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1 INTRODUCTION

In the rapidly progressing field of software development, Infrastructure as Code (IaC) has emerged as an essential
paradigm, significantly altering how IT infrastructure is provisioned and managed. Unlike traditional methods, IaC
introduces the concept of managing infrastructure through code, enabling dynamic and automated environments [1].
This approach enhances operational efficiency and aligns with contemporary development practices focusing on agility
and scalability [2, 3].

The adoption of IaC has been driven by the increasing complexity of deploying microservice-based and cloud-
based systems, along with the pressing demand for rapid releases. The difference between conventional deployment
architectures and IaC-based ones lies in automation and repeatability. Conventional infrastructuremanagement struggles
to keep pace with the swiftly evolving demands of these systems, necessitating a shift towards more agile and flexible
practices. In contrast, IaC automates infrastructure provisioning and configuration through code, ensuring consistency,
scalability, and faster deployment cycles across diverse environments with minimal manual intervention. This paradigm
shift allows development teams to employ the same principles of versioning, testing, and deploying to infrastructure as
they do with software applications, significantly reducing the time and effort required for infrastructure management.

IaC architecture defines infrastructure using code that specifies the desired state of the infrastructure. The code is
versioned using a source control system like GIT, which allows teams to collaborate on infrastructure changes and track
changes over time. CI/CD pipelines automate the testing, building, and deploying of infrastructure code changes. This
automation streamlines the infrastructure-related processes and ensures that infrastructure is consistent, repeatable,
and scalable. Moreover, IaC can help improve security by providing visibility into infrastructure changes and enabling
teams to identify and fix security vulnerabilities [1, 4].

According to [5], Terraform1 and Ansible2, the two technologies we study, collectively account for 50% of the usage
among IaC tools. These technologies are widely adopted for infrastructure management and deployment automation.
Terraform is an open-source IaC tool that helps manage infrastructure declaratively and can be used across multiple
cloud providers. Ansible is also an open-source tool that automates tasks across multiple servers.

1.1 Problem Statement

Despite its benefits, the flexibility of IaC can lead to security issues. This could expose vulnerabilities that attackers
could exploit to access procedures and run code to compromise the application [6–8]. While some works address
IaC security issues at the implementation level [9–11], design- or architecture-level security is not yet the focus of
academic studies. This is surprising, as insecure software design has garnered increased attention from the cybersecurity
community in recent years [12]. Notably, the latest Top 10 most critical vulnerabilities of OWASP have introduced a
new category entitled “Insecure Design” [13], highlighting flaws in a software system’s overall architecture or design.
This underscores the importance of addressing architectural security issues to mitigate risks and safeguard systems
against potential threats. So far, no works have studied the comprehensibility of IaC models for design-level security.

With design-level security, we refer to vulnerabilities that are inherent to the overall architecture or structure of
a system rather than specific implementation details. In IaC, while scripts are indeed programs, design-level issues
encompass broader concerns such as how components interact, how privileges are managed, and overall system
resilience. These aspects can significantly impact security but may not be adequately covered by addressing individual
lines of code.
1https://www.terraform.io
2https://www.ansible.com
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Unfortunately, the documented architectural patterns or formal guidelines that reflect security best practices in the
context of IaC are limited [10, 14, 15], and relevant guidelines by industry organizations [16–21] often remain vague.
Industry-scale systems support many security-related practices, each with many implementation options, making it
challenging to assess whether an IaC deployment conforms to recommended best practices. Even worse, many IaC
systems are used in a continuous release or CI/CD context, requiring such assessment for every commit related to IaC
code.

To illustrate this point, consider the deployment architecture level concerns access and traffic control [22] in IaC
scripts. To understand if an IaC script securely employs these concerns, one would not only need to study a local change
to an access and traffic control definition but also related concepts such as security groups, linked components and
deployment nodes, alternative paths to reach components and deployment nodes, and so on. So, for every commit, the
entire IaC script must be studied.

Even though tools like Ansible and Terraform [23] provide relatively readable languages and IaC scripts can be
modularized (so, most of the time, not all deployments of an organization, only the scripts of one project must be
checked), constant manual checking of such design-level properties in IaC script is time-consuming and error-prone.

1.2 Research Objectives, Hypotheses, and Results

Our work has two main hypotheses which we aim to study:

H1 We hypothesize that semi-formal deployment architecture models (based on a formal modeling method), specifi-

cally designed to provide an abstraction over IaC technologies, can help in comprehending IaC-based deployment

architectures by providing a better big-picture comprehension than (continuous) manual checking in IaC scripts.

For instance, a Security Group definition and the affected component and deployment nodes must be studied to
study Ingress and Egress traffic control. A model provides an abstraction over different IaC technologies and
implementation options in each IaC language. The semi-formal diagram depicting the model lets developers
easily inspect the paths between affected components and deployment nodes visually.

H2 We hypothesize that formally defined metrics, precisely measuring one IaC architectural best practice’s usage, can

help easily assess an architectural best practice and thus further enhance the comprehensibility of IaC deployment

architectures.

For instance, if two metrics on the Ingress and Egress traffic control best practices are automatically measured
and signal before and after a commit that 100% traffic control is given in a deployment architecture, then neither
the model nor the IaC source code must be studied to assess conformance to traffic control best practices.

To test these hypotheses, we studied three formally modeled Architectural Design Decisions (ADDs), commonly
applied in IaC-based systems, which have 12 design-level best practices in IaC as decision options and are derived by an
in-depth study of the gray literature and 21 IaC-based open-source systems developed by practitioners [24]. We study
them in two open-source systems, one based on Terraform and one on Ansible. These backgrounds are explained in
Section 2.

To aid developers with models and metrics, as suggested in our hypotheses, our work introduces (in Section 3):

(1) a formal modeling method for enhancing UML-based, semi-formal deployment architecture diagrams with
specifics to model those decision options commonly found in the IaC script and abstract from the different IaC
technologies studied in our prior study [24];
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(2) one formally defined metric per decision option [24] to automatically measure its presence in a given deployment
architecture.

We hypothesize that providing system models and metrics would enhance understanding IaC security practices
as measured through task correctness and duration. Our results indicate that participants who were given a system
source code repository, metrics, and semi-formal architectural deployment models demonstrated a significantly better
understanding than those who only received the system source code repository. Providing these additional materials
significantly improved the effectiveness of understanding the IaC security practices without negatively impacting the
efficiency. Overall, our work contributes to filling the gap in empirical research on architectural security issues specific
to IaC and deployment architectures.

1.3 Structure of this Article

We provide an overview of security ADDs in IaC-based deployments and background on Ansible and Terraform in
Section 2. Section 3 explains our formal modeling method, how it is mapped to UML diagrams, and our suggested
metrics. Next, we describe the planning of this study in Section 4. In Section 5, we detail the execution of the experiment,
and the results are presented in Section 6. We discuss the outcomes in Section 7. Section 8 discusses related work and
Section 9 the potential threats to validity before concluding the article in Section 11.

2 BACKGROUND

In this section, we summarize the background of this work, namely the architectural security decisions for IaC patterns
and practices, as well as infrastructure coding languages and tools. The selection of security-related practices was
informed by a thorough gray literature review and the in-depth study of 21 open-source systems in our prior work [24].
We aimed to encompass practices relevant to IaC and critical for the security of automated infrastructure management.
While some practices may not appear to be unique to IaC at first glance, their application within an IaC context,
especially concerning the automation and dynamism of infrastructure provisioning, offers unique challenges and
opportunities for security [19].

2.1 Security in Infrastructure-as-Code Architectures

The infrastructure of a software system is a highly critical aspect of the system; thus, infrastructure automation such as
IaC needs to be adequately secured. This section explains three categories of the most common security best practices
or patterns for IaC architectures. Please note that many code-level or low-level security best practices for IaC have been
documented [9, 10] that can be automatically checked in a few code lines, such as the use of hard-coded secrets or admin
by default [9] or are more general principles such as violations of naming conventions or favoring complexity [10] that
might have negative implications on security. Instead, here we focus on architecturally significant properties of the IaC
architecture in the form of architectural design decisions and options, i.e., those that need to be studied system-wide
and are thus hard to detect automatically. In the following, we introduce three exemplary architectural security aspects
of IaC, which we study in this article.

2.1.1 Observability in the System. An important aspect of deployment architectures is identifying and responding
to what is happening within a system, what resources need to be observed, and what is causing a possible issue.
Using observability practices to collect, aggregate, and analyze log data and metrics is critical to establishing and
maintaining more secure, flexible, and comprehensive systems. Moreover, collecting and analyzing information improves
Manuscript submitted to ACM
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the detection of suspicious system behaviors or unauthorized system changes on the network and can facilitate the
definition of different behavior types in which an alert should be triggered. There are several practices related to
observability in the system:

• Server Monitoring is an essential process of observing the activity on servers, either physical or virtual [20].
Please note that this also includes all kinds of cloud nodes, e.g., nodes in a cloud cluster. A single server can
support hundreds or even thousands of requests simultaneously. Ensuring that all servers operate according to
expectations is critical to managing infrastructure.

• Application Monitoring collects log data to support aspects such as tracking availability, bugs, resource use, and
application performance changes [20].

• Metrics Collection, Services Availability, Centralized Log Management and Monitoring and Performance Analytics

Support: These practices can improve a system’s security by observing more system features.

2.1.2 Security Access Control. A critical security factor in distributed and cloud-based systems is how stable, verifiable,
and secure the interactions between a user and a cloud application are. For this, secure authentication practices address
many possible issues. Authentication is the process of determining a user’s identity. There are several authentication
practices to secure access control:

• Protocol-Based Authentication uses a cryptographic protocol (SSL/TLS) to encrypt the data exchanged between a
Web server and a user and provides means for authentication of the connection [17, 18].

• Token-Based Authentication uses a protocol that allows users to verify their identity and, in return, receive unique
access tokens for a specified period [25].

• API Keys based authentication utilizes a unique key to authenticate a user or a calling program to an API [26].
However, they are typically used to authenticate a project with the API rather than a user.

• Plaintext Authentication means that the user name and password are submitted to the server in plaintext, easily
visible in any intermediate router on the Internet [17].

• Single Sign-On (SSO) is an authentication practice that can be implemented additionally [27]. This method allows
users to log into one application and access multiple applications.

Token-based Authentication and Protocol-based Authentication are recommended practices. The following tactics are
not considered secure but are better than no authentication (as they provide authentication): API Keys are inferior as they
are only static credentials and thus can be easily transferred and used in unintended scenarios. Plaintext Authentication
is the weakest form of authentication in terms of security. Plaintext Authentication over an Encrypted Protocol would
improve Plaintext Authentication as the protocol then prevents sniffing the traffic in the network to get the credentials.
However, the client and server applications are still managed in plaintext. Thus, Plaintext-based Authentication over an

Encrypted Protocol is also considered to be not secure. Where applicable, Single Sign-On (SSO) is a useful technique that
should be used in addition to the recommended authentication practices.

2.1.3 Traffic Control in the System. Controlling incoming and outgoing traffic in a system can significantly improve
overall security. Traffic can be controlled by Gateway components through which all incoming or outgoing traffic must
go. There are two common practices in the field:

• Ingress Traffic Control refers to traffic that enters the boundary of a network [28]. The ability to control what is
entering a system is important for establishing security since it can prevent possible attacks from outside the
network, where many possible attacks originate.

Manuscript submitted to ACM
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• Egress Traffic Control refers to traffic that exits a network boundary [29]. It is an important aspect of network
and system security, as it helps to ensure that outgoing traffic is managed effectively and securely.

Both practices can be specified by security rules implementing security groups that act as a virtual firewall for a
system.

2.2 Infrastructure Coding Languages and Tools

In this work, we study two exemplary, widely used IaC languages and tools: Ansible, which is an imperative approach,
and Terraform, which is a declarative. In this section, we briefly summarize them as background.

2.2.1 Ansible. Ansible is an open-source tool that automates tasks across multiple servers. With Ansible, you can define
tasks in a simple YAML format, which can be used to configure servers, deploy applications, and manage infrastructure.
Ansible uses a client-less architecture, meaning it does not require any agents to be installed on the remote machines
and uses SSH to connect to servers. It also has an extensive library of pre-built modules to automate various tasks.
Ansible automation is used to install software, automate daily tasks, provision infrastructure, improve security and
compliance, patch systems, and share automation across your teams.

2.2.2 Terraform. Terraform is an open-source IaC tool that supports defining and managing infrastructure declaratively
using a high-level configuration language. With Terraform, you can define the desired state of your infrastructure
and then apply those changes to a cloud provider such as AWS, Google Cloud, or Azure. Terraform uses a state file
to track changes and ensure the infrastructure is in the desired state. It provides a unified way to manage resources
across multiple cloud providers and helps to automate the provisioning and configuration of infrastructure. It’s a
cloud-agnostic, open-source provisioning tool.

3 MODELING METHOD ANDMETRICS

Our hypotheses revolve around aids provided as semi-formal UML diagrams (based on a formal modeling method) and
formally defined metrics. We define one metric to measure the presence or absence of each decision option introduced
in the previous section. In this section, we provide an overview of these aids provided to the experimental groups in
our study.

3.1 Models of Infrastructure as Code Systems

Our proposed modeling approach utilizes a deployment model based on elements derived solely from the typical scripts
employed by IaC technologies. This deployment model inherently encapsulates the application’s architecture slated for
deployment, facilitating the assessment of adherence to architectural decisions. Consequently, it becomes imperative to
operate with minimal elements, as parsing them from the IaC scripts could otherwise prove challenging.

An IaC-based deployment can be represented using formal model diagrams. We use and extend a formal modeling
method based on our prior work [30]. We extend it here to model the integration of component and deployment nodes. A
deployment architecture model𝑀 is a tuple (𝑁𝑀 , 𝐶𝑀 , 𝑁𝑇𝑀 , 𝐶𝑇𝑀 , 𝑐_𝑠𝑜𝑢𝑟𝑐𝑒, 𝑐_𝑡𝑎𝑟𝑔𝑒𝑡, 𝑛𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠, 𝑛_𝑡𝑦𝑝𝑒, 𝑐_𝑡𝑦𝑝𝑒)
where:

• 𝑁𝑀 is a finite set of component and infrastructure nodes in Model𝑀 .
• 𝐶𝑀 ⊆ 𝑁𝑀 × 𝑁𝑀 is an ordered finite set of connector edges.
• 𝑁𝑇𝑀 is a set of component types.
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• 𝐶𝑇𝑀 is a set of connector types.
• 𝑐_𝑠𝑜𝑢𝑟𝑐𝑒 : 𝐶𝑀 → 𝑁𝑀 is a function returning the component that is the source of a link between two nodes.
• 𝑐_𝑡𝑎𝑟𝑔𝑒𝑡 : 𝐶𝑀 → 𝑁𝑀 is a function returning the component that is the target of a link between two nodes.
• 𝑛𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠 : P(𝑁_𝑀) → P(𝐶_𝑀) is a function returning the set of connectors for a set of nodes:𝑛𝑚_𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑜𝑟𝑠 (𝑛𝑚) =
{𝑐 ∈ 𝐶𝑀 : (∃𝑛 ∈ 𝑛𝑚 : (𝑐_𝑠𝑜𝑢𝑟𝑐𝑒 (𝑐) = 𝑛 ∧ 𝑐_𝑡𝑎𝑟𝑔𝑒𝑡 (𝑐) ∈ 𝐶𝑀 ) ∨ (𝑐_𝑡𝑎𝑟𝑔𝑒𝑡 (𝑐) = 𝑛 ∧ 𝑐_𝑠𝑜𝑢𝑟𝑐𝑒 (𝑐) ∈ 𝐶𝑀 ))}.

• 𝑛_𝑡𝑦𝑝𝑒 : 𝑁𝑀 → P(𝑁𝑇𝑀 ) is a function that maps each node to its set of direct and transitive node types (for a
formal definition of node types see [30]).

• 𝑐_𝑡𝑦𝑝𝑒 : 𝐶𝑀 → P(𝐶𝑇𝑀 ) is a function that maps each connector to its set of direct and transitive connector
types (for a formal definition of connector types see [30]).

An example of a deployment architecture model derived from this formal deployment model is shown in Figure
1 as a UML diagram. The diagram depicts various deployment nodes, deployed components, and their relations. All
deployment nodes are of type Deployment Node, which has the subtypes Execution Environment and Device. These have
further subtypes, such as VM and Container for Execution Environment, and Server, IoT Device, Cloud, etc. for Device.
Note that we use the function 𝑛_𝑡𝑦𝑝𝑒 and the component type hierarchy formally defined based on these types (see [30]
for the formal definition) to model component and deployment nodes. These translate to component stereotypes in the
semi-formal UML diagram.

The connector type deployed on is used to denote a deployment relation of a Component (as a connector source) on an
Execution Environment (as a connector target). It is also used to denote the transitive deployment relation of Execution
Environments on other ones, such as a Container is deployed on a VM. The connector type runs on models the relations
between execution environments and the devices they run on. Note that we use the function 𝑐_𝑡𝑦𝑝𝑒 and the connector
type hierarchy formally defined based on these types (see [30] for the formal definition) to model connector relations
specific to such deployment architectures. These translate to connector stereotypes in the semi-formal UML diagram.

This example diagram shows the relations of Components, Deployment Nodes, and Execution Environments of an
IaC-based deployment architecture. Here, a Metric Tool is deployed on aWeb Server, which is a Device, and connected to
a Monitoring Dashboard and a Monitoring Tools component. The Web Server has attributes specifying the authentication
method it uses (e.g., Plaintext, Token-based, etc.). The monitoring components are deployed on an Execution Environment,
here a Docker Container. An Execution Environment runs on a Device, e.g., here a Cloud node. Moreover, an Internet

Gateway also runs on the Cloud, which controls the traffic going into and out of the two deployed servers.
This deployment architecture contains several Observability (security) practices, namely Monitoring, Logging, and

System Metrics Collection for Server 1, but no Observability components are deployed for the second server. For both
servers, Traffic Control is provided through an Internet Gateway (of the cloud provider) that uses a Security Group to
specify restricted Ingress and Egress traffic for the servers.

3.2 Metrics

In our previous work [24], we have developed a comprehensive set of generic, technology-agnostic metrics for security-
related decisions made in IaC-based deployment architectures, ensuring that each of the twelve options of our three
ADDs (see Section 2.1) is associated with at least one metric. These metrics each evaluate conformance to one particular
design-level IaC security practice. In [24], by establishing a ground truth, we objectively assessed the level of support
for patterns and practices within 21 open-source case study systems and statistically validated those metrics. Defining
technology-independent metrics enables automated numerical assessment of pattern or best practice implementations
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Fig. 1. Example IaC-based deployment diagram.

across different deployment models and IaC implementation technologies. Our prior work accurately predicted the
ground truth assessment using ordinal regression analysis with these metrics as independent variables. Our findings
indicate that decision-related metrics can reliably predict our objective evaluations, suggesting the feasibility of an
automated, metrics-based assessment of a system’s compliance with ADD options with a high level of certainty.

The metrics have continuous values ranging from 0 to 1, with 1 representing the optimal case where a set of patterns
or best practice is fully supported and 0 the worst-case scenario where it is absent. The Plaintext Authentication
utilization metric is an exception as in this metric; the scale is reversed compared to the others because here we detect
the presence of an anti-pattern: the optimal result of our metrics is 0, and 1 is the worst-case result. All metrics used in
this study are summarized in Tables 1–3. Please note that there is one metric for indication of support of each ADD
decision option presented in Section 2.1.

4 EXPERIMENT PLANNING

Our study adheres to the empirical research guidelines for software engineering proposed by Jedlitschka et al. [31]. In
addition, the study design incorporates guidelines for empirical research in software engineering from Kitchenham et
al. [32], Wohlin et al. [33], and Juristo and Moreno [34]. For statistical analysis of the collected data, the study uses the
robust statistical method guidelines for empirical software engineering by Kitchenham et al. [35].

4.1 Goals

This experiment aims to perform a code review of one small and one medium-sized IaC deployment architecture (one
realized with Ansible, one with Terraform) in a limited time session of 1,5 hours regarding the recommended security
Manuscript submitted to ACM
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Metric Name Description
Server Monitoring Ratio (SEM) This metric returns the server nodes that support server monitoring divided by the

total number of server nodes.
Application Monitoring Ratio
(AMS)

This metric returns the server nodes on which application-level monitoring is deployed
divided by the total number of server nodes.

System Metric Collection Ratio
(SMC)

This metric returns the server nodes on which security-related metrics are collected
divided by the total number of server nodes.

Centralized Log Management
Ratio (CLM)

This metric returns the server nodes on which a centralized log management solution
is deployed divided by the total number of server nodes.

Service Availability Monitoring
Ratio (SAS)

This metric returns the server nodes on which a dedicated service availability monitor-
ing solution is deployed divided by the total number of server nodes.

Performance Analytics Support
Ration (PAS)

This metric returns the server nodes on which a service performance analytics moni-
toring solution is deployed divided by the total number of Server Nodes.

Table 1. Observability in the System

Metric Name Description
SSL Protocol-Based Authentica-
tion Utilization Ratio (SSLA)

The SSLAmetric returns the proportion of server nodes that support SSL Protocol-based
Authentication.

Token-Based Authentication
Utilization Ratio (TBA)

The TBA metric returns the proportion of server nodes that support Token-Based
Authentication.

Plaintext Authentication Uti-
lization Ratio (PLA)

The PLA metric returns the proportion of server nodes that support Plaintext Authen-
tication.

API Keys Utilization Ratio (API) The API metric returns the proportion of server nodes that support Authentication via
API Keys.

Single Sign-On Utilization Ratio
(SSO)

The SSO metric returns the proportion of server nodes that support Single Sign-On
(SSO) in their authentication method.

Table 2. Security Access Control

Metric Name Description
Ingress Traffic Control Utiliza-
tion Metric (ING).

The ING metric returns the proportion of server nodes for which the ingress (incoming)
traffic is traffic-controlled.

Egress Traffic Control Utiliza-
tion Metric (EGR).

The EGR metric returns the proportion of server nodes for which the egress (outgoing)
traffic is traffic-controlled.

Table 3. Traffic Control in the system

design patterns and practices. The focus is on the review of specific recommended security design patterns and practices.
In particular, the Observability, Authentication, and Traffic Control practices explained before will be studied. For both
systems, the participants reviewed a system source code repository (including a short documentation in a README
file). To study how far models and metrics can help participants understand a given system, each participant received
help in the form of a model of the IaC system and related metrics to be studied in one of the two tasks. In the tasks
where this help is present, we suggest consulting the models and metrics and then studying the code if more details are
required. We use metrics and models based on the methods introduced in the paper [24].

Manuscript submitted to ACM



10 Ntentos et al.

4.2 System Description

The selection of the systems is based on their distinctive approaches and technologies used for deploying and managing
cloud-based services, focusing on security, monitoring, and deployment and their good representation of the security
practices investigated in our approach. We selected them as they represent major approaches regarding the three
studied ADDs according to our study of numerous gray literature sources and an in-depth study of 21 open-source
systems in our prior work [24].

The Ansible-based system emphasizes cloud security and efficient network management through an ELK (Elastic-
search, Logstash, Kibana) server for VM monitoring and configuration change detection. This system showcases a
securely monitored and well-organized network architecture, focusing on security and monitoring. Please note that
this is a commonly used tutorial example. We have chosen an implementation that realizes the necessary practices and
not much more to avoid participants having to search through the source code for the relevant parts3 The Terraform
system is larger and more complex than the Ansible example. It illustrates the deployment of microservices to AWS,
showcasing a simple yet effective architecture for deploying a frontend and a backend server with service discovery,
focusing on deployment simplicity and microservice architecture. More specifically:

The Ansible-based Cloud Security System with ELK Stack4 (Fig. 2), incorporates an ELK server for effective VM
monitoring and configuration change detection. Additionally, it employs Filebeat to capture file system data and
Metricbeat to collect machine metrics, enhancing overall system monitoring. The system includes detailed instructions
for utilizing the Ansible build and streamlining deployment and configuration processes to ensure efficient network
management. In essence, the system represents a securely monitored and well-organized network architecture.

The Terraform Microservice Deployment System5 (Fig. 3) serves as a straightforward illustration of deploying two
microservices to AWS using Terraform. These microservices, a frontend web server (utilizing Next.js) and a backend
API server (built with Flask), establish communication through service discovery.

Please note that we selected relatively small yet realistic systems to avoid potential bias through fatigue effects in our
controlled experiment. Further, smaller systems can minimize the learning curve for participants, particularly if they
are unfamiliar with the specific IaC tools used in the experiment. Finally, participants will likely be more motivated
when the tasks are achievable within a reasonable timeframe. Please also note that IaC parts are usually modularized
in the larger-scale system we have studied. This means the fraction of the IaC code that must be studied to assess a
particular security ADD is not larger than our example IaC scripts. However, in such larger systems, finding the correct
IaC scripts in the code is usually harder. We did not want to study whether participants could locate the correct IaC
script, but rather the understandability of a particular script was another reason for selecting relative systems.

4.3 Context and Design

We randomly divided the participants into A1, A2, B1, and B2 groups. We used a Within-Subjects Design [36] in which
the same person tests all the conditions. Each student got two tasks, one with help and one without. The two sub-tasks
are called:

• Ansible-based Cloud Security Using the ELK Stack (ACS).
• Terraform Microservice Deployment (TMD).

3Other considered examples are: https://github.com/sadsfae/ansible-elk, https://garutilorenzo.github.io/ansible-collection-elk/, https://github.com/
dmccuk/ansible_ELK, https://github.com/DanielBerman/ansible-elk-playbook.
4Ansible system source code available at: https://github.com/babtunee/azure-cloud-security-architecture/tree/master
5Terraform system source code available at: https://github.com/ryanmcdermott/terraform-microservices-example
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Fig. 2. Semi-formal model of the Ansible-based Cloud Security System with ELK Stack (ACS)
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Fig. 3. Semi-formal model of the Terraform Microservice Deployment System (TMD)

The groups are composed as follows:

• A1) ACS: system source code repository and additional help with formal models and metrics + TMD: only system
source code repository.

• A2) TMD: only system source code repository + ACS: system source code repository and additional help with
formal models and metrics – identical to A1, only order reversed.
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• B1) TMD: system source code repository and additional help with formal models and metrics + ACS: only system
source code repository.

• B2) ACS: only system source code repository + TMD: system source code repository and additional help with
formal models and metrics – identical to B1, only order reversed.

We added the reserved-order groups A2 and B2 to avoid possible biases from the tasks with or without help. For
example, participants might spend more time on the first task, or there could be some learning effect in the general
code-reviewing activity. Henceforth, we call the tasks in the four groups, where the participants get only a system
source code repository, the Control Tasks (CT), and the tasks in the four groups, where the participants get a system
source code repository plus help in the form of formal metrics and models, the Experiment Tasks (ET).

4.4 Participants

Our participants are advanced Bachelor’s and some Master’s students from the course Software Engineering 2 (SE2).
The students received 5% of the course points for participation in this experiment (a hands-on task in the lecture). Other
than that, there were no additional incentives for participation. Students could participate in the lecture task but opt out
of participation in the experiment. In the lectures before this hands-on task, we discussed code review, design practices,
and general design patterns and practices. Participants received an introduction text6 in which they got introduced to
backgrounds like IaC, relevant IaC security practices, the modeling techniques used in the experiment, and the metrics
used. Additionally, the Software Engineering 2 course features an introductory pre-test to evaluate students’ readiness
for the course. Functioning as a diagnostic instrument, the pre-test enables us to pinpoint any knowledge gaps and
customize the course content to address specific areas of concern.

Furthermore, our participants exhibit diverse knowledge and expertise in software development. For instance, a com-
parison of their characteristics with those from a 2016 survey involving fifty thousand developers on the online platform
Stack Overflow7 reveals striking similarities in key demographics when compared to our own participants. Significantly,
all participants in our study had diverse programming experience, a crucial factor for efficiently understanding and
reviewing the source code materials (refer to Section 6.2 for details).

Our study aims do not focus on techniques that only a few highly trained experts can apply, so we did not specifically
target such individuals. Instead, we focus on evaluating the use of techniques by software engineers who are not experts
in all aspects of the study (like software developers who apply IaC techniques occasionally and need to review the
security of their software, even though they are not security experts) or even novice software engineers. Following
Kitchenham et al. [32] findings, using students in our study is appropriate because they are the next generation of
software professionals and are thus similar to the population of interest. This is reinforced by the fact that some students
who participated in our experiment had some years of programming and industry experience. Other studies, such
as those by Höst et al. [37], Runeson [38], Svahnberg et al. [39], Salman et al. [40], and Falessi et al. [41], argue that
students can be valid representatives for professionals in specific empirical software engineering experiments.

4.5 Material and Tasks

The experiment is based on a selection of security-related practices. The selection includes the practices for Observability
in the System, Security Access Control, and Traffic Control in the system summarized in Section 2.1.

6See the Information Sheet included in the experiment documents provided online in a long-term archive at: https://doi.org/10.5281/zenodo.10958738
7https://insights.stackoverflow.com/survey/2016
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The tasks designed for the experiment were carefully chosen to reflect real-world scenarios where understanding
components’ deployment and operational context is crucial. This approach aligns to evaluate the effectiveness of
IaC-based architectural model diagrams and metrics in enhancing the understandability of security practices. It is
important to highlight that participants received an introduction and were allowed to consult a preparatory document
providing necessary background information. This ensures they were not disadvantaged due to a lack of familiarity
with the technology or the specific tools mentioned. This preparatory phase aimed to level the playing field and allow
an assessment focused on the added value of diagrams and metrics for understandability.

The selected software practices are related to the subjects taught in the course SE2, such as related software modeling
techniques, software design patterns, and software architecture. This study consists of two major experiment material
artifacts8:

• (1) Information Sheet. A document explaining the IaC security practices with an example model and the
related metrics was provided to participants two weeks before the experiment was conducted.

• (2) Survey Form. Four experiment survey forms per groupwere handed out to participants during the experiment.

All experiment survey forms are structured the same way, consisting of three parts: (1) a participant information
questionnaire; (2) two experiment tasks (for one of the four groups A1, A2, B1, B2 explained in Section 4.3); (3) an
overall experiment questionnaire. Every task is divided into sub-tasks to test the participants’ understandability of
security-related practices. The participants were instructed to read the code and descriptions in the given repositories
for each system before they started to process the following four sub-tasks:

• Four tasks on listing model elements (components and connectors) were used to determine the understanding of
system structure and relations that are relevant for understanding the security practices at the architectural level.
An example question in Task TMD.2 is: “List the server nodes of service components and/or AWS system components

for which logging via Amazon CloudWatch is configured.” In such questions, participants should demonstrate an
understanding of more complex, non-local aspects of security architecture practices. For instance, in this example,
participants must understand that the CloudWatch observability is configured via the CloudWatch Logging
Provider, which observes two log groups on the ECS cluster. These log groups correspond to the two deployed
services, Frontend Service and API Service. It might further confuse participants that they are not directly
deployed on the cluster but are using a container. All these connections must be inspected during a security
architecture review to ensure that all such services have a defined log group and are linked to CloudWatch.
Figure 4 depicts the insights participants must uncover in various parts of the models and/or source code to
address the corresponding task.

• One task with three filling-out-blanks sentences was used to determine the understanding of system structure.
An example sentence in Task ACS.2: “The ELK-Stack used for monitoring in the project is deployed in ___ number

of Docker containers.” In such questions, complex, non-local aspects of security architecture must be understood,
and there is a chance of locating too many or not all components or deployment nodes that require a link. Here,
we check whether participants found all required links to the ELK-Stack correctly. During a security architecture
review, components or deployment nodes that require a link to guarantee full observability might be overlooked,
leading to a possible vulnerability. Figure 5 shows the insights participants need to find in various parts of the
models and/or source code to address the corresponding tasks.

8See the experiment documents provided online in a long-term archive to enable replicability of our study at https://doi.org/10.5281/zenodo.10958738
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«Logging Data Provider»
Amazon CloudWatch

Logging Provider 
:Component

«connects to»
log stream
and retain 
logs for 30

days

 

«connects to»
 metrics analytics,

performance analytics

«Container»
 Frontend Service

Container
:Execution Environment

«deployed on containers»
 

«deployed on containers»
 

resource "aws_ecs_service" "fe" {
  name            = "fe"
  cluster         = aws_ecs_cluster.main.id
  task_definition = aws_ecs_task_definition.fe.arn
  desired_count   = var.fe_count
  launch_type     = "FARGATE"

  health_check_grace_period_seconds = 180

  network_configuration {
    security_groups  = [aws_security_group.ecs_tasks.id]
    subnets          = aws_subnet.private.*.id
    assign_public_ip = true
  }

  load_balancer {
    target_group_arn = aws_alb_target_group.fe.id
    container_name   = "fe"
    container_port   = var.fe_port
  }

  service_registries {
    registry_arn = aws_service_discovery_service.fe-service.arn
  }

  depends_on = [aws_alb_listener.main, 

aws_iam_role_policy_attachment.ecs_task_execution_role]
}

resource "aws_ecs_service" "api" {
  name            = "api"
  cluster         = aws_ecs_cluster.main.id
  task_definition = aws_ecs_task_definition.api.arn
  desired_count   = var.api_count
  launch_type     = "FARGATE"

  health_check_grace_period_seconds = 180

  network_configuration {
    security_groups  = [aws_security_group.ecs_tasks.id]
    subnets          = aws_subnet.private.*.id
    assign_public_ip = true
  }

  load_balancer {
    target_group_arn = aws_alb_target_group.api.id
    container_name   = "api"
    container_port   = var.api_port
  }

  service_registries {
    registry_arn = aws_service_discovery_service.api-service.arn
  }

  depends_on = [aws_alb_listener.main, 

aws_iam_role_policy_attachment.ecs_task_execution_role]
}

1

2

3

.....

# Set up CloudWatch group and log stream and retain logs for 30 days
resource "aws_cloudwatch_log_group" "api_log_group" {
  name              = "/ecs/api"
  retention_in_days = 30

  tags = {
    Name = "api-log-group"}}

resource "aws_cloudwatch_log_stream" "api_log_stream" {
  name           = "api-log-stream"
  log_group_name = aws_cloudwatch_log_group.api_log_group.name
}
# Set up CloudWatch group and log stream and retain logs for 30 days
resource "aws_cloudwatch_log_group" "fe_log_group" {
  name              = "/ecs/fe"
  retention_in_days = 30

  tags = {
    Name = "fe-log-group"}}

resource "aws_cloudwatch_log_stream" "fe_log_stream" {
  name           = "fe-log-stream"
  log_group_name = aws_cloudwatch_log_group.fe_log_group.name
}

«Container»
 API Service Container

:Execution Environment

«Service»
 Frontend Service

:Component

«Service»
 API Service
:Component

«Monitoring, Performance
Analytics, Metric Collection»

 CloudWatch Insights
:Component

«Logging»
 CloudWatch Logs

:Component

Fig. 4. Steps needed to locate the necessary source code or model components for Task TMD.1 are as follows: (1) Examine the
Frontend Service Component; (2) Examine the API Service Component; (3) Examine the Amazon CloudWatch Components.
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- name: config ELK VM with Docker
    hosts: elk
    become: true
    tasks:
      - name: Install packages
        sysctl:
          name: vm.max_map_count
          value: "262144"
          sysctl_set: yes
          reload: yes
      - name: docker.io
        apt:
          update_cache: yes
          name: docker.io
          state: present
      - name: install pip3
        apt:
          force_apt_get: yes
          name: python3-pip
          state: present
      - name: install python docker module
        pip:
          name: docker
          state: present
      - name: download docker container
        docker_container:
          name: elk
          image: sebp/elk:761
          state: started
          restart_policy: always
          published_ports:
            - 5601:5601
            - 9200:9200
            - 5044:5044

      - name: Enable docker service
        systemd:
          name: docker
          enabled: yes

«deployed on container»
 

setup.kibana:
  host: "10.1.0.4:5601"  

  #host: "localhost:5601"

output.elasticsearch:
  # Array of hosts to connect to.
  hosts: ["10.0.0.4:9200"]
  username: "elastic"
  password: "changeme"

«deployed on container»
 

1

2

3

«Monitoring Dashboard»
Kibana

:Component

«Container»
ELK Docker Container

:Execution Environment

«Monitoring»
Elasticsearch
:Component

Fig. 5. Steps needed to locate the necessary source code or model components for Task ACS.2 are as follows: (1) Analyze the
configuration of the ELKDocker Container; (2) Examine the KibanaMonitoringDashboardComponent; (3) Investigate the Elasticsearch
Monitoring Component.

• Two tasks with four True/False answers of practices were used to determine the understanding of used/support-
ed/realized techniques in the provided systems. An example in Task TMD.1:
□ A load balancer gets deployed by the system and is monitored using Amazon CloudWatch.

□ The deployed system would support centralized log management via Amazon CloudWatch, but it is disabled.

□ The deployed system supports monitoring the performance of services running on the monitored server nodes. For

this, CloudWatch Insights can be used, a service that supports the analytics of CloudWatch logs.

□ Amazon auto-scaling uses the data provided by CloudWatch for Server Monitoring.

These questions were used to check whether participants understood the locally used security techniques
and definitions, which usually required inspecting the definitions and only directly connected components or
deployment nodes.

• In addition to the content tasks, a task-based questionnaire was used to obtain an objective perspective of the
participants’ self-assessment of how to correct their answers with a certain level of confidence.
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Please note that we concentrate on questions requiring participants to analyze and sometimes synthesize the
information they find in different parts of the IaC scripts or the models, where multiple implementation options often
exist, or understanding beyond mere memorization is required. For instance, they aim to check whether participants
understand the explicit and implicit links between components and deployment nodes of the deployment architecture.

4.6 Variables and Hypotheses

This controlled experiment measures the following two dependent variables:

• Correctness as achieved in answering the questions, which includes trying to mark the correct answer and
filling in the blanks in the tasks. It is used to measure the effectiveness of understanding the IaC security practices.

• Duration as the time it took to answer the questions of all tasks in the experiment survey form, excluding
breaks. It is used to measure the efficiency of understanding the IaC security practices.

These two dependent variables, correctness and duration, are commonly used to measure the construct understand-
ability [42–46].

We devised the following Null Hypotheses:

• H01 The effectiveness of understanding the IaC security practices used shows no significant difference (similar
performance) for ET compared to CT.

• H02 The efficiency of understanding the IaC security practices used shows no significant difference (similar
performance) for ET compared to CT.

• H03 The efficiency and effectiveness of understanding the IaC security practices used show no significant
difference (similar performance) for ET compared to CT.

and the corresponding Alternative Hypotheses:

• Ha1 The effectiveness of understanding the IaC security practices used shows a significant difference (better
performance) for ET compared to CT.

• Ha2 The efficiency of understanding the IaC security practices used shows a significant difference (better
performance) for ET compared to CT.

• Ha3 The efficiency and effectiveness of understanding the IaC security practices used show a significant difference
(better performance) for ET compared to CT.

The first hypothesis, H01, is supported by the work documented by Vujovic et al. [47] which highlights the pivotal
role of multimodal learning analytics in shaping the development of educational materials. It suggests that through the
deployment of semi-formal models, these analytics can significantly enhance the effectiveness of learning by providing
a more tailored and comprehensive educational experience. The second hypothesis, H02, is supported by the work
presented byWong et al. [48] which shifts the focus to the integration of supplementary materials within online learning
environments. Contrary to concerns that such materials may detract from learning efficiency, their findings reveal that
they actually foster self-regulated learning. This suggests that well-designed supplementary content can complement
the core material by providing learners with additional resources to manage their learning process more effectively.
Finally, the third hypothesis, H03, is supported by the work presented by Xie et al. [49] which underscores the benefits
of incorporating mobile technology and the experience-sampling method into educational settings. According to them,
these technologies offer real-time insights into how students engage with the material, thereby offering a detailed
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perspective on the intricate relationship between the amount of time invested in learning and the resultant learning
outcomes.

5 EXPERIMENT EXECUTION

This experiment was executed in two steps: a preparation and a procedure phase.

5.1 Preparation

Two weeks before the experiment, we handed out the preparation material (the experiment information sheet, see
Section 2) through an e-learning platform9. This document provided general information about the upcoming experiment
and an introduction to the IaC technologies. This document includes all the security-related patterns and practices, the
set of metrics, an example model, and a detailed description. The participants were allowed to use this document in
print during the experiment. We provided the experiment information document because all participants needed to be
educated to the same level of detail concerning security practices in IaC-based deployments (see Section 2).

5.2 Pilot Test

Following the preparation of our experimental materials, we conducted preliminary tests with student tutors from our
research group. Similar to participants in subsequent stages, we provided the tutors with the information sheet two
weeks in advance, allowing them to familiarize themselves with the necessary knowledge for the tasks. The tutors
participated in the experiment under predefined conditions, which included the option to seek clarifications on the
experimental procedure, a ninety-minute timeframe for responding to experiment questions, and no additional support
beyond the provided materials.

Beyond the pilot tests, we gathered feedback from the tutors about their experiences. Their responses indicated
that we had crafted the information sheet exceptionally well, offering ample guidance for addressing the experiment
questions. The tutors found the experiment easy to navigate, noting that even participants new to the subject matter
and concepts would likely find it accessible, thanks to the comprehensive materials and examples provided. Given this
positive feedback, we made no changes to our experiment design.

5.3 Procedure

The experiment was carried out using pen and paper as if it were a (closed book) exam and PCs with restricted
access to navigate the source code repositories of the two IaC systems. Participants were allowed to bring only the
preparation material to process the experiment survey form, as described in the previous Section 4. At the beginning of
the experiment, every participant received a random experiment survey form (see Section 4.5). During the random
handing out of the forms, we distributed about equal numbers of forms of each type (A1, A2, B1, B2 in Section 4.3).
Participants were instructed to fill out and process the survey from the first page to the last page in this particular
order. Furthermore, a clock with seconds granularity was projected onto a wall to provide timestamp information
to the participants. They were asked to track start and stop timestamps while processing the experiment tasks. The
participants’ task start and stop timestamps were converted to a duration in seconds and summed up to the total duration
for all tasks. To maintain the confidentiality of participant data, an individual who was not involved in the experiment

9https://moodle.univie.ac.at/theme/university_boost/login/index.php
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dissociated personal information (such as name and student number) from the experiment sheets by assigning a unique
identification number.

6 ANALYSIS

The study’s statistical analysis was conducted using only the R software tool10. The analysis involved multiple steps,
such as loading the pre-processed dataset from Section 6.1, calculating descriptive statistics for the dependent variables
discussed in Section 6.4, performing group-by-group comparisons utilizing appropriate statistical hypothesis tests
explained in Section 6.5, and generating tables and plots for inclusion in the article. To reproduce these results, it is
necessary to install the specific R library package dependencies11.

6.1 Data-Set Preparation

The collected raw data12 from the experiment execution phase (refer to Section 5) was prepared as follows: (1) a
Microsoft Excel document was exported to a Comma-Separated Values (CSV) file; (2) the CSV file was imported for
further processing; (3) type castings were performed for several data rows; and (4) the overall correctness for all task
correctness values was calculated. The data set is published in the long-term open data archive Zenodo13 together with
all documents and R scripts.

6.2 Participant Demographics

In the study, participants exhibited a diverse demographic profile encompassing a range of ages (Figure 6), educational
backgrounds (Figure 10), industry experiences (Figure 8), and programming experience (Figure 7). The age of participants
varied from 20 to 40 years, indicating a mix of early-career to mid-career individuals. In terms of education (Figure 10),
the experiment included individuals with Bachelor of Science (BSc) and Master of Science (MSc) degrees, as well as
a subset with no higher education, reflecting a broad spectrum of academic attainment. Experience in IaC (Figure 9)
was split between those with and without such experience, suggesting a variation in specific technical skills. Industry
experience among participants ranged from 0 to 10 years, with a distribution that suggests both newcomers and those
with a decade of experience in the workforce. Finally, programming experience also showed a wide range, spanning
from 0 to 14 years, highlighting the range of technical proficiency. The participants’ diverse demographic and experience
profile provides a rich context for examining the impact of educational and experiential backgrounds on the study’s
outcomes.

6.3 Normality Assessment

The normal Q-Q plots for ACS (Figure 11) for correctness indicate that the data for both Control and Experimental appear
to follow a normal distribution. Furthermore, examining the normal Q-Q plots for TMD for correctness (Figure 12), it can
be inferred that the data for Control appears normally distributed. However, it is inconclusive regarding the normality
of the data for Experimental.

To test for normality, we chose the Shapiro-Wilk [50] normality test since, according to Razali and Yap [51], it is more
powerful than alternatives (such as the Anderson-Darling [52], Lilliefors [53], and Kolmogorov-Smirnov [54]. Assuming
𝛼 = 0.05, the test for ACS indicated that the Control’s and Experimental’s distributions are not significantly different
10See https://www.r-project.org for version 4.2.2.
11See Data and Scripts/Scripts/install.r at https://doi.org/10.5281/zenodo.10958738
12See Experiment Documents/Questionnaire Results/experiment-results.csv at https://doi.org/10.5281/zenodo.10958738
13https://doi.org/10.5281/zenodo.10958738

Manuscript submitted to ACM

https://www.r-project.org
https://doi.org/10.5281/zenodo.10958738
https://doi.org/10.5281/zenodo.10958738
https://doi.org/10.5281/zenodo.10958738


20 Ntentos et al.

Age (years)

F
re

qu
en

cy

20 25 30 35 40

0
5

15

Fig. 6. Participants’ Age.

Programming Experience (years)

F
re

qu
en

cy

0 2 4 6 8 10 12 14

0
10

20
30

Fig. 7. Participants’ Programming Experience.

Exp. Working in Industry (years)

F
re

qu
en

cy

0 2 4 6 8 10

0
40

80

Fig. 8. Participants’ Software Industry Experience.

No Yes

0
20

60

Fig. 9. Participants’ Infrastructure as Code Experience.

BSc MSc None

0
20

40
60

Fig. 10. Participants’ Education.

Manuscript submitted to ACM



On the Understandability of Design-Level Security Practices in Infrastructure-as-Code Scripts and Deployment
Architectures 21

0.0 0.2 0.4 0.6 0.8 1.0

−2

−1

0

1

2

T
he

or
et

ic
al

 Q
ua

nt
ile

s

Sample Quantiles

Control

0.0 0.2 0.4 0.6 0.8 1.0

Experimental

Fig. 11. Normal Q-Q Plot of Correctness (ACS)
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Fig. 12. Normal Q-Q Plot of Correctness (TMD).

from the normal distribution, with a value 𝑝 > 𝛼 . However, for TMD the test indicated that the Control’s distribution is
also not significantly different from the normal distribution, whereas Experimental’s distribution significantly deviates
from the normal distribution, with a value 𝑝 ≤ 𝛼 .

Visual inspection of the normal Q-Q plots for both groups and both systems for duration, visible in Figures 13 and 14,
was insufficient to determine whether each group’s data were normally distributed. The Shapiro-Wilk normality test
for ACS indicated that Experimental’s distribution significantly deviates from the normal distribution. In contrast, the
Control’s distribution is not significantly different from the normal distribution, with a value 𝑝 ≤ 𝛼 . However, for TMD,
the test indicated that, for duration, the group’s distribution significantly deviates from the normal distribution, with a
value 𝑝 ≤ 𝛼 for both groups.

6.4 Descriptive Statistics

Correctness
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Fig. 13. Normal Q-Q Plot of Duration (ACS).
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Fig. 14. Normal Q-Q Plot of Duration (TMD).

Table 4 and Table 5 show the number of corresponding observations, central tendency measures, and dispersion
measures per group for the dependent variable correctness14 These statistics are illustrated as a kernel density plot in
Figure 15 and Figure 16.

By visually inspecting the ACS correctness results (Figure 15) and examining the skew values in Table 4, it can be
observed that the distribution of Control appears to be symmetrical to highly positively skewed, while the distribution
of Experimental exhibits a lighter positive skew. The kurtosis values, which are less than 3 for both groups, indicate
negative kurtosis. Moreover, for the TMD, visual inspection of Figure 16 and the skew values in Table 5 suggests that

14correctness is defined as a value in [0, 1] ∩ R.
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Table 4. Descriptive Statistics per Group of Dependent
Variable Correctness (ACS)

Control Experimental
Number of observations 47 47

Mean 0.2936 0.3969
Standard deviation 0.1283 0.1816

Median 0.2976 0.3929
Median abs. deviation 0.1235 0.1942

Minimum 0.0476 0.0714
Maximum 0.6429 0.7500

Skew 0.4880 0.0167
Kurtosis 0.4827 -1.0340

Shapiro-Wilk Test 𝑝 0.1970 0.3490

Table 5. Descriptive Statistics per Group of Dependent Variable
Correctness (TMD)

Control Experimental
Number of observations 47 47

Mean 0.4483 0.6097
Standard deviation 0.1458 0.1747

Median 0.4405 0.6429
Median abs. deviation 0.1589 0.1588

Minimum 0.1190 0.1071
Maximum 0.7143 0.8452

Skew -0.1703 -0.9769
Kurtosis -0.7733 -0.3038

Shapiro-Wilk Test 𝑝 0.5175 0.0018
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Fig. 15. Kernel Density Plot of Correctness (ACS).
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Fig. 16. Kernel Density Plot of Correctness (TMD).

Control’s distribution is symmetrical to lightly negatively skewed. In contrast, Experimental’s distribution is highly
negatively skewed.

Duration
Table 6 and 7 shows the number of observations, central tendency measures, and dispersion measures per group for

the dependent variable duration15

Regarding duration results of ACS, the skews shown in Table 6 indicate that Control’s distribution is highly positively
skewed, whereas Experimental’s distribution is moderately negatively skewed. The kurtosis values < 3 for both groups
indicate negative kurtosis. Moreover, for TMD the skews in Table 7 indicate that both Control’s and Experimental’s
distribution are highly positively skewed. The kurtosis value < 3 for Control group indicates negative kurtosis. However,
for the Experimental group, the kurtosis value > 3 indicates highly tailed data.

15Duration is denoted in seconds.
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Table 6. Descriptive Statistics per Group of Dependent Variable
Duration (ACS)

Control Experimental
Number of observations 47 47

Mean 2025.49 1673.68
Standard deviation 705.77 693.96

Median 1980 1620
Median abs. deviation 622.69 680.51

Minimum 900 0
Maximum 4320 3457

Skew 1.0657 -0.1421
Kurtosis 1.3140 0.4589

Shapiro-Wilk Test 𝑝 0.0060 0.4023

Table 7. Descriptive Statistics per Group of Dependent Variable
Duration (TMD)

Control Experimental
Number of observations 47 47

Mean 1924.66 1579.79
Standard deviation 990.65 732.48

Median 1740 1440
Median abs. deviation 745.75 444.78

Minimum 0 600
Maximum 5280 4620

Skew 1.3480 2.1688
Kurtosis 2.3119 5.9008

Shapiro-Wilk Test 𝑝 0.0003 0.0000

6.5 Hypothesis Testing

Correctness and Duration
Suppose multiple groups are being compared using several dependent variables. In that case, it is customary to employ
the Multivariate Analysis of Variance (MANOVA) statistical test under the condition that specific assumptions are
satisfied [55]. This test helps determine whether independent variables impact the dependent variables, individually or
in combination. As Section 6.4 mentions, the distribution of Control for correctness and duration does not significantly
differ from the normal distribution. However, the distribution of Experimental significantly differs from the normal
distribution for correctness, but not for duration. It is important to note that MANOVA requires all distributions to be
normally distributed. Therefore, it was essential to compare the variances of both groups for both dependent variables
to assess their equality, as this information would guide the selection of appropriate statistical tests. In this study, we
opted to use Cliff’s 𝛿[56] as a robust and nonparametric test recommended by Kitchenham [57] for scenarios where
data distribution, differing distributions between populations, or unequal variances are present. Although Cliff’s 𝛿 was
originally designed for measuring ordinal data, it is equally applicable to the quantitative and continuous data used in
this study [58, 59]. This test estimates the probability that a randomly selected observation from one group is larger
than a randomly selected observation from another group, taking into account the reverse probability [60].

When conducting multiple hypothesis tests using a single method (in this case, Cliff’s 𝛿 was applied twice), it is
necessary to adjust the significance level (𝛼) to mitigate the risk of Type I errors16. Several methods can be employed for
𝛼 adjustment, such as the false discovery rate [61] or the Bonferroni-Dunn [62, 63] correction. The Bonferroni-Dunn
correction is the most stringent form of correction and can be calculated using Equation 1:

𝛼 ′ =
𝛼

𝑛
(1)

where 𝑛 is the number of times a test was applied. In our study, this results in 𝛼 ′ = 0.05
2 = 0.025 where 𝛼 = 0.05 and

𝑛 = 2. The results of the one-tailed Cliff’s 𝛿 test are shown in Tables 8 and 9 for correctness and Tables 10 and 11 for
duration.

For correctness, Cliff’s 𝛿 indicates by 𝑝 ≤ 𝛼 ′ that Experimental scored significantly higher than Control. For duration,
Cliff’s 𝛿 yielded 𝑝 > 𝛼 ′, so we cannot conclude that Experimental took significantly longer than Control to complete the

16It is important to note that there is no need to adjust the significance level (𝛼 ) when conducting tests for normality or comparing variances.
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Table 8. Hypothesis Tests per Group Combination of the
Dependent Variable Correctness (ACS)

Control vs. Experimental
Cliff’s 𝛿 Test

Cliff’s 𝛿 0.3459
s𝛿 0.1137
v𝛿 0.0129
z𝛿 3.0416

CIlow 0.1065
CIhigh 0.5473

𝑃 (𝑋 > 𝑌 ) 0.3164
𝑃 (𝑋 = 𝑌 ) 0.0213
𝑃 (𝑋 < 𝑌 ) 0.6623

𝑝 0.0031

Table 9. Hypothesis Tests per Group Combination of the
Dependent Variable Correctness (TMD)

Control vs. Experimental
Cliff’s 𝛿 Test

Cliff’s 𝛿 0.5505
s𝛿 0.0984
v𝛿 0.0097
z𝛿 5.5916

CIlow 0.3293
CIhigh 0.7144

𝑃 (𝑋 > 𝑌 ) 0.2191
𝑃 (𝑋 = 𝑌 ) 0.0113
𝑃 (𝑋 < 𝑌 ) 0.7696

𝑝 0.0000

experiment. The negative Cliff’s 𝛿 for duration indicates that, on average, the Experimental (which received additional
IaC diagrams and metrics) completed the tasks in less time than the control group. This finding is interesting, as
additional information might be expected to increase task duration due to the time needed to consult the supplementary
materials, which is not the case here.

Table 10. Hypothesis Tests per Group Combination of the
Dependent Variable Duration (ACS)

Control vs. Experimental
Cliff’s 𝛿 Test

Cliff’s 𝛿 -0.2499
s𝛿 0.1146
v𝛿 0.0131
z𝛿 -2.1798

CIlow -0.4588
CIhigh -0.0148

𝑃 (𝑋 > 𝑌 ) 0.6129
𝑃 (𝑋 = 𝑌 ) 0.0240
𝑃 (𝑋 < 𝑌 ) 0.3631

𝑝 0.0318

Table 11. Hypothesis Tests per Group Combination of the
Dependent Variable Duration (TMD)

Control vs. Experimental
Cliff’s 𝛿 Test

Cliff’s 𝛿 -0.2485
s𝛿 0.1158
v𝛿 0.0134
z𝛿 -2.1462

CIlow -0.4594
CIhigh -0.0111

𝑃 (𝑋 > 𝑌 ) 0.6120
𝑃 (𝑋 = 𝑌 ) 0.0244
𝑃 (𝑋 < 𝑌 ) 0.3635

𝑝 0.0345

Based on Cliff’s 𝛿 tests for both ACS and TMD, concerning correctness, we can reject the null hypothesis H01 and
thus accept the alternative hypothesis Ha1. Conversely, with regard to duration, we are not able to reject the null
hypothesis H02 and reject the alternative hypothesis Ha2.

Correlation Between Correctness and Duration
Upon visually examining the scatter plot in Figure 17, which explores potential correlations between the two dependent
variables correctness and duration, no evident linear correlation was observed for either group. In the case of Control,
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Fig. 17. Scatter Plot per Group of the Dependent Variables Correctness to Duration (ACS).
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Fig. 18. Scatter Plot per Group of the Dependent Variables Correctness to Duration (TMD).

there was a minimal increase in correctness concerning time. Similarly, for Experimental, although there seemed to be a
rise in correctness with duration, the data points were widely dispersed from the indicated reference line, making it
inappropriate to assume a linear correlation.

Likewise, for the TMD, a visual inspection of potential correlations in Figure 18 per group did not reveal any
significant linear correlation. For Control, there was little to no increase in correctness over time. On the other hand, for
Experimental, correctness appeared to decrease as time progressed.

After the visual inspection, we determined it necessary to perform a correlation test. Spearman’s 𝜌 test was selected
for this purpose. For ACS, Spearman’s 𝜌 coefficients for Control indicated a very weak positive association between
correctness and duration. However, as indicated by 𝑝 > 𝛼 ′ (where 𝛼 ′ is derived from the earlier adjustment of 𝛼), we
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are not able to reject the null hypothesis H03 for both tests. For Experimental, the Spearman’s 𝜌 coefficients revealed
a moderate positive association between correctness and duration. The p-value (𝑝 > 𝛼 ′) indicates that the observed
association is statistically significant, leading us to reject the null hypothesis H03 and accept the alternative hypothesis
Ha3. Furthermore, the value of S obtained from Spearman’s 𝜌 test indicates that the ranks of the two variables under
examination are not identical, providing additional evidence for a true association between the variables.

Regarding TMD, for Control, Spearman’s 𝜌 coefficients also indicated a very weak positive association between
correctness and duration. However, as explained earlier for ACS, we are not able to reject the null hypothesis H03
and reject the alternative hypothesis Ha3. For Experimental, Spearman’s 𝜌 coefficients yielded similar results to ACS,
showing a moderate positive association between correctness and duration. Therefore, we must also reject the null
hypothesis H03 and accept the alternative hypothesis Ha3.

Table 12. Correlation per Group of the Dependent Variables
Correctness with Duration per Group (ACS)

Control Experimental
Spearman’s 𝜌 0.0016 0.3435

p 0.9917 0.0181
S 17268.9319 11354.1473

Table 13. Correlation per Group of the Dependent Variables
Correctness with Duration per Group (TMD)

Control Experimental
Spearman’s 𝜌 0.0383 0.1530

p 0.7984 0.3047
S 16634.1006 14650.4868

6.6 Observation

Following the details provided in Section 4.5, participants were instructed to fill out a survey after each task to evaluate
their confidence level in the accuracy of their responses. This self-assessment score was calculated using a formula that
considers both the correctness (correctness) of participants’ answers and their level of confidence in the correctness.
The derived formula for calculating the self-assessment score is presented in Equation 2:

𝑠𝑒𝑙 𝑓𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 = 𝑠𝑒𝑙 𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 −
5 − 𝑠𝑒𝑙 𝑓𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒

5
(2)

where 𝑠𝑒𝑙 𝑓𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 represents the participants’ average correctness as defined in 6.4, with 0 indicating entirely incorrect
answers and 1 indicating completely correct answers.

The variable 𝑠𝑒𝑙 𝑓𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 ∈ [0, 5] ∩ R represents the average confidence of participants based on a survey that
utilized a five-point Likert scale. Each point on the scale is assigned equidistant values within the range of 0 to 5. A
value of 0 signifies high confidence in the correctness of the answers, while a value of 5 indicates low confidence.

The variable 𝑠𝑒𝑙 𝑓𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 ∈ [−1, 1] ∩ R represents the average self-assessment score of participants. A value less
than 0 (𝑠𝑒𝑙 𝑓𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 < 0) indicates that participants tend to overestimate the correctness of their answers. A value of
0 (𝑠𝑒𝑙 𝑓𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 = 0) indicates that participants accurately estimate the correctness of their answers. A value greater
than 0 (𝑠𝑒𝑙 𝑓𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 > 0) indicates that participants tend to underestimate the correctness of their answers.

Figure 19 illustrates the kernel density plot of participants’ overall self-assessment score per group. The plot
shows that, on average, participants in the Control group accurately estimated their correctness across all tasks, while
participants in the Experimental group slightly underestimated their correctness.

Figure 20 indicates that Control slightly underestimated their correctness on average across all tasks, whereas
Experimental underestimated their correctness.
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Figures 21, 22 visually represent the distribution of understanding scores for semi-formal models, metrics and system
descriptions by participants in the Control and Experimental. These histograms showcases the frequency of scores
across a range from 0 to 5, with clear distinctions between the two groups.

Figures 23, 24 visually complement the statistical data, illustrating the distribution of understanding scores for system
descriptions across a range from 0 to 5. The Control’s distribution is more concentrated towards higher scores (around
3.2 to 4.2), aligning with the higher mean and median values noted. This visualization supports the statistical finding of
better system description comprehension in the Control.
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Fig. 19. Kernel Density Plot per Group of
Participants’ Self Assessment (ACS).
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Fig. 20. Kernel Density Plot per Group of
Participants’ Self Assessment (TMD).

0.25 1.2 2.2 3.2 4.2

F
re

qu
en

cy

0

5

10

15

Understand System Description ([0, 5])

Control
Experimental

Fig. 21. Histogram per Group of Participants’ Understanding
of system descriptions (ACS).
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Fig. 22. Histogram per Group of Participants’ Understanding
of semi-formal models and metrics (ACS).
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Fig. 23. Histogram per Group of Participants’ Understanding
of System descriptions (TMD).
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Fig. 24. Histogram per Group of Participants’ Understanding
of semi-formal models and metrics (TMD).
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7 DISCUSSION

7.1 Interpretation of the Results

Correctness and Duration
In both ACS and TMD, when testing H01, we observed a significant difference in task correctness, indicating that
providing formal IaC system semi-formal models and metrics alongside source code is more effective. Similarly, when
testing H02, we found no significant difference in task duration between Control and Experimental. Regarding H03, we
discovered that for Control, there was no significant positive correlation between correctness and duration. However, for
Experimental, we found a significant positive correlation between correctness and duration.

Our findings provide strong evidence in favor of the notion that the inclusion of semi-formal models and metrics
greatly improves the comprehension of IaC security practices, as measured by correctness. The integration of these
supplementary resources alongside the source code proves advantageous when engaging practitioners in understanding
IaC security practices and executing associated tasks. These outcomes align consistently with our initial expectations.

After participants in the Experimental group read and comprehended the material, their task completion time did not
show a notable increase compared to that of those in the Control group, despite having access to a greater amount of
reference material. One possible explanation for this absence of a significant difference in duration is that participants
in the Experimental group primarily relied on the semi-formal IaC system models and metrics to locate the relevant
information during task completion. They were content with finding it relatively quickly. In contrast, participants in the
Control group were limited in their search for details in the source code. Assuming that duration is inversely linked to
understanding, it can be inferred that providing semi-formal IaC system models and metrics as supplementary material
does not impede comprehension. If participants in the Experimental group had taken significantly longer to complete
the tasks, regardless of their correctness, it could have indicated that semi-formal IaC system models and metrics may
pose a barrier or increase the learning curve for understanding IaC system descriptions to some extent. These results
are generalized to both students and developers who have a similar level of familiarity with understanding the IaC
system, as mentioned previously in Section 4.4.

Correlation Between Correctness and Duration

Our initial assumption and intuition led us to believe that there would be a strong correlation between correctness

and duration. However, contrary to what we anticipated, there was no significant positive correlation found between
correctness and duration in the context of Control. This indicates that participants in Control were satisfied with achieving
accurate answers within a reasonable timeframe and proceeded to the next task accordingly. However, for ACS, in
Figure 17, it can be seen that clearly Experimental improves with more time more correctness, whereas this is not visible
in Control.

In contrast to our initial assumptions, our findings in the case of Experimental revealed a significant positive
correlation between correctness and duration. It is possible that participants in Experimental adopted a distinct approach
to answering the questions. Since the only difference between Control and Experimental was the inclusion of semi-
formal IaC system models and metrics, it is plausible that participants heavily relied on these resources in Experimental.
Another possibility is that participants first consulted the source code for answers and then utilized the semi-formal IaC
system models and metrics to review and amend their responses, leading to the observed positive correlation between
correctness and duration.
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Therefore, practitioners who engage in tasks based on source code should be aware that spending excessive time
on such tasks does not necessarily result in better performance in terms of correctness. Participants in Control took a
similar amount of time on average to those in the Experimental group before being satisfied with their answers. This
suggests that other factors may come into play. In this study, providing semi-formal IaC system models and metrics
is crucial when time constraints are equal. This result further strengthens the case for providing practitioners with
semi-formal IaC system models and metrics. Similar to the previous correlation, these findings are also generalized to
students and developers who share a comparable understanding.

Self Assessment
In Section 6.6, our analysis of participants’ survey responses for ACS revealed an interesting finding: participants
who did not receive semi-formal IaC system models and metrics correctly estimated their performance. In contrast,
the opposite was observed for those provided with these supplementary materials. In the TMD study, participants
who did not receive semi-formal IaC system models and metrics slightly underestimated their performance, as did
those who received them. Providing additional semi-formal IaC system models and metrics may have diminished the
confidence. It is possible that these participants felt overwhelmed by the extra information or doubted their complete
comprehension of the semi-formal IaC system models and metrics. This outcome contradicts our initial expectations,
as we anticipated higher confidence levels among participants who performed better. This finding neither strongly
supports nor opposes the utilization of semi-formal IaC system models and metrics. The preference of practitioners,
whether to be overconfident, underconfident, or somewhere in between, is subjective and reliant on the context, and it
cannot be solely inferred from the relationship between correctness and duration. Consequently, this observation remains
neutral, lacking a discernible positive or negative influence on the hypothesis tests or our conclusions. Nevertheless, we
acknowledge its importance as a factor to consider attentively throughout our analysis.

Understanding of Experiment Materials

From the Figures 21, 22 in Section 6.6, it’s evident that the Control generally had higher scores, as indicated by the
distribution leaning towards the 3.2 to 4.2 range. This visual representation corroborates the statistical data that showed
a higher average understanding in the Control compared to the Experimental. The Experimental, on the other hand,
shows a wider spread of scores, starting from 0, which indicates a broader range of understanding levels among its
participants, including some who did not grasp the semi-formal models at all.

The analysis of participants’ understanding of text content, as illustrated in Figures 23, 24 in Section 6.6, reveals
notable differences between the Control and Experimental. The Control demonstrated superior comprehension, with
a higher mean understanding compared to the Experimental. The histograms show a concentration of higher scores
within the Control, predominantly around the 3.2 to 4.2 range, indicating a stronger grasp of the system description
content.

The overarching theme from both datasets is that the Control consistently demonstrated a higher and more uniform
understanding of semi-formal models, metrics, and system description content. This suggests that the Control were
more effective in facilitating comprehension of complex information. The Experimental, while showing a broad range
of understanding, tended to have more participants struggling with both description, semi-formal models and metrics,
as indicated by lower mean scores and a broader range of scores.
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These results could imply that the provided materials might have been less effective or that the Experimental had
other barriers to understanding. Both the Control and Experimental showed better average understanding for system
description content than for semi-formal models and metrics, with the Control outperforming the Experimental in
both domains. This pattern might suggest a positive correlation within each group, where individuals who understood
semi-formal models and metrics well also tended to understand system descriptions well.

8 RELATEDWORK

This section provides an overview of the existing literature on IaC best practices, frameworks, and metrics, along with
studies that employ comparable methodologies to our research.

As IaC practices are becoming increasingly popular and widely adopted by the industry, more scientific research is
being conducted into collecting and systematizing IaC-related patterns and practices. Kumara et al. [10] present a broad
catalog of best and bad practices, both language-agnostic and language-specific, that reflect implementation issues,
design issues, and violations of essential IaC principles. Morris [1] presents a collection of guidances on managing
Infrastructure-as-Code. In his book, there is a detailed description of technologies related to IaC-based practices and a
broad catalog of patterns and practices embodied in several categories. Language-specific practices have been proposed
by Sharma et al. [14], who present a catalog of design and implementation smells for Puppet. Schwarz et al. [15]
present a catalog of smells for Chef. Our work also follows IaC-specific recommendations described by AWS [16],
OWASP [17–19], and the Cloud Security Alliance [20, 21]. Unlike our research, several of the mentioned studies have a
narrower focus on implementation issues or decisions in the deployment architecture of the systems being deployed.
They do not delve into the specific aspects of security checking, which our work emphasizes.

A few studies investigate security smells in IaC scripts [9–11]. In contrast to our work, none of these work investigates
architectural security issues but focus on implementation-level issues.

Despite its many advantages, the transition to IaC introduces challenges, with state reconciliation standing out as a
critical concern. State reconciliation is the process of ensuring that the actual state of the infrastructure aligns with
the as-coded desired state [64, 65]. Discrepancies between these two states can lead to operational inefficiencies and
heightened security risks. Maintaining congruence between the desired and actual states is essential for the operational
integrity of IaC practices, underscoring the importance of observability and continuous monitoring in securing IaC
environments. Note that our work focuses only on those aspects visible in the deployment model; other aspects of state
reconciliation would need runtime data to be studied adequately, which is out of the scope of our work.

Several studies propose tools and metrics for assessing and improving the quality of IaC deployment models. Dalla
Palma et al. [66, 67] propose a catalog of 46 quality metrics focusing on Ansible scripts to identify IaC-related properties
and show how to use them in analyzing IaC scripts. Wurster et al. [68] present TOSCA Lightning, an integrated
toolchain for specifying multi-service applications with TOSCA Light and transforming them into different deployment
technologies. They also present a case study on the toolchain’s effectiveness based on a third-party application and
Kubernetes. A tool-based approach for detecting smells in TOSCAmodels is proposed by Kumara et al. [69]. Sotiropoulos
et al. [70] develop a tool-based approach that identifies dependencies-related issues by analyzing Puppet manifests and
their system call trace. Van der Bent et al. [71] define metrics reflecting the best practices to assess Puppet code quality.
While these works provide valuable insights into enhancing the quality and analysis of IaC deployment models, our
research extends beyond them by focusing specifically on the intersection of security practices and metrics within the
context of IaC architectures.
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Pendleton et al. [72] present a comprehensive survey on security metrics. It focuses on how a system security state
can evolve due to cyber-attack defense interactions. They then propose a security metrics framework for measuring
system-level security. While certain works concentrate on quality assurance in IaC systems, none specifically tackle the
crucial aspect of security concerns and measures in IaC deployment models, which is the primary focus of our research.

Heijstek et al. [73] conducted a controlled experiment that shares similarities with our study. They aimed to investigate
the effectiveness of visual versus textual artifacts in communicating software design decisions to software developers.
Their research recruited forty-seven participants from industry and academia, who evaluated both UML representations
as diagrammatic artifacts and informal textual descriptions. However, there are notable differences between their study
and ours. Firstly, all participants assessed both representations, whereas in our research, there may be variations in the
evaluation process. Secondly, our study focuses specifically on security practices in IaC, which distinguishes it from the
broader scope of their investigation. These methodological dissimilarities highlight the unique aspects of our study and
contribute to the broader body of research in this field.

Allodi, Cremonini et al. [74] conducted a study involving seventy-three participants to evaluate the accuracy of
security professionals and students with advanced technical education in assessing the severity of software vulnerabilities
based on various attributes. Unlike our focus on comparing different system description methods, they emphasized
participants’ background knowledge and education. A notable difference in methodology is the classification of
participants into three groups: students with a BSc in information security enrolled in an MSc in information security
degree program, students in an MSc in computer science program, and security practitioners. Additionally, they
specifically recruited students with no professional expertise, distinguishing their approach from ours.

Allodi, Biagioni et al. [75] conducted a controlled experiment involving twenty-nine students to investigate the
challenges participants face in assessing system vulnerabilities when security requirements change. In contrast to our
study, they employed a within-subject design, focusing on variations in system requirements rather than modeling
differences. However, like our approach, they formulated hypotheses and subjected them to testing using statistical
methods.

Labunets et al. [76] conducted a controlled experiment involving twenty-nineMSc students to explore the participants’
perceptions of visual and textual methods for security risk assessment in terms of effectiveness. Although their study
shares similarities with ours in comparing visual and textual representations, there are notable differences. Firstly, the
research does not explicitly examine the distinctions between formal and informal representations, nor does it around
system understanding, which are key focuses of our study. Additionally, their experiment addresses security aspects
but not in the IaC domain, our research’s primary area of interest. These differences highlight our study’s specific
scope and objectives while acknowledging the valuable insights provided by Labunets et al.’s experiment in the broader
context of comparing visual and textual methods for assessment.

Verdet et al. [22] alayze how practitioners tackle security challenges through Infrastructure as Code. They identify
and assess Terraform security practices for major cloud providers across 812 open-source projects on GitHub. Access
policies are widely adopted, while Encryption in rest policies are often overlooked. They also find a strong correlation
between GitHub stars and adoption of best practices. Their findings provide guidance for cloud practitioners to enhance
security measures. While this study offers useful insights, our work goes further by concentrating specifically on
particular security practices and metrics applicable to both Ansible and Terraform.

While the studies provide valuable insights into security practices, our research delves deeper, focusing specifically
on the intricacies of security practices and metrics within the domains of Ansible and Terraform. By zooming in on these
two widely utilized IaC tools, our aim was to unearth and assess the comprehension of these technologies. Through
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this concentrated analysis, we aim to contribute to a more nuanced understanding of how semi-formal models and
metrics can support in understanding specific security practices in the IaC domain.

9 THREATS TO VALIDITY

Threats to Internal Validity
The experimental sessions had no disruptions or incidents that interfered with the process. Participants received an
introduction and were allowed to address any queries they had. No questions that broadly impacted the sessions
emerged; instead, individual participant questions were addressed individually.

The limited time allocated to each session effectively minimized the potential for maturation effects; indeed, no such
effects were observed. The experimental design ensured that each participant’s contribution to the experiment results
occurred only once, eliminating the possibility of learning between sessions. Therefore, any learning effect within
a session across the tasks does not favor either Control or Experimental. Additionally, each participant had an equal
opportunity to score points for their performance, irrespective of their assigned group, eliminating instrumental bias.
Furthermore, the random assignment of participants to groups prevented any selection bias.

While preventing participants from discussing the experiment with future participants is impossible, measures were
taken to minimize the potential for cross-contamination between experimental sessions and groups. Participants were
not allowed to take a copy of the experiment sheet with them or use electronic devices during the experiment. The
complexity of the systems and tasks and the consecutive spacing of the sessions further reduced the likelihood of
participants gaining unfair knowledge before their sessions. Additionally, randomly assigning participants to groups
ensured that any advantage would be evenly distributed without favoring either group. The prohibition of electronic
devices also prevented participants from accessing external information sources, as outlined in Section 5.3. The only
permissible reference materials were the printed information document described in Section 4.5 and the limited access
to the source code, thereby preventing potential effects of participants consulting other sources.

Threats to External Validity
A potential threat to external validity is the sample size of our study, which may be insufficient to yield statistically
significant results. To mitigate this risk, we have employed robust statistical methods suitable for our sample size,
ensuring the analysis is conducted appropriately and accurately given the available data.

Another external validity concern arises from using students instead of non-student professionals in our study,
raising questions about the generalizability of our findings to practical settings. To address this, we tried to familiarize
the students with the IaC security-related concepts employed in the experiment. Notably, all participants possessed
diverse theoretical knowledge in software engineering, distributed systems, programming experience, and industry
exposure.

While we acknowledge the potential limitations of a student sample and potential threats to the generalization
of students and developers with similar backgrounds, it’s important to note that the characteristics of our student
population may align with those of a broader community of software developers. In the Stack Overflow industry
survey (see Section 4.4), 69% of respondents were self-taught, 43% held a bachelor’s degree in computer science or a
related field, 19% had a master’s degree, and 2% had a PhD. These statistics reveal that a significant portion of the fifty
thousand developers surveyed, even on a widely respected software development platform, are self-taught and lack
formal degrees. This suggests that a degree may not be a prerequisite for qualifying as a professional developer.
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Given this context, our assertion is strengthened that students can reasonably stand in as substitutes for developers
in our study. Consequently, we propose that our findings may apply to professional software developers, at least to
some extent. However, it would be prudent to replicate similar experiments with practitioners to confirm the absence
of significant differences compared to the population of professional developers.

Our example systems are of modest size, and while we ensured they contain realistically implemented best practices
(comparing to our studies of gray literature and 21 open source systems [24]), it cannot be guaranteed that the same
results would be achievable in large-scale industrial systems. We opted for the smaller systems to avoid fatigue effects
and other such biases. However, as in a larger, more realistic system, it would be harder to find the relevant IaC scripts,
it is likely that in real-life settings, the control group that only used the source code would be at an even greater
disadvantage.

Threats to Construct Validity
Construct validity threats arise from uncertainties about whether the measurement and operationalization of variables
accurately represent the theoretical constructs being studied. These threats involve concerns about the suitability of cho-
sen measurement methods, including issues like unclear operational definitions, insufficiently sensitive instrumentation,
or potential biases introduced by the experimenter.

In Section 4.6, we focused on correctness and duration as dependent variables for measuring understandability, but we
acknowledge the possibility that other metrics might be more appropriate. Additionally, there could be more suitable
methods for gauging participants’ confidence in addressing our research question.

When participants self-record times, ensuring that these measurements accurately represent task completion times
is crucial. Potential threats to construct validity in this context include ambiguous or imprecise definitions of task
completion, leading to inconsistent timekeeping among participants. However, we aimed to mitigate this risk by
providing clear instructions and guidance.

To address the threat of self-timing reliability, we rigorously assessed the reliability of each recorded timestamp
during dataset preparation, excluding inconsistent or unrealistic recordings. We also considered missing or implausible
timestamp values, minimizing the risk of unreliable timekeeping affecting our conclusions.

Participants were instructed to use a common, centrally controlled clockwith high readability and accuracy tomitigate
erroneous measurement accuracy. This eliminated potential issues such as manual timer manipulation, misreading due
to poor readability, or using different clocks, enhancing the validity of our timekeeping data.

Threats to Content Validity
We cannot conceive of any threats to content validity since the experiment topic and subject matter were relevant to
all participants’ university courses, regardless of group assignment. Furthermore, the information sheet provided to
participants provided sufficient prerequisite knowledge to participate in the study. Any inconsistencies or ambiguities
in the experiment material would have affected both groups equally.

Threats to Conclusion Validity
Given that the experiment topic and subject matter were relevant to all participants’ university courses, irrespective of
their group assignment, we do not foresee any threats to content validity. Moreover, the information sheet provided to
participants offered the necessary prerequisite knowledge for their participation in the study. Any inconsistencies or
ambiguities in the experiment material would have affected both groups equally, ensuring fairness.
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10 CONCLUSION

The results of our study provide strong support for the effectiveness of incorporating semi-formal IaC system models
and metrics in enhancing the understanding of IaC security practices, as measured by correctness. Including these
additional resources alongside source code proved beneficial in aiding practitioners in comprehending IaC security
practices and performing related tasks.

Interestingly, despite participants in the Experimental group having access to more reference material, their task
completion time (duration) did not significantly increase compared to the Control group. This suggests that participants
in the Experimental group primarily relied on the semi-formalIaC system models and metrics to quickly locate the
relevant information without impeding their comprehension. In contrast, participants in the Control group had only
access to source code, which may have influenced their task completion time.

Contrary to our initial expectations, there was no significant positive correlation between correctness and duration

in the Control group. This indicates that participants in Control were satisfied with finding correct answers within a
reasonable time frame and proceeded to the next task. However, in the case of Experimental, there was a significant
positive correlation between correctness and duration. This suggests that participants relied on the semi-formal IaC
system models and metrics to review and correct their responses after checking the source code.

Practitioners should be aware that spending excessive time on tasks based solely on source code does not necessarily
lead to better performance in terms of correctness. In our study, semi-formal IaC system models and metrics emerged as
a crucial factor in achieving higher correctness, regardless of the time spent on the tasks. This finding further supports
the case for providing practitioners with semi-formal IaC system models and metrics to enhance their understanding
and performance.

An interesting finding emerged when analyzing participants’ survey responses. Participants who did not receive
semi-formal IaC system models and metrics accurately estimated their performance, while those who had access to these
resources underestimated their performance. This observation suggests that additional semi-formal IaC system models
and metrics may have diminished participants’ confidence due to feeling overwhelmed or uncertain about their full
comprehension of the materials. While contradicting our initial expectations, this outcome does not strongly support or
oppose using semi-formal IaC system models and metrics, as confidence levels are subjective and context-dependent.
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