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Abstract. Microservices have gained popularity for isolating service
functionality and mitigating issues such as architectural erosion and tech-
nical debt. However, their decentralized nature and rapid development
often obscure the holistic view of the system and lead developers to lose
sight of the overarching architecture. Our work addresses this challenge
by proposing a novel approach to track and assess the evolution of mi-
croservice architectures through static source code analysis. We combine
source code repository mining techniques with architectural reconstruc-
tion to measure various metrics throughout a system’s development his-
tory. Our approach uses a formal API-based decomposition model that
can easily be adapted for different scenarios by choosing various archi-
tectural metrics. We validated our method’s scalability and robustness
through a case study on an extensive open-source microservice refer-
ence system with more than 40 individual services written in different
languages and more than 400 commits. Our research provides software
architects with a powerful tool to identify and monitor problematic ar-
chitectural trends before they become imminent threats, enabling the
evolution of microservice-based systems while maintaining architectural
coherence and integrity.

Keywords: Microservice API · evolution · source code repository min-
ing · metrics · source code detectors.

1 Introduction

The constant evolution of software systems is crucial for adapting to changing
environments and meeting new requirements [1]. However, it also harbors the
risk of architectural drift or erosion [2], leading to uncontrolled growth that may
break previously defined conceptual boundaries. A software system that evolves
without clear architectural guidance becomes more complex to maintain and
more challenging to develop – its components can become too coupled, resulting
in individual changes affecting too many parts of the system simultaneously [3].
Also, taking architectural shortcuts can often be necessary due to rough sched-
ules and insufficient development resources [4]. Unfortunately, this approach may
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produce technical debt that has to be addressed later to prevent disproportionate
delays in feature development [2].

The problem of architectural erosion is as old as software engineering itself
and persists despite various prevention strategies [5]. Microservice architectures
have emerged as one such strategy, with isolation as a core principle, facilitating
localized changes and easier replacement of problematic services [6, 7]. The idea
is that a single service whose technical debt becomes worrisome can be easily
replaced or rewritten [7]. These rewrites can also be valuable if business rules
become better understood over time and allow for a leaner implementation [6].

However, while microservices mitigate technical debt within individual ser-
vices, they exacerbate the challenge of maintaining architectural coherence across
the system. Having isolated services means developers lose sight of the big pic-
ture, as each team works only on its small excerpt but misses a clear view of
the overall architectural idea that underlies the entire system. The rapid de-
velopment enabled by microservices can further accelerate architectural erosion,
resulting in longer development times per feature with each new version [8].

To devise effective countermeasures against this erosion, identifying any prob-
lematic trends during development as early as possible would be necessary, but
tracking the overall architectural integrity in a microservice system throughout
its development is challenging: Many conventional metrics that work for mono-
lithic applications, e.g., calculating coupling and cohesion, may not apply to
highly distributed systems and loosely coupled architectures [9]. Also, existing
approaches often focus only on single points in time, neglecting the continuous
evolution of microservices [10–12]. Focusing only on an individual commit or
snapshot bears the risk that erosion has already hit a threshold where imple-
menting countermeasures may become too costly and bind too many resources
that could be better spent on feature development [13].

Our work addresses this gap by proposing a novel approach to tracking and
assessing the evolution of microservice architectures based on their APIs, which,
as central points of their communication, play a significant role during their
development. For this, we designed a multi-staged analysis process that, for the
first time in this context, combines source code repository mining techniques with
API-based architectural decomposition to reconstruct the evolution of a larger
microservice architecture during the whole development process. We also derived
a set of various metrics from our formal architectural model to analyze and assess
the system’s overall quality trends over time. We evaluated our solution in a case
study on an extensive open-source microservice reference system with over 40
individual services and a history of 400 commits, verifying that our method
works on a scale typical for mid-sized to large microservice architectures with a
rich development history and polyglot nature. In contrast to research focusing on
mining source code repositories, we do not use it as our central method to gather
knowledge; instead, we consider it a tool to collect the information we need to
reconstruct our architectural model. Accordingly, our study seeks to answer the
following questions:
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RQ1 How can the evolution of microservice APIs be tracked efficiently?
Creating an architectural model through source-code parsing is time-
consuming, especially for larger microservice systems with a long commit
history. A suitable approach must scale well, even for larger systems, and
be robust enough to analyze and track large amounts of commits.

RQ2 How can our approach be used to measure the different characteristics of
microservice APIs over time?
Microservices are highly dynamic systems tailored to specific domains,
each with different requirements regarding the system’s overall quality.
Our analysis process must consider this variance by allowing software
architects to adapt the analysis to their specific needs.

To our knowledge, this is the first study that uses source code repository
mining to reconstruct the architectural evolution of large-scale microservice sys-
tems by using only static-analysis techniques. While we provide an initial set of
metrics to measure architectural trends, we also demonstrate that our approach
can easily be adapted to individual scenarios by using different metrics.

The remaining paper is organized as follows: Section 2 will look at the related
research in this area, Section 3 will describe the approach we followed when
implementing our work. The evaluation of our technique through a case study
is the subject of Section 4. Section 5 presents and analyzes the findings we
gathered through our case study. Potential validity threats affecting our results
will be discussed in Section 6, while Section 7 concludes our work and contains
an outlook on future work.

2 Related Work

The field of software architecture reconstruction [14] generally refers to works
that reconstruct the software architecture or design from the source code, usu-
ally as a model or another intermediate representation. Our work aims to use
repository mining techniques to reconstruct a microservice architecture during
its evolution. Multiple works suggest approaches for microservice architecture
reconstruction [15, 16], but so far, none considers the evolution history in the
source code repository systematically.

High-level architectural metrics can streamline the evaluation of software
system quality, abstracting away implementation details and reducing informa-
tion overload. Numerous studies offer metrics-based analyses of microservice sys-
tems: Walker et al. [11] use static source code analysis to detect code smells in
microservice architectures, Ma et al. [12] propose an automated process to gener-
ate service-dependency graphs, and Zdun et al. [10] define a set of constraints to
detect potential architectural erosions. Another study focusing on reconstructing
the architecture of microservice systems through static analysis is the work of
Bushong et al. [17]. They extract HTTP information from source code to create
a communication diagram for visualizing inter-service communication.
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When extending the analysis over the whole software evolution process,
Barnes et al. [18] present a strategy for tracking the evolutional steps that af-
fect software architectures over time. While their approach is not specific to
microservice systems, they introduce the interesting concept of evolution opera-
tors to categorize architectural changes. In addition, there are also studies more
microservice-related: Moreira and De França [19] show in their research how the
cohesiveness of microservices changes over time. Similar research is performed by
Tizzei et al. [20]: They track several size-oriented metrics, like lines of the code
and the number of service operations throughout development. While both works
go in the same direction as ours, they focus mainly on single-service metrics. In
contrast, we concentrate on inter-service communication. Sampaio et al. [21] de-
veloped a service evolution model based on configuration files and by tracing
runtime service communication. He et al. [22] are focused on runtime analysis,
as they develop an online prediction system based on different runtime metrics
to precalculate the costs and effects of microservice evolution. In contrast, our
approach relies only on collecting static code artifacts, making the integration
into development pipelines easier as expensive system execution can be avoided.

Stocker and Zimmermann [23] conducted a survey to analyze the reasons for
microservice evolution. According to their results, new functional requirements
are the primary reasons for API changes, followed by improving architectural
quality. The main obstacle they identify that prevents developers from architec-
tural refactoring is a need for more resources. Lercher et al. [24] further identified
the tight organizational coupling that leads to additional communication over-
head as a challenge to microservice evolution and consumer lock-in that requires
long-term support for legacy APIs.

3 Approach

3.1 Source Code Repository Mining

Reconstructing a software system’s architecture from the source code requires
parsing and analyzing numerous source code artifacts. This is challenging as
modern systems are complex and often use various programming languages and
technologies. It becomes even more difficult for microservice systems, where the
architecture is distributed across loosely coupled services. Tracking the evolution
of such architectures further adds another level of difficulty to this already com-
plex problem, as hundreds of commits, all containing several changes, must be
analyzed. While exhaustively analyzing the entire development history of large
microservice systems is feasible with sufficient resources, more efficient strategies
exist. Considering the two primary aspects of a code repository – (1) the num-
ber and size of source code artifacts and (2) the number of commits containing
changes over time – we present two strategies to reduce each.

Our first mining strategy capitalizes on the fact that modern source code
repositories store information as sequential lists of patches [25], each containing
atomic changes applied to individual files. This strategy is termed Change-Based
Repository Mining. In our approach, we suggest a novel approach using this
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strategy for reconstructing an architectural representation during evolution: This
method starts with an empty architectural model or a previously generated
snapshot (see below) and iteratively transforms and applies each commit to
evolve it until we reach the final architecture’s state. Our method updates only
the parts of the model affected by a single commit (inspired by the approach
taken in [26]), making it highly efficient, under the assumption that each commit
is atomic and contains only a few changes [27]. While efficient, this approach has
a downside: By focusing solely on changes instead of source code artifacts, every
commit must be investigated, as missing even a single one can lead to incomplete
models, rendering subsequent commits unprocessable.

Our second mining strategy tackles these problems with a different approach:
Instead of reducing the source code to be analyzed by focusing only on the
changes, we reduce the number of commits to be examined and include all arti-
facts of our codebase. We call this approach Snapshot-Based Repository Mining,
as it operates only on a self-contained snapshot of the whole repository at a given
time. Although seeming less efficient due to the need to parse more code artifacts,
this approach offers greater flexibility and fault tolerance, as operating on the
entire code base rather than incremental changes ensures a self-contained model
independent of previous iterations. Also, since every commit can be processed
in isolation, the analysis can be parallelized more easily.

We combined both strategies into a single mining process for our final ap-
proach, allowing us to benefit from the advantages of both methods (Figure 1).
In a first mining pass, we use the Snapshot-based approach on selected commits
to create a macro-analysis of the overall system’s architectural evolution. While
this requires parsing more source code artifacts, it enables us to choose only
specific commits we consider relevant. If we encounter any parsing errors, we
skip the faulty commits and choose a nearby sample instead.

Snapshot 1
May 2022

Snapshot 2
July 2022

Commit
May 15, 2022

Commit
June 07, 2022

Commit
June 25, 2022

New API added. API split into
two separate
operations.

API and
outgoing calls

removed.

Fig. 1: The Snapshot-based mining approach creates the reference models for our start and end-
points. We then use the Changed-based mining approach to evolve our model iteratively between
the snapshots to get a more in-depth view of the evolution.

After we pick enough commits to accurately recreate the architecture’s devel-
opment history, we then identify specific areas of interest between two commits
and apply the change-based approach to get further a seamless visualization
within the specific time range. With this approach, we can also detect any local
minima or maxima we would otherwise not recognize.
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Figure 2 shows a schematic view of our overall mining process. We begin
by cloning the repository and creating local copies of all relevant commits, al-
lowing further parallel execution. During the next phase, we use source code
detectors, a lightweight parsing technology (see Section 3.2), to traverse each di-
rectory, identifying architectural patterns and capturing structural components
and dependencies, resulting in our architectural decomposition model (also Sec-
tion 3.2). Another set of detectors connects the identified services through API
invocation call chains, forming a directed graph representing the system’s static
communication model. Using this structure, we calculate and store architectural
metrics (see Section 3.3) to assess the system’s health for each snapshot. After
processing all selected commits, the resulting metrics are merged into a contin-
uous trend diagram, showcasing the system’s evolution over time. If desired, the
change-based method can be run as a second pass between specific commits to
fill any potential gaps in the analysis.

Service A

Service A Service B

Service A Service B

Service C

2. Data Extraction and Model Generation

clone

Remote Repository
 (Github) Local

Repository

Running in Parallel

Code
 Artifacts

Generated
Model

Calculated
Metric Values

Continuous
Metric Trends

1. Data Collection and Selection

Input:
List of preselected commits based on
defined criteria, e.g. equally distributed
or by on the commit-message.

3. Metric Calculation and Analysis

Input:
Manually implemented Detectors, able to
identify extract archictural hotspots out of
code artifacts.

Input:
Definition of Architectural Metrics, either 
system-wide or specific to individual services.

Source Code Detector
Source Code Detector

Source Code Detector

domCycRatio1
EDE2

APIC3
cycMemberRatio4

1. c4684693
2. 03f9b3ed
3. bf7d5ea2

Preselected
Commits

Fig. 2: The whole analysis process consists of three steps, where the second and parts of the third
step can run in parallel to reduce the overall processing time.

3.2 Model Generation

Identifying architectural problems on the source code level can be challenging
due to the lower level of abstraction, and even in well-documented systems, the
documentation is not guaranteed to be precise and reflects the current architec-
tural state [28]. To ensure our process accurately represents the overall system,
we use the underlying code base as our single source of truth to reconstruct an
abstract architectural model of each service and create a communication model
showing the interconnection between these services. The model we decompose
from the implementation focuses on API operations as the primary communica-
tion point within a microservice system. These include synchronous APIs and
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asynchronous message handlers, which we consider both part of a service’s public
interface. Besides API operations and their invocations, our model also contains
optional elements like API Interfaces and Connection Hosts that help to create
better traceability between model elements and code.

We use Source Code Detectors, lightweight Python-based parsers [29], to ex-
tract and generate our architectural model. These detectors look only for specific
patterns, like a REST API method definition or asynchronous pipe subscriptions,
and ignore all unrelated details, making their implementation more efficient than
techniques that rely on full-fledged abstract-syntax-tree reconstruction. When
identifying such a pattern, the detector can create a new architectural model
element or enhance an existing one to reflect the newly gathered knowledge.
Once the detectors traverse all artifacts, the resulting elements form an unlinked
model of all architectural hotspots we consider relevant for our analysis [30]. In
a second run, a different set of detectors identifies bridges between elements,
such as local invocations or remote API calls, enhancing the model’s coherence.
Figure 3 illustrates this workflow.

@RestController
public class TravelController {

  @PutMapping()
  public HttpEntity getTravels(...) {
   var url = ...
   var re = restTemplate.exchange(url);
   return result;
  }
}

SpringRestController
Detector

API-Operation
Detector

Remote API Call
Detector

AdminTravelService

Train-Ticket

TrainService

getTravels getTrainType

TravelController TrainController

Detectors look for
predefined patterns
in code.

If a pattern is found,
the detector generates a
corresponding element.

After all elements are
created, service inter-
connections are
 established.

Code Artifact Source Code Detector Architectural Model

Fig. 3: Source Code Detectors are lightweight parsers that search the underlying code base for specific
concepts. Whenever such a concept is found, a corresponding model element is generated.

Since our detectors are hand-crafted for every system we analyze, we can
use heuristics based on project-specific coding conventions and style guides to
simplify their implementation. However, our detection logic must remain robust
enough to handle anomalies like typos or deviations, which may occur occasion-
ally, especially when tracking a system’s implementation over a longer time than
we do in our research.

3.3 Architectural Metrics

To use our model to identify and track potential architectural trends, we give it
a formal description that we then use to derive several architectural metrics. For
this, we interpret our generated model as a directed graph G = (V,E, F ) [30].
Here, V denotes all architectural elements identified by our detectors, further
categorized by their role within the system, e.g., V ms for the set of all mi-
croservices and V api for all API operations. E represents edges forming relations
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between elements, describing either a has a relation (e.g., between a microser-
vice and its APIs) or an API or method invocation. F specifies predicates and
utility functions we use for retrieving meta-data attached to the nodes. These
can be annotations such as synchronous/asynchronous protocol usage or secure
communication channels. For our case study, we collected a set of existing met-
rics from the literature that operate on higher abstraction levels and are thus
implementation-independent. By purpose, we also chose metrics that measure
different architectural and qualitative aspects to show that our approach is not
restricted to any specific scenario. Table 1 shows the metrics we used for our
case study and how we derived them from our formal model.

Name Formula Description

Average Service Interface
Count (ASIC)

|V api|
|V ms|

Variant of Weighted Service
Interface Count metric [31], with
a uniform weight of 1. Quantifies
the number of distinct API
operations per microservice.

Average Path Length
(APL)

∑
{p∈P (v):|p|}

|P (v)|

Quantifies the consecutive API
operations invoked when
accessing any public API, with
P (v) being the set of all paths
starting in v [30].

Cycle Ratio (cycRatio)
|{p ∈ P (v) : cycle(p)}|

|P (v)|

Tracks any cyclic paths when
following the call chain of an API
operation v. The predicate
cycle → [0, 1] identifies paths
containing at least one cycle [30].

Service Interaction via
Intermediary Component
(SIC)

|{v∈V con:is async(v)}|
|V con|

Ratio of service connections
mediated through components
like event buses or message
brokers [32]. As this
communication happens
primarily asynchronously, we use
the is async → [0, 1] predicate to
identify such connectors.

Connection Anomaly
Ratio (CAR)

|{v∈V con:is error(v)}|
|V con|

Ratio of service connections
where the link to the target API
could not be reconstructed. We
also use this metric to verify that
our detectors identified
interservice calls correctly.

Table 1: A set of high-level architectural metrics we employ to obtain a comprehensive perspective
of the overall structure of the microservice.

While the expressiveness of each metric may be limited when viewed in isola-
tion, combining them can help provide a holistic view of the architectural trend
of the system under observation, as we will show in our case study.

4 Case Study

We evaluated our approach on the Train Ticket repository3, an open-source
microservice benchmark system. It has more than 30 microservices, making it

3 https://github.com/FudanSELab/train-ticket
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considerably larger than most other open-source implementations [33]. It was
already part of various research studies [34, 35], and according to the designers
of the systems, they intended to provide a system with more public service APIs
and deeper invocation chains than other open-source projects to better align with
today’s industry standards [33]. These architectural decisions and its extensive
development history make it an ideal candidate for our analysis.

For our study, we focused on the backend architecture of the system and
the API-based service interaction. i.e., we excluded the frontend-related ts-ui-
dashboard microservice and the API Gateway as we do not consider these as parts
of the backend. We also skipped three other services that were only connected
to the UI or did not make any other inter-service calls: ts-ticket-office, ts-avatar
(only called from UI without any other service interaction) and ts-news-service
(does not contain any production code yet). This left us with 44 backend domain
and infrastructure services, mostly implemented in Java, with the voucher service
implemented in Python. This number should be large enough to represent a
typical mid-size microservice system adequately.

Comparing the different branches and their commit frequency, we decided
to run our analysis on the Reconstruction branch. From an evolutionary per-
spective, this branch provided the best source for reconstructing the system’s
evolution, as it contained the most commits and was frequently merged into the
main branch. We selected every fourth entry from 440 commits in this branch,
resulting in around 110 samples for our analysis process. Although our selection
is not equally distributed throughout the repository’s timeline, it should still
cover enough of the development process to let us identify any possible trends
(see Figure 4).

9/22/17 4/10/18 10/27/18 5/15/19 12/1/19 6/18/20 1/4/21 7/23/21 2/8/22 8/27/22 3/15/23

Fig. 4: Distribution of selected commits throughout the repository’s timeline.

As most service implementations use the Java-based Spring Framework, we
only had to implement 13 different detectors to track all relevant features from
the Java services and seven detectors for the Python-based service. The size of
our detectors varies, with some containing only a few lines required to detect
specific keywords and others having up to 50 lines of code needed to extract
class methods and their annotations. Overall, the implementation effort for a
system of such a size is manageable, especially since most detectors can be
reused throughout different services and commits.

4.1 Connection Anomaly Ratio

We first focused on the Connection Anomaly Ratio metric of every sample to
verify our approach’s correctness. All spikes we encountered in the trendline
were cross-checked with our detector implementation to determine whether the
reason for each missed connection could be a flawed detector. We continued
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this process iteratively until our detectors could cover most edge cases, and the
remaining detector-related connection faults accounted for less than 1%, which
we consider a value good enough. Aiming to reach an even lower fault rate would
be challenging, as there were cases where target API addresses were constructed
through various conditions depending on the input variables. These scenarios are
hard to solve solely through pattern detection and require more complex parsing
techniques, like reconstructing abstract syntax trees.

We identified only a short time range between 2018 and 2019, where the CAR
metric peaked at 0.15, meaning that roughly 15% of interservice connections
could not be resolved (see Figure 5). Further investigation showed that it was
due to a wrongly placed section in the configuration file of the ts-config-service.
Whether this would manifest in real connection problems at runtime depends
on how tolerant the system’s configuration loader is against this type of error.
However, we would still clearly flag this as an anomaly as it diverges significantly
from all other services’ configurations.

Despite that, we found only minor errors, e.g., isolated API calls using wrong
target addresses. Overall, the system’s interconnectivity implementation is very
correct and mostly free of errors or issues.

0,00

0,05

0,10

0,15

03/01/2018
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05/14/2018
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Connection Anomaly Ratio

Fig. 5: Connection Anomaly Ratio throughout the Reconstruction branch. Despite a service mis-
configuration at the beginning of 2019, which was later corrected, service interconnection remains
highly error-free throughout the development history.

4.2 Average Service Interface Count and Path Length

The ASIC and APL metrics can both provide meaningful insights when assess-
ing a system’s architecture. A combination of high ASIC and APL values could
indicate many small and atomic API operations that must be composed to im-
plement more complex use cases, which in turn can result in longer invocation
chains. Looking at the train-ticket system, we can see a similar pattern beginning
in 2018 (Figure 6): The number of available operations per service (blue line)
increases slightly during development, which could indicate that the service in-
terfaces have become more use-case-specific and less generic. However, verifying
this assumption would require a deeper analysis of the APIs’ semantics, which
was out of the scope of our study.

Regarding the average number of API invocations (red line), we also see
an increasing metric value till July 2022, i.e., calling a single API results in a
growing number of follow-up calls. This trend is not unproblematic, as longer
call paths create stronger interservice coupling, especially when these calls are
synchronous and directed, as is the case here. Nevertheless, it seems the system’s
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authors were also aware of this trend and restructured the architecture towards
reduced invocation chains as the value dropped significantly in July 2022.
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Fig. 6: While increasing Average Service Interface Count (blue) and Average Path Length (red)
metrics indicate a stronger service coupling, several system redesigns were applied to constantly
reduce the path length starting in the middle of 2022.

4.3 Cycle Ratio and Asynchronous Service Communication

As Figure 7 shows, there were times when between seven and up to 15% of API
call chains in the system had at least one weak cycle, meaning the same service
was addressed more than once during a call sequence [12]. These cyclic relations
increase service coupling and can lead to higher network traffic, as calls must
travel to the same service several times.
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Fig. 7: Ratio of cyclic connections (left) and Service Interaction via Intermediary Component
Ratio and other (right). While the amount of cycles decreases over time, the asynchronous commu-
nication increases. Both measures can help reduce the service coupling.

However, the system developers were probably aware of this problem and
introduced a redesign as both metrics changed significantly by the end of the
development history. Comparing two snapshots of the same API call from April
and July 2022 (Figure 8), the earlier one indicates a cyclic relation between the
Travel and the Seat Service, creating a strong dependency and also additional
overhead as the TravelService has to be visited twice. Moving further in the
commit history, the system designers resolved this cycle: The second call to the
Travel Service has been moved up in the hierarchy, making the actual caller – the
Route Plan Service – responsible for orchestrating the API calls. Albeit this re-
duces the coupling, the problem of additional communication overhead remains.
Here, the architecture could, for instance, be further improved by introducing a
new API in the TravelService that bundles both requests.

Besides removing cycles, in 2021, the system’s authors added asynchronous
communication channels, mainly used for notification mechanisms. Compared
to earlier versions of the system, this is another step towards a less coupled and
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getCheapestRoute ts-route-plan-service

ts-travel-service

queryInfo

ts-seat-service

getLeftTicketOfInterval

ts-route-service queryById

getRouteByTripId

April 2022

getCheapestRoute

ts-route-plan-service

ts-travel-service

queryInfo

ts-seat-service

getLeftTicketOfInterval

ts-route-service queryById

getRouteByTripId

July 2022

Fig. 8: Redesign of an API call chain. While the version from April 2022 contains a cyclic reference
between two services, this was later resolved by letting the caller orchestrate the API calls instead.

more scalable solution, as it allows the services to be changed independently as
long as they conform to the same message protocol and payload. Whether this
approach could also be used to decouple additional parts of the business logic
may depend on the individual scenario.

4.4 Summary

Overall, our static commit analysis revealed that the system is very stable. While
there were some misconfigurations in the past, these were all corrected within a
relatively short time frame. Following the trend of our metrics throughout train
ticket’s development history, we further see evidence suggesting the maintainers
were constantly improving their architecture towards less coupling and better
maintenance. One of the most vital indicators is the reduced length of API
invocation chains and removing all cyclic paths in the system. Asynchronous
communication patterns, added during the last third of the commit, further
improve this trend towards decoupling.

In contrast, the number of API operations per service increases, which gives
room for interpretation: Either existing functionality was split up into more fine-
grained API operations, allowing for better API composition, or over time, more
features were added to the services, increasing the overall number of available
APIs. The simultaneous reduction of the average invocation path length suggests
the latter, but a more semantic-based API analysis would be necessary here to
verify this assumption.

5 Discussion

Considering RQ1, our case study demonstrated that our approach makes re-
constructing a microservice’s architectural evolution manageable, even for larger
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systems with several highly interconnected services. We developed a mining pro-
cess consisting of two different strategies, one based on the analysis of individual
snapshots while the other one focusing on applying the changes of every commit
iteratively. Combining both methods makes our approach robust against errors
while allowing for detailed and seamless in-depth analysis for specific points of
interest. For this, we first analyzed a selection of snapshots to get an overall
impression of the system’s architectural trend while using change-based min-
ing later to fill the gaps between relevant commits. We could also show that
implementing the detectors to parse the code artifacts and decompose the ar-
chitectural model is manageable when the system’s code base follows coding
guidelines and best patterns or practices. In that case, most detectors can be
reused throughout different services, reducing the overall implementation effort.

Still, we also recognized that our implementation leaves room for improve-
ment, e.g., using more optimized pattern matching.

When assessing and analyzing a microservice system’s evolution (RQ2), we
could also verify that the formal graph-based model generated by our detectors
provides a solid ground for deriving various architectural metrics. By combining
different metrics, we tracked various architectural qualities of our benchmarking
system throughout its development history and identified significant architec-
tural trends. In the case of our reference system, we could verify that some of
our measured quality indicators, like cyclic dependencies or asynchronous com-
munication, improved over time. We consider both valuable strategies to reduce
the overall coupling within the system.

6 Threats to Validity

Construct Validity: Our detectors create an architectural model from source
code, and with all models, there is always the risk of missing crucial details. We
manually reviewed and cross-checked our model with the underlying implemen-
tation and documentation4 to ensure all service interactions were tracked. We
also added error checks during the reconstruction process to catch anomalies
like missing target operations. However, implementing automated verification
processes, such as additional runtime tests, would improve our work, a path we
are exploring for future research.

External Validity discusses whether our results are generalizable to other sys-
tems or on a larger scale. While we doubt that there is such a thing as a general
microservice architecture – every system is tailored to a specific domain and has
to deal with unique requirements – the example application we chose for our
case study is a widely accepted benchmark system with a relatively large scale
compared to most other open-source implementations5, making it well compara-
ble to real-world systems. Besides, our approach could easily be applied to larger
systems, considering the additional effort required to implement the detectors.

4
https://github.com/FudanSELab/train-ticket/wiki/Service-Guide-and-API-Reference

5
see, for instance, this curated list of various microservice open source systems:
https://github.com/davidetaibi/Microservices_Project_List
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Internal Validity: Our whole approach to reconstructing the architecture re-
lies on the source code and configuration files that evolve. While these arti-
facts are undoubtedly the most essential source of knowledge when investigating
such systems, other aspects, like non-functional requirements or specific domain
knowledge, may also affect the overall design of the architecture.

7 Conclusions and Future Directions

In this paper, we propose a method for monitoring microservice architecture
evolution by reconstructing an API-based communication model through static
source code repository analysis. Our mining process creates an architectural
trend and allows seamless evolution analysis between selected commits. We em-
ploy lightweight, project-specific source code detectors to extract relevant archi-
tectural hotspots. The initial effort to implement these detectors is manageable
even for large systems as long as recurring coding patterns and guidelines are
applied. Our generated graph-based architectural model enables the derivation
of various metrics to assess and identify quality trends. We validate our method
with a case study on an extensive benchmark system.

To our knowledge, this is the first study to demonstrate such an approach
across the entire development history of a complex microservice system, pro-
viding software architects with a tool to monitor evolution and detect negative
quality trends early.

8 Data Availability

We offer the whole source code and data of our study in a data set published on
Zenodo: https://doi.org/10.5281/zenodo.10961768.
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