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Abstract
Objective. To date, a comprehensive comparison of Riemannian decoding methods with deep
convolutional neural networks for EEG-based brain–computer interfaces remains absent from
published work. We address this research gap by using MOABB, The Mother Of All BCI
Benchmarks, to compare novel convolutional neural networks to state-of-the-art Riemannian
approaches across a broad range of EEG datasets, including motor imagery, P300, and steady-state
visual evoked potentials paradigms. Approach.We systematically evaluated the performance of
convolutional neural networks, specifically EEGNet, shallow ConvNet, and deep ConvNet, against
well-established Riemannian decoding methods using MOABB processing pipelines. This
evaluation included within-session, cross-session, and cross-subject methods, to provide a
practical analysis of model effectiveness and to find an overall solution that performs well across
different experimental settings.Main results.We find no significant differences in decoding
performance between convolutional neural networks and Riemannian methods for within-session,
cross-session, and cross-subject analyses. Significance. The results show that, when using
traditional Brain-Computer Interface paradigms, the choice between CNNs and Riemannian
methods may not heavily impact decoding performances in many experimental settings. These
findings provide researchers with flexibility in choosing decoding approaches based on factors such
as ease of implementation, computational efficiency or individual preferences.

Abbreviations

BCI brain–computer interface
MOABB Mother Of All BCI Benchmarks
EEG electroencephalography
MI motor imagery
ERP event-related potential
SSVEP steady-state visual evoked potential
CNN convolutional neural network
RMDM Riemannian minimum distance to

mean
TGSP tangent space
SVM support vector machine
LDA linear discriminant analysis
LR logistic regression
Cov Covariance
ERPCov ERP covariance
XCov Xdawn covariance
FB filterbank

1. Introduction

Brain–computer interfaces (BCIs) have evolved to be
used for various tasks ranging from medical/assist-
ive technology to the entertainment/gaming industry.
These include for example,moving a cursor on a com-
puter screen [1], controlling a mobile robot [2], con-
trolling prosthetic devices [3], neurorehabilitation
[4], or decoding speech from neural activity [5]. All
BCI tasks and applications comewith their own prob-
lems and challenges, so in order to properly find,
extract and classify task-relevant neural states, sev-
eral different EEG-based BCI paradigms are used
accordingly. Three of the most popular paradigms
are MI, P300–based spellers, and SSVEPs [6]. These
paradigms work in fundamentally different ways. MI
is often used for self-paced (asynchronous) BCIs,
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but with many experiments following a cued pro-
tocol, while P300-based systems and SSVEPs are usu-
ally used for stimulus-paced (synchronous) BCIs [7].
Often, they can be used as potential approaches to
solve the same tasks (e.g. spelling tasks, moving a
cursor, etc). Depending on the task, BCI systems
can implement a single paradigm or use multiple
paradigms for hybrid approaches [6].

Given the diversity of experimental paradigms
and machine learning pipelines for brain decoding
[8], it is natural to askwhether any particularmachine
learning framework performs best across a broad
range of experimental paradigms and datasets. The
MOABB—the Mother Of All BCI Benchmarks—
is an open-source package for benchmarking BCIs
written in Python that allows such a comparison
across a broad range of publicly available datasets [9].
While MOABB has been used to compare various
machine learning pipelines, two of the most success-
ful machine learning frameworks for BCI decoding,
Riemannian decoding [10] and deep convolutional
networks [11, 12], have not yet been rigorously com-
pared with each other [13].

In this work, we use the MOABB to fill this gap.
In particular, we compare EEGNet [12], a compact
CNN, along with a deep CNN [11] and a shallow
CNN [11] with state-of-the-art Riemannian meth-
ods on multiple publicly available MOABB datasets
as shown in table 2. For within-session, cross-session
and cross-subject decoding, we do not find signi-
ficant differences between the two frameworks. All
code is available at https://github.com/ederm42/BCI-
riemannian-vs-eegnet.

2. Methods

To compare the CNNs [11, 12] with state-of-the-
art Riemannian approaches, several literature sources
were used to set up various MOABB processing
pipelines for each paradigm. The main source used as
a reference was ‘A review of classification algorithms
for EEG-based brain–computer interfaces: a 10 year
update’ [8]. In order to reach proper coverage of
different Riemannian methods, additional pipelines
were implemented, as found in multiple publications
[14–16] and in code published by MOABB [17] and
EEGNet [18]. An overview of all included decoding
pipelines is shown in table 1.

The Riemannian pipelines use the implement-
ations of Covariance from the pyRiemann Python
package [19]. TGSP mapping and all Riemannian
algorithms also make use of the pyRiemann pack-
age. All classifiers are implementations provided by
the scikit-learn Python package [20]. All CNNs, as
implemented by the EEGModels Project [18], were
trained on an NVIDIA GeForce RTX 3090 using
TensorFlow 2.8.0, CUDA 11.2 and cuDNN 8.1.0.
The statistical analysis, as well as the creation of the
Gardner–Altman estimation plots, was done using

the ‘DABEST: Data Analysis with Bootstrap-coupled
ESTimation’ [21, 22] Python package.

2.1. Decoding pipelines
2.1.1. MI
For MI, the focus was on evaluating the left–right
imagery paradigm. For all datasets, MOABB default
MI band-pass filter for 8–30 Hz was applied, and the
EEG data was resampled to 128 Hz. All Riemannian
pipelines implemented for MI calculate the cov-
ariance matrix first. One pipeline directly uses the
RMDM as the classifier, while the others first pro-
ject the covariance matrix into TGSP and afterward
classify using either a SVM (TGSP + SVM) or LDA
(TGSP + LDA). For the CNNs, parameters were left
on default as implemented by the EEGModels project
[18]. These parameters were standardized, validated
and optimized for 128 Hz EEG data.

2.1.2. P300
For the P300 datasets, MOABB default P300 band-
pass filter for 1–24 Hz was applied and the EEG
data was resampled to 128 Hz. The pipeline
using RMDM as a classifier use special covariance
matrices specifically made for ERP/P300 paradigms,
XDawnCovariance (XCov + RMDM), as implemen-
ted in the MOABB package. The other pipelinse first
projects the XDawnCovariance into TGSP and after-
ward use a linear SVM (TGSP + SVM) or LR (TGSP
+ LR) as its classifier. For the CNNs, parameters were
left on default as implemented by the EEGModels
project [18]. These parameters were standardized,
validated and optimized for 128 Hz EEG data.

2.1.3. SSVEP
For all SSVEP approaches, the EEG data was res-
ampled to 128Hz. A FB approach was used withmul-
tiple bandpass filters, centered ±0.5 Hz around the
relevant frequencies. The Riemannian pipelines also
estimate the covariancematrix first and afterward use
either RMDM or a TGSP projection followed by LR
(TGSP + LR). For the CNNs, parameters were left
on default as implemented by the EEGModels project
[18]. These parameters were standardized, validated
and optimized for 128 Hz EEG data.

2.2. Evaluationmethods
The evaluation methods offered by MOABB are,
depending on the dataset, within-session evaluation,
cross-session evaluation, and cross-subject evalu-
ation. MOABB splits the data into training/test tri-
als accordingly and, by default, evaluates using cross-
validation. For left–right MI and P300 - the binary
classification tasks—ROC-AUC is used as the evalu-
ation metric. The SSVEP paradigm, given that it is a
multi-class classification task, accuracy is used as the
metric.
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Table 1. Description and references of pipelines used for the evaluations. All paradigms were evaluated with three different
CNNs—EEGNet, deep ConvNet and shallow ConvNet. For each paradigm, the Riemannian Minimum Distance to Mean (RMDM) and
two tangent space mapping approaches (TGSP) were implemented, with the TGSP classifier depending on the paradigm. The TGSP
classifiers are either a Support Vector Machine (SVM), Linear Discriminant Analysis (LDA) or Logistic Regression (LR). For the P300
RMDM classifier, the XDawnCovariance (XCov) is used to estimate the covariance matrices.

Paradigm Pipeline References

MI EEGNet [12]
ConvNet (deep) [11]
ConvNet (shallow) [11]
RMDM [8]
TGSP+ SVM [17]
TGSP+ LDA [8]

P300 EEGNet [12]
ConvNet (deep) [11]
ConvNet (shallow) [11]
XCov+ RMDM [8, 14, 15]
TGSP+ SVM [23]
TGSP+ LR [18]

SSVEP EEGNet [12]
ConvNet (deep) [11]
ConvNet (shallow) [11]
RMDM [8, 16]
TGSP+ SVM [17]
TGSP+ LR [17]

2.2.1. Within-session evaluation
This method evaluates a decoding pipeline by estim-
ating classification scores for each session of each sub-
ject separately. A single session is split into train-
ing/test trials, and stratified 5-fold cross-validation is
used. Stratified k-fold cross-validation preserves the
class ratios for training and test sets.

2.2.2. Cross-session evaluation
When multiple sessions were recorded for a single
subject (e.g. on different days), this method is used
to evaluate a pipeline. Cross-session evaluation uses
leave-one-out cross-validation, where the training set
is created with trials of all the sessions of a single sub-
ject, except one session, which is used for the testing.
This is done for all available sessions within a subject.

2.2.3. Cross-subject evaluation
This method is used to evaluate a pipeline when data
from multiple subjects is available within the same
dataset. Similarly to cross-session, the cross-subject
evaluation uses leave-one-out cross-validation. The
data is split into a training set containing trials of all
available subjects except one, and the pipeline is eval-
uated on the trials of the left-out subject. This training
and evaluation method can be considered as transfer
learning.

3. Results

Overall, 13 different datasets with EEG trials from
80 different subjects were included for the statistical

Table 2. Included data sets for motor imagery are BNCI2014001
[24], BNCI2014004 [25], PhysionetMI [26], Shin2017A [27],
MunichMI [28], for P300 are BNCI2014008 [29], BNCI2014009
[30], BNCI2015003 [31], BI2014A [32], BI2015A [33], and for
SSVEP are SSVEPExo [34], Nakanishi2015 [35], MAMEM3 [36].

Paradigm Datasets Subjects Classes Electrodes

Motor imagery 5 25 2 3–128
P300 5 25 2 8–32
SSVEP 3 30 4–12 6–14

Total 13 80

analysis. For each paradigm, an equal amount of sub-
jects was picked from each dataset to avoid biasing
the results towards one dataset. This subset was cre-
ated incrementally, picking subjects by their numer-
ical subject identifier starting with 1. Information
about the included datasets and subjects is shown in
table 2. While for several MI and P300 subjects mul-
tiple sessions were available, no multi-session exper-
iments were recorded for any of the included SSVEP
datasets.

3.1. CNN architectures
To explore the impact of training iterations on the
performance of theCNNs, themodels were compared
on their test scores for 100, 200 and 300 epochs. This
comparison covered all BCI paradigms and evalu-
ation methods, offering a clear sense of the models’
overall performances. As shown in figure 1, the res-
ults suggest that while the EEGNet is the best per-
forming model, none of the models show significant
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Figure 1. Overall model performance of the EEGNet, shallow ConvNet and deep ConvNet after 100, 200 and 300 training
iterations. Each data point represents the mean of the ROC and accuracy scores over all three paradigms. The error bars show the
bootstrapped 95% confidence interval.

improvements in test scores with increasing training
iterations after 200 epochs.

Given that the EEGNet shows stable, high-
performance results across paradigms, evaluations,
and all different experimental setups, this architec-
ture, trained on 300 epochs, is a robust and reli-
able choice for the comparative analysis with the
Riemannian approaches.

3.2. CNN vs riemannianmethods
All classification scores from all different pipelines
over all included recordings were created with
MOABB. After that, an analysis of the pipelines of
each paradigm (MI, P300, SSVEP) and each evalu-
ation method (within-session, cross-session, cross-
subject) was done. To compare the pipelines, the
two-sided 95%bootstrap confidence intervals (10 000
permutations) and the p-value for the permutation
tests (10 000 permutations) were computed.

To find the approach that performs best over
all paradigms, evaluations and possible experimental
setups, the individual results were aggregated and
afterwards the EEGNet was compared to the deep
& shallow ConvNets, the RMDM approach as well
as two TGSP mapping approaches, each with dif-
ferent classifiers based on the paradigm as shown
in table 1. In the overall analysis, as visualized in
figure 2, the EEGNet performs significantly better
than the ConvNets. And while it also statistically out-
performs the RMDM approach, the classification res-
ults of the Riemmanian TGSP mapping approaches
are on par with the EEGNet. So, essentially, the CNNs
and the Riemannian approach show comparable per-
formance in the overall setting.

Further, the performance of the different
pipelines for all specific paradigms and evaluation
methods was analyzed. For each paradigm and each
evaluation method, the mean scores of the EEGNet
were compared to the mean scores of the ConvNets

and each of the individual Riemannian pipelines.
The results of the comparison between the EEGNet,
the ConvNets and the Riemannian pipelines can be
seen in table 3. For visualizations (Gardner–Altman
estimation plots) of all results, see appendix.

Out of the 30 comparisons shown in table 3,
we only found statistically significant differences
(at significance level α= 0.05, uncorrected) in four
cases. The first three of these four cases concern
the comparison of EEGNet with the deep and shal-
low ConvNet classifiers in the MI and P300 set-
tings. Interestingly, we found EEGNet outperform-
ing RMDM pipeline when performing cross-subject
decoding in the SSVEP setting. Because we do
not find significant differences in this case when
comparing EEGNet with the TGSP pipelines, we do
not consider these as evidence for superior perform-
ance of EEGNet in this setting in general.

To further investigate possible differences
between Riemannian methods and the EEGNet, we
performed a comparative analysis of each individual
classification score, as shown in figure 3. For each
classification score, the respectively best-performing
Riemannian TGSP mapping pipeline was chosen
and directly compared to the performance of the
EEGNet. For the comparisons of all pipeline pairs,
see appendix.

For the P300 and SSVEP paradigms, both the
EEGNet and the Riemannian approaches show con-
sistent, similar performances and low variability for
themajority of sessions and subjects. Contrary to this,
the MI paradigm shows clear differences in classi-
fication performances with higher variability. While
there is no discernible pattern when highlighting the
different evaluation methods as in figure 3, the cause
of this spread can be seen in figure 4.

Highlighting the classification performances on
the different datasets, the results show that for MI
there are datasets, most apparent being Shin2017A
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Figure 2. Overall model performance of the EEGNet compared to the shallow & deep ConvNets, the Riemannian minimum
distance to mean (RMDM) and tangent space mapping (TGSP) approaches. Each point represents an individual classification
score. The lower axis shows the bootstrapped 95% confidence interval of the mean difference between the EEGNet and the other
pipelines. A negative mean difference indicates the respective pipeline performing worse than the EEGNet.

[27], where the different classification methods do
not perform equally well on single subjects/sessions.
This deviation indicates that for certain subjects and
experimental settings, either of the approaches might
be missing features that are relevant for accurate
classification.

4. Discussion and conclusions

We found only minor differences in decoding per-
formance between CNNs and Riemannian meth-
ods. The only exception to this finding is the cross-
subject SSVEP setting, in which all CNNs outper-
formed the RMDM approach by a large margin.
However, the TGSP mapping approach also showed
similar performance to the CNNs in this specific set-
ting. Notably, the results of the CNN pipelines show
a more pronounced bimodal distribution compared
to the Riemannian pipelines. The observation that
deep convolutional networksmay be particularly use-
ful in transfer learning settings is in line with the
results of a recent BCI decoding competition that
was also won by a CNN approach [37]. However,
we remark that the methods benchmarked here were
not explicitly designed for cross-subject decoding. In
particular, extensions of Riemannian pipelines for

transfer learning have been developed but have not
been incorporated [38]. Additionally, a novel type
of Riemannian networks based on geometric deep
learning [39] has recently found adoption for decod-
ing EEG data. These deep Riemannian networks
(DRNs) have shown state-of-the-art performances
[40] and improvements to transfer learning and
domain adaptation [41] for MI. While we do con-
sider DRNs a promising approach, they have been left
out of this analysis due to them not being developed
for or validated on P300 and SSVEP datasets. In any
case, the results show comparable performance of the
two conceptually very different decoding approaches
we analyzed. We hypothesize that future significant
breakthroughs in new decoding pipelines are less
likely to be found for P300 and SSVEP, with more
room for advancements in the MI paradigm. For
MI, there is the need to find approaches that extract
the optimal information on any given experimental
setting and subject. Future progress for BCIs may
also depend on novel paradigms and techniques for
recording brain signals. However, classification score
is not the only relevant metric for the practical utility
of BCI decoding pipelines. Depending on the particu-
lar setting, the computational complexity of training
and online decoding may also have to be considered,
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Table 3. Results of the statistical analysis.Themean difference column shows the average difference in classification, given n evaluation
scores for each of the pipeline pairs. If the mean difference is negative, the EEGNet performs better. The lower and upper bounds of the
95% confidence interval are given and the rightmost column shows the statistical significance (p<0.05).

Paradigm Evaluation
Pipelines
(EEGNet vs X) n

mean difference
(X−EEGNet) 95% CI p-value p<0.05

MILR WithinSession shallow 60 −0.0225 −0.0969, 0.0529 0.5490 −
MILR WithinSession deep 60 −0.0781 −0.155, 0.0002 0.0500 −
MILR WithinSession RMDM 60 −0.0723 −0.1457, 0.0007 0.0598 −
MILR WithinSession TGSP+SVM 60 0.0099 −0.0635, 0.0827 0.7922 −
MILR WithinSession TGSP+LDA 60 −0.0550 −0.1294, 0.0204 0.1550 −

MILR CrossSession shallow 50 −0.0577 −0.1276, 0.0139 0.1166 −
MILR CrossSession deep 50 −0.1051 −0.1789,−0.0272 0.0100 3

MILR CrossSession RMDM 50 −0.0516 −0.1205, 0.0181 0.1532 −
MILR CrossSession TGSP+SVM 50 −0.0044 −0.0705, 0.0599 0.8916 −
MILR CrossSession TGSP+LDA 50 −0.0469 −0.1147, 0.0198 0.1920 −

MILR CrossSubject shallow 60 −0.0431 −0.1026, 0.0142 0.1492 −
MILR CrossSubject deep 60 −0.0805 −0.1442,−0.0187 0.0130 3

MILR CrossSubject RMDM 60 −0.0219 −0.0782, 0.0354 0.4558 −
MILR CrossSubject TGSP+SVM 60 0.0158 −0.0419, 0.0701 0.5838 −
MILR CrossSubject TGSP+LDA 60 −0.0357 −0.0932, 0.021 0.2256 −

P300 WithinSession shallow 45 −0.0657 −0.0994,−0.0326 0.0004 3

P300 WithinSession deep 45 0.0019 −0.0264, 0.0297 0.9034 −
P300 WithinSession XCov+RMDM 45 −0.0218 −0.0565, 0.0115 0.2206 −
P300 WithinSession TGSP+SVM 45 −0.0206 −0.0554, 0.0109 0.2364 −
P300 WithinSession TGSP+LR 45 −0.0111 −0.0418, 0.0193 0.4836 −
P300 CrossSession shallow 30 −0.0113 −0.0353, 0.0151 0.4102 −
P300 CrossSession deep 30 0.0058 −0.0191, 0.0311 0.6792 −
P300 CrossSession XCov+RMDM 30 −0.0119 −0.0403, 0.0156 0.4254 −
P300 CrossSession TGSP+SVM 30 −0.0115 −0.0409, 0.0155 0.4490 −
P300 CrossSession TGSP+LR 30 −0.0092 −0.0376, 0.0178 0.5350 −
P300 CrossSubject shallow 45 −0.0255 −0.0775, 0.0264 0.3450 −
P300 CrossSubject deep 45 −0.0023 −0.0557, 0.0507 0.9384 −
P300 CrossSubject XCov+RMDM 45 −0.0030 −0.0584, 0.0494 0.9120 −
P300 CrossSubject TGSP+SVM 45 0.0014 −0.0523, 0.0542 0.9660 −
P300 CrossSubject TGSP+LR 45 0.0122 −0.0392, 0.0618 0.6466 −

SSVEP WithinSession shallow 30 −0.0625 −0.1945, 0.0719 0.3540 −
SSVEP WithinSession deep 30 −0.0914 −0.2222, 0.0465 0.1828 −
SSVEP WithinSession RMDM 30 −0.0869 −0.2146, 0.0388 0.1908 −
SSVEP WithinSession TGSP+LR 30 −0.0034 −0.1284, 0.122 0.9570 −
SSVEP WithinSession TGSP+SVM 30 −0.0217 −0.1456, 0.1017 0.7234 −
SSVEP CrossSubject shallow 30 −0.0530 −0.1799, 0.077 0.4148 −
SSVEP CrossSubject deep 30 −0.0119 −0.1371, 0.1163 0.8420 −
SSVEP CrossSubject RMDM 30 −0.2011 −0.3086,−0.094 0.0014 3

SSVEP CrossSubject TGSP+LR 30 −0.0439 −0.1604, 0.0711 0.4514 −
SSVEP CrossSubject TGSP+SVM 30 −0.0757 −0.1898, 0.0386 0.1968 −

Figure 3. Comparative analysis of classification performances between the EEGNet and the respectively best-performing
Riemannian TGSP method. Each point represents an individual classification score. The distinct colors indicate the evaluation
method.
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Figure 4. Comparative analysis of classification performances between the EEGNet and the respectively best-performing
Riemannian TGSP method. Each point represents an individual classification score. The distinct colors indicate the dataset.

with potential trade-offs between decoding perform-
ance and computational complexity. While we did
not conduct a systematic runtime comparison, we
found that training the EEGNet required substantially
higher computational resources than the Riemannian
methods.

We further note that our analyses are based
on publicly available datasets, which may incorpor-
ate sampling biases, e.g. because subjects have been
recruited in academic settings. For instance, the num-
ber of BCI-illiterate subjects, which have not been
excluded in our analysis, may vary across settings
[42]. Our results may thus not generalize to future
users of BCI in non-laboratory settings, where any of
the tested pipelines may exhibit more or less robust
performance.We consider it a relevant topic of future
research to explorewhether certain pipelines aremore
suitable for particular sub-groups of subjects. Such
an analysis probably requires a substantially higher
number of datasets and subjects than currently avail-
able in the MOABB framework. A broad adoption of
passive BCI technologies may render such analyses
feasible [43].
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Appendix

Figure A1. Gardner–Altman estimation plot for Motor Imagery within-session evaluation. Each point represents an individual
classification score. The shadings represent individual sessions within a dataset. The lower axis shows the bootstrapped 95%
confidence interval of the mean difference between the EEGNet and the other pipelines.

Figure A2. Gardner–Altman estimation plot for Motor Imagery cross-session evaluation. Each point represents an individual
classification score. The shadings represent individual sessions within a dataset. The lower axis shows the bootstrapped 95%
confidence interval of the mean difference between the EEGNet and the other pipelines.
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Figure A3. Gardner–Altman estimation plot for Motor Imagery cross-subject evaluation. Each point represents an individual
classification score. The shadings represent individual subjects within a dataset. The lower axis shows the bootstrapped 95%
confidence interval of the mean difference between the EEGNet and the other pipelines.

Figure A4. Gardner–Altman estimation plot for P300 within-session evaluation. Each point represents an individual classification
score. The shadings represent individual sessions within a dataset. The lower axis shows the bootstrapped 95% confidence interval
of the mean difference between the EEGNet and the other pipelines.
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Figure A5. Gardner–Altman estimation plot for P300 cross-session evaluation. Each point represents an individual classification
score. The shadings represent individual sessions within a dataset. The lower axis shows the bootstrapped 95% confidence interval
of the mean difference between the EEGNet and the other pipelines.

Figure A6. Gardner–Altman estimation plot for P300 cross-subject evaluation. Each point represents an individual classification
score. The shadings represent individual subjects within a dataset. The lower axis shows the bootstrapped 95% confidence interval
of the mean difference between the EEGNet and the other pipelines.
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Figure A7. Gardner–Altman estimation plot for SSVEP within-session evaluation. Each point represents an individual
classification score. The shadings represent individual sessions within a dataset. The lower axis shows the bootstrapped 95%
confidence interval of the mean difference between the EEGNet and the other pipelines.

Figure A8. Gardner–Altman estimation plot for SSVEP cross-subject evaluation. Each point represents an individual
classification score. The shadings represent individual subjects within a dataset. The lower axis shows the bootstrapped 95%
confidence interval of the mean difference between the EEGNet and the other pipelines.
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Figure A9. Comparative analysis of classification performances between the EEGNet and the ShallowConvNet. Each point
represents an individual classification score. The distinct colors indicate the evaluation method.

Figure A10. Comparative analysis of classification performances between the EEGNet and the ShallowConvNet. Each point
represents an individual classification score. The distinct colors indicate the dataset.

Figure A11. Comparative analysis of classification performances between the EEGNet and the DeepConvNet. Each point
represents an individual classification score. The distinct colors indicate the evaluation method.

Figure A12. Comparative analysis of classification performances between the EEGNet and the DeepConvNet. Each point
represents an individual classification score. The distinct colors indicate the dataset.
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Figure A13. Comparative analysis of classification performances between the EEGNet and the Riemannian Minimum Distance to
Mean (RMDM) approach. Each point represents an individual classification score. The distinct colors indicate the evaluation
method.

Figure A14. Comparative analysis of classification performances between the EEGNet and the Riemannian Minimum Distance to
Mean (RMDM) approach. Each point represents an individual classification score. The distinct colors indicate the dataset.

Figure A15. Comparative analysis of classification performances between the EEGNet and the respectively best-performing
Riemannian tangent space mapping (TGSP) approach. Each point represents an individual classification score. The distinct colors
indicate the evaluation method.

Figure A16. Comparative analysis of classification performances between the EEGNet and the respectively best-performing
Riemannian tangent space mapping (TGSP) approach. Each point represents an individual classification score. The distinct colors
indicate the dataset.
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Figure A17. Comparative analysis of classification performances between the DeepConvNet and the ShallowConvNet. Each point
represents an individual classification score. The distinct colors indicate the evaluation method.

Figure A18. Comparative analysis of classification performances between the DeepConvNet and the ShallowConvNet. Each point
represents an individual classification score. The distinct colors indicate the dataset.

Figure A19. Comparative analysis of classification performances between the Riemannian Minimum Distance to Mean (RMDM)
and the respectively best-performing Riemannian TGSP approach. Each point represents an individual classification score. The
distinct colors indicate the evaluation method.

Figure A20. Comparative analysis of classification performances between the Riemannian Minimum Distance to Mean (RMDM)
and the respectively best-performing Riemannian TGSP approach. Each point represents an individual classification score. The
distinct colors indicate the dataset.
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