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Abstract—Cloud resources have become increasingly important,
with many businesses using cloud solutions to supplement or
outright replace their existing IT infrastructure. However, as
there is a plethora of providers with varying products, services,
and markets, it has become increasingly more challenging to keep
track of the best solutions for each application. Cloud service
intermediaries aim to alleviate this problem by offering services
that help users meet their requirements.

This paper aims to lay the groundwork for developing a cloud
portfolio management platform and its business model, defined
via a business model canvas. Furthermore, a prototype of a
platform is developed offering a cloud portfolio optimization
service, using two algorithms developed in previous research
to create suitable and well-utilized allocations for a customer’s
applications.

Index Terms—Cloud Economics, Portfolio Optimization, Business
Model

I. INTRODUCTION

Over the past years, the cloud resource market has been one
of the fastest-growing IT segments. The biggest providers,
Amazon Web Services (AWS), Microsoft Azure, and Google
Cloud, have seen annual sales increases of over 20% for
several years. Just AWS itself reported a revenue of 80 Billion
US dollars for the year 2022, and the entire cloud market
achieved revenue of 545.8 Billion dollars worldwide with 22%
growth compared to 2021 [1]. This large and expanding market
has resulted not only in a growing cloud service provider (from
here on, often referred to as CSPs) market but also in several
methods of delivery of cloud resources to the customer.

As mentioned by Pittl [2], one big challenge facing both
industry and academia is finding a cost-effective solution when
buying cloud capacities. Pittls’ study concludes that almost
all observed resource requests were oversized and offered
significant cost reduction potential, which lies not only in
reducing the amount of resources bought but also in their com-
position. Depending on the planning period of the operations
to be performed, a different mix of procurement from different
market spaces is optimal. The author suggests tackling this
problem via a cloud resource trading intermediary.

Offering a service that aids businesses in managing their
cloud portfolio and proposing efficient allocations to run

their applications, even across various providers, is of great
interest in the market. While most larger CSPs offer some
functionalities and services that claim to help prevent over-
provisioning, like AWS Lambda and Fargate, it is ultimately
not in the provider’s best interest to reduce the costs for the
customer. For the same reason, offering cross-platform support
should not be expected of them either.

One way to better leverage the opportunities of the cloud
market and make the market more accessible is the use of
cloud intermediaries between the CSPs and the customer.
Given that, this paper aims to tackle two main research
questions:

• Under what kind of business model could such an in-
termediary operate? To answer this question, a detailed
proposal and description of a viable business model for a
cloud resource intermediary will be presented. Interme-
diaries in a similar fashion have been put forward, but as
far as the authors’ best knowledge, no conclusive business
model exists on how these intermediaries could operate.

• How could such a platform be implemented? The other
goal of this work is the design and implementation of a
cloud resource intermediary.

Thus, the paper is structured as follows: The next section II
gives the reader a literature survey on the target research area.
Section III focuses on cloud portfolio optimization theory,
and two respective algorithms, a genetic and a greedy one,
are described and their performance evaluated. In section IV,
we propose our proposal of a business model for a cloud
portfolio management platform, consisting of the nine building
blocks defined by the business model canvas framework of
Osterwalder [3]. Based on the business model description,
we present the implementation of our respective prototype
in section V. The following section VI presents our appli-
cation’s user experience (UX) evaluation. Finally, section VII
summarises the paper’s findings, including what future work
to expand upon the topic.

II. STATE OF THE ART

The cloud market currently consists of many cloud service
providers, each featuring various ways and markets for cus-
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tomers to access their products. There is no single space
from which all suppliers can be accessed. The market is an
oligopoly, dominated by the most prominent three players,
Amazon Cloud Services (AWS), Microsoft Azure, and Google
Cloud, according to [4]. In the course of this work, we focus
on AWS, the largest cloud service provider today, which offers
three different resource markets with varying pricing models,
which are as follows:

• On-demand marketplace: For maximum flexibility and
easy scalability with no advance notice, instances bought
on this market are handled in the classic pay-per-use
model, where customers can purchase computing power
on-demand and by time period.

• Saving plans marketplace: This model offers significant
price reductions (e.g., up to 72% cheaper) for the cus-
tomer in exchange for a long-term commitment (e.g., 1-
or 3-year plans) to a certain amount of usage.

• Spot marketplace: This market allows customers to ben-
efit from the varying loads that AWS experiences on its
services. Amazon EC2 offers instances of their currently
unused capacity with even greater discounts of up to 90%
reduced prices compared to the on-demand market.

The definition of a business model has not only been one of
the earliest focuses of research, but also one of the most hotly
debated. Almost every paper concerning this topic has defined
its own take on this task, and to this day, there is no general
agreement on a universally accepted definition. We follow
the definition of [3], where a business model describes the
rationale of how an organization creates, delivers, and captures
value.

Similar to the definition of the term, there is also a wide
array of frameworks describing the elements a business model
comprises. The paper will focus on the Business Model Canvas
from Osterwalder and Pigneur [3], one of the most established
and widely used frameworks today. This framework proposes
to describe any business model with nine building blocks,
which can also be grouped into four areas of a business:
customers, offer, infrastructure, and financial viability. They
showcase how a company intends to make money and are as
follows [5], [3]:

• The Customer Segment block describes the groups a
company tries to offer its products to.

• The Value Proposition describes the reason why a cus-
tomer chooses to work with one business over others

• Channels describe the way a company reaches its cus-
tomer segment to make its proposition of value.

• The different kinds of relationships companies can have
with their customers are described in the block Customer
Relationships.

• The block Revenue Streams deals with the income a
company receives from its customers.

• The Key Resources block describes the resources that
allow the company to operate its business and earn

revenues.
• The block Key Activities defines the activities a company

must perform to be successful. They are necessary to
create value and earn revenue, and they can differ widely
depending on the company.

• Key partnerships are the suppliers and partners a business
model includes to make it work.

• The last block Cost Structure of the Canvas deals with
all operating costs of the business model.

As many cloud providers are on the market nowadays, the
question arises: What makes such a company and its business
model successful? An analysis of the business model char-
acteristics revealed three different types of business models,
with differing value creation, proposition, and delivery that all
providers could be divided into [6]:

• Newcomer: This type describes newcomers to the market
that adapt already existing cloud strategies or form co-
operations with already established cloud companies.
Their value proposition focuses much on individual cus-
tomization, often resulting in higher initial costs. The
newcomer’s main customer segment is niche markets,
which they reach through traditional channels, such as
print media and personal contact. A one-time charge gen-
erates revenue, which supplementary services or partner
revenue models later generate. This cloud provider has
to deal with a crowded market and stand out by having
a well-developed market entry strategy and a defined
target market. On the other hand, they have the advantage
of working flexibly and developing a specialized cloud
service instead of focusing on commodity services.

• Experienced player: Companies of this type mainly work
with their existing know-how, offering a plethora of soft-
ware and consultancy services. The services offered are
standardized and provided via a public cloud with high-
security standards, resulting in excellent scalability and
possibilities for time and cost reductions. The experienced
players target both the mass and individual markets and
use support systems and online communities to reach
their customer base. Subscription-based services usually
account for the biggest source of revenue. While profiting
from an economy of scale and a good understanding of
their technology, they must be careful that good CRM,
branding, and marketing strategies compensate for less
direct customer contact and lower trust levels.

• Specialised provider: Providers of this type stand out
by expanding the usual cloud services on a vertical
level, adding services such as data processing, adminis-
tration, marketplace, and migration services. Their target
customer segment is branch-specific and may include
the public sector. Firms following this business model
often implement a usage-based revenue model. The spe-
cialized providers have the advantage of a high-quality
and innovative model that, in combination with good
security and customer orientation, results in high levels



of trust and loyalty by their customers. While not easily
imitated, the model does not support high scalability and
needs constant innovation to satisfy the customers’ ever-
developing needs.

Actual cloud broker implementations on the market are still
sparse, while the high number of cloud service offerings makes
it hard to find the right service as a customer. Brokerage
can be several services the intermediary offers the cloud
customer, such as decision support or enhancing the delivery
of services. The benefits for the customer are lower costs
and the ability to seamlessly switch between different cloud
providers [7].

To gain a deeper understanding of the cloud intermediary
market, Elhabbash et al. [7] presents a systematic survey of
cloud brokerage literature, looking into the motivation for
designing a cloud broker and its functionality.

While a plethora of research has been conducted in the field
of cloud intermediaries, the number of implementations on
the market is limited. This situation, in conjunction with the
fact that the services provided can vary wildly, has resulted
in a lack of research concerning the business models of cloud
brokers so far. Nevertheless, the work of Filiopoulou at al. [8]
gives an overview of benefits, common pricing models, and
an evaluation of cloud brokers. It is concluded that brokers
assist companies in developing themselves and creating a more
competitive environment for providers while earning revenues
themselves.

III. PORTFOLIO OPTIMIZATION MODEL

In this section, we will present a synopsis of the findings
of our previous research work, which encompasses related
approaches, a formulation of the problem at hand, a short de-
scription of two portfolio optimization algorithms developed,
and finally, an evaluation of their performance [9].

The main goal of cloud portfolio management is usually
achieving the lowest costs for running a specific set of ap-
plications over (a certain amount of) time. Some research like
Jangjaimon and Tzeng [10] and Sharma et al. [11] tried to deal
with this problem by creating a checkpointing mechanism or
by focusing on preemptible servers in combination with con-
cepts taken from financial modeling, to meet the requirements
of applications when using spot instances. Meanwhile, Pittl et
al. [2] took a more comprehensive approach to cloud portfolio
management, which resulted in the findings that a more het-
erogeneous portfolio tends to be more cost-efficient. Another
finding of that paper was to highlight the significance of right-
sizing, where server instances should be chosen to most closely
fit the capacity requirements of the applications the workload
consists of. Otherwise, an expensive over-provisioning of re-
sources could be the result [9]. Regarding right-sizing, Hwang
and Pedram [12] developed a portfolio-based optimization
approach with a probabilistic model, which, while created for
data center operations, is also applicable to cloud portfolio
management. Each assigned workload in this model has a

TABLE I
NOTATION FOR PROBLEM FORMULATION

Parameter Description

I A set of selected cloud instances (hosts)
A A set of applications
T A set of time slots for which to optimize

xait Variable denoting assignments of applications to instances
Sa The starting time of application a
Fa The finishing time of application a
Ua Indicates if application a is preemptible
µa The expected resource demand of application a
σa The std. deviation of the resource demand of application a
Ri The resource capacity of instance i
Ci The cost of instance i for one time slot
Bi The first available time slot of an instance
Ei The last available time slot of an instance
Oi Indicates if instance i is suitable for non-preemptible apps
Dit Aggregated resource demand of instance i at time t

Qmin The desired quality of service

resource demand, not defined by a fixed value, but via a
probabilistic model using a normal distribution. This idea of
using probability-based problem formulation was also used
in further research; for example, Martinovic et al. combined
it with a stochastic bin-packing approach to finding efficient
server allocations [13]. One additional approach proposed
for optimizing virtual machine placement to reduce energy
consumption in data centers is using a genetic algorithm, as
was done by Wu et al. [14]. Another interesting concept to be
regarded is the one by De Cauwer et al., which introduced the
idea of a temporal component to server allocation schemes
while using deterministic resource demands. This additional
dimension better reflects real computational needs, where
applications often do not run forever but with a specific start
and end time [15], [9].

A. Problem formulation

This section will deal with formulating the problem, which has
to be tackled by the cloud portfolio optimization approaches.
The notations used for this task are defined in I [9].

First, we define a cloud portfolio as a set of cloud in-
stances I , which are used to run a set of applications A
on them. The main goal of our optimization problem is
to find a cost-efficient allocation of these applications and
instances [9].

All applications A have a specific resource demand, which, as
proposed in the literature by Hwang and Pedram, have their
resource needs not defined as a fixed value but with fluctuation
taken into account [12]. Therefore, we denote the capacity
requirements of our applications as an expected demand mean
µa and with a corresponding standard deviation σa. As our
workloads also have varying run times, each application sports
a starting time Sa and a finishing time Fa, for which the
statement Sa < Fa must always be true. To model which
applications are suitable for spot instances, meaning they can
be interrupted at any time, we use the variable Ua which can
either be 0 or 1 [9].



Ua =

{
1 if a is preemptible
0 else

(1)

For modeling instances, each instance I ∈ I has a prede-
termined resource capacity Ri, representing, for example, the
number of CPUs and RAM of an instance. Furthermore, each
kind of instance has a price per time unit Ci, where the total
cost of any instance is calculated by the price per time slot
and the overall up-time. As with applications, each instance
has a given starting time Bi and ending time Ei, with the
inequation Bi < Ei again having to be fulfilled at any time.
Preemptible spot instances are denoted by the binary parameter
Oi [9].

Oi =

{
1 if i is only suitable for preemptible applications
0 else

(2)

To model the summed-up demand of all applications assigned
to an instance i ∈ I , for a specific time slot t ∈ T , we use the
parameter Dit. As with the demand of a single application, the
aggregated demand is also not a fixed variable but a random
variable, which means it can only evaluate the probability with
which an instance stays within the designated capacity limits.
Our proposed model also defines a desired minimum quality of
service Qmin. An allocation is invalid if the probability of the
aggregated demand Dit staying below the provided capacity
of the instance Ri does not satisfy the minimum quality of
service Qmin for time slot t. This approach also builds upon
the model proposed by Hwang and Pedram (2012). Still, it
has to consider the temporal component of our model, meaning
that the capacity restrictions have to be fulfilled for every time
slot an instance is used [9].

For modeling the formal assignment of applications to in-
stances while considering the temporal restrictions of the
problem, we used the approach postulated by Dell’Amico
et al. [16]. The variable x denotes which hosting instance
an application has been assigned to at a specific time. The
resource demands for an application a ∈ A are considered to
be 0 for any time slot t ∈ T if t < Sa or t > Fa [9].

xait =

{
1 if app a is assigned to instance i at time slot t
0 else

(3)

Having outlined the cloud portfolio optimization requirements
and assumptions, we can now present our exact problem
statement. The main optimization goal is to find the minimum
of the following cost function [9]:

min
∑
i∈I

Ci ∗ (Ei −Bi) (4)

4 is the main function to optimize. It minimizes the costs of
the entire portfolio, which consists of the sum of all prizes
incurred by each assigned instance. Hereby, (Ei − Bi) is the
time an instance is running, multiplied by its costs per time
slot Ci to arrive at the price the instance will account for.
While trying to minimize 4, the following statements have to
be fulfilled [9]:

s.t.
∑
i∈I

xait = 1 ∀a ∈ A,∀t ∈ [Sa, Fa] (5)∑
i∈I

xait ∗ Ua ≥ Oi ∀a ∈ A,∀t ∈ [Sa, Fa] (6)

P (Dit < Ri) ≥ Qmin ∀i ∈ I, ∀t ∈ [Bi, Ei] (7)
xait ∈ {0, 1} (8)
Ua ∈ {0, 1} (9)
Oi ∈ {0, 1} (10)
Qmin ∈ [0, 1] (11)

The first constraint 5 asserts that each application has to be
assigned to an instance, while at the same time, each, at any
point of the run time of an application, can only be hosted by
one instance. The next constraint 6 states that each host has
to come from a suitable market space, which is necessary to
guarantee that non-preemptible applications are not assigned
to spot instances, which could be interrupted at any time. The
equation formulated in 7 ensures that for every time slot an
instance is running, the probability of the resource demand
of the applications assigned being within the capacity of said
instance is at least the quality of service Qmin. The final four
constraints 8 to 11 state that the auxiliary variables have to be
within a valid range from 0 to 1 [9].

B. Optimization approaches

Having modeled our cloud portfolio optimization problem
in subsection III-A, this section will now present our ap-
proaches to solving it. As our problem is essentially a multi-
dimensional packing problem, it is NP-hard, very complex
to solve, and finding an optimal solution is usually not
computationally feasible [17]. Therefore, we developed two
optimization heuristics to find good approximations of an
optimal solution [9].
1) Greedy algorithm: Our first algorithm is called Efficient
Resource Inference for Cloud Hosting (ERICH). It integrates
the approach of the widely known bin packing algorithm first
fit decreasing (FFD) [18], combining it with the proposed
portfolio management strategy by Hwang and Pedram [12].
It is executed in the following four stages [9]:

• Stage 1: As the first step, the algorithm sorts the pre-
emptible and non-preemptible applications it receives as
input by increasing starting dates, with applications that
start earlier being allocated first. Applications with the
same starting date are then sorted by non-increasing
standard deviation of their resource demand, based on a



proposal by Hwang and Pedram, suggesting that reduced
capacity needs can be achieved by grouping workloads
with similar resource demand deviation[12]. To ensure
that the algorithm prefers cost-efficient hosts, this step
also includes sorting all received instance types by cost
per time slot for the provided capacity in an increasing
order [9].

• Stage 2: Next, the algorithm tries to allocate all non-
preemptible applications to reserved instances by using
the first fit decreasing approach. Iterating through all such
applications, the algorithm first tries to find a suitable host
that provides the needed capacity over the entire run-time
in the existing portfolio. If so, the application is assigned
to the said instance. Otherwise, a new instance covering
the needs of the application is added to the portfolio [9].

• Stage 3: While reserved instances offer significant dis-
counts in comparison to those procured on the on-demand
market, the portfolio created in the previous step may
be inefficient due to the requirements for minimum run-
time in reserved instances. Therefore, step 3 tries to
condense the portfolio by removing instances chosen in
step 2 and replacing them with on-demand instances. To
achieve this, the algorithm iterates through all instances,
creating a new temporary portfolio with one reserved
instance removed at each step. Next, applications from
this instance are assigned to on-demand instances with
the same first-fit-decreasing approach used in the previous
step. Should this new allocation allow for a cheaper
portfolio, it replaces the old one in the next iteration [9].

• Stage 4: The final step of the algorithm deals with finding
fitting instances for all preemptible applications, which
can be assigned to multiple hosts during their lifecycle
and can, therefore, be allocated on an individual timeslot
basis. To leverage this, the algorithm will first find
any time steps for a suitable candidate host and assign
preemptible apps to these instances for the respective
periods. Should there be any more need for the workload
to run the apps, the difference is made up by adding new
spot instances [9].

Algorithm 1 describes the steps discussed in pseudocode.
To check if an application fits into any given instance, the
equation 7 is used.
2) Genetic algorithm: Using a genetic algorithm (GA) to
solve a bin-packing problem is not an entirely new idea. Still,
it has been proven to work well in dealing with combinatorial
optimization problems [19], [20], [21], [22]. GAs are based on
genetic operators that can be adapted to fit a particular prob-
lem, enabling them to perform an efficient and targeted search
in the problem space. Our genetic algorithm has been named
Genetic Optimization of Resource Groupings (GEORG) and
will be described in this subsection. The algorithm is described
in pseudocode in algorithm 2, followed by a description of the
algorithm building blocks [9].

• Encoding scheme. Grouping of items and using bins are

Algorithm 1: Efficient Resource Inference for Cloud
Hosting
Input: A set of non-preemptible apps A1; A set of

preemptible apps A2; A set of reserved instance
types RES; A set of on-demand instance types
ON ; A set of spot instance types SPOT

Result: Packing pattern portfolio
sort applications A1 and A2 by increasing start time and

non-increasing σa

sort RES, ON and SPOT by non-increasing Ci per Ri

and time slot
portfolio ← empty allocation variable
forall a ∈ A1 do

assign a to portfolio (FFD) while only considering
RES instances

forall i ∈ reserved instances from portfolio do
tmp_portfolio ← copy of portfolio without

instance i
forall a ∈ i do

reinsert a into tmp_portfolio (FFD) including
ON instances

if total cost of tmp_portfolio < total cost of
portfolio then

portfolio← tmp_portfolio
forall a ∈ A2 do

assign a to portfolio without allocating new
instances
gaps← consecutive time slots where a is not yet

assigned to portfolio
forall gap ∈ gaps do

assign a to portfolio for time slots in gap by
allocating SPOT hosts

Algorithm 2: GEnetic Optimization of Resource Group-
ings
Input: A set of non-preemptible apps A1; A set of

preemptible apps A2; A set of reserved instance
types RES; A set of on-demand instance types
ON ; A set of spot instance types SPOT

Result: List of packing patterns (portfolios) population
population ← use semi-random heuristic to create initial
population

while termination criteria are not met do
parents ← fitness-based selection of individuals

from population
offspring ← apply temporal biased crossover for

each tuple in parents
offspring ← repair broken chromosomes in
offspring after crossover
offspring ← apply domination mutation operator to

random offspring
offspring ← repair broken chromosomes in
offspring after mutation
population ← fitness-based merge of offspring
and current population



essential for building a GA, according to Falkenauer [20].
Their approach of encoding, where each chromosome
consists of an array of bins holding a set of items, is
not suitable to our problem with its temporal component.
That is why we have chosen a temporal group encoding,
where every chromosome locus represents a certain time
step, while the allele is a set of instances running at a
certain time. Finally, every host is assigned a set of ap-
plications, which are then allocated to the corresponding
instance during this time slot. [9].

• Population initialization. To enable the operations of
a GA, like crossover, mutation, and survivor selection,
to occur, an initial set of individuals (a population) is
needed. For our initialization process, a hybrid approach
was chosen to achieve comparatively high fitness from the
start while also offering good genetic diversity. Therefore,
half of the assignments are done randomly, with the
other half having applications that have been assigned to
reduce the number of allocated instances and the overall
costs [9].

• Fitness evaluation. This building block of our GA uses
the equation 4, the main function to optimize, to evaluate
the fitness of each individual [9].

• Parent selection and crossover. For each new generation
of the GA, a group of individuals is chosen for parentage
of the following generation. These individuals are chosen
based on the fitness proportionate roulette wheel method.
Out of these, there is a crossover applied by pairs of two
parent solutions to create new solutions (offspring). To
perform this crossover, a new biased temporal crossover
operator was built on the concepts proposed by Quiroz-
Castellanos et al. [21], which aims to encourage the
passing on well-fitting genetic material to the following
generation. Within each gene, which represents a time
step, all active instances are sorted by decreasing the
average capacity utilization rate and cost per time slot.
Using a zip-merging approach, a new partial solution is
created from both parent solutions. After removing hosts
of already assigned applications, the partial solution is
pruned. If any instances violate the constraints outlined
in the problem formulation, they will be pruned in the
subsequent time steps of the crossover process. Culling
instances from solutions may break some chromosomes,
as applications can end up with no or only partial
assignments. This issue is addressed by employing a basic
heuristic to reintroduce any applications that have not
been completely assigned [9].

• Mutation. This operator is used on freshly produced off-
spring randomly to introduce new genetic characteristics
to individuals and enhance the population’s overall fit-
ness. The concept of dominance, introduced by Martello
and Toth [23], can lead to tighter packing patterns by
replacing a subset of items with an item of larger or equal
size. This approach has been shown to be incorporable
into the mutation operator of a GA [20], [21], though for
usage in this work, the definition of dominance has to

be adapted. Application a, hosted by instance i ∈ I for
the time slots [St, Ft], dominates a partition of apps P
from instance i if the period denoted by [St, Ft] contains
all assignments slots of the partition for the respective
host. Additionally, the probability of the resource de-
mand of the dominating application being higher than
the summed-up capacity requirements of all elements of
partition P has to exceed fifty percent. Applying the
mutation operator on an individual results in the removal
of several instances from the portfolio. Each application
that is now unassigned is checked against candidate hosts
from the portfolio. By creating partitions of applications
of size two from the respective candidate instance, we
can try to find partitions dominated by the unassigned
applications. Should one be found, the application is
swapped with the partition. As these operations may
leave broken chromosomes with unassigned applications,
just like the crossover operator, the insertion heuristic
mentioned previously is used again in order to repair
those corrupted individuals [9].

• Insertion heuristic. One of the main constraints of our
problem formulation is equation 5, which requires each
application to be assigned to a fitting instance at any
time slot of its run time. As previously mentioned,
the crossover and mutation operators may violate said
constraint. The insertion heuristic chosen to alleviate this
problem uses a naive first-fit approach, which chooses
a candidate instance from the existing chromosome to
fit orphaned applications. Should a non-fitting host exist
in the portfolio, a new random instance is generated to
accommodate the corresponding application. The element
of randomness is used to reduce the risk of converging
on a local optimum by creating additional genetic diver-
sity [9].

• Survivor selection. The process of survivor selection
decides which individuals at the end of an iteration will
represent the next generation. This can be achieved in
several ways, with one of the simplest being the selec-
tion of the fittest individuals. While more sophisticated
methods exist, and simply choosing the best individuals
could lead to a lack of diversity and converging on
local optima, both our crossover and mutation operators
introduce enough randomness, meaning that the fittest
individuals are sufficient for our algorithm.

• Termination. For termination, our GA can use one of sev-
eral common stopping criteria, like a maximum number
of generations, the fitness scores of the individuals of a
population converging to a certain degree and therefore
becoming very similar, or the highest level of fitness of
an individual not changing any more with more genera-
tions [24], [9].

C. Evaluation and Results

In this section, we will discuss how the previously described
algorithms were evaluated and the results of this evaluation
to present what kind of optimization results a customer could



expect from the cloud portfolio optimizer. Further examples
created in the Cloud Portfolio Manager platform will be
presented in section V. To evaluate our optimization heuristics,
we used synthetic data. The implementation of the algorithms
was done in Python 3.9, and the tests were conducted on a
PC running a Windows operating system with an Intel Core
i7-4770 processor (3.4 GHz base clock, 3.9 GHz turbo) and
16 GB of DDR3 memory at 1600 MHz [9].
1) Data set description: With our optimization problem,
multiple dimensions influence the difficulty of any test set. As
is the case with any bin packing problem, a primary contributor
to this is the number of items to be assigned. Unlike many
other bin packing problems, our problem must regard the
temporal component as the primary driver of execution time,
with the number of allocation periods increasing the difficulty.
Therefore, the created test data sets reflect a variety in both
these attributes [9].

TABLE II
SUMMARY OF APPLICATION DATA SETS

App.
Set

Non-
Pre.

Pre. Avg.
Res.
Dem.

Std.
Res.
Dem.

Avg.
Res.
Dev.

Std.
Res.
Dev.

Avg.
Alloc.
Periods

Std.
Alloc.
Periods

apps_1 14.0 6.0 3.2 1.7 0.5 0.5 43.1 33.4
apps_2 59.0 41.0 3.0 2.6 0.5 0.7 63.9 43.9
apps_3 10.0 10.0 3.0 2.0 0.7 0.6 212.2 167.8
apps_4 42.0 58.0 3.1 2.6 0.5 0.6 237.2 171.5
apps_5 7.0 13.0 3.1 2.7 0.6 0.6 2758.5 1996.9
apps_6 41.0 59.0 2.8 2.0 0.5 0.6 2871.7 2055.6

Even though the test data used for the evaluation was synthet-
ically created, it considers realistic scenarios, including antici-
pated price discounts for spot and reserved instances compared
to on-demand instances. This was based on observations done
on the major cloud service providers AWS, Google Cloud, and
Microsoft Azure. Additionally, for creating our test instances,
the price-to-capacity ratio has been modeled similarly to
offerings observed on the previously mentioned CSPs. The
table II above shows our chosen six sets of applications
with their key resource demands and allocation characteristics,
while the table III describes the three sets of instance types
created for testing, each containing 500 instance types. These
were combined in the following pairings to create six test
cases: case_1 (apps_1, types_1), case_2 (apps_2, types_1),
case_3 (apps_3, types_2), case_4 (apps_4, types_2), case_5
(apps_5, types_3) and case_6 (apps_6, types_3) [9].

TABLE III
SUMMARY OF INSTANCE TYPE DATA SETS

Inst-
ance
type
set

Avg.
capa-
city

Std.
capa-
city

Avg.
Res.
Prc.

Std.
Res.
Prc.

Avg.
On.
Prc.

Std.
On.
Prc.

Avg.
Spot
Prc.

Std.
Spot
Prc.

types_1 9.6 8.8 2.3 2.8 3.1 2.2 2.5 2.2
types_2 10.3 11.4 2.2 2.4 3.1 2.6 3.1 4.8
types_3 9.8 9.9 2.4 3.8 3.1 2.4 2.3 1.7

2) Results: The results of our tests focus on three key criteria
for evaluation: speed of execution, packing density, and overall
costs incurred by the resulting portfolio. To avoid side effects
other tasks running on the test machine may have, each
algorithm ran ten times to get data on execution speeds.

As you can see in Figure 1 and Figure 2, the optimization
approach ERICH offered way faster execution speeds, being
faster by the magnitude of close to 10. It also results in an al-
most static execution speed by being deterministic. In contrast,
the optimization approach GEORG is not only slower, but also
way more volatile in terms of execution speed. The slowest run
can take 2-3 times longer than the fastest one due to genetic
operators being highly influenced by randomness [9].

Fig. 1. Execution time ERICH

Fig. 2. Execution time GEORG

Our second criterion, the utilization rate, measures the rela-
tionship between the total expected resource demand of all
assigned applications across relevant time slots and the abso-
lute capacity provided for that period. Depicted in Figure 3,
it is easy to see that once again ERICH delivers better results
than GEORG. Depending on the test case, the gap can range



from minor, like in case 1, to very significant, as in cases 4
and 6 [9].

Fig. 3. Utilization comparison between ERICH and GEORG

Finally, in terms of overall costs of the generated portfolio,
ERICH also outperformed the GA by a significant margin,
which can be seen in Figure 4. While this may initially lead
to the conclusion that the GA did not work correctly, this is
untrue. In Figure 5, one can observe that the costs, meaning the
fitness level of the multiple generations for the data set case_6
improve continuously, with each new generation being fitter
than the previous one. The initial population starts with a high
degree of genetic diversity and improves with each generation.
After ten generations, which is the duration the test ran, the
average costs have been reduced by more than 50%. As the
initial population of the GA can serve as an example of how
an unplanned allocation of resources would look like, it also
shows that both algorithms can deliver notable lower costs for
a portfolio and, therefore, offer a usable basis to build our
Cloud Portfolio Manager platform upon [9].

Fig. 4. Portfolio comparison between the two algorithms

Fig. 5. Cost for each generation for set case_6 using GEORG

IV. BUSINESS MODEL

In this section we will first present our business model
of the Cloud Portfolio Manager using the Business Model
Canvas framework by Osterwalder and Pigneur [3], where
we describe our model with the help of the nine building
blocks introduced in section II). Afterwards, we will discuss
how our model can be classified within the context of various
classification approaches. Finally, we will compare our model
to contender platforms offering services with some similarity
to our own.

A. The Cloud Portfolio Manager Business Model Can-
vas

1) Customer Segments: For our customer segment, the sole
focus will be on the B2B area, as consumers, so far, have
little to no reason to purchase cloud resources for personal
use. Within the B2B sector, a big emphasis will be put on the
IT sector, ranging from small businesses to large companies,
seeing as large parts of this sector move more and more of their
IT infrastructure into the cloud. One example would be Netflix,
which, since 2015 has moved its entire IT infrastructure to
AWS [25].

Surprisingly, when it comes to smaller businesses, as suggested
in a study by Jonas et al. in 2013, start-up companies looking
for cloud solutions prefer the reputation of a cloud provider
over other aspects such as price, security, and reliability [26].
At least at the beginning, a small and not well-known com-
pany could mean targeting this customer segment could be
more challenging than others. This situation also leads us to
conclude that establishing a reputation should be a primary
business goal. Besides this, we can increase our attractiveness
to small businesses and start-ups by offering cloud consulting
and optimization services. These services aim to help cus-
tomers better understand cloud environments and set up and
operate their own cloud portfolios. While it can be expected
that larger companies already have access to this knowledge,



the same cannot be said for smaller businesses. Aided by our
consultancy services, we can also market our optimization
service to this customer segment.

One customer segment our business will specifically focus
on within the IT sector is those companies, businesses, and
possibly research facilities working with machine learning
algorithms. These are uniquely well-suited to be run on cloud
resources, as their implementations often offer out-of-the-box
preemptibility like PyTorch and Google TensorFlow [27], [28].
Combining machine learning algorithms, resource-intensive
applications, and our optimization approach, delivering the
best results for preemptible applications, makes them a perfect
match. Our value proposition, which will be detailed within its
own building block, is well suited to reduce one of the great
pains of implementing machine learning solutions, the lack of
processing power, by offering cheaper access to computational
resources.

While the previously described customer segment will be
our primary focus, other sectors also offer a wide range of
potential customers. Even in 2017, Mohit et al. suggested that
over 90% of organizations were either already adopting cloud
infrastructure or planning to do so within the next one to
three years [29]. Therefore, our cloud resource optimization
approach’s potential market is large and diverse.
2) Value Proposition: Our primary value proposition, a cost
reduction for their cloud portfolio, is unlike many other busi-
ness models, targeting all customer segments. It can be applied
to both existing portfolios and first-time cloud deployments,
as long as the customer is roughly aware of their application’s
computational needs and run-time. A portfolio can be set up
in two ways: First, directly via interacting with the platform
via its website. Alternatively, outside initial registration, most
interactions with the platform can also be done via API,
allowing customers to integrate our service within their own
systems and automate the process of creating portfolios and
creating allocations.

The previously mentioned cost reduction is achieved by a
combination of choosing the cheapest instances from the right
marketplace and reducing their idle time through continuous
monitoring of the needs of the applications. The resulting
benefit for the customer entails the direct cost reduction
itself and offers easier access to the complex world of cloud
computing, which could be especially useful for small and
medium-sized businesses. For these clients in particular, we
can extend our value proposition by offering a consultancy
service for customers who still need the know-how required
to take advantage of cloud solutions. Said service would focus
on the basics of cloudification, such as which applications are
viable for being put into the cloud, the creation of portfolios,
and first-time deployment.
3) Channels: Listed here, we will address the channels used
throughout the five phases of customer interaction through
which we aim to reach our customers:

• Awareness: For the first phase, raising the customer’s
awareness of our service, a mixture of online advertise-
ment and direct contact with potential customers through
an in-house sales force seems applicable. Furthermore,
targeted online advertisement, for example, via Google
ads1, could be considered an option. While having the
potential to result in a higher click-through rate, the
advertiser has to be careful not to be too intrusive, as this
can result in having the opposite effect. It also appears
that targeted advertising does not work well with every
demographic [30]. After the first customers have been
acquired, it can also be reasonably expected that word-
of-mouth between different businesses could raise further
awareness levels for the company. Another option to
reach potential customers is trade fairs focusing on the
IT sector.

• Evaluation: Our website is the primary channel used for
evaluation and the center of the operation. It provides
example calculations, which showcase the potential cost
reductions offered by the service, gives an overview of
the pricing structure, and offers guidance on how to
set up an account. Later, customer success stories, a
widely adopted practice among online businesses today,
will be showcased on the website. These stories further
highlight tangible implementations of our service and
provide credibility to our claims of assisting customers
in optimizing their cloud portfolio.

• Purchase: Regarding purchasing our products, many on-
line payment services such as PayPal, Amazon Payments,
and Credit cards are available and can be provided with
relative ease. Besides directly integrating single payment
options, companies such as Stripe2 offer a single API
that enables the user to choose from a range of standard
online payment options.

• Delivery: The delivery of the optimization service to the
customer can also be achieved through the platform’s
direct channel, either by direct customer interaction on
the website or via API call. As for the consultancy side of
the business, we expect delivery to be done via personal
interaction, both physical and online, depending on the
customer’s preferences.

• After sales: The Cloud Portfolio Manager will first focus
on providing post-purchase support to customers through
our website. Here, the user can overview his portfolios,
optimizations, subscriptions, and general account infor-
mation. A FAQ page can also help answer general ques-
tions. Direct support through a personal customer support
force should also be implemented for more complex
cases.

4) Customer Relationships: When it comes to the methods
of interacting with the customer base, the Cloud Portfolio
Manager will focus on two areas: For the majority of inter-
actions, such as setting up an account, creating and managing

1https://ads.google.com/intl/de_at/home/
2https://stripe.com/en-gb-at/payments
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a portfolio, an automated service based on our website will
be used. Complementing these services is a sales- and CRM-
(Customer Relationship Management) force, which can be
contacted personally via channels such as e-mail, phone, or
video calls. This enables a more personal relationship with
the customer and answers complicated and personal questions
regarding single customers, which cannot be served easily
via an automated service. This additional service is available
to the customer during the whole interaction, from pre-sale
evaluation until the purchase is completed. Another important
aspect of this building block is the interaction between the
consultancy force and the customers. As for offering a consul-
tation service, direct human interaction is preferable, as each
customer is assigned and mainly interacts with one consultant.
This can be over various channels, but due to the close
nature of the relationship, it will result in more face-to-face
interactions than the other services of our business. A study
by Roy et al. suggests that direct interaction with the customer
is also preferable, as service experience is valued even higher
than the actual service quality in B2B services [31].
5) Revenue Streams: Regarding revenue streams, a plethora
of options are available at first glance. However, as we state
in this section, most of them are not readily applicable to
our platform for one reason or another, leaving us with one
very widely used revenue stream as our primary source of
revenue.

The first option we want to discuss is advertisement. While
it is the main revenue stream of many large online platforms
such as YouTube and Facebook, these are mass media B2C
operations with millions or even billions of users, where each
user only generates a relatively small amount of revenue
through displayed advertisements. For our platform, which
offers a specialized service to business customers, advertise-
ments would mainly discourage users and possibly damage
the brand reputation [32].

Next, we have considered the option of transaction fees. This
could be implemented on a usage-based model, where the
customer would pay a certain amount for each optimization
based on the portfolio size. Another implementation could
be a one-time transaction enabling unlimited access to the
Cloud Portfolio Manager. Both options are not optimal for our
product. The usage-based model does not lend itself well to a
product that is meant for continuous optimization. This would
either lead to a need to frequently pay for a new allocation or
prevent customers from getting the full benefit of an approach
that is meant to adapt to changing demands in their portfolio.
The one-time charge option faces another drawback, making
it unfeasible. Seeing as our portfolio manager is intended as a
continuous service, this one-time charge would have to account
for a long service time, which in turn would increase the price
a level, which would turn it into a severe deterrent for new
customers that are not entirely convinced of the benefits of the
product yet.

Another alternative would be a system based on a brokerage

fee. In this case, a part of the cost reduction achieved by
the Cloud Portfolio Manager would be taken as our revenue.
The significant flaw with this idea, though, is that our system
does not aim to directly access and manage the customer’s
cloud instances. This would result in customers needing to
accurately and honestly report their current cloud expenses
and their achieved cost reductions, which lends itself to be
abused way too easily.

Finally, we propose that subscription fees are the revenue
stream best suited to our business model. They tackle several
disadvantages mentioned in the previously discussed systems,
such as fitting well with a continuously running service, unlike
pay-per-use transaction fees and a low entry barrier compared
to a one-time charge. The subscription fee, due in a monthly
interval, could either be based upon a system with different
levels of subscriptions, offering support to differing sizes of
cloud portfolios and varying levels of customer support, or
directly scaling with the size of the optimized cloud portfo-
lios.

As for revenue streams concerning the consultancy side of
the business model, three monetization variants are possible.
First, a classic hourly fee would most suit customers needing
only a more minor assistance contingent. Another variant
would be offering package deals with a fixed price, such
as offering to help set up the first cloud portfolio for a
customer. Finally, higher-level subscription models for the
cloud portfolio optimizer platform could include a certain
amount of consultancy services for free.
6) Key Resources: As for the differing categories of key
resources, the following can be said: When it comes to
physical key resources, there is little to be mentioned here.
While server resources are necessary to host the platform, the
hardware required is highly interchangeable and easy to come
by. Furthermore, it could be more advantageous to completely
forgo physical servers and host the platform itself on a cloud
server.

Financial key resources may also not play a huge role in
starting off. Of course, financial resources such as cash or
credit will be needed to set up the business, but due to its
nature, these will be of a small volume. One possible option to
gain access to financial resources to start the business would
be to apply for one of the many tech start-up sponsorships
available in Austria. The most critical key resources are within
the intellectual resource category, consisting of the portfolio
management platform and, in particular, the optimization
algorithms, which are at the heart of the operation and are
needed to realize all of the other components of the business
model.

Finally, when it comes to human key resources, the follow-
ing groups can be expected to be part of those: Especially
for development and improvements to the platform, further
full-stack developers could be needed. Furthermore, a small
team of cloud consultants would be responsible for providing
customers with know-how on cloud solutions. Besides that, a



group of employees helping with sales and CRM-related topics
should be employed as well.
7) Key Activities: The most important key activity of the
business is the operation and maintenance of the Cloud Port-
folio Manager platform. In this capacity, the platform offers
the customer an automated service. After creating an account
and logging in, customers can create, delete, and change
their cloud portfolios. Besides a simple interface to directly
manipulate a portfolio, the main feature for management is
the possibility to upload load profiles based upon which an
optimized portfolio of instances is calculated and displayed to
the customer. The load profiles can be uploaded manually on
the website and through a REST API.

In addition to the service provided by the platform, the other
main activity is problem-solving for the customer by offering
our consultancy service. This mainly entails sharing cloud-
related know-how and aiding the customer with planning, cre-
ating, and monitoring their own cloud solutions and migrating
their existing applications.
8) Key Partnerships: Within this building block, the most
prevalent partnerships are the various CSPs for which the plat-
form offers portfolio optimization. While actively managing
the customer’s portfolio is not part of the business plan so
far, it is crucial to the platform’s functionality to access the
instances and their respective pricing offered by the various
providers. Luckily, all major CSPs provide APIs that give
access to live data on the current availability and pricing of
their offered instances.

If the business grows beyond a small scale, it would be
possible for certain activities, such as customer support or
cloud consulting, to be outsourced to external partners, which
would turn these into key partnerships as well.
9) Cost Structure: The cost structure of the business model
is intended to lean towards being value-driven, focusing on
creating value for the customer. As the business operates
online with a web platform at its center, scaling should be
achievable relatively easily. While an increase in the customer
base will require additional staff for CRM and consulting,
the platform performance for handling a certain amount of
customers can be scaled almost infinitely and with a mediocre
but easily projectable impact on costs.

In contrast to the platform’s operating costs, which should be
manageable, the same cannot be said about its initial creation,
which can be expected to be one of the significant cost factors
in starting the business. Once the platform is in operation, the
major cost factors will be the personnel required for the CRM,
consulting operations, and resources spent on updating and
expanding the platform. Further costs that have to be taken into
account come from actions taken towards the acquisition of
customers, especially those mentioned in the awareness section
of the "channels" building block.

Fig. 6. Business Model Canvas [3] of Cloud Portfolio Manager

B. Model Classification

Having described the Cloud Portfolio Managers business
model, we will now discuss how our model can be clas-
sified within various classification systems developed in the
literature. Besides the system offered by Timmers [33],
we will also apply the classifications of Osterwalder and
Pigneur [3].
1) Classification according to Timmers: Many authors worked
on classifications for e-business models like the classification
made by Timmers [33], which, despite the age of the paper,
still applies well to today’s e-business models. The classes are
the E-shop, E-procurement, E-auction, E-mall, third-party mar-
ketplace, virtual communities, value-chain service provider,
value-chain integrator, collaboration platform and information
broker, trust, and other services. These different models are
all aligned along two criteria: functional integration, from a
single function to multiple, and their degree of innovation
from lower to higher. Within the classification system of
Timmers [33], both of our business models’ primary services
put the platform into the information broker model. Those
focus on providing information by analyzing or finding data
that can benefit the customer’s operations, which is the case for
both our optimization algorithms and our cloud consultancy
operations. Aligning our model along the two axes Timmers’
system uses, we will first find a high degree of innovation
with our cloud portfolio optimization, being one of the first
ever to offer this kind of service and cloud consultancy being
a service that has only emerged in the past few years. Placing
our business along the functional integration axis, we find that
with two main functions, it falls towards the lower end of this
spectrum. Both these placements fit well with the information
broker classification, as seen in the Figure 7.
2) Classification according to Osterwalder and Pigneur:
Now we will classify our model according to the patterns of
Osterwalder and Pigneur [3]:



Fig. 7. Classification of Cloud Portfolio Manager within internet business
models, figure from B. Wall et al., 2007, Production Planning and Control,
page 248 [34]

• In the case of the "Unbundling" pattern, our business
model falls within the product innovation category, with
a relatively new service on the market and only a
few small players present in it so far. The consultancy
aspect of our business model could be seen more as
a customer relationship management business, meaning
that, to prevent this service from conflicting with our
cloud optimization service, separating them into different
entities like business units may be necessary.

• Next, considering the so-called "Long Tail", we would
argue that our model does not adhere to this pattern. Our
business focuses on optimizing portfolios consisting of
widespread cloud instances that are sold frequently, not
making them niche products. We also do not offer a wide
range of niche products, only a few services.

• On the other hand, at first glance, it can be argued that
our product is a "Multi-Sided Platform" of some kind, as
it brings together two interdependent groups, and without
the presence of CSPs, our platform could not exist. On
the other hand, while customers optimizing their portfolio
are profiting from our service, the same cannot be said
for the CSPs themselves, as they rather stand to lose
extra revenue generated by unused but paid-for instances
running idle. Therefore, as the "Multi-Sided Platform"
pattern should be of value for all involved groups, we
argue that our model does not conform to this pattern.

• The same cannot be said for the "Free" pattern, as our
business model will include a small part of our services
free of charge. While there will be various levels of
subscription that will cost a monthly fee, there will also
be a free trial functionality, offering limited access to the
service to lure in potential customers. This approach has
been labeled as "Freemium".

• The final pattern to take into account is the "Open"
business model. While the "inside-out" approach is not
planned to be part of our business model, the "outside
in" idea could potentially be explored in the future by
integrating external cloud frameworks into the cloud
optimization platform, which can make the product more

appealing to potential customers.

C. Business Model Contenders

There are only a few business models similar to our ap-
proach.
1) spot.io: First, we will look at the platform spot.io3, which
offers a range of tools for customers to analyze, manage
and optimize their cloud portfolios. Two of their products
provide functionality similar to our cloud portfolio optimiza-
tion approach. Elasticgroup uses AI predictions to automate
infrastructure scaling with the help of spot instances fully.
On the other hand, Eco tries to optimize the customer’s
cloud portfolio by finding and off-loading unused Reserved
Instances and Saving Plans. Furthermore, in a similar fashion
to our platform, spot.io also offers consulting options to their
customers, though limited to their highest subscription plan.
So overall, regarding the value proposition, this firm is similar
to our business model.
2) Densify: Next up is the platform Densify4, which offers
a cloud management and optimization service with a similar
value proposition to our platform. There is a contrast to our
platform regarding revenue stream and pricing model. Densify
charges the customer for each managed instance per year,
with the price depending on the number of instances. Besides
the high prices and seemingly not offering solutions for a
portfolio of under 1000 instances, Densify does not seem to be
incentivized to optimize a customer’s portfolio to need fewer
instances, as they charge per instance.
3) Terraform: The final cloud optimization platform discussed
is Terraform5. It allows users to express their computational
infrastructure needs in their own semi-structured language,
which then can be deployed to a range of resource providers
like AWS or Google Cloud. The value proposition is to
simplify and enable infrastructure management across multiple
cloud providers. While there is also the capability of easy
scalability of resource needs, there does not seem to be
any optimization of the cloud portfolio. Therefore, this plat-
form’s value proposition does not directly compete with our
Cloud Portfolio Manager but could work in a complementary
way.

V. PORTFOLIO MANAGER PROTOTYPE

This section will present the prototype of our Cloud Portfolio
Manager. It will present an overview of the various pages and
showcase the various functionalities of the application.

A. Login, Registration and Landing Page

Starting of, the user is presented with the login page, as seen
in Figure 8, where the user can enter their e-mail address
and password to access the website. In case a new customer
does not have an account yet, the Register button leads to
the registration page as seen in Figure 9, allowing for a new

3https://spot.io/
4https://www.densify.com/
5https://www.terraform.io/
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account to be created by entering a valid e-mail address, a
username, and a password.

Fig. 8. Login Page

Fig. 9. Registration page

Logging into the website with the correct credentials brings the
customer to the landing page displaying the platform’s logo
and listing its creators. This page and all others besides the
login and registration also feature a navbar for easy navigation
between the various pages.

B. Instances Page

This view can be navigated to through the Providers and
instances tab in the navbar and contains information about
available instances from the various providers. For our pro-
totype, we chose a range of instances from the four biggest
CSPs: AWS, Google Cloud, Microsoft Azure, and Alibaba.
They all give good examples of what is available on the
market. This could be adapted for future development to

load instances provided by CSP APIs. The list on this page
gives an overview of each instance’s main attributes: provider,
name, market space, capacity, and price. Furthermore, a filter
function allows users to simplify their search for instances.
For example, as shown in Figure 10, the search does not
include Google Cloud instances but instances from all market
spaces, with a capacity of 5 or higher and a price of up to
1000$.

Fig. 10. Instances page

C. Apps and Portfolios Page

Next up, the Apps and portfolios page enables the user to
manage two of the main components of the Cloud Portfolio
Platform. As seen in Figure 11, the left side lists the user’s
applications and details like mean resource demand, demand
variance, preemtibility, and starting and finishing time. On
the right side of the page is a list of the user’s portfolio,
including details like which providers should be considered
for any possible allocation, a minimum quality of service,
the number of apps in the portfolio, and a list of which
applications exactly the portfolio consists of. Finally, it also
states the portfolio’s version, which is incremented every time
a portfolio or one of its applications is changed. It is used
to track which portfolio version a specific allocation has been
calculated for. This enables the user to spot if any of their
allocations are outdated or if any specifications or the makeup
of the underlying portfolio have changed.

To create a new application or portfolio, two green buttons
depict a plus sign on each side of the page. These open the
respective application and portfolio forms, as seen in Figure 12
and Figure 13. To create an application, the user has to fill out
the application form, including a unique name, mean resource
demand, demand variance, a checkbox for preemtibility, and
finally, the starting and finishing time chosen via a date-
time picker. Should the user wish to create a portfolio, the
portfolio form requires a unique name and a minimum quality
of service, which gives a percentage of time the apps in the
portfolio are required to run. The portfolio version, described



Fig. 11. Apps and portfolios page overview

previously, cannot be changed manually by the user. The
portfolio form also requires the user to choose at least one
CSP to be considered for allocations and which apps should
make up the portfolio. To ensure suitable inputs for both forms,
they also feature various checks, giving instant feedback to
invalid inputs, such as an application’s finishing time before
its starting time.

Fig. 12. Application Form

The user can update each application and portfolio by clicking
the yellow button, which displays a pen icon for every appli-
cation and portfolio. This will open up the respective form
already filled out by the app’s or portfolio’s data. For ease
of creating several applications with similar characteristics
without having to fill out the entire form every time again,
applications also feature a blue copy button, which will open
the application form filled out with the characteristics of the
chosen application and the suffix "_copy" added to its name.
Furthermore, clicking the red button displaying a trashcan icon
will delete the application or portfolio of choice. Deleting an
application will also remove it from any portfolios it may be

Fig. 13. Portfolio Form

part of and increment the portfolio’s version. To give feedback
on operations performed on this page, creating, updating, and
deleting applications and portfolios will result in a short popup
denoting a successful operation or, should any errors occur,
give the user notice that there has been an error.

D. Allocations Page

This tab focuses on the primary feature of the Cloud Portfolio
Manager: creating allocations for cloud portfolios. The user
has a dropdown menu at the top of the page, which lists their
created portfolios. Choosing a portfolio shows its details on
the side, and all already existing allocations for this portfolio
are below. Every allocation has an overview stating which
algorithm was used, which portfolio version it was made for,
its total costs, and the mean overall utilization achieved with
this allocation. As allocations can take a while to be calculated,
especially in the case of using the GEORG algorithm, there
is also a field stating if the allocation is already completed.
Below the general stats are two fields, which can be extended
by clicking on them. The first contains a complete list of
all instances used for this allocation and some statistics like
capacity, price, and the beginning and end of the instance’s
run time. The second field contains more detailed statistics
about the allocation, such as separate statistics for reserved,
on-demand, and spot instances. Each allocation can also be
deleted by clicking the red button with a trashcan icon in the
header section of each entry. On the right side of the alloca-
tions list, this page also features some data visualization with
graphs comparing the price, utilization overall, and utilization
split by instance type for each allocation as bar charts.

To create a new allocation, the "New Allocation" button opens
a form where the user can choose which algorithm should be



Fig. 14. Allocations page overview

used. In the case of using ERICH, that is all that is required
to do, as there is no parameterization possible. Otherwise,
when selecting GEORG, various options for configuring the
genetic algorithm are available. Examples of this would be
the size of the population, the number of generations, and the
mutation rate. Should the user want to look into this topic
sparingly, there is a default value for each. Otherwise, this
enables experimentation with this algorithm, which can lead
to varying results. The user should be aware that this will also
impact performance; for example, a very high population size
is more resource-intensive for the system the platform runs on.
As the calculation of the allocations is run asynchronously,
there is also a "Refresh" button on this page, which reloads
the allocation data from the backend.

VI. USER EXPERIENCE EVALUATION

After the presentation of our prototype, this section will
provide a brief evaluation of the user experience (UX). It is
crucial for any platform targeting success in the public market
to possess a convincing user interface. To this end, we will
discuss the usability heuristics developed by Nielsen et al.
and, based upon these same heuristics, present a brief survey
on the quality of our user interface [35], [36].

A. Usability Heuristics

Heuristics are an approach to finding not perfect but adequate
solutions to a problem, such as the optimization approaches
we developed in section III. This methodology can also be
applied to evaluate the quality of user interfaces. One of the
most commonly used and widely known usability heuristics
is those developed by Nielsen in the 1990s. He proposed ten
general principles for designing user interfaces, which are the
following [35], [36], [37]:

• Visibility of system status: This heuristic describes the
ability of design to always communicate to the user
about what is going on within the system in an easily
understandable and immediate manner. A user must know
what the previous interactions resulted in and understand
which steps can succeed.

Fig. 15. Form for creating a new GEORG allocation

• Match between the system and the real world: This
refers to a design that communicates by using words and
concepts that a user recognizes instead of internal terms.
A design that follows this heuristic enables intuitive use
of the interface without needing to learn new words or
concepts.

• User control and freedom: As users like to try various
actions and mistakenly perform others, there should al-
ways be an obvious way to go back a step and cancel
any action. It prevents users from getting stuck and gives
them the confidence to try any action within a system
freely.

• Consistency and standards: An interface should be con-
sistent to offer a good user experience. It refers not only
to consistency within the product you offer but also to
similar products a customer could be accustomed to and
have developed expectations from.

• Error prevention: This refers to designing an interface
in a way that helps to prevent the occurrence of errors.



Fig. 16. Graphs for comparison between a GEORG and ERICH allocation
for an example portfolio

Errors can be categorized into slips and mistakes. Slips
are unconscious errors caused by inattentiveness and can
be combated by setting helpful constraints and defaults.
On the other hand, mistakes happen consciously and
result from the design not properly communicating the
model to the user. They can be alleviated by enabling the
undoing of errors and reasonable warnings.

• Recognition rather than recall: As users have limited
short-term memory, a good design does not rely on the
recall of elements, actions, and options but encourages
recognition. Additional information is needed and should
be easily accessible if required.

• Flexibility and efficiency of use: This heuristic provides
experienced users with possibilities to speed up inter-
actions that inexperienced users may not need, e.g.,
keyboard shortcuts. These allow for flexible processes

Fig. 17. Details for an allocation with statistics and instances

that can be executed in various ways.
• Aesthetic and minimalist design: The design of interface

elements should prioritize essential information required
for their functionality. Additional irrelevant or rarely
needed information competes with relevant elements for
visibility.

• Help users recognize, diagnose, and recover from errors:
If errors occur, the system should inform the user using
plain language, providing an accurate description and,
when possible, a suggested solution. Technical terms,
such as error codes and unusual visual design for error
messages, should be avoided.

• Help and documentation: While in the best case, a
system does not need any further explanation, it may be
necessary to offer documentation to complete some tasks.
Said documentation should be concise, easily searchable,
and consist of concrete steps to be carried out.

B. Methodology

We will evaluate the Cloud Portfolio Optimizer frontend
design based on these heuristics. This will consist of five
testers going through a set of tasks on our platform and filling
out a questionnaire afterward. While the number of testers may
seem relatively low, Nielsen et al. mention in their work that
in contrast to one tester often missing a lot of problems, three
to five aggregated evaluations offer good results [35].

For the evaluation process, each tester is expected to complete
the following list of tasks:

• Create a new account and log into it.



• Navigate to the ’about methods’ page and skim over the
description.

• Go to the instances page, look at the instances displayed,
and use the available filters.

• Navigate to the applications and portfolios page, create
four new applications, update one of them, copy another,
and finally delete one.

• Create two portfolios, update one, and delete one.
• Finally, proceed to the allocations page and create one

allocation for each optimization approach.
• Log out from the platform, which returns the user to the

sign-in page.

Having completed the tasks above, the testers will be asked to
complete a questionnaire based on Nielsen´s heuristics. It was
created using Google Forms6), and asked the user to rate the
platform in regards to how well it adheres to each of the design
heuristics on a scale from 1 to 5, with 5 representing the best
possible adherence. Furthermore, the testers were questioned
on whether they found any issues or had suggestions regarding
each heuristic. To gauge the testers’ expertise in regards to IT
in general and the topic of cloud markets, the survey also
contains a self-assessment of these topics.

C. Results

The questionnaire results gave helpful feedback on the design
of the user interface and pointed out a couple of errors
that were overlooked in development. Five testers completed
the survey as described in subsection VI-B. Regarding IT-
related experience, two testers reported no background in IT,
one mentioned having educational knowledge, and two stated
having work-related IT experience. The testers’ knowledge
about the cloud market was somewhat limited, with three
testers stating their understanding to be cursory and two having
no knowledge about the topic.

Overall, the platform was perceived as adhering to most heuris-
tics pretty well, with some achieving better results than others.
The best-rated heuristics were those of "aesthetic and minimal-
ist design" as well as "user control and freedom," achieving an
average of 4.6 and 4.4 points, respectively. The heuristics of
"consistency and standards" and "recognition and standards"
also scored well, averaging 4.0 points. All other heuristics got
an average of 3.4 or 3.8, with the notable exception of "error
prevention" only scoring 3.0 on average. The complete list of
average scoring can be seen in Table IV.

These results point towards the platform having an aesthetic
and mostly easy-to-use design, with room for improvement
in error prevention and handling, as well as documentation
and help. All testers, except for one, who provided no useful
feedback by rating several heuristics poorly without offering
any comments, also reported issues they encountered and
provided suggestions for improvement.

6https://docs.google.com/forms/u/0

Visibility of system status 3.8
Match between the system and the real world 3.4
User control and freedom 4.4
Consistency and standards 4.0
Error prevention 3.0
Recognition rather than recall 4.0
Flexibility and efficiency of use 3.8
Aesthetic and minimalist design 4.6
Help users recognize, diagnose, and recover from errors 3.4
Help and documentation 3.4

TABLE IV
TABLE OF AVERAGE ASSESSMENT FOR EACH HEURISTIC

To sum up, the testers rated the platform positively regarding
most heuristics and provided helpful feedback for improve-
ment. The suggested feedback concerning minor changes has
already been applied, while others inform future ways of
improving the platform, such as adding a user guide.

VII. CONCLUSION AND FUTURE WORK

This paper focuses on cloud portfolio management platforms
and related business models. Cloud portfolio management
is primarily concerned with finding cost-efficient allocations
for cloud resources. Having discussed the necessary concepts
around the work built, we proposed our business model
for a Cloud Portfolio Manager. With the business model in
place, we implemented a prototype of the Cloud portfolio
manager [38], incorporating two optimization algorithms that
had been developed [39].

As the cloud computing market has been on a meteoric rise
over the past years and is still expanding, the topic of cloud
portfolio management will likely keep or expand its relevance
in the coming years. Future work would see the prototype
developed into a fully functional public platform operating
with our business model or a modification of it. Furthermore,
the platform’s offered services could be extended into various
monitoring functionalities and direct control of portfolios
via the platform. Further work will improve the existing
optimization algorithms and create new ones. In addition to
tighter packing, these could, for example, elaborate on the
resource constraints considered, such as network capabilities
and storage. Finally, further research will build upon the
business model presented in this thesis. Thus, we work on
integrating the presented approach into our work on automatic
and dynamic resource (re-)negotiation and contracting of re-
sources between providers and customers [40].
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