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Abstract—A distance oracle (DO) for a graph G is a data
structure that, when queried with vertices s, t, returns an estimate
d̂(s, t) of their distance in G. The oracle has stretch (α, β) if the
estimate satisfies d(s, t) ⩽ d̂(s, t) ⩽ α·d(s, t)+β. An f -edge fault-
tolerant distance sensitivity oracle (f -DSO) additionally receives
a set F of up to f edges and estimates the distance in G−F .

Our first contribution is the design of new distance oracles
with subquadratic space for undirected graphs. We show that
introducing a small additive stretch β > 0 allows one to make
the multiplicative stretch α arbitrarily small. This sidesteps a
known lower bound of α ⩾ 3 (for β = 0 and subquadratic space)
[Thorup & Zwick, JACM 2005]. We present a DO for graphs
with edge weights in [0,W ] that, for any positive integer ℓ and
any c ∈ (0, ℓ/2], has stretch (1+ 1

ℓ
, 2W ), space Õ(n2− c

ℓ ), and
query time O(nc), generalizing results by Agarwal and Godfrey
[SODA 2013] to arbitrarily dense graphs.

Our second contribution is a framework that turns an (α, β)-
stretch DO for unweighted graphs into an (α(1+ε), β)-stretch
f -DSO with sensitivity f = o(log(n)/ log log n) retaining sub-
quadratic space. This generalizes a result by Bilò, Chechik,
Choudhary, Cohen, Friedrich, Krogmann, and Schirneck [The-
oretiCS 2024]. Combining the framework with our new DO
gives an f -DSO that, for any γ ∈ (0, (ℓ+1)/2], has stretch
((1+ 1

ℓ
)(1+ε), 2), space n

2− γ
(t+1)(f+1)

+o(1)
/εf+2, and query time

Õ(nγ/ε2). This is the first f -DSO with subquadratic space, near-
additive stretch, and sublinear query time.
The full version of this work can be found at
https://arxiv.org/abs/2408.10014.

Index Terms—distance oracle, distance sensitivity oracle, fault
tolerance, shortest paths, subquadratic space

I. INTRODUCTION

A distance oracle (DO) is a data structure to retrieve exact
or approximate distances between any pair of vertices s, t in
an undirected graph G = (V,E) upon query. The problem
of designing distance oracles has attracted a lot of attention
in recent years due to the wide applicability in domains like
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network routing, traffic engineering, and distributed comput-
ing. These oracles are used in settings where one cannot
afford to store the entire graph, but still wants to be able to
quickly query graph distances. A DO has stretch (α, β) if,
for any pair s and t, the value d̂(s, t) returned by the DO
satisfies d(s, t) ⩽ d̂(s, t) ⩽ α · d(s, t) + β, where d(s, t)
denotes the exact distance between s and t in G. As networks
in most real-life applications are prone to transient failures,
researchers have also studied the problem of designing oracles
that additionally tolerate multiple edge failures in G. An f -
edge fault-tolerant distance sensitivity oracle (f -DSO) with
stretch (α, β) is a data structure that, when queried on a triple
(s, t, F ), where F ⊆ E has size at most f , outputs an estimate
d̂(s, t, F ) of the distance d(s, t, F ) from s to t in G−F such
that d(s, t, F ) ⩽ d̂(s, t, F ) ⩽ α · d(s, t, F ) + β.

Several DOs and f -DSOs with different size-stretch-time
trade-offs have been developed in the last decades. See, for
example, [1]–[13]. Our focus is on providing new distance
oracles with a subquadratic space usage for both static and
error-prone graphs. A special focus of this work is how static
distance oracles can be converted into fault-tolerant distance
sensitivity oracles.

A. Approximate Distance Oracles for Static Graphs

We first discuss distance oracles. Extensive research has
been dedicated in that direction in the past two decades. In
their seminal paper [12], Thorup and Zwick showed that,
for any positive integer k (possibly depending on the input
size), an undirected graph with n vertices and m edges can
be preprocessed in time O(mn1/k) to obtain an oracle with
multiplicative stretch 2k−1, space1 O(kn1+1/k), and query
time O(k). Subsequent works [14]–[16] further improved the
space to O(n1+1/k) and the query time to O(1).

In the case of k = 2, this results in a 3-approximate oracle
taking subquadratic space O(n3/2). A simple information

1The space of the data structures is measured in the number of machine
words on O(logn) bits.
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theoretic lower bound using bipartite graphs [12] shows that
distance oracles with a purely multiplicative stretch below 3
require space that is at least quadratic in n. Pǎtraşcu and
Roditty [10] were arguably the first to introduce an additive
stretch to simultaneously reduce the space and the multi-
plicative stretch in general dense graphs. They proposed a
distance oracle for unweighted graphs with stretch (2, 1) that
takes O(n5/3) space, has a a constant query time and can be
constructed in time O(mn2/3). They also showed that DOs
with multiplicative stretch α ⩽ 2 and constant query time
require Ω(n2) space, assuming a conjecture on the hardness
of set intersection queries.

Agarwal and Godfrey [17] studied (1+ε,O(1))-stretch DOs
for sparse graphs. However, when transferred to dense graphs
the space of their construction becomes Ω(n2) and the query
time is Ω(n). To the best of our knowledge, no distance oracles
have been constructed that simultaneously have subquadratic
space and a multiplicative stretch better than 2 for general
undirected graphs. If we want to reduce α while retaining low
space, we necessarily have to introduce some additive stretch
β and the query time must rise beyond constant. This raises
the following natural question.

Question. Is there a distance oracle with a 1+ε multiplicative
and constant additive stretch that takes subquadratic space
and has a query time that is sublinear in n?

We provide an affirmative answer by presenting the first
oracle with stretch (1+ε,O(1)) for general graphs. The con-
struction is surprisingly simple, has subquadratic space, and
sublinear query time, improving over Agarwal and Godfrey’s
work for dense graphs.

In the following theorem and throughout, the Õ-notation
omits polylogarithmic factors in the number of vertices n.

Theorem 1. Let W ⩾ 0 be a real number, and G an undi-
rected graph with n vertices and edge weights in a poly(n)-
sized subset of [0,W ]. For every positive integer K ⩽

√
n

and any ε > 0, there exists a path-reporting distance oracle
for G that has stretch (1+ε, 2W ), space Õ(n2/K), and query
time O(K⌈1/ε⌉) for the distance and an additional O(1) time
per reported edge. The data structure can be constructed in
APSP time.

The restriction of the edge weights to a polynomial-sized
subset of [0,W ] is to ensure that any graph distance can
be encoded in a constant number of O(log n)-bit words. We
remark that our construction in fact guarantees a stretch of
(1+ε, 2ws,t) where ws,t is the maximum edge weight along a
shortest path from s to t in G. The stretch thus depends locally
on the queried vertices rather than the global edge weights.

One cannot reduce the additive stretch in Theorem 1 to 1
(if ε < 2) even in unweighted graphs as the unconditional
lower bound for bipartite graphs [12] stated earlier rules out
any data structure that can distinguish between distances 1 and
3 in subquadratic space.

By setting ε = 1/ℓ and Kℓ = nc, we get the following
trade-off between stretch space and time.

Corollary 2. For a positive integer t and any 0 < c ⩽ ℓ/2,
there exists a distance oracle for undirected graphs with
stretch (1+ 1

ℓ , 2W ), space Õ(n2− c
ℓ ), and query time O(nc).

An extension of our construction allows to trade a higher
stretch for a lower space. Namely, we present a family of DOs
with multiplicative stretch of 2k−1 + ε and o(n1+1/k) space.

Theorem 3. Let W be a non-negative real number, and G
an undirected graph with n vertices and edge weights in a
poly(n)-sized subset of [0,W ]. For all positive integers k and
K with K = O(n1/(2k+1)), and every ε > 0, there exits a
distance oracle for G that has stretch (2k−1+ε, 4kW ), space
O(( n

K )1+1/k log1+1/k n), and query time O(K2⌈4k/ε⌉). The
data structure can be constructed in APSP time.

For k = 1, the oracle in Theorem 3 has the same multi-
plicative stretch of 1+ ε as the one in Theorem 1 and a better
space of Õ(n2/K2), but the additive stretch of 4W is larger
and so is the query time. We obtain the following corollary
for general k, ε = 1/ℓ, and K8kℓ = nc.

Corollary 4. For all positive integers k and ℓ, and any
0 < c ⩽ (4− 4

2k+1 ) ℓ, there exists a distance oracle with
stretch (2k−1+ 1

ℓ , 4kW ), space Õ(n1+ 1
k (1− c

8ℓ )), and query
time O(nc).

Probably closest to the hierarchy in Theorem 3 is the
distance labeling scheme of Abraham and Gavoille [18]. Seen
as a DO for unweighted graphs, for any integer k ⩾ 2, it has a
stretch of (2k−2, 1) space Õ(n1+ 2

2k−1 ), and query time O(k).

B. Distance Sensitivity Oracles

Most of the proposed distance sensitivity oracles that treat
the sensitivity f (the number of tolerated edge failures) as a
parameter require Ω(n2) space, have a stretch depending on f ,
or an Ω(n) query time. See Section I-C for a detailed discus-
sion. Bilò, Chechik, Choudhary, Cohen, Friedrich, Krogmann,
and Schirneck [19] were the first to introduce an f -DSO with
subquadratic space, a constant multiplicative stretch of 3 + ε
(for any f ), and a query time that can be made an arbitrarily
small polynomial. More precisely, for any unweighted graph
G with unique shortest paths, every integer constant f ⩾ 2,
any 0 < γ < 1/2, and ε > 0, they devised an f -DSO
for G with stretch 3+ε, space Õ(n2− γ

f+1 ) ·O(log n/ε)f+2,
query time O(nγ/ε2), and preprocessing time Õ(mn2− γ

f+1 ) ·
O(log n/ε)f+1. Even more than in the case of static distance
oracles, a multiplicative stretch better than 3 (let alone close
to 1) remains a barrier for subquadratic-space f -DSOs. We
explore whether the introduction of a small additive stretch
can help here as well.

Question. Is there a distance sensitivity oracle for general
sensitivity f with a 1+ε multiplicative stretch, possibly at the
expense of a constant additive stretch, that takes subquadratic
space and has a query time that is sublinear in n?

Indeed, we devise an f -DSO with stretch (1+ε, 2) that has
subquadratic space and a small polynomial query time.



Theorem 5. Let ℓ be a positive integer constant and G be an
undirected and unweighted graph with n vertices and m edges
and unique shortest paths. For any 0 < γ ⩽ (ℓ+1)/2, sensitiv-
ity 2⩽ f = o(log(n)/ log log n), and approximation parameter
ε = ω(

√
log(n) /n

γ
2(ℓ+1)(f+1) ), there exists an f -edge fault-

tolerant distance sensitivity oracle for G that has

• stretch ((1+ 1
ℓ )(1+ε), 2),

• space n2− γ
(ℓ+1)(f+1)

+o(1)/εf+2,
• query time O(nγ/ε2),

• preproc. time n2+γ+o(1) +mn2− γ
(ℓ+1)(f+1)

+o(1)/εf+1.

Observe that the additive stretch of β = 2 is necessary
due to the unconditional lower bound of Ω(n2) on the size of
every distance oracle with a purely multiplicative stretch of
α < 3, as discussed in Section I-A. The assumption of unique
shortest paths can be achieved, for example, by perturbing the
edge weights with random small values. This means that an
unweighted graph G becomes weighted and its edge weights
are very close to 1. As an alternative, we can compute, in
time O(mn + n2 log2 n), a set of unique shortest paths via
lexicographic pertubation [20].

Our main technique to obtaain the new distance sensitivity
oracle is to develop a reduction that, given a path-reporting DO
with stretch (α, β), constructs a ((1+ε)α, β)-stretch f -DSO.
Crucially, the reduction results in a subquadratic-space f -DSO
provided that the initial DO also takes only subquadratic space.
Although the problem of designing static as well as fault-
tolerant distance (sensitivity) oracles has been studied exten-
sively in the past two decades, there has been no substantial
progress to obtain black-box conversions from compact DOs
to compact f -DSOs. The work by Bilò et al. [19] comes close,
but their construction of the f -DSO is entangled with the inner
workings of the DO of Thorup and Zwick [12]. Also, their
analysis relies heavily on the input distance oracle having
a purely multiplicative stretch of 3. In contrast, we develop
algorithms that can work with any distance oracle as long as
it is able to report an approximate shortest path that adheres
to the stretch bound. Our analysis is able to incorporate any
multiplicative stretch α ⩾ 1 as well as additive stretch β that
satisfies very mild technical assumptions. (See Theorem 7 for
the precise statement.) Plugging in the distance oracle with
stretch (1 + 1

ℓ , 2) from Corollary 2 then allows us to achieve
the ((1+ 1

ℓ )(1+ε), 2)-stretch f -DSO with subquadratic space
and small polynomial query time from Theorem 5.

Emulating Searches in Fault-Tolerant Trees: Our trans-
formation that makes distance oracles fault tolerant has two
major steps. In the first one, we only treat hop-short replace-
ment paths, these are shortest paths in G−F whose number of
edges is bounded by some cut-off parameter L. We transform
any (α, β)-stretch distance oracle into an f -distance sensitivity
oracle for hop-short paths (f -DSO⩽L) with the same stretch.
The second step then combines the solutions for hop-short
paths into a general distance sensitivity oracle (f -DSO).

For the the first step, we develop fault-tolerant tree oracles,
which are a new way to retrieve hop-short replacement paths

from a previously known data structure called fault-tolerant
trees (FT-trees), but without actually storing those trees. FT-
trees were originally introduced by Chechik, Cohen, Fiat, and
Kaplan [4]. There is an FT-tree FT (s, t) required for every
pair of vertices and a query traverses along a root-to-leaf
path in the respective tree, until a shortest s-t-path in G− F
is found. This solution uses super-quadratic Ω(n2Lf ) space
in total and is thus too large for our purpose. We devise a
technique to emulate a search in an FT-tree without access to
the tree. We use those searches to generate a carefully chosen
family of subgraphs of G and apply the input distance oracle to
each of them. This ensures that any query (s, t, F ) that satisfies
d(s, t, F ) ⩽ L, is answered with an (α, β)-approximate path.

Theorem 6. Let G be an unweighted (possibly directed)
graph, with n vertices, and let f and L be positive integer
parameters possibly depending on n. Assume access to a
path-reporting distance oracle that, on any spanning subgraph
of G, has stretch (α, β), takes space S, query time Q, and
preprocessing time T. Then, there is an f -edge fault-tolerant
distance sensitivity oracle for replacement paths in G with at
most L edges that has

• stretch (α, β),
• space O(fL log n)f · S,
• query time Õ(f · (Q+ αL+ β + f2L)),
• preprocessing time

Õ(n2(αL+β)f )·(O(fL log n)f+Q)+O(fL log n)f ·T.

Note that the behavior of f -DSOs (hop-short or general)
are usually only discussed for valid queries, that is, triples
(s, t, F ) where the edges in F are actually present in G.
Checking for validity requires Ω(n2) space, which would make
subquadratic-space f -DSO impossible. Our query algorithm
never uses the assumption F ⊆ E and the data structure can be
queried with any triplet (s, t, F ) where F ⊆

(
V
2

)
is a set of at

most f pairs of vertices. In this case it returns the approximate
distance for the valid query (s, t, F ∩ E).

General Distance Sensitivity Oracles: Bilò et al. [19]
described how to apply an f -DSO⩽L (with the restriction
to hop-short paths) to construct a general distance sensitivity
oracle without the constraint. They used two sets of pivots,
which are vertices at with the hop-short solutions are com-
bined. However, their approach only works for f -DSO⩽L with
purely multiplicative stretch of 3, resulting in an f -DSO with
multiplicative stretch 3+ ε. We generalize this by introducing
a new data structure called pivot trees, as well as pinpointing
the places in their construction that need to be adapted to
accompany multiplicative stretch α ̸= 3 an additive stretch
β > 0. The new pivot trees allow us to quickly find relevant
pivots in G−F that are close enough to the endpoints s and
t in the query. An additional difference to [19] is the more
involved stretch analysis. The issue is that the additive part
β accumulates while the answers of the f -DSO⩽L are aggre-
gated. Fortunately, this happens only if the paths in questions
are hop-long, i.e., if they have more than L edges. This allows
us to introduce an inductive argument controlling the stretch



accumulation and charge the overhead to the multiplicative
part instead. As a result, we are able to turn a f -DSO⩽L

with stretch (α, β) into a general f -DSO that has stretch
(α(1+ε), β), all this while keeping the space subquadratic.

We first provide a randomized solution and then show
how to derandomize. For the randomized construction, the
guarantees hold with high probability (w.h.p.), which we define
as with probability at least 1− n−c for some constant c > 0.
In fact, c can be made arbitrarily large without affecting the
asymptotics. We later show how to derandomize the oracle
without any loss in its features, under very mild assumption
on the parameters f and L. The main source of randomization
is the creation of the pivot sets. The aforementioned pivot trees
not only allow us to get better bounds for the randomized data
structure but even help with derandomizing it.

To the best of our knowledge, we provide the first determin-
istic f -DSO with subquadratic space, near-additive stretch, and
sublinear query time.

Theorem 7. Let G be an undirected, unweighted graph with
n vertices, m edges, and unique shortest paths. Let f and L
be positive integer parameters possibly depending on n and
m such that 2 ⩽ f ⩽ L ⩽ n as well as L = ω(log n). Assume
access to an f -edge fault-tolerant distance sensitivity oracle
for replacement paths in G with at most L edges, that has
stretch (α, β), space SL, query time QL, and preprocessing
time TL. Then, for every ε = ε(n,m, f, L) > 0, and
β = o

(
ε2L

f3 logn

)
, there is a randomized (general) f -edge

fault-tolerant distance sensitivity oracle for G that with high
probability has

• stretch (α(1+ε), β),
• query time Õ(f5Lf−1(QL + f)/ε2),
• preprocessing time

TL +O(L3fn) + Õ(f2mn2/L) ·O(log n/ε)f+1.
The space of the data structure is w.h.p.

SL + Õ(fL2f−1n) + Õ

(
f2n

2

L

)
·O

(
log n

ε

)f+2

.

If additionally f ⩾ 4 and L = Õ(
√

f3m/ε ), the data
structure can be made deterministic with the same stretch,
query time, preprocessing time, and space.

If Õ(fL2f ) = Õ(n), the space in Theorem 7 simplifies to
SL+Õ(f2n2/L)·O(log n/ε)f+2. That means our construction
has subquadratic space as long as the space requirement SL
of the input f -DSO for short hop-distances is subquadratic.
We would like to add some context to the restriction on the
additive stretch β. Assume for simplicity that f is a constant.
In most cases in the literature where an f -DSO⩽L is used
to build an f -DSO, L is of order nΘ(1/f). We also use such
a value in this work. In this case, our construction supports
an additive stretch that can be as large as a small polyno-
mial, as long as it is asymptotically smaller than ε2nO(1/f).
Conversely, for a fixed β, the restriction can be interpreted
as bounding how fast the approximation parameter ε can

approach 0 (we do not require ε to be constant). In Theorem 5,
we have β = 2, hence ε = ω(

√
log(n) /nO(1/f)). Finally, the

derandomization requires f ⩾ 4 and L = Õ(
√
f3m/ε ). Even

in the unfavorable case in which both f and ε are constants,
this allows for a cut-off parameter up to Õ(

√
m ). In very

dense graphs, this is no restriction at all.

C. Related Work

Distance Oracles: Thorup and Zwick [12] showed that,
for any positive integer k, any DO for undirected graphs
with a multiplicative stretch strictly less than 2k + 1 must
take Ω(n1+1/k) bits off space, assuming the Erdős girth
conjecture [21]. The lower bound only applies to graphs that
are sufficiently dense and to queries that involve pairs of
neighboring vertices, leading to several attempts to bypass
it in different settings. For example, there is a line of work
on improved distance oracles for sparse graphs. Porat and
Roditty [22] showed that for unweighted graphs and any ε > 0,
one can construct a DO with multiplicative stretch 1+ε and
query time Õ(m1− ε

4+2ε ). The space of the data structure is
O(nm1− ε

4+2ε ), which is subquadratic for m = o(n1+ ε
4+ε ).

Pǎtraşcu, Roditty, and Thorup [23] obtained a series of DOs
with fractional multiplicative stretches for sparse graphs. For
general dense graphs, Pǎtraşcu and Roditty [10] devised a
distance oracle for unweighted graphs with stretch (2, 1) that
has O(1) query time, O(n5/3) space, and can be constructed
in time O(mn2/3). They also showed that (α, β)-approximate
DOs with 2α+ β < 4 require Ω(n2) space, assuming conjec-
ture on the hardness of set intersection queries. Compared to
the Pǎtraşcu and Roditty upper bound [10], Baswana, Goyal,
and Sen [2] marginally increased the stretch to (2, 3) and space
to Õ(n5/3) in order to reduce the preprocessing time to Õ(n2).
The stretch was later reset again to (2, 1) by Sommer [24],
keeping the improved time complexity. A successive work by
Knudsen [25] removed all additional poly-logarithmic factors
in both the construction time and space.

Agarwal and Godfrey [1], [17] investigated the possibility of
constructing a distance oracle with a stretch less than 2, albeit
at the expense of slower query times. They showed that, for
any positive integer ℓ and any real number c ∈ (0, 1], it is pos-
sible to design a DO of size O(m+ n2−c) and multiplicative
stretch 1 + 1

ℓ . The query time is O((ncµ)ℓ), where µ = 2m
n

is the average degree of the graph. Furthermore, they also
showed that the query time can be reduced to O((nc+µ)2ℓ−1)
at the cost of a small additive stretch 2ℓ−1

t W , with Wbeing
the maximum edge weight. Though the constructions in [1],
[17] have a multiplicative stretch better than 2, their DOs have
two main drawbacks. The subquadratic space only holds for
sparse graphs, and, while they achieve a very low stretch, the
query time is super-linear for dense graphs.

Akav and Roditty [26] proposed, for any ε ∈ (0, 1
2 ),

an O(m+n2−Ω(ε))-time algorithm that computes a DO
with stretch (2+ε, 5) and O(n11/6) space, thus breaking
the quadratic time barrier for multiplicative stretch below 3.
Chechik and Zhang [27] improved this by offering both a DO
with stretch (2, 3) that can be built in Õ(m+n1.987) time and a



DO with stretch (2+ε, c(ε)) that can be built in O(m+n
5
3−ε)

time, where c(ε) is exponential in 1/ε. Both data structures
have space Õ(n5/3) and a constant query time.

Distance Sensitivity Oracles: Most of the work on dis-
tance sensitivity oracles is about handling a very small number
f ∈ {1, 2} of failures [3], [6], [8], [9], [11], [28]–[33].
Here, we focus on related work with sensitivity f ⩾ 3 as
this is the setting of the second problem in this paper. In
their seminal work, Weimann and Yuster [13] designed a
randomized f -DSO for exact distances introducing a size-time
trade-off that is controlled by a parameter α ∈ (0, 1). More
precisely, their oracle w.h.p. has space Õ(n3−α), query time
of Õ(n2−2(1−α)/f ), and can be built in time Õ(mn2−α). Van
den Brand and Saranurak [34] and Karczmarz and Sankowski
[35] presented f -DSOs using algebraic algorithms. However,
their space requirement is at least quadratic and their query
time is at least linear. Duan and Ren [7] provided an alter-
native f -DSO for exact distances with O(fn4) space, fO(f)

query time, that is, constant whenever f is a constant. The
preprocessing time for building their oracle is exponential in
f , namely, nΩ(f). Recently, Dey and Gupta [5] developed an
f -DSO for undirected graphs where each edge has an integral
weight from {1 . . .W} with O((cf log(nW ))O(f2)) query
time, where c > 1 is some constant. It has near-quadratic space
O(f4n2 log2(nW )). A drawback of their oracles is again the
preprocessing time of Ω(nf ), and space at least Ω(n2).

When allowing approximation, the f -DSO of Chechik et
al. [4] guarantees a multiplicative stretch of 1 + ε with a
space requirement of O(n2+o(1) logW ), where ε > 0 W
is constant and W is the weight of the heaviest edge. Their
oracle can handle up to f = o(log n/ log log n) failures, has
a query time of O(f5 log n log logW ), and can be build in
O(n5+o(1)(logW )/εf ) time. In fact, the preprocessing time
has recently been reduced to O(mn2+o(1)/εf ) [19]

Besides the general Thorup-Zwick bound [12] that assumes
the girth conjecture, they also showed unconditionally that for
undirected graphs with a multiplicative stretch better than 3
must take Ω(n2) bits of space. This of course also applies in
the presence of failures and is the reason why all the above f -
DSOs have at least quadratic space. Like for distance oracles,
there has been a line of work focusing on the design of f -
DSOs with subquadratic space, sidestepping the bound. These
oracles must have stretch (α, β) with α+β ⩾ 3 since a stretch
(α, β) can also be stated as (α + β, 0). Chechik, Langberg,
Peleg, and Roditty [36] designed an f -DSO that, for any
integer parameter k ⩾ 1, has space of O(fkn1+1/k log(nW )),
query time Õ(|F | log log dG−F (s, t)), and guarantees a mul-
tiplicative stretch of (8k − 2)(f + 1). Note that the stretch
depends on the sensitivity parameter f . Recently, two f -DSOs
with subquadratic space and stretch independent from f have
been developed. The first one is by Bilò, Choudhary, Cohen,
Friedrich, Krogmann, and Schirneck [37] that can handle up
to f = o(log n/ log log n) edge failures and, for every integer
k ⩾ 2, guarantees a stretch of 2k − 1. The size and the
query time depend on some trade-off parameter α ∈ (0, 1/k).

They are equal to kn1+α+ 1
k+o(1) and Õ(n1+ 1

k− α
k(f+1) ), re-

spectively. The second f -DSO by Bilò et al. [19] works for
unweighted graphs G with unique shortest paths. For every
constants f ⩾ 2, 0 < γ < 1/2, and any ε > 0 (possibly
depending on m, n, and f ), their oracle has stretch 3 + ε,
space Õ(n2− γ

f+1 ) ·O(log n/ε)f+2, query time O(nγ/ε2), and
preprocessing time Õ(mn2− γ

f+1 ) ·O(log n/ε)f+1.

II. TECHNICAL OVERVIEW

This extended abstract is concluded by a more detailed
overview of how we achieve the results stated above. The
sections corresponds to the two main parts of the paper. The
first is about our new construction of distance oracles. The
second part describes the framework that turns (static) DOs
into distance sensitivity oracles. This consists of two steps:
first obtain an f -DSO⩽L and then use if for the general f -
DSO. In the third part of the overview, we briefly sketch our
derandomization approach.

A. Improved Distance Oracles

Our distance oracles introduce a small additive stretch in
order to make the multiplicative stretch arbitrarily small while,
at the same time, keep the space subquadratic. We assume the
input graph to be undirected, for it is known that subquadratic-
space DOs are impossible for digraphs [12]. The edges may
have non-negative weights from a domain of polynomial size2

with maximum weight W . A common pattern in the design
of distance oracles is to designate a subset (or hierarchy of
subsets) of vertices called centers [12], landmark vertices [17]
or pivots [14], [15]. The data structure stores, for each vertex
v in the graph, the distance from v to all pivots. Also, v
knows its closest pivot p(v). When given two query vertices
s, t ∈ V , the oracle first checks whether s and t are sufficiently
“close” to work out the exact distance d(s, t). The definition
of “close” varies among the different constructions in the
literature. If s and t are instead “far” from each other, the
estimate d(s, p(s)) + d(p(s), t) is returned, which is at most
d(s, t) + 2d(s, p(s)). Since s and t are “far” compared to
d(s, p(s)), the estimate has a good stretch. This observation,
of course, is in no way confined to the vertex s. For any vertex
v on a shortest s-t-path, d(s, p(v))+d(p(v), t) incurs an error
of at most 2d(v, p(v)). This gives some freedom on how much
storage space and query time one is willing to spend on finding
such a v with a small distance to its closest pivot.

Our twist to that method is to look at the vicinity of a vertex
not in terms of a fixed radius, but by an absolute bound on
the number of considered vertices. Namely, we define a cut-off
value K and store, for each vertex v, the K nearest vertices,
regardless of the actual distance to v. Choosing Õ(n/K) pivots
ensures that every vertex has a pivot in its K-vicinity. Storing
the distances from every vertex to every pivot takes Õ(n2/K)
space, so K is our saving over quadratic space.

One of two things can happen when searching along the
shortest path from s to t for a suitable vertex v. If all

2The domain size is such that any graph distance can be encoded in a
constant number of machine words.



vertices in the list K[v] have a small graph distance to v,
also the closest pivot p(v) must be nearby. Otherwise, there
are elements in K[v] that have a large graph distance, which
we can use to skip ahead in the path. This sets up a win-
win strategy. Consider the auxiliary graph H on the same
vertex set as G in which any vertex v has an edge to each
member of K[v]. Given a query (s, t) and an approximation
parameter ε > 0, we conduct a bidirectional breath-first search
in H starting from both s and t, trimming the search at
hop-distance 1/ε. The two searches meeting in one or more
vertices is our definition of s and t being “close”. We can then
compute d(s, t) exactly by minimizing d(s, v) + d(v, t) over
the intersecting vertices. Otherwise, we prove that the reason
why the searches remained disjoint was that we could not skip
ahead fast enough. There must have been a vertex v on the
shortest s-t-path for which all neighbors in K[v] have a small
distance to v, including p(v). We take “small” to mean at most
ε
2 d(s, t)+W , where W is the maximum edge weight. The sum
d(s, p(v)) + d(p(v), t) thus overestimates the true distance by
at most 2d(v, p(v)), resulting in an 1+ε multiplicative stretch
and 2W additive.

Spacewise, the bottleneck is to store all the distances be-
tween vertices and pivots. In a second construction, we devise
a way to further reduce the space, at the cost of increasing both
the multiplicative and additive stretch. We are now looking
for two vertices u and v on the s-t-path that both have small
distance to their respective pivots p(u) and p(v). The portion
of the distance between p(u) and p(v) is not stored directly but
instead estimated at query time by another, internal, distance
oracle. Since the inner data structure only needs to answer
queries between pivots, we can get a 2k − 1 multiplicative
stretch (for this part) with only Õ((n/K)1+1/k) space. This
results in a hierarchy of new DOs with ever smaller space.

B. From Hop-Short Distance Oracles to
Distance Sensitivity Oracles

An f -DSO is a data structure that receives a query (s, t, F ),
consisting of vertices s and t as well as a set F ⊆ E of at
most f edges, and answers with an approximation of the s-
t-distance d(s, t, F ) in the graph G−F . Let L be an integer
cut-off parameter. A query (s, t, F ) is hop-short, if s and t are
joined by a path on at most L edges in G−F . An f -DSO for
hop-short distances (f -DSO⩽L) only guarantees a good stretch
for hop-short queries. Such oracles are used as stepping stones
towards general f -DSOs [11], [13], [38], [39].

Recently, Bilò et al. [19] presented a new approximate f -
DSO for unweighted graphs with unique shortest paths taking
only subquadratic space. Implicit in their work is a pathway
that takes the (static) distance oracle of Thorup and Zwick with
multiplicative stretch 3 and makes it fault-tolerant increasing
the stretch to 3 + ε. The parameter ε > 0 influences the
space, query time, and preprocessing time of the data structure.
The transformation has two major steps. In the first one,
the DO is used to build a hop-short f -DSO⩽L. The second
step then combines the answer for hop-short paths into good
approximations for arbitrary queries. Their ad-hoc method is

highly tailored towards the DO of Thorup and Zwick [12] and
does not readily generalize.

We take the same two-step approach but give an entirely
new construction for the hop-short f -DSO⩽L. This is neces-
sary to make it compatible with other distance oracles. Our
framework works with any path-reporting DO as a black box.
The input oracle can have an arbitrary multiplicative stretch α
and may even have an additive component β, requiring new
techniques. The resulting distance sensitivity oracle has stretch
(α(1+ε), β). The key feature of the reduction is that, if the
input DO has subquadratic space, so does the f -DSO.

Fault Tolerance for Hop-Short Paths: Naively, an oracle
with sensitivity f must be able to handle O(n2mf ) queries,
one for each pair of vertices and any set F of up to f edge
failures. Not every failure set is relevant for every pair of
vertices. If the shortest s-t-path does not contain an edge of
F , it is still the shortest path in G−F . As a first key tool we
use fault-tolerant trees (FT-trees) to zero in on the relevant
queries. The were originally introduced by Chechik et al. [4].
We combine it with hop-short paths. There is a tree FT (s, t)
for every pair of vertices s and t whose shortest path in the
original graph G has at most L edges. In the root that path
is stored. For any edge e1 along that path, the root has a
child node which in turn stores a shortest s-t-path in the graph
G − {e1}. This corresponds to failing e1 and looking for a
replacement path P (s, t, {e1}). The construction is iterated
for each child node until depth f is reached. That means, for
any node x at level k of FT (s, t), let Fx = {e1, . . . , ek} be
the edges associated with the path the root to x. The node
x stores a shortest s-t-path Px in G−Fx. If the shortest s-t-
replacement path has more than L edges, x is made a leaf,
marked by setting Px =⊥.

For a query (s, t, F ), in any node x starting with the root, it
is checked whether E(Px)∩F ̸= ∅. If so, the search continues
with the first child node associated with an edge in E(Px)∩F .
Otherwise, there are two cases. Either x stores some shortest
s-t-path disjoint from F or Px =⊥. In the first case, the
length |Px| is the desired replacement distance d(s, t, F ). In
the second, it is enough to report that d(s, t, F ) > L. This
reduces the number of relevant queries to O(n2Lf ).

The second key tool is an (L, f)-replacement path covering
(RPC) [13], [39]. This is a family of G subgraphs of G such
that for any set F of at most f edges and pair of vertices s and
t for which there is a replacement path P (s, t, F ) of at most L
edges, there exists a subgraph Gi ∈ G such that E(Gi)∩F = ∅
and Gi contains P (s, t, F ). RPCs are common in the design of
f -DSO⩽L because, if one can find Gi quickly, the replacement
distance is just dGi(s, t). Recently, Karthik and Parter [39]
gave a construction with O(fL log n)f+1 graphs. We shave
an (fL log n)-factor from that. In the full version of [39],
they give an algorithm that takes a list (F1, P1), . . . (Fℓ, Pℓ) of
pairs of edge sets, with |Fk| ⩽ f and |Pk| ⩽ L. It computes
a family of subgraphs that only for pairs (Fk, Pk) from the
list guarantees some Gi avoiding Fk but containing Pk. We
use nodes of the fault-tolerant trees to compute a list that
allows us to cover all relevant queries but get a smaller family



with only O(fL log n)f graphs. This improvement may be of
independent interest.

Unfortunately, in the subquadratic-space regime, both the
FT-trees as well as the graphs of the replacement-path covering
are too large. The former have size O(n2Lf+1) (each node
stores up to L edges), and the latter O(m) · O(fL log n)f .
Instead, we build a data structure that emulates queries in the
FT-trees without actually storing them. The graphs in the RPC
are replaced by a distance oracles. When using an (α, β)-
approximate DO, this gives a saving over quadratic space.
The main difficulty is that the emulated query procedure must
follow the exact same path as in the actual (discarded) tree
FT (s, t) in order to find the correct distance oracle.

From Hop-Short to General Distance Sensitivity Oracles:
The second step of the transformation takes the f -DSO⩽L for
hop-short distances and combines it with techniques to stitch
together the answer for hop-long paths from those for hop-
short ones. This step follows the pathway in [19] more closely.
The key differences are the introduction of what we call pivot
trees as well as a more thorough analysis that is needed to
deal with additive stretch.

We reuse the idea of FT-trees but, as before, they are too
large to be stored. Above, we emulated a query without access
to the actual trees. Here, we do store some of the trees but
in smaller versions and not for all pairs of vertices. Since we
must also handle hop-long queries, any node of an FT-tree may
now store a path of up to n edges. If we were to create a child
node for each edge, we would end up with a prohibitive space
of O(nf+1) for a single tree. Instead, we use larger segments
and each child node now corresponds to the failure of a whole
segment. Of course, this has the danger that failing a segment
may inadvertently destroy replacement paths that would still
exists in G−F , where only the failing edges are removed. We
have to strike a balance between the space reduction of larger
segments and the introduced inaccuracies. This leads to the
concept of granularity. In an FT-tree with granularity λ, the
first and last λ/2 edges form their own segments. Beyond that,
we use segments whose size increase exponentially towards
the middle of the stored path. The base of this exponential
is 1 + Θ(ε), where ε > 0 is the approximation parameter. A
higher granularity means larger trees but with higher accuracy.

We offset this by building the larger trees only for very few
pairs of vertices. We sample a set B1 of Õ(fn/Lf ) pivots and
build an FT-tree with granularity λ = Θ(εL) for each pair of
vertices in B1 ×B1. For some vertex v and failure set F , let
ballG−F (v, λ/2) be the ball of hop-distance λ/2 around v in
G−F . We show that if both s and t have respective pivots
ps ∈ ballG−F (s, λ/2) ∩ B1 and pt ∈ ballG−F (t, λ/2) ∩ B1,
then the FT-tree FTλ(ps, pt) with granularity λ gives a very
good estimate of the replacement distance d(s, t, F ). However,
since there are so few pivots in B1 this can only be guaranteed
if the balls around s and t are very dense. We also have to
give a fall-back solution in case one of the balls is sparse. We
sample a set B2 of now Õ(fn/L) pivots (much more than B1)
and build an FT-tree without granularity for pairs of vertices
in B2 × V . These trees are much smaller and we show that

together with the f -DSO⩽L they are still sufficiently accurate.
The problem is to quickly find the pivots that are close to s

and t in G−F at query time. Simply scanning over B1 and B2

is way too slow. Instead, we use yet another kind of tree data
structure, pivot trees. They are inspired by FT-trees but are not
the same. We have one pivot tree per vertex in V (instead of
an FT-tree for every pair). The tree belonging to s stores in
each node x some shortest path Px starting from s as before,
and each child of node x represents the failure of one edge of
Px. The key difference is that the other endpoint of Px can
vary now, the path ends in the closest pivot ps ∈ B1 of the first
type. Note that in the graph G−Fx that pivot may not be the
same as in G−(Fx∪{ek+1}). We only care about the vicinity
ballG−F (s, λ/2), so the paths Px have at most λ/2 edges. If
the closest pivot in B1 is too far away, ballG−F (s, λ/2) must
be sparse. That means, also ballG−F (s, λ/2)∩B2 is small and
it is feasible to store all pivots of the second type.

Unfortunately, this is still not enough. Due to our sparsi-
fication via segments with multiple edges, the answer of the
FT-trees with and with out granularity are only accurate if the
replacement path P (s, t, F ) is “far away” from all failures in
F . That roughly means that any vertex of P (s, t, F ) is more
than an Θ(ε)-multiple from any endpoint of some edge in F . If
this safety area is free of failures, no segment can accidentally
contain an edge of F , which would disturb the return value of
the FT-tree too much. If, however, there is a failure too close
to the path, Chechik et al. [4] showed that there is always
some surrogate target t′ ∈ V (F ) such that the replacement
path P (s, t′, F ) is indeed far away from all failures and also
not much of a detour compared to going directly from s to
t. This causes an 1 + ε1 factor in the multiplicative part of
the stretch, where ε1 = Θ(ε). We build an auxiliary weighted
complete graph H on the vertex set V (F ) ∪ {s, t} to exploit
this detour structure. We use the FT-trees and f -DSO⩽L to
compute the weight of all edges in the graph. The eventual
answer of our oracle is the s-t-distance in H .

The main obstacle is to prove that dH(s, t) is actually an
(α(1+ε), β)-approximation of d(s, t, F ). This is also the other
decisive difference to [19] in that we need to handle both
the multiplicative and the additive stretch. Consider an edge
{u, v} ∈ E(H). If P (u, v, F ) is hop-short, the f -DSO⩽L

trivially gives an (α, β)-approximation of d(u, v, F ) which we
use to compute the weight wH(u, v). If P (u, v, F ) has more
than L edges and is “far away” from all failures, we show
that wH(u, v) computed by the FT-trees is only an (α,Xβ)-
approximation. The blow-up X = O(f log(n)/ε) stems from
the segments of increasing size. This is only exacerbated by
the fact that the shortest s-t-path in the weighted graph H
has O(f2) edges, each one contributing their own distortion
to the additive stretch. However, the additive blow-up only
happens if P (u, v, F ) has many edges, that is, if d(u, v, F )
is large. The idea is to then charge most of the additive
stretch to the multiplicative part, increasing it only by another
1+ε2 = 1+Θ(ε) factor which is then combined with the 1+ε1
stemming from the auxiliary graph H . To make this work, we
carefully analyze the interplay of the edges in H , using an



induction over E(H) in the order of increasing replacement
distance d(u, v, F ).

C. Derandomization

We use the critical paths proposed by Alon, Chechik, and
Cohen [38] for the derandomization. That means identifying
a small set of shortest paths in G, (greedily) computing a
deterministic hitting set for them, and building the fault-
tolerant data structure from there. The number of paths needs
to be small in order to keep the derandomization efficient,
which is the main difficulty. Our threshold of efficiency is that
making the data structures deterministic should not increase
their preprocessing time by more than constant factors.

In the context of derandomization, we view paths as mere
sets of vertices without any further structure. This allows us
to apply the approach also to other subsets of V in a unified
fashion. Consider the (static) distance oracle for weighted
graphs in Theorems 1 and 3. The list K[v], containing the K
vertices closest to v, are key components in the construction.
It is indeed enough to hit all the {K[v]}v∈V to derandomize
the DO. This also incurs hardly any extra work as those lists
are compiled anyway in the preprocessing.

The construction of the general f -DSO from the one re-
stricted to hop-short distances (Theorem 7) builds on the pivot
sets B1 and B2 whose derandomization is more involved.
Recall that we use λ for the granularity of the FT-trees.
During the proof of correctness, it becomes apparent that
the pivots of the second type in B2 need to hit the length-
λ/2 prefixes and suffixes of all concatenations of up to two
replacement paths, provided that those concatenations are hop-
long (have more than L edges). We use a structural result
by Afek, Bremler-Barr, Kaplan, Cohen, and Merritt [40] that
states that replacement paths themselves are concatenations
of O(f) shortest paths in the original graph G. This allows
us to show that computing a deterministic hitting set of all
shortest paths in G of length Ω(λ/f) suffices to guarantee
the same covering properties as B2. The set B1, in turn, need
to hit all the sets ballG−F (u, λ/2) that are sufficiently dense
(more than Lf vertices). In principle, a similar approach as
for B2 would work but that would either produce way too
many pivots or take much to long. Instead, we interleave the
level-wise construction of the pivot trees with derandomization
phases to find a deterministic stand-in for B1.
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