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The likelihood of unanticipated node failures in large-
scale parallel computers increases with growing numbers
of nodes. Furthermore, global reduction operations become
major bottlenecks due to their limited parallel scalability. The
Preconditioned Conjugate Gradient (PCG) method faces these
challenges.

Resilience against node failures becomes increasingly im-
portant on today’s large-scale parallel computers. The widely
used Checkpoint-Restart strategy [1] is a generic approach
that saves the entire state of the algorithm periodically. In
the event of a node failure and the corresponding loss of data,
the last saved state of a failed node can be retrieved and the
algorithm can be continued. Alternatives to checkpoint-restart
exploit algorithm-specific properties to reduce the overhead
for fault tolerance and to achieve scalable resilience.

The PCG algorithm is a Krylov subspace method for
solving large sparse linear systems with a symmetric and
positive-definite system matrix. It has been shown how PCG
can be made resilient against node failures with very small
performance overhead compared to the existing non-resilient
algorithm using algorithm-specific properties: Only a part of
the state has to be stored redundantly and the inherent data
redundancy of the matrix-vector product in each iteration
can be exploited. In the case of node failures, exact state
reconstruction (ESR) strategies [2], [3], [4] can be applied,
i.e., the redundantly stored data are retrieved from surviving
nodes, and the rest of the lost state is reconstructed exactly
(except for effects of floating-point arithmetic) as it was before
the node failures by exploiting algorithm-specific properties.
Resilience to unanticipated node failures that does not impact
the convergence of the solver using ESR strategies was so far
studied only for a few PCG variants [4], [5], and only for a
few very simple preconditioners.

On large-scale parallel computers, where global commu-
nication is a major bottleneck, accelerating convergence us-

ing effective preconditioners and the resulting reduction of
iterations and global collectives is critical for performance.
However, existing ESR strategies assume that the precondi-
tioner matrix is explicitly available, which is not the case for
several important types, e.g. Multigrid preconditioners. Even if
the preconditioner matrix is explicitly available, existing ESR
strategies tend to be more costly for most preconditioners as
they cause extra communication cost during recovery.

A complementary approach to reducing the impact of global
communication are communication-hiding and -avoiding PCG
variants. Communication-hiding methods overlap global com-
munication with local communication and computation [6],
[7]. Communication-avoiding s-step methods reduce the num-
ber of global synchronizations by a factor of O(s) by rear-
ranging PCG so that s iterations can be computed without
communication [8], [9], [10]. When designing algorithms for
large-scale parallel computers, both resilience against node
failures and the reduction of communication bottlenecks must
be aimed for.

We develop and discuss extensions for standard PCG as
well as for communication-hiding PCG methods to make
them resilient against node failures while preserving their
scalability. By exploiting algorithm-specific properties of PCG,
the overhead of continuously storing redundant information
during the failure-free phase can be made very small. If
nodes fail, efficient recovery is based on adapting an exact
state reconstruction (ESR) strategy. In contrast to existing
ESR strategies, our approach can be used efficiently with
arbitrary preconditioners, and it requires at most a single
additional preconditioner application during recovery. While
we do not consider communication-avoiding s-step methods
in this work, our approach is in principle applicable to various
s-step methods [8], [10] as well. A detailed description of
extensions for these s-step methods remains future work.

Assumptions: We consider the parallel execution of the
algorithms on multiple nodes with distributed memory where
the runtime environment provides functionality comparable to
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the Message Passing Interface (MPI) [11] for communication
between nodes.

In the event of node failures, the data of the failed nodes
are lost. Replacement nodes, which can be spare nodes or
surviving nodes take the place of the failed nodes, recover
these lost data, and then the solver can be continued.

As in [3], [4], we define the state of a solver as the (not
necessarily minimal) data that define the future behaviour of
the solver. We focus on recovering the lost data of the solver’s
state after multiple simultaneous node failures and assume
that there is a runtime environment which provides fault-
tolerance features, such as the MPI extension User Level Fail-
ure Mitigation (ULFM) [12], [13]. Such extensions support the
detection of node failures, notification of the surviving nodes,
provisioning of replacement nodes, and preventing global and
local communication from being blocked indefinitely [14].

Related work: On large-scale parallel computers, differ-
ent types of failures can occur. Resilience of the PCG method
against soft errors, i.e. spontaneous changes of the state of
the solver, caused for example by bit flips, are investigated
in [15], [16], [17], [18], [19]. We focus on node failures,
e.g. a node crashes or looses its connection to the network.
A detailed overview of different Checkpoint-Restart strategies
can be found in [1].

Algorithm-based approaches for resilience may achieve bet-
ter scalability on large-scale parallel computers. Interpolation-
Restart (IR) strategies for Krylov subspace methods interpolate
the lost parts of the solution vector after one or several
node failures. The algorithm is then restarted with this in-
terpolation as the start vector [20], [21], [22]. An algorithm-
based approach to make PCG resilient against single node
failures using ESR is presented in [2] and extended to multiple
simultaneous or overlapping node failures in [4]. Contrary to
IR methods, where convergence can be severely impacted due
to restarting the solver after node failures, ESR recovery hardly
affects the convergence behaviour of the solver [3], [4].

Communication-hiding PCG algorithms such as Pipelined
PCG (PPCG) [6] and the numerically stable p(l)-PCG method
[7] hide global communication by overlapping it with local
communication and computation. Communication-avoiding s-
step methods reduce the number of global synchronizations by
a factor of O(s), where s is a user-defined step size, e.g. [8],
[9], [10]. In [5], a resilient version of PPCG [6] is presented
which uses ESR ideas. To the best of our knowledge, ESR
ideas have not yet been investigated for p(l)-PCG or for s-
step methods.

Contributions: We focus on developing Conjugate Gra-
dient methods suitable for large-scale parallel computers in
terms of scalability and cost-efficient resilience. So far, no or
at most very simple (Block) Jacobi preconditioners were con-
sidered in the context of existing ESR strategies for achieving
resilience [2], [3], [4], [5]. All existing ESR strategies require
the preconditioner matrix explicitly for solving small linear
systems during recovery, which contain submatrices of the
system matrix and of the preconditioner matrix. However, im-

portant classes of preconditioners are only available implicitly.
In these cases, a solver is used to compute the preconditioned
vector instead of operating with an explicit preconditioner
matrix.

Several publications on (non-resilient) communication-
hiding or -avoiding algorithms consider these more com-
plex preconditioners that cannot be used with existing ESR
approaches: [7] uses a SOR-preconditioned Chebyshev it-
eration preconditioner, [23] uses a Symmetric Gauss-Seidel
preconditioner, and [24] investigates a geometric multigrid
preconditioner using a preconditioned Chebyshev iteration
smoother. When using these preconditioners, the parts of the
state lost due to node failures cannot or not efficiently be
reconstructed using existing ESR strategies as submatrices
of the preconditioner cannot be formed. To the best of our
knowledge, we are the first to investigate and improve the
applicability of ESR with arbitrary preconditioners.

We develop a new exact state reconstruction strategy that
can be used with any preconditioner. Moreover, unlike existing
ESR strategies, our novel approach has much lower recovery
overhead as it requires at most a single preconditioner applica-
tion during recovery while still reconstructing the state exactly
(apart from effects of floating-point arithmetic).

To avoid preconditioner applications and the solution of
small systems with submatrices of the preconditioner during
recovery, we introduce additional local vector operations dur-
ing the failure-free phase of the solvers without increasing the
communication overhead compared to existing ESR methods.
The additional computational cost of our new approach is
considered negligible on large-scale parallel computers as the
dominant cost factors are preconditioner applications, matrix-
vector products and global communication.

Since we store more vectors redundantly during the failure-
free phase, recovery of the solver state using our new approach
is less expensive than with existing ESR strategies. As we store
all preconditioned vectors, no preconditioner applications are
required during recovery except for a potential recomputation
of the last preconditioner application that could not be stored
redundantly before the node failures.

Recovery in existing ESR strategies requires solving small
linear systems whose size depends on how many nodes failed.
In contrast, our new approach does not require solving these
small linear systems and is thus independent of the number
of simultaneously failing nodes (except for the inexpensive
retrieval of vector copies redundantly stored during the failure-
free phase).

In addition to standard PCG, we consider the scalable state-
of-the-art communication-hiding methods PPCG [6] and p(l)-
PCG [7]. For the latter, no ESR strategy exists yet. We improve
resilience of these Conjugate Gradient methods and illustrate
very low resilience overhead compared to the existing non-
resilient methods: for a synthetic test case clearly below 10%,
for real-world test cases below 3% in the failure-free case
and below 4% for three simultaneous node failures. Based on
theoretical and experimental analyses, we also confirm that the
scalability is preserved.
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