, it is essential to
recognise the potential trade-off between CORRECTNESS and
task DURATION. Students who have access to semi-formal
diagrams may invest more time in understanding the material
and, in turn, achieve higher CORRECTNESS. Instructors should
strike a balance in course design to optimise learning outcomes
without overextending course duration or administrative over-
head. Students have diverse learning styles and preferences.
Since we observed a significant positive correlation between
CORRECTNESS and DURATION for EXPERIMENTAL, educa-
tors need to emphasise practical, hands-on exercises where
students can engage with semi-formal diagrams. This hands-
on experience is crucial for reinforcing the understanding
of MLOps system architectures. MLOps systems encompass
both software engineering and machine learning, making them
a suitable topic for interdisciplinary courses. Our findings
highlight the value of incorporating visual aids to bridge the
gap between these domains, enabling students from diverse
backgrounds to collaborate effectively in real-world projects.

Our carefully designed and conducted empirical study builds
on our previous work [3], [4] and contributes a solid founda-
tion for further empirical work in the domain of architectural
modelling of MLOps systems. The study also represents a pos-
itive initial step towards determining how helpful semi-formal
MLOps system diagrams may be in understanding MLOps
system architecture. Our results encourage ML practitioners to
create and use semi-formal MLOps system diagrams of their
MLOps system architectures.

This study helps advance the field of MLOps by pro-
moting the use of semi-formal diagrams as a best practice
for improving task CORRECTNESS. These findings stimulate
further scientific investigation into the cognitive aspects of
CORRECTNESS estimation. Additionally, our findings provide
practical guidance for MLOps practitioners, emphasising the
potential benefits of semi-formal diagrams in enhancing task
CORRECTNESS and the importance of realistic self assessment.

Finally, our results have the potential to transform how soft-
ware architecture is taught in university courses. By leveraging
semi-formal MLOps system diagrams, educators can improve
learning outcomes, address common misconceptions, cater to
different learning styles, and foster a deeper understanding
of complex architectural concepts. Our study also encourages
a more holistic and interdisciplinary approach to teaching
software architecture, aligning with the evolving demands of
the industry.

B. Future Work

Our study examined whether providing semi-formal, UML-
based MLOps system diagrams with informal textual descrip-
tions and informal graphical system diagrams enhances the
understandability of systems, and its results invite further
investigation into the topic. There is much scope for further

empirical evaluations within MLOps system architecture mod-
elling, and this study serves as an appropriate starting point.

An area of potential interest, given that our UML-based
MLOps system diagrams appear to facilitate understanding
would be to compare different kinds of graphical architecture
view representations, e.g. SysML25, the C4 model26 or a
novel, custom diagram format to see if understanding in the
context of MLOps can be improved further and discover
what factors might help or hinder understanding. Alternatively,
textual descriptions could be reconsidered, and a follow-up ex-
periment could compare graphical architecture representations
with varying textual architecture design descriptions as in [36].

Participants provided with UML-based MLOps system di-
agrams performed better without taking significantly longer.
Still, the recorded times did not consider the effort and time
involved in creating our MLOps system models and diagrams.
A further study could investigate the trade-off between the
time to develop semi-formal MLOps system models and
diagrams and the improvement in understanding to determine
whether the additional effort is worthwhile. We would assume
that it is worth the effort since EXPERIMENTAL performed
significantly better than CONTROL in terms of CORRECTNESS,
and CORRECTNESS and DURATION were correlated in our
study when we provided semi-formal, UML-based MLOps
system diagrams.

Further to the previous idea concerning semi-formal MLOps
system model and diagram creation, it would be interesting to
compare how different subjects create MLOps system models
based on various types of source media (such as informal text
and diagrams) to measure consistency and identify features
of informal representations that can lead to confusion and
ambiguity, and further refine our MLOps system metamodel.

As discussed in III-F, students may represent profession-
als in empirical software engineering studies. Nevertheless,
it would be interesting to conduct a study with software
industry professionals of different backgrounds (e.g. software
architecture, software engineering, and machine learning) and
with varying levels of experience and perhaps compare them
directly with students [31] to gain further knowledge of
factors affecting understanding of MLOps system architecture
descriptions.

A future study could focus on semi-formal MLOps system
diagrams and utilise eye-tracking as in Shafari et al. [34],
think-aloud protocols as in Heijstek et al. [35], and interviews
or surveys to gain insight into which aspects of semi-formal
MLOps system diagrams are most helpful, to refine further and
improve them. A similar study could investigate how different
levels of detail and abstraction influence the understandability
of semi-formal MLOps system diagrams.
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