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ABSTRACT
Expander decompositions of graphs have significantly advanced

the understanding of many classical graph problems and led to

numerous fundamental theoretical results. However, their adoption

in practice has been hindered due to their inherent intricacies and

large hidden factors in their asymptotic running times. Here, we

introduce the first practically efficient algorithm for computing

expander decompositions and their hierarchies and demonstrate its

effectiveness and utility by incorporating it as the core component

in a novel solver for the normalized cut graph clustering objective.

Our extensive experiments on a variety of large graphs show

that our expander-based algorithm outperforms state-of-the-art

solvers for normalized cut with respect to solution quality by a

large margin on a variety of graph classes such as citation, e-mail,

and social networks or web graphs while remaining competitive in

running time.

CCS CONCEPTS
• Information systems→ Clustering; • Theory of computa-
tion→ Sparsification and spanners.

KEYWORDS
normalized cut, expander decomposition, expander hierarchy, graph

partitioning, graph clustering

1 INTRODUCTION
In recent years, expander decompositions and expander hierarchies

have emerged as fundamental tools within the theory community

for developing fast approximation algorithms and fast dynamic
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algorithms for such diverse problems as, e.g., routing [12], connec-

tivity [11], (approximate) maximum flow [6, 19], or triangle enu-

meration [5]. Informally, an expander is a well-connected graph.

Its expansion or conductance 𝜙 = min𝑆⊆𝑉
border(𝑆 )

min(vol(𝑆 ),vol(𝑆 ) ) is the

minimum ratio between the number of edges leaving any subset of

vertices and the number of edges incident to vertices of the subset.

A large value of 𝜙 (close to 1) indicates a graph in which no subset

of vertices can be easily disconnected from the rest of the graph.

An expander decomposition of a graph partitions the vertices

such that the subgraph induced by each part is an expander and

the number of edges between different components of the parti-

tion is low.
1
Many results over the years [24, 25, 34, 36, 39] have

demonstrated that such a decomposition not only exists for every

graph, but can be computed in near-linear time. At a high level,

the success of expander decomposition-based algorithms is due

to the fact that many problems are “easy” on expanders: One first

identifies regions of a graph where a problem is easy to solve (the

expanders), solves the problem (or a suitable sub-problem) within

each region, and then combines the individual solutions to obtain a

solution for the overall problem.

Expander hierarchies [11] apply expander decompositions in a

hierarchical manner. This is done by computing an expander decom-

position of the graph and then contracting the individual expanders

into single vertices repeatedly. This process is repeated until the

entire graph has been contracted to a single vertex. This recursive

decomposition has a corresponding decomposition tree 𝑇 (the so-

called (flow) sparsifier) where the root corresponds to the entire

graph, the leaves correspond to vertices of the original graph, and

inner vertices correspond to the expanders found during the de-

composition procedure. The sparsifier approximately preserves the

cut-flow structure of the original graph in a rigorous sense. This

relationship has been exploited in numerous applications in static

and dynamic graph problems [12, 17, 21] to obtain fast algorithms

with provable guarantees.

1
This can be seen as a special form of a graph clustering.
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While many algorithms for expander decomposition that offer

strong asymptotic bounds on the running time have been sug-

gested [24, 25, 34, 36, 39],
2
practical algorithms based on expander

decomposition have not seen success thus far. This is due to these

algorithms requiring one to solve many maximum flow problems,

which means these algorithms are prohibitively slow in practice for

graphs with many edges. Arvestad [1], e.g., reports that decompos-

ing a graph with approximately 10
5
edges can take almost 5 min

for various values of 𝜙 in their implementation of [34].

In practice, themultilevel graph partitioning framework has been

the de-facto approach for computing high quality solutions for

cut problems on graphs. This framework consists of a coarsening
step, in which a smaller representation of the graph is computed, a

solving step, where a solution is computed on the coarse graph and

a refinement step, during which the solution is improved using local

methods during the graph uncoarsening process. Multilevel graph

partitioning has been successfully applied for computing balanced

cuts [2, 18, 29, 33] and normalized cuts in graphs [10].

We note that algorithms based on the expander hierarchy ap-

proach may also be regarded as a variant of multilevel graph par-

titioning. In this approach, a graph is first coarsened by recursive

contractions to obtain a smaller graph that reflects the same basic

cluster structure as the input graph. Then an initial partition is com-

puted on the sparsifier and, afterwards, in a series of refinement

steps the solution is mapped to the input graph while improving it

locally as we undo the coarsening. Despite the theoretical guaran-

tees brought forward by expander decompositions and expander

hierarchies, the latter have not yet led to similar breakthroughs in

the field of fast, high-quality experimental algorithms. The reason is

that the expander decomposition required at each coarsening step

becomes a significant performance bottleneck in practice. In con-

trast, multilevel graph partitioners like METIS [18] and KaHiP [33]

use a fast matching approach here.

In this work we mitigate the computational bottleneck by intro-

ducing a novel, practically efficient random-walk-based algorithm

for expander decomposition. Based on this, we give the first im-

plementation of the expander hierarchy and, thus, an algorithm

to compute tree flow sparsifiers, allowing us to solve various cut

problems on graphs effectively. Exemplarily, we show that our

approach is eminently suitable to compute normalized 𝑘-cuts on

graphs, where the goal is to partition the vertex set into 𝑘 clusters

such that the sum over the number of edges leaving each cluster,

normalized by the cluster’s volume, is minimized. Normalized cut

is a popular graph clustering objective and particularly able to cap-

ture imbalanced clusterings. Its manifold applications include, e.g.,

community detection [22] and mining [4], topic reconstruction [3],

story segmentation [42], bioinformatics [10, 40], tumor localiza-

tion [32], and image segmentation [35, 38]. It is closely related to

spectral clustering, which uses spectral properties of eigenvalues

and eigenvectors of the graph’s Laplacian. However, the spectral

approach suffers both from very large running times and memory

requirements to compute and store the eigenvectors, and thus does

not scale well [10]. This problemwas addressed byDhillon et al. [10]

as well as Zhao et al. [43], who presented algorithms for normalized

2
Including the near-linear-time algorithm by Saranurak and Wang [34], which

finds a decomposition where each component has expansion at least 𝜙 in time

O(𝑚𝜙−1
log

4 𝑚) .

cut that either use spectral methods only after coarsening [10] or

apply them on a spectrally sparsified graph [43].

Contributions. We present the first practically efficient algorithm

for expander decomposition and the first implementation to com-

pute an expander hierarchy. Our approach is based on random

walks and is justified by rigorous theoretic and empirical analysis.

We report on a comprehensive experimental study on normalized

cut solvers, comprising 50 medium-sized to very large graphs of

various types, where we compare our expander-based algorithm,

XCut, to Graclus by Dhillon et al. [10], the approach by Zhao et

al. [43], as well as the state-of-the-art graph partitionersMETIS and
KaHiP, which do not specifically optimize towards the normalized

cut objective, but are fast and in practice often used for this task.

The experiments show that our algorithm produces superior nor-

malized cuts on graph classes such as citation, e-mail, and social

networks, web graphs, and generally scale-free graphs, and is only

slightly worse on others. On average, it is still distinctly the best

across all graphs and values of 𝑘 .

If only a single value of 𝑘 is desired, its running time is on av-

erage only 3 times slower than the runner-up, Graclus, and never

exceeded 18 min. A notable advantage of XCut is that it can quickly

compute solutions for multiple values of 𝑘 once a sparsifier is com-

puted, which can be faster than running Graclus multiple times.

2 RELATEDWORK
Our work is motivated by recent theoretical results [5, 6, 11, 12, 19]

building on expander decompositions [24, 25, 34, 36, 39] and the ex-

pander hierarchy [11] and inspired by non-spectral approaches [10]

to tackle the normalized cut problem.

Mohar [23] showed that the computation of the so-called isoperi-

metric number or conductance of a graph (see section 3) is NP-hard,

which implies the hardness of the normalized 𝑘-cut problem for

𝑘 ≥ 2. Normalized cut remains NP-hard on weighted trees [8].

A number of tools that have been used to solve normalized

cut use spectral methods [7, 26–28, 30, 41]. This usually requires

to compute 𝑘 eigenvectors of the Laplacian matrix, which was

shown to scale badly in practice [10, 43]. Afterwards, an additional

discretization step is necessary to obtain the clustering.

Dhillon et al. [10] therefore suggest an algorithm called Graclus,
which is based on the multilevel graph partitioning framework. It

applies the same coarsening steps asMETIS, but with a modified

matching procedure. The coarsened graph can then be partitioned

using different approaches, including a spectral one. In the refine-

ment step, Graclus uses a kernel 𝑘-means-based local search algo-

rithm for improving the normalized cut objective value. The authors

evaluate their algorithm experimentally against METIS as well as a

spectral clustering algorithm [41]. They show that it outperforms

the spectral method w.r.t. normalized cut value, running time, and

memory usage. It also produces better results thanMETIS and is

comparable w.r.t. running time.

Zhao et al. [43] employ a joint spectral sparsification and coars-

ening scheme to produce a smaller representation of the graph

that preserves the eigenvectors of the Laplacian in near-linear time

𝑂̃ (𝑚). Afterwards, a normalized cut is computed on the sparsifier

using spectral clustering. Their sparsification scheme obtains a sig-

nificant reduction in the number of edges and nodes, which makes
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it feasible to apply the spectral method on the reduced graphs, with-

out the quadratic term in the running time growing too large. The

authors again perform an experimental comparison with METIS
and observe that their algorithm overall outperforms METIS w.r.t.

the normalized cut value, while being slightly slower.

METIS [18], KaHiP [33], and many other graph partitioning

tools [15, 37] do not solve the normalized cut problem and instead

aim to find good solutions to a balanced graph partitioning problem,

where the vertex set is to be partitioned into 𝑘 sets of (roughly)

equal size, while minimizing the number of edges cut. CHACO [15]

implements a spectral graph partitioning approach, but the number

of clusters is limited to at most 𝑘 = 8.

Nie et al. [28] recently presented a spectral normalized cut solver

based on the coordinate descent method along with several speedup

strategies. They evaluate their algorithm against two other spectral

methods [7, 27] on a number of medium-sized data sets and show

that it consistently computes the best solution and is the fastest. A

notable difference is that 𝑘 is not an input parameter.

3 PRELIMINARIES
For an undirected graph𝐺 = (𝑉 , 𝐸) we use 𝑑𝑣 to denote the degree

of vertex 𝑣 ∈ 𝑉 , ®𝑑 to denote the degree vector, i.e., the vector of

vertex degrees, and 𝐷 = 𝐼 ®𝑑 to denote the corresponding degree
matrix. Δ is used to denote the maximum degree of a vertex in 𝐺 .

For a subset 𝑆 of vertices we define the volume vol(𝑆) as the sum
of vertex degrees of vertices in 𝑆 . Its border border(𝑆) (or capacity)
is defined as |𝐸 (𝑆, 𝑆) |, where 𝐸 (𝑋,𝑌 ) = {{𝑥,𝑦} ∈ 𝐸 | 𝑥 ∈ 𝑋,𝑦 ∈ 𝑌 }
is the set of edges between subsets 𝑋,𝑌 ⊆ 𝑉 , and 𝑆 = 𝑉 \ 𝑆 .

A 𝑘-cut is a partition P of the vertex set into 𝑘 non-empty parts.

Given such a partition P = (𝑆1, . . . , 𝑆𝑘 ), its normalized cut value 𝜃
is defined as

𝜃 (P) =
𝑘∑︁
𝑖=1

border(𝑆𝑖 )
vol(𝑆𝑖 )

.

For 𝑘 = 2 we will usually specify a 2-cut (or just cut) by its

smaller side, i.e., we will refer to the cut (𝑆, 𝑆) by just 𝑆 , where

vol(𝑆) ≤ vol(𝑆). The conductance of a (2-)cut is defined as Φ(𝑆) =
border(𝑆)/vol(𝑆) and the conductance of a graph 𝐺 = (𝑉 , 𝐸) is
Φ(𝐺) = mincuts 𝑆 Φ(𝑆).3 The problem of finding a 2-cut with min-

imum conductance is closely related to the problem of finding a

2-cut with minimum normalized cut value, because for any 2-cut,

Φ(𝑆) ≤ 𝜃 (𝑆) ≤ 2Φ(𝑆). The normalized 𝑘-cut objective can be seen

as a generalization of conductance to 𝑘-cuts.

To properly describe our random walks we need some further

notation. For a cut 𝑆 we call vol(𝑆)/vol(𝑉 ) the balance of the cut 𝑆
and denote it with 𝑏 (𝑆). For a subset 𝐴 ⊆ 𝑉 we use𝐺{𝐴} to denote
the subgraph induced by 𝐴 with self-loops added so that the vertex

degrees do not change (a self-loop counts 1 to the degree of a vertex).

This means the degree of a vertex 𝑎 ∈ 𝐴 is the same in𝐺 as in𝐺{𝐴}.
Whenever the graph in question is not clear from the context we

use subscripts to indicate the graph, i.e., we write vol𝐺 (𝑆), Φ𝐺 (𝑆),
𝐸𝐺 (𝑋,𝑌 ), etc. To avoid notational clutter we write vol𝐴 (𝑆), Φ𝐴 (𝑆),
𝐸𝐴 (𝑋,𝑌 ) when we are referring to the graph 𝐺{𝐴}.

We say a graph 𝐺 = (𝑉 , 𝐸) is a 𝜙-expander if Φ(𝐺) ≥ 𝜙 , and
we call a vertex partition (𝑉1, . . . ,𝑉ℓ ) a 𝜙-expander decomposition if

Φ(𝐺{𝑉𝑖 }) ≥ 𝜙 for all 𝑖 .

3
If there are no cuts in𝐺 (i.e., |𝑉 | = 1) we define its conductance to be 1.

4 EXPANDER DECOMPOSITION USING
RANDOMWALKS

In this section we describe our random-walk-based approach for ob-

taining expander decompositions and present its theoretical guaran-

tees. The complete proofs The complete proofs for these guarantees

can be found in the appendix.

A natural approach for computing expander decompositions is

to find a low conductance cut to split the graph into two parts and

then to recurse on both sides. If no such cut exists, we have certified

the (sub-)graph to be an expander. In the end, the whole procedure

terminates if each subgraph is an expander, i.e., it terminates with

an expander decomposition. Saranurak and Wang [34] used this

general approach to obtain an expander decomposition that runs

in time O(𝑚 log
4𝑚/𝜙) and only cuts O(𝜙𝑚 log

3𝑚) edges. While

their flow-based techniques give very good theoretical guarantees,

the hidden constants do not seem to allow for good practical per-

formance (see e.g. [1]).

In this work we base the cut procedure of the expander decompo-

sition on random walks. As a consequence, we can only guarantee

that our decomposition cuts at most
˜O(
√︁
𝜙𝑚) edges4, since we

are limited by the intrinsic Cheeger barrier of spectral methods.

However, random walks have a very simple structure, which leads

to a simple algorithm with good practical performance. The weaker

dependency on 𝜙 (

√︁
𝜙 instead of 𝜙) is not crucial for our graph

partitioning application because when using the expander decom-

position to build an expander hierarchy one chooses 𝜙 as large as

possible anyway.

Theorem 1 (Expander Decomposition). Given a graph 𝐺 with
𝑚 edges and a parameter 𝜙 , there is a random-walk-based algo-
rithm that with high probability finds a 𝜙-expander decomposition
of 𝐺 and cuts at most O(

√︁
𝜙𝑚 log

5/2𝑚) edges. The running time is

O
(𝑚+𝑛 log𝑛

𝜙
log

3𝑚
)
.

The main part of our algorithm is the cut procedure described

in Section 4.1. This procedure is then plugged into the framework

of Saranurak and Wang to find an expander decomposition. Our

cut procedure gives the following guarantees.

Theorem 2 (Cut Procedure). Given a graph𝐺 = (𝑉 , 𝐸) with𝑚
edges and a parameter 𝜙 , the cut procedure takes O

(
(𝑚 +𝑛 log𝑛)/𝜙

)
steps and terminates with one of these three cases:

(1) We certify that 𝐺 has conductance Φ(𝐺) ≥ 𝜙 .
(2) We find a cut (𝐴,𝐴) in 𝐺 that has conductance at most

Φ𝐺 (𝐴) ∈ O(
√︁
𝜙 log

3/2𝑚). Then one of the following holds:
(a) either vol(𝐴), vol(𝐴) are both Ω(𝑚/log

2𝑚), i.e., (𝐴,𝐴)
is a relatively balanced low conductance cut;

(b) or vol(𝐴) ∈ O(𝑚/log
2𝑚) and A is a near 6𝜙-expander.

Given the cut procedure, an expander decomposition is computed

as follows. On the current subgraph𝐺 , execute the cut procedure, to

either find a low conductance cut 𝑆 or certify that none exists. If no

such cut exists, then𝐺 is a certified 𝜙-expander and we terminate.

Otherwise we check whether 𝑆 is sufficiently balanced, i.e., the

volume of the smaller side is at least Ω(𝑚/log
2𝑚). In that case we

4 ˜O hides polylogarithmic factors.
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cut the edges across (𝑆, 𝑆) and recurse on both parts. As both parts

are substantially smaller than 𝐺 we obtain a low recursion depth.

Otherwise, 𝑆 is very unbalanced but the larger side 𝑆 is a so-called

near expander – a concept introduced by Saranurak and Wang [34]:

Definition 1 (Near 𝜙-expander). Given a graph 𝐺 = (𝑉 , 𝐸).
A subset 𝐴 ⊆ 𝑉 is a near 𝜙-expander in 𝐺 if for all sets 𝑋 ⊆ 𝐴 with
vol(𝑋 ) ≤ vol(𝐴)/2 : |𝐸 (𝑋,𝑉 \ 𝑋 ) | ≥ 𝜙 vol(𝑋 ).

Note that if the LHS in the above equation were |𝐸 (𝑋,𝐴 \ 𝑋 ) |
then 𝐺{𝐴} would be a 𝜙-expander.

If 𝐺{𝑆} (for 𝑆 returned by the cut-procedure) is indeed a 𝜙-

expander we can just recurse on the smaller side 𝑆 and would

obtain a low recursion depth. Saranurak and Wang introduced a

trimming procedure that, given a subset𝐵 that is a near 6𝜙-expander

with volume vol(𝐵) ≥ 9 vol(𝑉 )/10 and |𝐸 (𝐵, 𝐵) | ≤ 𝜙 vol(𝐵)/10,

computes a subset 𝐵′ ⊆ 𝐵 that is a proper 𝜙-expander and has

volume vol(𝐵′) ≥ 1

2
vol(𝐵). By applying this trimming step to 𝑆

we can return 𝐺{𝑆 ′} as a proper 𝜙-expander and recurse on the

remaining graph – still with a small recursion depth. Overall, using

our cut procedure within this framework gives Theorem 1.

4.1 Finding Low Conductance Cuts
We now give a detailed description of the cut procedure that forms

the basis of Theorem 2. The goal is to either certify that 𝐺 is a

𝜙-expander or to find a low conductance cut that is as balanced as

possible. The idea is to exploit that random walks converge quickly

on expanders and hence when they don’t, we know there must be

a low conductance cut. See Algorithm 1 for an outline.

We employ a concurrent random walk, where each node dis-

tributes its unique commodity in the graph. We are interested in

the probability that after t steps a particle that started say at node i

is at some other node j. The walk has converged if this distribution

is essentially identical for every starting vertex. If we quickly reach

this stationary distribution, there cannot be a low conductance cut

and hence the graph must be an expander. Otherwise we can use

information gathered from the walk to find a low conductance cut.

Such a cut may however be very unbalanced. The procedure

therefore accumulates low conductance cuts until the combined

cut is a balanced low conductance cut or the graph that remains

does not have a low conductance cut anymore. Here we call a cut 𝑆

balanced if its balance 𝑏 (𝑆) ≥ 𝛽 := 2/log
2𝑚.

More precisely, the algorithm maintains a partition of 𝑉 into

two sets 𝐴, 𝐿 for each iteration 𝑡 with initial values 𝐴 := 𝑉 , 𝐿 := ∅.
We repeat the following for 𝑇 = 1/(12𝜙) steps: In iteration 𝑡 , we

generate a new random unit vector 𝑟 and execute 𝑡 − 1 steps of the

random walk, initialized according to 𝑟 . This walk yields a vector 𝑢,

on which we analyze the conductance of all sweep cuts, i.e., cuts of

the form 𝑆𝑐 := {𝑣 ∈ 𝐴 : 𝑢𝑣 ≤ 𝑐} for some value 𝑐 . Note that these

conductance values can be calculated in linear time after sorting

the entries of 𝑢.

We consider a cut to have low conductance if the value is below

the threshold𝛾 = O(
√︁
𝜙 log

3/2𝑚). A lower threshold value𝛾 would

give better guarantees in case (2) of Theorem 2 but at the same time

it would increase the number of rounds required to converge and

hence worsen the guarantee of case (1) in Theorem 2. The value

is chosen to ensure we can guarantee Φ(𝐺) ≥ 𝜙 in case (1) of the

Theorem.

Algorithm 1 Cut Procedure

Input: Graph 𝐺 = (𝑉 , 𝐸), Target expansion 𝜙
Output: Expander or Balanced(𝑆, 𝑆) or Unbalanced(𝑆, 𝑆)
1: 𝑇 ← 1/(12𝜙)
2: 𝛾 ← 343

√
𝜙 log(32𝑚3) log

2 (𝑛) ⊲ cut threshold

3: 𝛽 ← 2/log
2𝑚, ⊲ balance

4: 𝑊 ← 𝐼 ⊲ random walk matrix

5: 𝐴← 𝑉 , 𝐿 ← ∅
6: for 𝑡 = 1, . . . , 𝑇 do
7: ®𝑟 ← random unit vector in R𝑛

8: ®𝑢 ←𝑊𝐷−1𝑟 ⊲ apply random walk

9: ®𝑢 ← ®𝑢 − (®𝑢⊤ ®𝑑 )/vol(𝑉 ) · 1 ⊲ ensure ®𝑢 ⊥ ®𝑑
10: A, 𝐷𝐴 ← adjacency and degree matrix of 𝐺{𝐴}
11: 𝑊 ←

(
1

2
𝐼 + 1

2
A𝐷−1

𝐴

)
𝑊 ⊲ extend walk matrix

12: 𝑆 ← SweepCut(®𝑢,𝛾)
13: if vol(𝑆) ≥ 𝛽𝑚 then return Balanced(𝑆, 𝑆)
14: else if 𝑆 ≠ ∅ then
15: 𝐿 ← 𝐿 ∪ 𝑆 , 𝐴← 𝐴 \ 𝑆
16: if vol(𝐿) ≥ 𝛽𝑚 then return Balanced(𝐴, 𝐿)
17: if 𝐿 = ∅ then return Expander

18: else return Unbalanced(𝐴, 𝐿)

The analysis of the sweep cuts yields one of these three cases:

(1) If all sweep cuts have conductance at least 𝛾 , we continue

with the next iteration.

(2) If there exists a sweep cutwith conductance< 𝛾 and balance

≥ 𝛽 we return this low conductance cut.

(3) Otherwise we consider the two-ended sweep cuts of the

form 𝑆𝑎,𝑏 := {𝑣 ∈ 𝐴 : 𝑢𝑣 ∉ [𝑎, 𝑏]} for values 𝑎 ≤ 𝑏

and find the one with largest volume among those with

Φ𝐴 (𝑆𝑎,𝑏 ) < 𝛾 . If this cut has balance ≥ 𝛽 we return it, oth-

erwise we move it from 𝐴 to 𝐿 and check whether 𝐿 has

become balanced.

The random walk can be interpreted as the projection of a much

higher dimensional random walk onto the randomly chosen direc-

tion 𝑟 . This projection step is crucial for the implementation to

become computationally feasible and we show that the projections

approximate the original structure sufficiently well.

In order to argue the correctness of the cut procedure we have

to show that it is highly unlikely that the procedure does not find a

cut on a graph that has expansion less than 𝜙 . For this we argue

that after𝑇 random walk steps (without finding a cut) the walk will

have “converged” to its stationary distribution w.h.p. Because of the

choice of parameters such a quick convergence is only possible if

𝐺 is a near 6𝜙-expander. Whenever the cut procedure returns a cut,

it is guaranteed to have conductance at most 𝛾 . From this it follows

that the expander decomposition cuts at most O(𝛾𝑚 log𝑚) edges.
The entire argument can be found in Section A in the appendix.



Expander Hierarchies for Normalized Cuts on Graphs

5 XCut – A NEW NORMALIZED CUT
ALGORITHM

In this section, we introduce the algorithm XCut, which is based

on the previous section’s novel random walk-based expander de-

composition. We note the apparent similarity between multilevel

graph partitioning and the expander hierarchy and use this as the

basis of XCut. As an outline, we use the novel random walks to

construct the expander hierarchy to obtain a coarse representation

of the graph, the tree flow sparsifier. We then compute an initial

solution on the tree. Finally, we use an iterative refinement step

while descending the hierarchy to improve the solution we found.

Compared to other contraction schemes, which lead to each vertex

in the coarsest graph representing roughly the same number of

nodes in the base graph, the subtrees on each level in the tree flow

sparsifier can represent a vastly different number of vertices.

Expander Decomposition.While the expander decomposition out-

lined in section 4 is much simpler to implement than that of [34],

as we do not rely on maximum flow computations at all, we made

several choices in the implementation to speed up computation.

We iterate a single random walk, and after each iteration, we check

whether we can find a sparse cut. If we find a suitable cut, we dis-

connect the edges going across it, but contrary to the algorithm in

section 4, we do not restart the random walk, as we find we can

extract further information about the cut structure of the graph

from the state of the random walk. For example, if the random walk

has mixed very well on one of the new components, it is likely to

be an expander, while if there is another sparse cut in the compo-

nent, then the random walk will likely not have mixed well on the

component. One may think that reducing the number of random

walks might lead to a loss of guarantees and higher variance of

the algorithm, but in experiments conducted while designing the

algorithm, we found that on real graph instances running multiple

concurrent random walks is not necessary. In fact, only a single

graph in our 50 graph benchmark had noticeable variance. See also

the discussion in subsection 6.3.

The main parameter of the expander decomposition is the cut

value 𝛾 , which is the minimal sparsity of the cuts our algorithm

makes. Additionally, we introduce a parameter 𝜌 , to be used as

a threshold for “certifying" that a component is an expander, as

we found that choosing the threshold to be 1/(4 vol(𝑉 )2) does not
offer any benefits over a much larger value. See also subsection 6.2

for details on choosing the value for this parameter. We make a

final modification to the theoretical algorithm in that we omit the

trimming step on unbalanced cuts, since it does not provide any

further speedup of the expander decomposition routine in practice.

Automatically Choosing 𝛾 . The theoretical analysis in [11] sug-

gests a choice for 𝛾 and 𝜙 that is sufficient to prove the theoretical

results. In preliminary experiments we found this choice to be too

pessimistic and, in fact, by adapting 𝜙 and 𝛾 to the graph we can

obtain better results. However, there is a trade-off to be made: If 𝛾

is too small, the expander decomposition will not find many sparse

cuts, and we obtain sparsifiers of low quality. On the other hand, if

𝛾 is too large, most cuts will be sparser than 𝛾 , which leads to many

cuts being made and increases the running time. In the worst case,

this can even prevent the algorithm from terminating.

Thus, our goal is to choose 𝛾 such that it offers a good quality vs.

time trade-off. When choosing 𝛾 , we can only observe whether this

was a good choice in a post hoc fashion. A naive strategy would

be to start with a large 𝛾 and decrease it until the expander hier-

archy terminates within a reasonable amount of time. However,

this approach is wasteful, as we discard previously computed de-

compositions, even if they were good. Instead, we decrease 𝛾 by

multiplying it with constant factor 𝜖 < 1 whenever the expander de-

composition on a specific level cuts too many edges in𝐺𝑖 . We then

use the new 𝛾 ′ = 𝜖𝛾 for the remaining expander decompositions,

decreasing it further as required.

Solving on the Sparsifier. To solve normalized 𝑘-cut on the tree

sparsifier obtained from the hierarchy, we want to remove 𝑘 − 1

edges to decompose it into a forest of 𝑘 trees. Given a solution, i.e.,

a tuple of edges (𝑒1, . . . , 𝑒𝑘−1
), we assign vertex 𝑣 ∈ 𝑉 to the cluster

𝐶 𝑗 associated with 𝑒 𝑗 if 𝑒 𝑗 is the first edge we encounter on the

path from 𝑣 to the root. If no edge in the solution lies on the path

to the root, we assign 𝑣 to cluster𝐶𝑘 . As normalized cut is NP-hard

also on trees (see section 2), we introduce two heuristic approaches

that take time O(𝑛𝑘) each:
Greedy: The simple greedy heuristic picks the edge in the sparsi-

fier which minimizes the increase in the normalized cut objective in

every step. By simply computing the cost of cutting each remaining

edge, it takes 𝑂 (𝑛) time to find this edge, assuming the number of

vertices in the sparsifier is O(𝑛). To partition a graph into 𝑘 clus-

ters, we repeat this process 𝑘 − 1 times. For 𝑘 = 2, this algorithm

produces the optimal solution on the tree as we pick the edge that

minimizes the cut objective.

Dynamic Programming: Each row of the dynamic program cor-

responds to a level, and we make one cell for each pair (𝑣, 𝑖) of
the row, where 𝑣 is a vertex in the sparsifier and 𝑖 ∈ [0, 𝑘]. The
value of each cell is the normalized cut value 𝜃 of decomposing

the subtree rooted at 𝑣 into 𝑖 parts. We write 𝐷𝑃 (𝑣, 𝑖) for this value.
Additionally, we write 𝑐𝑢𝑡 (𝑣, 𝑖) for the weight of cut edges in the

solution incident to the subtree rooted at 𝑣 , as well as 𝑣𝑜𝑙 (𝑣, 𝑖) for
the volume remaining in the subtree.

Without loss of generality, assume the tree is binary, as otherwise

we can binarize the tree by inserting edges of infinite cost (see

Henzinger et al. [16] for details). The value of a cell is computed

according to the following rule:

DP(𝑣, 𝑗) = min( cutParent(DP(𝑣, 𝑗 − 1)),
min

0≤𝑖≤ 𝑗
(DP(𝑣𝑙 , 𝑖) + DP(𝑣𝑟 , 𝑗 − 𝑖))),

where cutParent(DP(𝑣, 𝑗 − 1)) = DP(𝑣, 𝑗 − 1) + 𝑤 (𝑣,𝑣′ )+cut(𝑣,𝑗−1)
vol(𝑣,𝑗−1)

is the best solution where the edge going to the parent is cut. For

each vertex 𝑣 of 𝐺0, we initialize the bottom row of the program

with DP(𝑣, 0) = 0, DP(𝑣, 1) = 1 and DP(𝑣, 𝑗) = ∞ for 𝑗 ∈ [2, 𝑘]. In
the root vertex we use the special rule DP(𝑣, 𝑗) = min𝑖 DP(𝑣𝑙 , 𝑖) +
DP(𝑣𝑟 , 𝑗 − 𝑖) + cut(𝑣𝑙 ,𝑖 )+cut(𝑣𝑟 , 𝑗−𝑖 )

vol(𝑣𝑙 ,𝑖 )+vol(𝑣𝑟 , 𝑗−𝑖 ) , where the last term ensures we

do not produce a solution with vol(𝑣, 𝑖) = 0, leading to cluster 𝑗

being empty.

The Refinement Step. Finally, we perform an iterative refinement

as we descend the hierarchy. While descending, we introduce new

clusters according to the edges in the solution. On each level we then

perform vertex swaps that improve the normalized cut objective,
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Figure 1: Relative improvement over Graclus (y-axis) vs.
the ratio of the maximum degree and the median degree (x-
axis). The value on the x-axis is larger if the graphs exhibit
a distribution with large outliers. Note the negative trend,
except for the outlier towards the right corresponding to
instance SN7.

by either reducing the number of cut edges or making the partition

more balanced. For details see the full version of the paper.

Support for Variable Number of Partitions 𝑘 . A notable strength

of our algorithm is that with both heuristics, it solves the problem

for any value 𝑘′ ≤ 𝑘 during their execution. Suppose we are still

determining the number of clusters needed. In that case, we can

compute the solution for the maximum 𝑘 we are interested in

and obtain solutions for all smaller numbers of partitions during

exploratory data analysis. The only step that needs to be rerun is

the refinement step.

6 EXPERIMENTAL EVALUATION
In the previous sections, we have shown that our approach pro-

vides provable guarantees on the approximation ratio for the value

𝜃 of the normalized cut
5
(and its relatives, sparse cut, and low-

conductance cut) if 𝑘 = 2. We now turn to evaluate XCut exper-
imentally in different configurations. We compare the objective

value of normalized cuts produced by XCut and its running time

against the normalized cut solver Graclus by Dhillon et al. [10] and

the state-of-the-art graph partitioning packages METIS [18] and

KaHiP (kaffpa) [33], all of which are available publicly. These algo-

rithms are based on the multilevel graph partitioning framework

and produce disjoint partitions of the vertices into 𝑘 clusters, where

𝑘 is a freely choosable parameter. We note thatMETIS and KaHiP
solve the balanced 𝑘-partitioning problem rather than normalized

cut. Nevertheless, we include these solvers in our comparison, as

they are used for this task in practice andwe found that they can out-

perform Graclus on some of the graphs in our benchmark dataset.

By this, we follow the methodology of [10] and [43].

In addition, we compare our results to the values reported for the

normalized cut algorithm by Zhao et al. [43]
6
. We omit comparisons

to solvers employing spectral methods such as the recent works by

Chen et al. [7] and Nie et al. [28], as this approach does not scale

5
See Section 3 for the precise definition.

6
Unfortunately, the code is not available publicly and also could not be provided by

the authors upon request before the submission deadline.

well to large datasets of millions of nodes [10]. In preliminary exper-

iments we found that the solver of Nie et al. [28] uses over 330GB of

memory on instance CN3, whereas our solver used less than 400MB

of memory. Furthermore, the algorithm presented in [28] does not

necessarily produce 𝑘 clusters, thus making direct comparisons

difficult. Lastly, the space complexity of spectral methods becomes

prohibitive for larger values of 𝑘 , as noted by [10].

6.1 Experimental Setup
Instances. Our setup includes 50 graphs from various applica-

tions. See Table 1 for an overview and the full version of the paper

for details. To facilitate comparability, our collection contains the

eight instances used by Dhillon et al. [10] (BP1, CF1, CS1–3, DM1,

OP1, and OP2) as well as the 21 instances used by Zhao et al. [43].

In addition, we selected 21 real-world networks that cover various

application areas, including some of larger sizes. All instances are

available publicly in the Network Repository [31] or the SuiteSparse

Matrix collection [9].

Note that a graph with 𝑘 or more connected components always

has a (normalized) 𝑘-cut of size 0. Surprisingly, we found that XCut
is the only solver tested here that finds the trivial optimal solution

if 𝑘 is less than the number of connected components. However,

testing connectivity before starting a solver remedies this problem,

which is why we decided to exclude graphs with more than 128

connected components except for one (graph ID 0), which we keep

for consistency reasons as it was used in previous comparisons [10].

Methodology. As XCut, KaHiP, andMETIS are randomized, we

ran each of them ℓ = 10 times per instance with different seeds.

Graclus is deterministic, and we ran it three times to obtain a

stable value for the running time. We use the arithmetic mean

over the ℓ runs for each instance to approximate the expected

value of 𝜃 and the running time. When reporting values, we write

XCutmean for the mean value across these 10 runs, and XCutmin
for the minimum. As KaHiP and METIS behaved almost identically

over all ℓ runs, we only report mean values for them. For each

algorithm and each graph, we compute a partitioning consisting

of 𝑘 ∈ {2, 4, 8, 16, 32, 64, 128} clusters as well as 𝜃 (smaller is better).

As a second criterion, we compare the algorithms’ running times.

All experiments were conducted on a server with an Intel Xeon

16 Core Processor and 1.5 TB of RAM running Ubuntu 22.04 with

Linux kernel 5.15. XCut is implemented in C++ and compiled using

gcc 11.4 with full optimization
7
. For all other solvers, we followed

the build instructions shipped with their code. As Graclus is single-
threaded, we ran the single-threaded version of every algorithm.

METIS was run in its default configuration. We used KaHiP with

the fsocial flag, which is tailored to quickly partitioning social

network-like graphs
8
and Graclus with options -l 20 -b to enable

the local search step and only consider boundary vertices during

local search, as suggested by the authors for larger graphs [10].

6.2 Configuring XCut
Greedy vs. Dynamic Programming (DP). Section 5 describes two

heuristics for computing normalized cuts on the sparsifier. We

7-O3 -march=native -mtune=native
8
We chose this setting as we are especially interested in social network-like graphs.
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Table 1: Types and number of graphs in our benchmark
dataset. 𝚫 is the maximum degree, k and M are shorthand
notations for 10

3 and 10
6, respectively. See the full version of

the paper for a detailed list.

Type (Abbreviation) # |𝑉 | |𝐸 | Δ

Bipartite (BP) 1 1.4M 4.3M 1.7k

Computational Fluids (CF) 1 17k 1.4M 269

Clustering (CL) 2 4.8k-100k 6.8k-500k 3-17

Citation Network (CN) 9 226k-1.1M 814k-56M 238-1.1k

Circuit Simulation (CS) 3 5k-30k 9.4k-54k 31-573

Duplicate Materials (DM) 1 14k 477k 80

Email Network (EM) 2 33k-34k 54k-181k 623-1383

Finite Elements (FE) 2 78k-100k 453k-662k 39-125

Infrastructure Network (IF) 2 2.9k-49k 6.5k-16k 19-242

Numerical Simulation (NS) 2 11k-449k 75k-3.3M 28-37

Optimization (OP) 2 37k-62k 131k-2.1M 54-8.4k

Random Graph (RD) 1 14k 919k 293

Road Network (RN) 4 114k-6.7M 120k-7M 6-12

Social Network (SN) 7 404k-4M 713k-28M 626-106k

Triangle Mixture (TM) 7 10k-77k 54k-2M 22-18k

US Census Redistricting (US) 1 330k 789k 58

Web Graph (WB) 3 1.3k-1.9M 2.8k-4.5M 59-2.6k
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Figure 2: Running time vs. normalized cut for different
choices of 𝝆 on two different graphs for 𝒌 = 16. Colors denote
different levels of 𝝆, while shapes indicate the graph.

compare for both heuristics the running time and 𝜃 across ten

precomputed sparsifiers each for 19 representative graphs. The

quality returned by DP was never better than that of Greedy. While

the running times for both heuristics are linear in the size of the

sparsifier, the DP approach scaled worse in 𝑘 . For example, for

𝑘 = 32, DP was three times slower than Greedy, and seven times

slower for 𝑘 = 128. See the full version of the paper for a plot with

the results for 𝜌 = 10
−4

. Greedy was faster and produced no worse

quality than DP for all values of 𝜌 . Thus, we only report results for

Greedy for all further experiments.

Parameter Choice for the Expander Decomposition (𝜌 , 𝛾). In Fig-

ure 2, we examine the effect of the threshold parameter 𝜌 on the

quality of solutions and running time. If the parameter is chosen

too large, especially greater than one, the entire graph will likely

be certified as an expander before any cuts are made, leading to

very large 𝜃 . Furthermore, we no longer obtain any significant

0 20 40 60 80 100 120
k
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Graclus
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Figure 3: Geometric mean of the cut value 𝜽 across all graphs
for each 𝒌 for XCutmean, Graclus,METIS, and KaHiP.

improvement in 𝜃 for values of 𝜌 below 10
−4
. At the same time,

the running time increases inversely with 𝜌 as extra iterations are

needed to converge, which is shown by the vertical arrangement

of the dots in Figure 2. For graph instance TM6, we also find that

non-Pareto-optimal choices of 𝜌 exist, namely 0.1 and 0.01, where

both the running time and the returned value are worse than 10
−3

and 10
−4

. This suggests that the choice of 𝜌 is an important design

decision. On all our instances, 𝜌 = 10
−4

produced Pareto-optimal

results, so we conclude that we can configure this parameter to be

a constant independently of the graph’s structure.

For the automatic tuning of 𝛾 , we chose a starting threshold

of 0.3, as this is around the largest value for which the expander

decomposition finds structurally interesting cuts. Whenever 𝛾 is

too large, i.e., the node reduction |𝐺𝑖+1 |/|𝐺𝑖 | > 0.95, we multiply 𝛾

by a factor of 𝜖 = 0.8 and restart the expander decomposition.

6.3 Comparison to Graclus,METIS, and KaHiP
Figure 5 depicts the solution quality of every solver relative to that

produced by Graclus on all instances for 𝑘 = 32, showing both the

mean and the minimum of the ten runs for XCut. For other values of
𝑘 , the overall picture remains the same, see Figure 3 andAppendix D.

We group the graphs by type, with Figure 5 containing two plots, the

upper showing the disconnected IMDB graph and email, citation,

and social network graphs as well as infrastructure networks, as

these are the graphs on which XCut is particularly strong.

Looking at absolute values of 𝜃 , we find that across all instances,

the geometric mean is at least 70 % lower than our competitors,

see Table 2. Interestingly, when we only consider the seven graphs

from [10], the geometric means become 0.84 for XCutmin and 0.90

for XCutmean, while they are 1.11, 1.19 and 1.03 for Graclus,METIS,
and KaHiP respectively, which implies that KaHiP slightly outper-

forms Graclus in terms of 𝜃 on their benchmark (but not XCut).
One point of note is that XCut does not always find small nor-

malized cuts on the social network SN7 representing user-user

interactions in the Foursquare social network. This appears to be

due to a very high-degree node that connects to approximately

15 % of all vertices, leading to fast convergence of the random walk.

Due to the averaging effect of such a vertex, many nodes 𝑣 have

almost identical values 𝑢𝑣 that vary only slightly between runs.

Thus, when sorting by 𝑢-value, their order can vary greatly depend-

ing on the initial values, leading to very different candidate cuts.

This is the only graph where the minimum and mean of the ten
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Table 2: Cut value (𝜽 ) of different algorithms. The geo-
metric mean is taken across all graphs and values of 𝒌 ∈

{2, 4, 8, 16, 32, 64, 128} for each graph type. ∗For the overall
geometric mean, instances (graph + 𝒌) with 𝜽 = 0 were omit-
ted. Only XCut detected such cases.

Type XCutmean XCutmin Graclus METIS KaHiP

BP 0.00 0.00 1.18 1.38 1.58

CF 4.61 4.18 3.44 3.51 3.15
CL 0.80 0.72 1.04 1.13 1.02

CN 0.07 0.07 1.42 1.72 1.58

CS 0.44 0.41 0.51 0.59 0.57

DM 2.58 2.42 2.11 2.12 2.23

EM 0.44 0.43 3.44 3.78 3.80

FE 0.56 0.53 0.54 0.54 0.55

IF 0.00 0.00 0.93 1.11 1.12

NS 0.85 0.78 0.77 0.76 0.80

OP 0.71 0.66 1.47 1.48 0.99

RD 13.37 13.37 12.08 12.01 11.94
RN 0.01 0.01 0.01 0.01 0.01
SN 0.25 0.19 3.43 3.98 4.00

TM 2.04 1.93 2.87 3.29 3.04

US 0.04 0.03 0.06 0.06 0.05

WB 0.01 0.01 0.10 0.14 0.14

All∗ 0.25 0.22 0.89 1.0 0.94

runs of XCut differ significantly (−33 % for XCutmin and +39 % for

XCutmean relative to Graclus). This indicates that the theoretical

algorithm sketched in section 4, which uses multiple concurrent

random walks (corresponding to more attempts to find a good cut),

would likely have reduced the variance here. This is also the only

graph where the fact that we only use a single randomwalk impairs

the quality of the result.

The graph classes on which XCut does not perform as well have

fairly homogeneous degree distributions and often appear grid-like

when drawn. We conjecture that in these grid-like graphs, there are

no good expanders (which XCut is trying to find). Instead, sparse

cuts arise mainly from the fact that the cut is balanced, i.e., the

components we disconnect are all large enough, rather than being

sparsely interconnected, which is exploited by the other solvers.

6.4 Comparison to Zhao et al.
In Table D.5 we compare 𝜃 for XCut and Graclus to the values

reported by Zhao et al. [43] for 𝑘 = 30. We observe a similar but

weaker pattern as in the previous section. On graphs arising from

numerical simulation and finite element problems, XCut performs

worse than Zhao et al., but never by more than 36 %. On the tri-

angle mixture instances, XCut achieves better 𝜃 on four instances,

while their solver outperforms XCut on two instances. On citation

networks, clustering instances, and those based on maps (RN1 and

US1), XCut outperforms the algorithm by Zhao et al., with 𝜃 being

up to 2.5 times lower on US1 and CN7. Altogether, XCut is better
than Zhao et al. on roughly 2/3 of the instances, while Graclus does
best on one instance. The geometric mean across all instances is

1.46 for XCutmean, 1.39 for XCutmin, 1.64 for Zhao et al., and 3.06

for Graclus. We note that ours is 11 % lower for XCutmean and 15 %

lower for XCutmin, while Graclus’s value is almost twice that of
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Figure 4: Relative improvement over Graclus (y-axis) vs. the
average degree divided by the median degree (x-axis). Larger
x-values signify that the graph exhibits a skewed, power-law-
like degree distribution. Note the negative trend, except for
the outlier towards the right corresponding to instance SN7.

the other solvers in the comparison due to it producing 5–30 times

greater 𝜃 on the citation network (CN) instances.

While it is difficult to draw good conclusions for the running

times from the values reported in [43] as no source code is available,

we note that on some instances XCut takes less than 10 % of the

reported time while producing higher-quality solutions, which

might be indicative of a running time advantage of our solver.

6.5 Running Time
In our experiments, we found that on many graphs, the running

time is spent mainly on computing the expander hierarchy, where

on some instances, this step accounts for over 80% of the running

time, even for 𝑘 = 128. See Figure D.9 for some examples. How-

ever, even on the largest instances in our benchmark, the absolute

running time never exceeded 18 minutes.

Overall, XCut is on average three times slower than Graclus,
20.8 times slower than METIS and 6.7 times slower than KaHiP for

the mean execution time across all choices of 𝑘 and all instances.

Interestingly, we find that XCut’s running time is lower than Gra-
clus’s on several social network graphs and the triangle mixture

instances while it produces a better solution. See the full version of

the paper for detailed running times on some exemplary instances.

Finally, recall that once our algorithm has computed a sparsifier,

we can obtain a solution on the sparsifier for different values of

𝑘 without recomputing the sparsifier, which is a unique feature

among the solvers tested here. If we are interested in all seven

values of 𝑘 , e.g., and only count the time to compute the sparsifier

once for XCut, our experiments take 0.56, 3.82, and 1.24 times the

running time to compute partitions across all graphs and values

of 𝑘 using Graclus,METIS, and KaHiP, respectively. In particular,

XCut then is 44 % faster than Graclus. This demonstrates the utility

of XCut as a tool for exploratory data analysis. We could achieve

further speedups by only computing a solution for 𝑘 = 128 and

then choosing the initial subsets of edges for the other values of 𝑘 ,

only performing the refinement.
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Figure 5: Percentage deviation of the returned normalized cut value relative to Graclus for 𝒌 = 32. This means that a value of
-75% indicates that the normalized cut value is 75% lower (i.e., better). The thin black bars indicate the standard error across
our runs. The top graph shows the disconnected IMDB graph (BP1), citation network instances (CN), email networks (EM),
infrastructure graphs (IF), social networks (SN), and web graphs (WB), while the bottom shows the remaining instances. See the
full version of the paper for details.

6.6 Discussion
XCut outperforms other software when computing normalized

cuts on social, citation, email, and infrastructure networks and web

graphs. It performs slightly worse on graphs arising from specific

computational tasks, such as finite elements, circuit, or numerical

simulations. The graphs on which this behavior occurs tend to

have degree distributions concentrated around the average degree,

suggesting that they are not graphs with a scale-free structure.

In Figure 4 we plot the relationship between our improvement

over Graclus and the value of

1

𝑛

∑
𝑣∈𝑉 𝑑𝑣

median𝑣∈𝑉𝑑𝑣
for the non-synthetic

graphs of our benchmark. This value measures how much the mean

andmedian diverge due to outlier nodeswith very high degrees. The

graphs with power-law distributions tend to have a higher value

on this measure, and we find that there appears to be a negative

correlation, with one outlier due to instance SN7.

7 CONCLUSION
In this work we introduced XCut, a new algorithm for solving the

normalized cut problem. It is based on a novel expander decom-

position algorithm and to the best of our knowledge, it is the first

practical application of the expander hierarchy. XCut clearly out-

performs other solvers in the experimental study on social, citation,

email, and infrastructure networks and web graphs, and also in

the geometric mean over all instances. It scales to instances with

tens of millions of edges and can produce solutions for multiple

numbers of clusters 𝑘 with little overhead by comparison. We are

confident that with further optimization and the use of parallelism

it will be possible to scale our algorithm to even larger graphs, while

further improving the solution quality, especially since computing

the expander decomposition appears to be highly parallelizable.

We also believe that the expander hierarchy and our expander

decomposition can be applied to other graph cut problems in the

future, as the tree flow sparsifiers approximate all cuts in the graph,

and there are theoretical results that suggest this might be the case.

XCut is open source software and its code is freely available on

GitLab [14].
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A THEORETICAL ANALYSIS OF THE
EXPANDER DECOMPOSITION

The key ingredient for the analysis is to show that it is very unlikely

that the cut procedure does not return a cut within 𝑇 iterations

when started on a graph with conductance less than 𝜙 . Conse-

quently, if the algorithm does not return a cut for 𝑇 iterations we

can declare 𝐺 to be a 𝜙-expander (or actually 𝐺{𝐴} to be a near

6𝜙-expander), with a small probability of error.

For this we analyze the random walks in terms of flows. Each

node 𝑣 injects 𝑑𝑣 units of flow of a unique commodity. This flow

is distributed according to the random walk. Let 𝐹𝑖 𝑗 (𝑡) denote the
amount of flow from node 𝑗 that has reached node 𝑖 after 𝑡 steps.

We define 𝑃𝑖 𝑗 (𝑡) :=
𝐹𝑖 𝑗 (𝑡 )
𝑑𝑖𝑑 𝑗

for all 𝑡 . Whenever clear from context,

we may omit the explicit indication of the round 𝑡 .

Let 𝐴(𝑡) ⊆ 𝑉 be the set of nodes in the subgraph in round 𝑡 . We

define a natural average vector 𝜇 (𝑡) := 1

vol(𝐴(𝑡 ) )
∑
𝑖∈𝐴(𝑡 ) 𝑑𝑖𝑃𝑖 (𝑡)

and track the convergence of our random walk to this stationary

distribution with a potential function:

𝜑 (𝑡) :=
∑︁

𝑖∈𝐴(𝑡 )
𝑑𝑖 · ∥𝑃𝑖 (𝑡) − 𝜇 (𝑡)∥2 .

Intuitively, a low potential indicates that the 𝑃 (𝑡) vectors have
mixed well in the set 𝐴(𝑡). The following lemma shows that a low

potential implies that 𝐴(𝑡) is a near 6𝜙-expander in the graph 𝐺

(𝐺{𝐴(𝑡)} may not be a proper expander because the random walk

may have used edges outside of 𝐺{𝐴(𝑡)}).

Lemma 1. If 𝜑 (𝑡) ≤ 1

4 vol(𝑉 )2 in any step 𝑡 ≤ 𝑇 , then 𝐴(𝑡) is a
near 6𝜙-expander in 𝐺 .

Proof. We omit the time step 𝑡 to avoid notational clutter. The

random walk can be viewed as establishing a multicommodity flow

within the network. 𝑑𝑖𝑃𝑖 𝑗 is the flow of commodity 𝑗 that reached

node 𝑖 . The flow has congestion at most 𝑡—the number of steps of

the random walk. We take at most 𝑇 = 1/(12𝜙) steps.
Now consider a cut 𝑆 ⊆ 𝐴, with vol(𝑆) ≤ vol(𝐴)/2. We have

to show that |𝐸 (𝑆,𝑉 \ 𝑆) | ≥ vol(𝑆)/(2𝑇 ). For the potential to be

less than 1/(4 vol(𝑉 )2), we must have 𝑃𝑖 𝑗 ≤ 𝜇 𝑗 + 1

2 vol(𝑉 ) for every
node 𝑖 ∈ 𝐴 and any 𝑗 . The flow that originates in 𝑆 and stays in 𝑆 is∑︁

𝑗∈𝑆

∑︁
𝑖∈𝑆

𝑑𝑖𝑑 𝑗𝑃𝑖 𝑗 ≤
∑︁
𝑗∈𝑆

∑︁
𝑖∈𝑆

𝑑𝑖𝑑 𝑗
(
𝜇 𝑗 + 1

2 vol(𝑉 )
)

= vol(𝑆)∑𝑗∈𝑆 𝑑 𝑗 𝜇 𝑗 +
vol(𝑆 )2
2 vol(𝑉 )

≤ vol(𝑆 )2
vol(𝐴) +

vol(𝑆 )2
2 vol(𝑉 ) ≤

3

4
vol(𝑆) .

Here the third step follows because 𝑑 𝑗 𝜇 𝑗 ≤ 𝑑 𝑗/vol(𝐴) as 𝜇 𝑗 is the
fraction of the flow of commodity 𝑗 that stays in 𝐴 (normalized by

1/vol(𝐴)). This means that at least 1/4 of the flow that starts in 𝑆

has to leave 𝑆 . At the same time an equivalent amount of flow has to

enter 𝑆 , which means that the traffic across the edges in 𝐸 (𝑆,𝑉 \ 𝑆)
is at least vol(𝑆)/2. As the congestion is only 𝑇 , there must be at

least
1

2𝑇
vol(𝑆) ≥ 6𝜙 vol(𝑆) edges across the cut. □

In the following we show that with constant probability during

one iteration we either return a balanced low conductance cut or the

potential decreases significantly. For this we first have to analyze

by how much the potential decreases during a random walk step.

Potential Decrease by Random Walk. Fix a round 𝑡 . Note that the

random walk for round 𝑡 only takes the 𝑡 − 1 random walk steps for

the graphs𝐺{𝐴(1)}, . . . ,𝐺{𝐴(𝑡 − 1)}, the step for𝐺{𝐴(𝑡)} follows
in the next round. In the following we develop an expression for

how much the potential will decrease due to the random walk step

in the current iteration 𝑡 . For this we need a technical claim, which

is proven in Section A.1.

Claim 1. Let 𝑎1, . . . , 𝑎𝑑 , 𝜇 be vectors of the same dimension. Then,

𝑑


 1

𝑑

∑
𝑖 𝑎𝑖 − 𝜇



2 −∑𝑖 ∥𝑎𝑖 − 𝜇∥2 = 1

𝑑
∥∑𝑖 𝑎𝑖 ∥2 −

∑
𝑖 ∥𝑎𝑖 ∥2 ≤ 0.

Specifically, for 𝑑 = 2 the value is equal to − 1

2
∥𝑎1 − 𝑎2∥2.

Let 𝛿 (𝑡) := (𝜑 (𝑡) − 𝜑 (𝑡 + 1))/𝜑 (𝑡) be the relative factor by which

the potential of round 𝑡 decreases after the random walk step in

graph 𝐺{𝐴(𝑡)}.

Lemma 2. The relative potential decrease due to the random walk
step in iteration 𝑡 is at least

𝛿 (𝑡) :=
1

2

∑
{𝑖, 𝑗 }∈𝐺 {𝐴(𝑡 ) } ∥𝑃𝑖 (𝑡) − 𝑃 𝑗 (𝑡)∥22∑

𝑖∈𝐴(𝑡 ) 𝑑𝑖 ∥𝑃𝑖 (𝑡) − 𝜇 (𝑡)∥22
.

Proof. To simplify the analysis of a random walk step we view

each vertex 𝑣 of𝐺{𝐴(𝑡)} as consisting of 𝑑𝑣 sub-vertices as follows.
For each edge {𝑥,𝑦} we introduce two sub-vertices – one at 𝑥 and

one at 𝑦, that are connected by an edge. In this way, every super-

vertex 𝑖 from 𝐴(𝑡) receives 𝑑𝑖 sub-vertices and every sub-vertex

has a unique neighbour.

During a random walk step, each sub-vertex 𝑥 first takes a copy

of the flow vector of its super-vertex. Then the vectors are averaged

along every edge, and finally a super-vertex computes the average

of the vector of its sub-vertices.

We can express the potential by either summing over super-

vertices or sub-vertices:

𝜑 (𝑡) =
∑︁

𝑖∈𝐴(𝑡 )
𝑑𝑖 ∥𝑃𝑖 − 𝜇∥22 =

∑︁
𝑥

∥𝑃
sup(𝑥 ) − 𝜇∥22 ,

where sup(𝑥) ∈ 𝐴(𝑡) is the super-vertex for sub-vertex𝑥 . Averaging
the vectors between two sub-vertices 𝑥 and 𝑦 changes the potential

by

2∥ 1

2
(𝑃

sup(𝑥 ) + 𝑃sup(𝑦) ) − 𝜇∥22
− ∥𝑃

sup(𝑥 ) − 𝜇∥22 − ∥𝑃sup(𝑦) − 𝜇∥22 ,
(1)

which is equal to − 1

2
∥𝑃

sup(𝑥 ) − 𝑃sup(𝑦) ∥22 by Claim 1. Let𝜓 denote

the potential after averaging along edges but before averaging

among sub-vertices. Similarly, let for a sub-node 𝑥 , 𝑄𝑥 denote the

vector of 𝑥 at this point. Summing Equation 1 over all edges gives

𝜓 − 𝜑 (𝑡) ≤ ∑
{𝑥,𝑦}∈𝐸 (𝐴(𝑡 ) ) − 1

2
∥𝑃

sup(𝑥 ) − 𝑃sup(𝑦) ∥22
and

𝜓 =
∑︁
𝑥

∥𝑄𝑥 − 𝜇∥22 =
∑︁

𝑖∈𝐴(𝑡 )

∑︁
𝑥∈sub(𝑖 )

∥𝑄𝑥 − 𝜇∥22

≥ ∑
𝑖∈𝐴(𝑡 ) 𝑑𝑖 ∥ 1

𝑑𝑖

∑
𝑥∈sub(𝑖 ) 𝑄𝑥 − 𝜇∥2

2
,

https://doi.org/10.1007/978-3-642-04769-5_12
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where the inequality also follows from Claim 1. This means aver-

aging among edges decreased the potential by
1

2

∑
{𝑖, 𝑗 } ∥𝑃𝑖 − 𝑃 𝑗 ∥22

and averaging among sub-nodes does not increase it again. Hence,

the lemma follows. □

Projected Potential Decrease. The algorithm does not maintain the

𝑃𝑖 vectors or the potential explicitly, as that would be computation-

ally infeasible Rather it operates on their projections onto some

random vector 𝑟 . The entries in the vector 𝑢 of the algorithm are

actually 𝑢𝑖 = (𝑃𝑖 − 𝜇)⊤𝑟 . This follows since performing the random

walk and then projecting the resulting 𝑃𝑖 vectors onto 𝑟 is equiva-

lent to first projecting onto 𝑟 and then running the random walk

on the vector of projections. Ultimately, subtracting the weighted

average of the 𝑢 values corresponds to subtracting 𝜇 from the 𝑃𝑖
vectors before the projection.

Consider the quotient

𝑅(𝑢) :=

∑
{𝑖, 𝑗 }∈𝐸 (𝐴(𝑡 ) ) (𝑢𝑖 − 𝑢 𝑗 )2∑

𝑖∈𝐴(𝑡 ) 𝑑𝑖𝑢
2

𝑖

,

and compare it to the bound 𝛿 (𝑡) for the relative potential decrease
in Lemma 2. Up to a factor of 1/2, 𝑅(𝑢) is obtained by individually

performing a random projection on each vector in the expression

for 𝛿 (𝑡). Using properties of random projections, we will show that

𝑅(𝑢) is a good indicator for the potential decrease 𝛿 (𝑡).
Lemma 3 (Projection Lemma). Let 𝑣1, . . . , 𝑣𝑛 be a collection of 𝑑-

dimensional vectors. Let 𝑟 denote a random 𝑑-dimensional vector with
each coordinate sampled independently from a Gaussian distribution
N(0, 1/𝑑). Then

(1) Pr[∃𝑖, 𝑗 : (𝑣𝑖 − 𝑣 𝑗 )⊤𝑟 ≥ 11 log𝑛 · ∥𝑣𝑖 − 𝑣 𝑗 ∥2/𝑑] ≤ 1/𝑛
(2) Pr[∑𝑖 (𝑣⊤𝑖 𝑟 )

2 ≥ 1

20 log𝑛

∑
𝑖 ∥𝑣𝑖 ∥2/𝑑] ≥ 1/2 for 𝑛 ≥ 8.

We call an iteration good if the vector of projections𝑢 retains suf-

ficient information of the higher dimensional 𝑃𝑖 vectors. Formally,

we require the following.

Definition 2. An iteration 𝑡 of the algorithm is good if
• ∑

𝑖∈𝐴(𝑡 ) 𝑑𝑖𝑢
2

𝑖
≥ 1

20𝑛 log𝑛
·∑𝑖 𝑑𝑖 ∥𝑃𝑖 − 𝜇∥2 and

• (𝑢𝑖 − 𝑢 𝑗 )2 ≤ 11 log𝑛
𝑛



𝑃𝑖 − 𝑃 𝑗 

2 ∀{𝑖, 𝑗} ∈ 𝐸 (𝐴(𝑡)).
From Property 1 and Property 2 of the Projection Lemma we can

directly infer the following.

Claim 2. An iteration is good with probability at least 1/4 for
𝑛 ≥ 4.

The next lemma shows that in a good round a large 𝑅(𝑢) value
implies a large 𝛿 (𝑡) value, i.e., a large potential decrease.

Lemma 4. In a good round 𝑡 we have 𝑅(𝑢) ≤ 440 log
2 (𝑛) · 𝛿 (𝑡).

Proof.

𝛿 (𝑡) = 1

2

∑
{𝑖, 𝑗 }∈𝐺 {𝐴(𝑡 ) } ∥𝑃𝑖 − 𝑃 𝑗 ∥22∑

𝑖∈𝐴(𝑡 ) 𝑑𝑖 ∥𝑃𝑖 − 𝜇∥22

≥ 1

2

𝑛
11 log𝑛

∑
{𝑖, 𝑗 }∈𝐺 {𝐴(𝑡 ) } (𝑢𝑖 − 𝑢 𝑗 )2

20𝑛 log𝑛
∑
𝑖∈𝐴(𝑡 ) 𝑑𝑖𝑢

2

𝑖

by the definition of 𝛿 (𝑡) and the definition of a good round. □

For the further analysis we will always assume that we are
in a good round.

Finding a Cut. With the above lemma we have established, that a

large 𝑅(𝑢) value ensures the next step of the random walk reduces

the potential a lot. Now we show that a small 𝑅(𝑢) value ensures
that the algorithm finds a low conductance cut.

Indeed the quotient 𝑅(𝑢) (the Rayleigh quotient of 𝑢 using the

graph Laplacian), and its analysis lies at the heart of the proof for

the celebrated Cheeger inequality. It states that a small 𝑅(𝑢) value
implies the existence of a low conductance sweep cut.

Lemma 5 (Cheeger). For any 𝑥 ∈ R𝑛 , with 𝑥 ⊥ ®𝑑 there is a value
𝑐 , s.t. there is a non-trivial set 𝑆𝑐 = {𝑖 ∈ 𝑉 : 𝑥𝑖 ≤ 𝑐} with conductance
Φ𝐺 (𝑆𝑐 ) ≤

√︁
2𝑅(𝑥).

Note that𝑢 ⊥ ®𝑑 holds by design of the algorithm due to Line 10 of

the algorithm. With this Cheeger Lemma we thus get the guarantee

that there has to be a sweep cut through 𝑢 whose conductance Φ

satisfies Φ ≤
√︁

2𝑅(𝑢). Together with Lemma 4 this now implies

the following: If we will only make little progress in the potential

with the next random walk step, i.e., 𝛿 (𝑡) ≤ 𝛼 for some small 𝛼 ,

then we find a sweep cut through the vector of projections 𝑢 with

conductance Φ ≤ O(
√
𝛼 log𝑛). By contraposition, if all sweep cuts

have conductance at least Φ, then 𝛿 (𝑡) ≥ Ω(Φ2/log
2 𝑛).

This motivates our approach of analyzing the sweep cuts on 𝑢

and differentiating three cases: 1) No low conductance sweep cut ex-

ists, 2) A balanced low conductance cut exists, or 3) An unbalanced

low conductance cut exists.

If we find a balanced sweep cut, we return immediately as this

ensures the recursion depth of the surrounding expander decom-

position remains small. If no sweep cut has conductance below

𝛾 , the above reasoning ensures we make sufficient progress with

the next random walk step. Next we prove that even if we find an

unbalanced cut, the potential still decreases sufficiently.

Handling Unbalanced Cuts. Let (𝑆, 𝐵) be an unbalanced cut, where

vol(𝑆) ≤ 2 log
2 (vol(𝐴))/vol(𝐴) and there is no 𝛾-low conductance

sweep cut through 𝐵 in 𝑢. We show that if 𝑅(𝑢) is small and we

thus cannot ensure sufficient progress from the random walk, then

the set 𝑆 must contain a large fraction of the potential. Hence we

instead make progress by removing 𝑆 when we set 𝐴(𝑡 + 1) = 𝐵.
Consider the following lemma, which gives an upper bound on

how much the 𝑅(𝑢) value can at most increase if we remove a cut

and recenter the remaining projected values. Recentering the vector

after removing the cut allows us to use Lemma 5 to argue about the

existence of low conductance cuts in the remaining subgraph. Let

𝑧𝐵 ∈ R |𝐵 | be the shortened and recentered vector of the projections
𝑢, i.e., 𝑧𝑖 := 𝑢𝑖 − 𝑢𝐵 for all 𝑖 ∈ 𝐵 9

. By design, it then holds 𝑧𝐵 ⊥ ®𝑑 .

Lemma 6. For any cut (𝑆, 𝐵) in 𝐴 and 𝜆 < vol(𝐵)/vol(𝐴) such
that

∑
𝑖∈𝑆 𝑑𝑖𝑢

2

𝑖
≤ 𝜆 ·∑𝑖∈𝐴 𝑑𝑖𝑢

2

𝑖
,

𝑅(𝑧𝐵) ≤ vol(𝐵)
vol(𝐵)−𝜆 vol(𝐴) · 𝑅(𝑢).

The proof is deferred to Section A.1. We can put this in the

context of our unbalanced cut (𝑆, 𝐵) with the following lemma. For

this, let 𝜑𝑆 and 𝜑𝐵 denote the potential generated by summing only

over the nodes in 𝑆 and 𝐵 respectively.

9
For any set 𝑋 ⊆ 𝑉 and vector 𝑥 ∈ R|𝑋 | we denote by 𝑥𝑋 := 1

vol(𝑋 )
∑

𝑖∈𝑋 𝑑𝑖𝑥𝑖 the

degree- weighted average of the 𝑥 values in 𝑋 .
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Lemma 7. If 𝑅(𝑢) < 𝛾2/4 and we find an unbalanced cut (𝑆, 𝐵)
with vol(𝑆) ≤ 2𝑚/log

2𝑚, then 𝜑𝐵 (𝑡) ≤
(
1 − 1/(880 log

2 𝑛)
)
· 𝜑 (𝑡).

Proof. Since (𝑆, 𝐵) partitions 𝐴 we get 𝜑𝑆 (𝑡) + 𝜑𝐵 (𝑡) = 𝜑 (𝑡).
Assume for contradiction that 𝜑𝑆 (𝑡) < 1/(880 log

2 𝑛) · 𝜑 (𝑡), i.e.,
with 𝑆 we only remove very little potential. It follows∑

𝑖∈𝑆 𝑑𝑖𝑢
2

𝑖
≤ 11 log𝑛

𝑛 𝜑𝑆 (𝑡) < 1

80𝑛 log𝑛
𝜑 (𝑡) ≤ 1

4

∑
𝑖∈𝐴 𝑑𝑖𝑢

2

𝑖
(2)

since round 𝑡 is good. Note that
vol(𝐵)
vol(𝐴) ≥ 1 − 2 log

2 (vol(𝐴) )
vol(𝐴) ≥ 3

4

and therefore

vol(𝐵)
vol(𝐵)−1/4·vol(𝐴) ≤

vol(𝐴)
(3/4−1/4) vol(𝐴) ≤ 2. (3)

Summing over 𝐵 gives

∑
𝑖 𝑑𝑖𝑧𝑖 =

∑
𝑖 𝑑𝑖𝑢𝑖 − vol(𝐵)𝑢𝐵 = 0. This

allows us to use Lemma 5 in the subgraph 𝐺{𝐵}. By design of

the algorithm, since we did not find a balanced low conductance

cut, (𝑆, 𝐵) is a two-ended sweep cut where 𝑆 has maximal volume

among low conductance cuts. Hence there is no low conductance

sweep cut through 𝑢 that crosses the set 𝐵. We get

𝛾2 ≤ 2𝑅(𝑧𝐵) by Lemma 5

≤ 2
vol(𝐵)

vol(𝐵)−1/4·vol(𝐴) · 𝑅(𝑢) by Lemma 6 using (2)

≤ 4𝑅(𝑢) by (3).

This is a contradiction to our assumption that 𝑅(𝑢) < 𝛾2/4.
□

The above results show that a good round ensures sufficient

progress in decreasing the potential or produces a balanced cut.

Claim 3. In a good round we either find a balanced cut or the
potential reduces by a factor at least 1 − 𝛾2/(1760 log

2 𝑛).

Proof. Let Φ be the minimum value of any sweep cut on 𝑢.

If Φ ≥ 𝛾 , then Lemmas 4 and 5 give 𝛿 ≥ 𝛾2/(880 log
2 𝑛) since

𝛾2 ≤ Φ2 ≤ 2𝑅(𝑢) ≤ 880 log
2 (𝑛) · 𝛿 .

IfΦ < 𝛾 , wewill find some low conductance cut 𝑆 . If 𝑆 is balanced,

we can return it, otherwise we move 𝑆 from 𝐴 to 𝑅. Then either

• 𝑅(𝑢) ≥ 𝛾2/4 and Lemmas 4 and 5 give 𝛿 ≥ 𝛾2/(1760 log
2 𝑛),

or

• 𝑅(𝑢) < 𝛾2/4 and Lemma 7 gives a factor of 1−1/(880 log
2 𝑛).

In any case, the decrease is at least 1 − 𝛾2/(1760 log
2 𝑛). □

Iterations. An iteration takes O(𝑚) time for the random walk and

O(𝑛 log𝑛) for sorting the 𝑢 values. It only remains to prove the

upper bound on the number of iterations. The threshold for the

potential is chosen to guarantee the existence of a near 6𝜙-expander

in Lemma 1.

Lemma 8. After 𝑇 = 1/12𝜙 , iterations of the cut procedure, with
high probability 𝜑 (𝑇 ) ≤ 1

4 vol(𝑉 )2 .

Proof. Let vol = vol(𝑉 ). The initial potential is
𝜑 (0) = ∑

𝑖 𝑑𝑖 ·
(
(𝑛 − 1) · 1

vol
2
+ (1 − 1

vol
)2
)

= vol ·
(

𝑛

vol
2
− 2

vol
+ 1

)
≤ vol .

If we reach round 𝑇 , then none of the previous iterations produced

a balanced cut. By Claim 3, a good round decreases the potential

by a factor of 1 − 𝛾2/(1760 log
2 𝑛). We first show that reducing the

initial potential by this factor
1

96𝜙
times brings it below

1

4 vol
2
, then

we show that with high probability there are sufficient good rounds.

After 𝑘 good rounds, the potential has decreased by a factor of(
1 − 𝛾2

1760 log
2 𝑛

)𝑘
< exp

(
− 𝛾2

1760 log𝑛

) 𝑘
log𝑛 = exp

(
− 𝛾2

1760 log
2 𝑛
· 𝑘

)
where the first inequality follows from (1+𝑥/𝑎)𝑎 < 𝑒𝑥 ,∀𝑥 ∈ R, 𝑎 >

0 with 𝑎 = log𝑛. Combining this with the above bound on 𝜑 (0), we
can take logarithms on both sides to see that 𝜑 (𝑇 ) ≤ 1/(4 vol

2) if
𝑘 · 𝛾2/(1760 log

2 𝑛) ≥ ln(4 vol
3) and thus we need at least

1760
1

𝛾2
ln(4 vol

3) log
2 𝑛 ≤ 1220

1

𝛾2
log(4 vol

3) log
2 (𝑛)

good rounds. Setting

𝛾 = 343

√︃
𝜙 log(4 vol

3) log
2 (𝑛)

gives that after
1

96𝜙
good rounds, the potential is below the thresh-

old.

By Claim 2, a round is good with probability 1/4. Let 𝑋𝑖 be
the indicator random variable representing whether round 𝑖 was

good and 𝐾 =
∑𝑇
𝑖 𝑋𝑖 their sum. Clearly, 𝐾 is the number of good

rounds and its expectation is E[𝐾] = 𝑇 /4. Since 𝜙 ≤ 1/log
2 𝑛 we

get 𝑇 ≥ log
2 (𝑛)/12 and thus E[𝐾] ≥ log

2 (𝑛)/48. Using a Chernoff

bound then gives

Pr

[
𝐾 ≤ 1

2
E[𝐾]

]
≤ exp(− 1

8
E[𝐾]) ≤ 𝑛−

log𝑛

48 .

It follows that with high probability the number of good rounds is

𝐾 ≥ 1

2
E[𝐾] = 𝑇

8
≥ 1

96𝜙
.

□

Altogether, the above arguments imply the correctness of our

Theorem 2. Analogous to the reasoning by Saranurak andWang [34],

we can conclude that our modified guarantees yield Theorem 1

when using our cut step procedure in their expander decomposi-

tion framework.

A.1 Deferred Proofs
Lemma 9 (Projection Lemma). Let 𝑣1, . . . , 𝑣𝑛 be a collection of 𝑑-

dimensional vectors. Let 𝑟 denote a random 𝑑-dimensional vector with
each coordinate sampled independently from a Gaussian distribution
N(0, 1/𝑑). Then

(1) E[(𝑣⊤
𝑖
𝑟 )2] = ∥𝑣𝑖 ∥2/𝑑 for all 𝑖

(2) Pr[(𝑣⊤
𝑖
𝑟 )2 ≥ 𝛼 · ∥𝑣𝑖 ∥2/𝑑] ≤ 𝑒−𝛼/5 for 𝛼 ≥ 1

(3) Pr[∃𝑖, 𝑗 : (𝑣𝑖 − 𝑣 𝑗 )⊤𝑟 ≥ 11 log𝑛 · ∥𝑣𝑖 − 𝑣 𝑗 ∥2/𝑑] ≤ 1/𝑛
(4) Pr[∑𝑖 (𝑣⊤𝑖 𝑟 )

2 ≥ 1

20 log𝑛

∑
𝑖 ∥𝑣𝑖 ∥2/𝑑] ≥ 1/2 for 𝑛 ≥ 8.

Proof of Lemma 3.

1. Due to the rotation symmetry of the Gaussian distribution we

can assume wlog. that 𝑣 is an arbitrary vector of length ℓ = ∥𝑣 ∥. In
particular we can assume that 𝑣1 =

√
ℓ and all other entries are 0.

Then E[(𝑣⊤𝑟 )2] = E[ℓ · N (0, 1/𝑑)2] = ℓ/𝑑 · E[N (0, 1)2] = ℓ/𝑑 .
2. Using Lemma 1 from Laurent and Massart [20] one gets that

for a 𝜒-squared distributed variable 𝑋 ∼ N(0, 1)2 fulfills Pr[𝑋 ≥
1+2

√
𝑥+2𝑥] ≤ 𝑒−𝑥 , which gives Pr[𝑋 ≥ 5𝑥] ≤ 𝑒−𝑥 for 𝑥 ≥ 1. Since

the distribution of (𝑣⊤𝑟 )2 is
ℓ
𝑑
· N (0, 1)2 the statement follows.

3. Using Property 2 with 𝛼 = 15 ln𝑛 gives that the probability

that a vector is overstretched by a factor more than 𝛼 is at most
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Figure D.6: XCut with the greedy vs. dynamic programming
strategy for a subset of instances for 𝒌 = 32 and 𝝆 = 0.0001.

𝑛−3
. Applying a union bound over the at most 𝑛2

vectors gives the

statement. Finally, note that 15 ln𝑥 < 11 log
2
𝑥 for all 𝑥 > 1.

4. Let 𝑥 𝑗 denote the vector where the 𝑖-th entry is 𝑣𝑖 𝑗 . Then 𝑍 :=∑
𝑖 (𝑣⊤𝑖 𝑟 )

2 =
∑
𝑖

∑
𝑗 (𝑣𝑖 𝑗𝑟 𝑗 )2 =

∑
𝑗

∑
𝑖 (𝑥 𝑗𝑖𝑟 𝑗 )2 =

∑
𝑗 ∥𝑥 𝑗 ∥22 · (𝑟 𝑗 )

2
. Let

ℓmax denote the largest length of an 𝑥 𝑗 -vector. We classifiy the 𝑥 𝑗 -

vectors whose length fall in the range (ℓmax/𝑛, ℓmax] into log
2
𝑛

classes so that the length of vectors in the same class differs by

at most a factor of 2. Formally, the 𝑖-th class for 𝑖 ∈ 1, . . . , log
2
𝑛

contains vectorswith length in the range (ℓmax/2𝑖 , ℓmax/2𝑖−1]. Scale
the length for each classified vector 𝑥 𝑗 down to the lowest length

in its class and scale the unclassified vectors down to length 0. Let

𝑥 𝑗 denote scaled length of a vector 𝑥 𝑗 . We have∑
𝑗 ∥𝑥 ∥2𝑗 ≥

∑
𝑗 classified ∥𝑥 𝑗 ∥2/4 ≥

∑
𝑗 ∥𝑥 𝑗 ∥2/4 − 𝑛(ℓ𝑚𝑎𝑥/𝑛)2

≥ ( 1
4
− 1

𝑛 )
∑

𝑗 ∥𝑥 𝑗 ∥2 ≥ 1

8

∑
𝑗 ∥𝑥 𝑗 ∥2 .

for 𝑛 ≥ 4. The second inequality holds because an unclassified

vector has at most length ℓmax/𝑛 and the third inequality because

there is one vector 𝑥 𝑗 with length ℓmax. Now, we choose the class

where the total scaled length of vectors is largest. Let R denote the

index set of vectors in this class, let ℓR denote their scaled length

and let 𝑛R denote their number.

Then 𝑛Rℓ2

R ≥
1

8 log
2
𝑛

∑
𝑗 ∥𝑥 𝑗 ∥2. Now, we consider the sum of

squared projections of the scaled vectors in R. This is distributed
according to a 𝜒2

-distribution with𝑛R degrees of freedom scaled by

ℓ2

R/𝑑 . The median for this distribution is 𝑛R (1 − 2/(9𝑛𝑅)) ≥ 0.4𝑛𝑅 .

Hence, with probability 1/2

𝑍 ≥ 𝑍R ≥ 0.4𝑛Rℓ
2

R/𝑑 ≥
1

20 log
2
𝑛

∑︁
𝑗

∥𝑥 𝑗 ∥2 .

□

Proof of Lemma 6. For the numerator of 𝑅(𝑧𝐵), we get∑
{𝑖, 𝑗 }∈𝐸 (𝐵) (𝑧𝑖 − 𝑧 𝑗 )2 =

∑
{𝑖, 𝑗 }∈𝐸 (𝐵) (𝑢𝑖 − 𝑢 𝑗 )2

≤ ∑
{𝑖, 𝑗 }∈𝐸 (𝐴) (𝑢𝑖 − 𝑢 𝑗 )2 .

For the denominator, recall that 𝑆 and 𝐵 form a partition of 𝐴 and

further 𝑢 ⊥ ®𝑑 . First, we get 0 =
∑
𝑖∈𝐴 𝑑𝑖𝑢𝑖 = vol(𝑆)𝑢𝑆 + vol(𝐵)𝑢𝐵 ,

which can be rearranged to give

𝑢2

𝐵
=

vol(𝑆 )2
vol(𝐵)2 · 𝑢

2

𝑆
. (4)

Next, we observe that∑
𝑖∈𝑆 𝑑𝑖𝑢

2

𝑖
=
∑
𝑖∈𝑆 𝑑𝑖 (𝑢𝑖 − 𝑢𝑆 )2 + vol(𝑆)𝑢2

𝑆
≥ vol(𝑆)𝑢2

𝑆
. (5)

Putting everything together, we can bound the denominator of

𝑅(𝑧𝐵) with∑
𝑖∈𝐵 𝑑𝑖𝑧

2

𝑖
=
∑
𝑖∈𝐵 𝑑𝑖𝑢

2

𝑖
− vol(𝐵) · 𝑢2

𝐵

≥ ∑
𝑖∈𝐵 𝑑𝑖𝑢

2

𝑖
− vol(𝑆 )

vol(𝐵)
∑
𝑖∈𝑆 𝑑𝑖𝑢

2

𝑖
by (4), (5)

≥ (1 − 𝜆)∑𝑖∈𝐴 𝑑𝑖𝑢
2

𝑖
− 𝜆 vol(𝑆 )

vol(𝐵)
∑
𝑖∈𝐴 𝑑𝑖𝑢

2

𝑖
assumption

=
vol(𝐵)−𝜆 vol(𝐴)

vol(𝐵) ·∑𝑖∈𝐴 𝑑𝑖𝑢
2

𝑖
𝐴 = 𝐵 ∪ 𝑆

and therefore 𝑅(𝑧𝐵) ≤ vol(𝐵)
vol(𝐵)−𝜆 vol(𝐴) · 𝑅(𝑢). □

Proof of Claim 1.

𝑑




∑𝑖 𝑎𝑖
𝑑
− 𝜇




2

−∑𝑖 ∥𝑎𝑖 − 𝜇∥2

= 𝑑

( 

 1

𝑑

∑
𝑖 𝑎𝑖



2 − 2

𝑑

∑
𝑖 𝑎
⊤
𝑖
𝜇 + ∥𝜇∥2

)
−∑𝑖 ∥𝑎𝑖 − 𝜇∥2

= 1

𝑑
∥∑𝑖 𝑎𝑖 ∥2 −����

2

∑
𝑖 𝑎
⊤
𝑖
𝜇 +���𝑑 ∥𝜇∥2 −∑𝑖

(
∥𝑎𝑖 ∥2 −���2𝑎⊤

𝑖
𝜇 +��∥𝜇∥2

)
= 1

𝑑
∥∑𝑖 𝑎𝑖 ∥2︸    ︷︷    ︸
≤∑𝑖 ∥𝑎𝑖 ∥2

−∑𝑖 ∥𝑎𝑖 ∥2 ≤ 0.

For 𝑑 = 2 we get

1

2
∥𝑎1 + 𝑎2∥2 − ∥𝑎1∥2 − ∥𝑎2∥2

= 1

2
∥𝑎1∥2 + 𝑎⊤𝑏 + 1

2
∥𝑎2∥2 − ∥𝑎1∥2 − ∥𝑎2∥2

= − 1

2
∥𝑎1 − 𝑎2∥2 .

□

B ADDITIONAL RELATEDWORK
Multilevel Graph Partitioning. This framework has been em-

ployed bymany successful graph partitioning tools, e.g.,METIS [18],
Graclus [10], or KaHiP [33]. The general idea of the paradigm is to

compute a small summary (“coarsening”) of the graph, on which it

is easier to solve the problem we are interested in, and then map-

ping this coarse solution onto the original graph. In more technical

terms, a solver following this paradigm has three phases: (i) Coarsen-
ing: Compute a series of successively smaller graphs𝐺0,𝐺1, . . . ,𝐺ℓ

such that |𝑉0 | > |𝑉1 | > · · · > |𝑉ℓ | with the aim to create a coarse

summary of the original graph. (ii) Solving: Obtain a solution to the

initial problem on the graph 𝐺ℓ . Although 𝐺ℓ is small, heuristics

are usually employed here. (iii) Refinement: Successively map the

solution from graph 𝐺𝑖 to graph 𝐺𝑖−1, while applying heuristics

that increase the solution quality.

C INSTANCE LIST
See Table C.3 for a full list of instances and information on their

degree distribution.

D ADDITIONAL FIGURES
In this section we include a number of figures omitted from the

main section of the paper.
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Table C.3: Statistics on the number of vertices, edges and degree distribution of the graph instances in our benchmark dataset.
Δ denotes the maximum, 𝑑mean the average vertex degree. The last four columns are percentiles of the degree distribution.

# Name Type |𝑉 | |𝐸 | Δ 𝑑mean 25th 50th 75th 90th

BP1 imdb Bipartite 1 403 278 4 303 383 1652 6.13 1 2 6 15

CF1 ramage02 Computational Fluids 16 830 1 424 761 269 169.31 131 170 170 269

CL1 uk Clustering 4824 6837 3 2.83 3 3 3 3

CL2 smallworld Clustering 100 000 499 998 17 10.00 9 10 11 12

CN1 citationCiteseer Citation Network 268 495 1 156 647 1318 8.62 2 5 10 18

CN2 ca-hollywood-2009 Citation Network 1 069 126 56 306 653 11 467 105.33 13 31 75 212

CN3 coAuthorsDBLP Citation Network 299 067 977 676 336 6.54 2 4 7 14

CN4 ca-MathSciNet Citation Network 332 689 820 644 496 4.93 1 3 5 11

CN5 ca-coauthors-dblp Citation Network 540 486 15 245 729 3299 56.41 13 34 74 135

CN6 ca-dblp-2012 Citation Network 317 080 1 049 866 343 6.62 2 4 7 14

CN7 ca-citeseer Citation Network 227 320 814 134 1372 7.16 2 4 8 15

CN8 coPapersCiteseer Citation Network 434 102 16 036 720 1188 73.88 15 39 92 177

CN9 ca-dblp-2010 Citation Network 226 413 716 460 238 6.33 2 4 7 13

CS1 add32 Circuit Simulation 4960 9462 31 3.82 2 3 4 9

CS2 rajat10 Circuit Simulation 30 202 50 101 101 3.32 2 4 4 4

CS3 memplus Circuit Simulation 17 758 54 196 573 6.10 2 3 4 11

DM1 pcrystk02 Duplicate Materials 13 965 477 309 80 68.36 53 80 80 80

EM1 email-enron-large Email Network 33 696 180 811 1383 10.73 1 3 7 19

EM2 email-EU Email Network 32 430 54 397 623 3.35 1 1 1 3

FE1 fe_tooth Finite Elements 78 136 452 591 39 11.58 6 12 15 18

FE2 fe_rotor Finite Elements 99 617 662 431 125 13.30 11 13 14 17

IF1 inf-openflights Infrastructure Network 2939 15 677 242 10.67 2 3 8 28

IF2 inf-power Infrastructure Network 4941 6594 19 2.67 2 2 3 5

NS1 wing_nodal Numerical Simulation 10 937 75 488 28 13.80 12 14 16 17

NS2 auto Numerical Simulation 448 695 3 314 611 37 14.77 13 15 16 18

OP1 gupta2 Optimization 62 064 2 093 111 8412 67.45 25 38 47 49

OP2 finance256 Optimization 37 376 130 560 54 6.99 4 6 8 12

RD1 appu Random Graph 14 000 919 552 293 131.36 109 131 154 176

RN1 inf-roadNet-CA Road Network 1 957 027 2 760 388 12 2.82 2 3 3 4

RN2 inf-roadNet-PA Road Network 1 087 562 1 541 514 9 2.83 2 3 4 4

RN3 inf-italy-osm Road Network 6 686 493 7 013 978 9 2.10 2 2 2 3

RN4 luxembourg_osm Road Network 114 599 119 666 6 2.09 2 2 2 3

SN1 soc-youtube-snap Social Network 1 134 890 2 987 624 28 754 5.27 1 1 3 8

SN2 soc-flickr Social Network 513 969 3 190 452 4369 12.41 1 1 5 17

SN3 soc-lastfm Social Network 1 191 805 4 519 330 5150 7.58 1 2 4 11

SN4 soc-twitter-follows Social Network 404 719 713 319 626 3.53 1 1 1 3

SN5 soc-pokec Social Network 1 632 803 22 301 964 14 854 27.32 4 13 35 70

SN6 soc-livejournal Social Network 4 033 137 27 933 062 2651 13.85 2 5 15 35

SN7 soc-FourSquare Social Network 639 014 3 214 986 106 218 10.06 1 1 4 19

TM1 vsp_vibrobox_scagr7-2c_rlfddd Triangle Mixture 77 328 435 586 669 11.27 3 5 8 26

TM2 vsp_bump2_e18_aa01_model1_crew1 Triangle Mixture 56 438 300 801 604 10.66 5 7 11 18

TM3 vsp_barth5_1Ksep_50in_5Kout Triangle Mixture 32 212 101 805 22 6.32 6 6 7 7

TM4 vsp_model1_crew1_cr42_south31 Triangle Mixture 45 101 189 976 17 663 8.42 3 5 7 9

TM5 vsp_p0291_seymourl_iiasa Triangle Mixture 10 498 53 868 229 10.26 3 7 11 16

TM6 vsp_bcsstk30_500sep_10in_1Kout Triangle Mixture 58 348 2 016 578 219 69.12 45 64 92 106

TM7 vsp_befref_fxm_2_4_air02 Triangle Mixture 14 109 98 224 1531 13.92 6 9 11 15

US1 mi2010 US Census Redistricting 329 885 789 045 58 4.78 3 4 5 8

WB1 web-it-2004 Web Graph 509 338 7 178 413 469 28.19 14 16 19 39

WB2 web-google Web Graph 1299 2773 59 4.27 1 2 5 12

WB3 web-wikipedia2009 Web Graph 1 864 433 4 507 315 2624 4.84 1 2 5 10
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Table D.4: Geometric mean of normalized cut value across graph types over 𝒌 for the multilevel graph partitioning algorithms
from subsection 6.3.

𝑘 2 4 8 16 32 64 128

Type Algorithm Name

Bipartite Graclus 0.05 0.17 0.45 1.09 3.55 9.18 24.41

KaHiP 0.04 0.27 0.67 1.92 4.84 13.03 33.65

METIS 0.03 0.17 0.59 1.66 4.66 13.07 34.55

XCut 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Circuit Simulation Graclus 0.01 0.06 0.18 0.54 1.57 4.76 14.04

KaHiP 0.01 0.07 0.21 0.62 1.78 5.65 16.99

METIS 0.02 0.07 0.22 0.59 1.72 5.49 16.90

XCut 0.01 0.05 0.18 0.54 1.41 4.21 11.90
Citation Network Graclus 0.08 0.26 0.67 1.57 3.75 8.22 17.76

KaHiP 0.07 0.27 0.73 1.81 4.27 9.57 21.47

METIS 0.08 0.29 0.81 2.01 4.80 11.04 24.32

XCut 0.00 0.01 0.03 0.08 0.22 0.61 1.69
Clustering Graclus 0.04 0.14 0.43 1.20 3.14 8.19 20.69

KaHiP 0.04 0.13 0.43 1.15 3.11 7.91 19.95

METIS 0.04 0.15 0.46 1.25 3.37 8.58 21.38

XCut 0.02 0.09 0.29 0.93 2.52 7.07 19.49
Computational Fluids Graclus 0.12 0.46 1.32 3.86 10.49 27.76 70.28

KaHiP 0.12 0.46 1.47 4.18 10.98 29.64 74.51

METIS 0.12 0.44 1.35 4.10 10.95 28.65 72.55

XCut 0.15 0.55 1.63 4.75 14.30 44.39 108.44

Duplicate Materials Graclus 0.04 0.24 0.80 2.58 7.71 20.42 53.60
KaHiP 0.05 0.32 0.85 2.97 8.20 21.45 56.65

METIS 0.04 0.24 0.80 2.60 7.75 20.67 55.85

XCut 0.05 0.26 0.90 3.27 9.54 26.81 81.90

Email Network Graclus 0.18 0.60 1.65 4.07 9.11 20.13 42.43

KaHiP 0.19 0.66 1.70 4.36 10.11 23.19 51.73

METIS 0.19 0.64 1.80 4.40 10.21 23.06 51.24

XCut 0.01 0.04 0.17 0.51 1.46 4.07 11.76
Finite Elements Graclus 0.01 0.06 0.21 0.63 1.82 5.16 13.97

KaHiP 0.01 0.06 0.21 0.66 2.00 5.63 15.40

METIS 0.01 0.06 0.20 0.65 1.88 5.23 14.42

XCut 0.01 0.06 0.21 0.67 1.99 5.67 15.64

Infrastructure Network Graclus 0.02 0.09 0.39 1.09 3.19 9.97 27.44

KaHiP 0.02 0.09 0.44 1.51 4.41 12.24 32.27

METIS 0.02 0.11 0.49 1.36 4.16 11.60 31.29

XCut 0.00 0.00 0.00 0.23 1.38 5.30 17.73
Numerical Simulation Graclus 0.02 0.08 0.28 0.94 2.70 7.24 19.40

KaHiP 0.02 0.09 0.31 0.93 2.76 7.77 20.76

METIS 0.02 0.09 0.26 0.89 2.63 7.25 19.43

XCut 0.01 0.09 0.33 1.10 3.18 8.88 23.89

Optimization Graclus 0.04 0.14 0.40 1.85 5.65 16.68 42.32

KaHiP 0.00 0.07 0.32 1.86 5.84 18.65 48.48

METIS 0.04 0.09 0.40 1.83 5.55 16.60 47.46

XCut 0.01 0.03 0.22 1.38 4.63 13.60 33.06
Random Graph Graclus 0.91 2.59 6.19 13.52 28.37 57.79 116.97

KaHiP 0.88 2.67 6.37 13.83 28.62 58.17 118.02

METIS 0.85 2.61 6.19 13.53 28.36 58.18 117.98

XCut 0.99 2.99 6.98 14.99 30.99 62.99 126.99

Road Network Graclus 0.00 0.00 0.00 0.01 0.03 0.10 0.30
KaHiP 0.00 0.00 0.00 0.01 0.03 0.09 0.30
METIS 0.00 0.00 0.00 0.01 0.03 0.10 0.30
XCut 0.00 0.00 0.00 0.01 0.03 0.11 0.34

Social Network Graclus 0.16 0.66 1.64 4.01 9.03 19.96 44.26

KaHiP 0.20 0.73 1.92 4.66 10.59 24.11 51.14

METIS 0.19 0.68 1.87 4.67 10.91 24.54 53.15

XCut 0.01 0.03 0.11 0.31 0.83 2.19 6.02
Triangle Mixture Graclus 0.08 0.43 1.43 3.64 8.94 20.71 48.90

KaHiP 0.08 0.50 1.54 3.94 9.62 22.73 52.85

METIS 0.09 0.56 1.60 4.14 10.13 23.10 51.51

XCut 0.03 0.25 1.08 3.08 7.70 18.44 44.26
US Census Redistricting Graclus 0.00 0.01 0.02 0.07 0.21 0.64 1.92

KaHiP 0.00 0.00 0.02 0.06 0.20 0.59 1.80
METIS 0.00 0.01 0.02 0.07 0.21 0.68 1.99

XCut 0.00 0.00 0.02 0.07 0.19 0.59 1.92

Web Graph Graclus 0.00 0.02 0.04 0.10 0.26 0.77 2.02

KaHiP 0.00 0.01 0.04 0.11 0.47 2.09 7.36

METIS 0.01 0.02 0.03 0.08 0.42 2.46 9.01

XCut 0.00 0.00 0.00 0.01 0.02 0.10 0.36
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Figure D.7: Percentage deviation of the returned normalized cut value relative to Graclus for 𝒌 = 2. This means that a value
of -75% means that the normalized cut value is 75% lower (i.e., better). The thin black bars indicate the standard error across
our runs. The top graph shows the disconnected IMDB graph (BP1), citation network instances (CN), email networks (EM),
infrastructure graphs (IF), social networks (SN) and web graphs (WB), while the bottom shows the remaining instances. See
Table C.3 for details.
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Figure D.8: Percentage deviation of the returned normalized cut value relative to Graclus for 𝒌 = 128. This means that a value
of -75% means that the normalized cut value is 75% lower (i.e., better). The thin black bars indicate the standard error across
our runs. The top graph shows the disconnected IMDB graph (BP1), citation network instances (CN), email networks (EM),
infrastructure graphs (IF), social networks (SN) and web graphs (WB), while the bottom shows the remaining instances. See
Table C.3 for details.
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Figure D.9: Plot showcasing the time taken to compute the expander hierarchy in orange and the total time to compute a
normalized cut in blue for five graph instances of different sizes.
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Figure D.10: Plots of running time versus 𝒌. The first row shows the usual behavior of the solvers in our comparison, with our
solver starting at a much higher level than the competition. This is due to the fact that we need to first compute the expander
hierarchy, which gives a hard lower bound on the running time of our algorithm for any choice of 𝒌. The running time then
grows linearly with 𝒌, due to Greedy taking time 𝑶 (𝒏𝒌). The bottom row contains some instances on which the running time
results are unusual. Often Graclus running time grows very quickly, but we are unsure what causes this on these instances in
particular.

Table D.5: Cut values and running time of our Algorithm vs the values reported by Zhao et al [43]. All values are for 𝒌 = 30.
The Cut-columns contain the normalized cut value (lower is better). The minimum value in each row is marked bold. The
bottom row contains the geometric mean of all values.

GID XCutmean XCutmin Zhao Graclus

CL1 0.87 0.77 1.05 1.15

CL2 6.00 5.87 7.05 7.61

CN1 0.31 0.29 0.52 4.06

CN3 0.27 0.27 0.49 3.66

CN5 0.13 0.13 0.14 3.24

CN7 0.17 0.16 0.41 2.21

CN8 0.04 0.04 0.06 1.88

FE1 2.06 1.96 1.68 1.74

FE2 1.58 1.55 1.50 1.45
NS1 5.73 5.35 4.71 4.71
NS2 1.45 1.39 1.08 1.17

RD1 28.98 28.98 23.80 26.48

RN4 0.06 0.06 0.07 0.07

TM1 9.53 8.91 6.85 8.48

TM2 12.34 12.06 13.55 16.63

TM3 2.78 2.65 2.72 2.78

TM4 10.09 9.58 10.48 14.45

TM5 7.77 7.48 7.88 13.25

TM6 2.11 1.94 2.09 2.1

TM7 17.51 16.90 12.83 15.6

US1 0.17 0.16 0.41 0.19

All 1.46 1.39 1.64 3.06
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