A New Exact State Reconstruction Strategy for Conjugate Gradient Methods with Arbitrary Preconditioners

Viktoria Mayer¹, Wilfried N. Gansterer²

¹ University of Vienna, Doctoral School Computer Science DoCS, Faculty of Computer Science, Vienna, Austria

² University of Vienna, Faculty of Computer Science, Vienna, Austria {viktoria.mayer, wilfried.gansterer}@univie.ac.at

Abstract

We present resilience extensions to tolerate node failures in the Preconditioned Conjugate Gradient (PCG) method and in communication-hiding pipelined PCG variants

- Extension of an existing ESR strategy
- Can be used with arbitrary preconditioners
- Very small communication overhead due to exploiting algorithm-specific properties
- We consider communication-hiding variants, which overlap global communication with other operations
 - Pipelined PCG (PPCG)
 - Stable /-length Pipelined p(/)-PCG

Resilience extensions

Existing ESR strategies

- Exploit data redundancy of MV products
- PCG: store search direction $p^{(i)}$ redundantly while computing $Ap^{(i)}$ in iteration i
- Recovery is not possible with implicit preconditioners (e.g., Multigrid)

New approach

- Introduce redundant local vector operations
- PCG: redundantly compute $x^{(i+1)}$ in iteration i with redundant copies of $p^{(i)}$ using

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} + \alpha^{(i)} \mathbf{p}^{(i)}$$

- PPCG, p(/)-PCG: additional redundant local vector operations (negligible on large-scale parallel computers)
- Overall, the same communication overhead as existing ESR strategies

Recovery after node failures

- Reconstruction of lost data based on redundantly stored data
- Possible with any preconditioner
- Only involves operations which also occur in a normal solver iteration
- At most one preconditioner application

Experiments

Table 1: Test matrices from the SuiteSparse Matrix Collection. NNZ: Number of non-zeros.

Id	Size	NNZ
M1	504 855	18e6
M2	525 825	4e6
M3	715 176	5e6
M4	923 136	40e6
M5	943 695	78e6
M6	952 203	42e6
M7	1 437 960	60e6
M8	1 465 137	21e6
M9	1 498 023	59e6
	M1 M2 M3 M4 M5 M6 M7 M8	M1 504 855 M2 525 825 M3 715 176 M4 923 136 M5 943 695 M6 952 203 M7 1 437 960 M8 1 465 137

Left figure: 3D Poisson matrices (27-point stencil) of sizes $128 \times 128 \times (32\phi)$, executed on 1024ϕ processes. Runtime overheads for resilience with ϕ simulated simultaneous process failures (after \sim 50% of solver iterations). Geometric Multigrid preconditioner with three levels and a Block-Jacobi-preconditioned Chebyshev iteration as both the bottom solver (10 iterations) and the smoother (1 iteration), with blocksize 10.

Right figure: Runtime overheads for matrices in Table 1, executed on 1024 processes. $\phi = 3$. If: failure-free execution. w\ f: execution with 3 simulated simultaneous process failures (after \sim 50% of solver iterations). Preconditioner: Block-Jacobi-preconditioned Chebyshev iteration, 10 iterations per solver iteration.

Contributions

- We developed PCG methods suitable for largescale parallel computers in terms of scalability and cost-efficient tolerance of node failures
- Our algorithms can be used with any preconditioner, while existing ESR assumes that the preconditioner matrix is available explicitly
- Numerical experiments on the Vienna Scientific Cluster (VSC-5) illustrate very low runtime overhead for fault tolerance

Conclusion

- Novel ESR approach can efficiently be used with arbitrary preconditioners: same communication overhead as existing ESR, at most one preconditioner application during recovery
- Very small resilience overheads for nine real-world test cases (below 4%).
- Weak scaling experiments showed that the overheads vary only slightly with the problem size or with the number of simultaneous failures

Link

eprints.cs.univie. ac.at/8088/

