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A B S T R A C T

Malware often uses code obfuscation to evade detection, employing techniques such as packing, virtualization,
and data encoding or encryption. Despite widespread application, the impact of combining these techniques
in a particular order – so-called obfuscation layering – on code analysis remains poorly understood. This
study advances previous research by examining the effects of obfuscation layering on the classification of
obfuscation techniques contained in binary code, focusing on how different layering combinations alter
structural code patterns. Utilizing a dataset of 85 C programs modified with various combinations of code
obfuscation techniques, we analyze the impact of obfuscation layering on structural code metrics such as
its control flow complexity. Our study demonstrates that obfuscation layering significantly affects the ability
to classify obfuscated code and that the order of applied obfuscations is less significant for classification than
previously assumed. Through explainability methodologies our work offers novel insights for malware analysts
and researchers to improve their detection strategies.
. Introduction

Malware authors can choose from a variety of different obfuscation
echniques to make their code more difficult to detect and analyze.
nd indeed, code obfuscation is heavily used in practice. A Black Hat
urvey by [1] suggested that more than 90% of all malware samples
dentified in the wild use packing obfuscation to protect themselves
rom detection. In a more recent study, [2] found that 58% of all
alware samples are protected with off-the-shelf packers, not taking

nto account custom packers, which are used by about 35% of packed
alware [3]. Beyond packing, other obfuscation methods such as vir-

ualization, data encoding/encryption, and concealing libraries are also
idely adopted by malware authors.

As opposed to the goal of malware authors to hide the malicious-
ess of their code, the aim of malware analysts and researchers is to
fficiently analyze unknown malware samples and understand their
unctionality. A critical aspect of analyzing obfuscated code is the
dentification of the obfuscation techniques employed. Knowing the
ethods of obfuscation used in a sample greatly speeds up the analysis
rocess, as tailored de-obfuscation techniques are available for many
bfuscations.

In this work, we extend our previous research [4] on code obfusca-
ion classification based on modeling structural code patterns through

∗ Corresponding author.
E-mail addresses: sraubitzek2@sba-research.org (S. Raubitzek), sebastian.schrittwieser@univie.ac.at (S. Schrittwieser), ewimmer@sba-research.org

E. Wimmer), kevin.mallinger@univie.ac.at (K. Mallinger).

an in-depth analysis of obfuscation layering, i.e., the combination of
different protection techniques in a particular order. While there exists
a broad consensus in the software protection community that only a
combination of multiple protections can achieve an adequate level of
security, obfuscation layering has so far received little attention in the
literature and it is mostly unexplored what effects the layering of pro-
tections has on the resulting programs and to what extent the individual
obfuscations can be detected through structural code patterns. The
underlying idea of obfuscation classification through structural code
patterns is that each obfuscation technique introduces characteristic
modifications to the structure of the program code. For example, code
flattening reduces a program’s hierarchical complexity, which can be
observed in a reduced depth of the control flow graph. At the same
time, however, minimal changes to the distribution of opcodes are
made, as, put simply, only jump targets are replaced without modi-
fications to the opcode (e.g., an unconditional JMP instruction) itself.
Another widely-used obfuscation technique is instruction substitution,
which replaces individual instructions or groups of instructions with
semantically equivalent ones. When looking at the code structure, the
distribution of opcodes will change significantly, but the hierarchical
complexity of the program does not change at all. In our obfuscation
classification approach [4], we measure a set of code structure metrics
ttps://doi.org/10.1016/j.jisa.2024.103850
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and use the results to classify the obfuscation techniques applied to the
samples. However, obfuscation layering was not analyzed in detail in
our previous work. As obfuscation techniques that strongly modify the
code structure of a program might cover earlier applied techniques that
modify the same code structures, our hypothesis was that obfuscation
layering significantly reduces the quality of our obfuscation classifier.
The aim of this work therefore is to systematically evaluate which
combinations of techniques have an impact on the classification and
thus to gain a better understanding for obfuscation layering and the
identification of individual techniques in protected code. The three
aspects of our investigation can be summarized as follows:

1. To what extent are code (complexity) metrics useful for identi-
fying obfuscations, particularly a layering thereof?

2. Which complexity metrics are the most expressive when it comes
to identifying obfuscated code?

3. How does the layering of obfuscations affect the identification
of the used obfuscations?

For this paper we studied the effects of obfuscation layering specifi-
ally on binary code, thus script languages such as JavaScript and byte
ode such as Java are out of scope of this work. Starting from a set of 85
programs, we created a comprehensive research dataset based on the

igress obfuscator introduced by [5]. We treated the 85 programs with
6 different Tigress configurations, each in four compiler optimization
evels (resulting in 64 configurations). Together with 16 variants of
on-obfuscated binaries using different compilers, we reached a total
f 80 different build configurations. Since not all configurations lead
o a valid binary program for each sample, we received a total of 6211
rograms for the structural analysis of layered obfuscations. To the best
f our knowledge, our work is the first in-depth analysis of the effects
f obfuscation layering applied to a comprehensive dataset.

The remainder of this paper is structured as follows. Section 2
iscusses related work, while Section 3 presents the fundamentals of
ode obfuscation and the measurement of structural code patterns.
ection 4 introduces our methodology, and Section 5 presents the
esults and discusses them. Section 6 concludes the paper.

. Related work

Previous literature described a protection technique as stealthy if
he resulting code resembles the original code as much as possible [6].
ne major problem with quantifying stealthiness of an obfuscation

echnique is that it highly depends on the structure of the original
rogram whether or not the technique can be applied in a stealthy way.
ometimes, a specific technique might produce code that fits perfectly
nto the original code. Other times, however, the protection might gen-
rate code sections that clearly differ from the rest of the code, e.g., in
erms of code structure. [7] described two types of obfuscation stealth.
ocal stealth measures the difficulty of identifying the exact location
f an obfuscation applied to code. In contrast, steganographic stealth
escribes the difficulty of detecting if a specific obfuscation was applied
t all. Measuring obfuscation stealth is not trivial. At first glance, the
overage, i.e., how much code is actually modified, seems particularly
elevant for the stealthiness of an obfuscation. In instruction substitu-
ion, for example, occurrences of certain instructions are replaced by
emantically equivalent instructions or sequences of instructions and
t is possible to specify how many of the occurrences are replaced.
overage correlates with the number of code modifications. The smaller
he coverage of an obfuscation, the smaller the modifications to the
ode. However, the number of code modifications does not indicate
ow easily it can be distinguished from untransformed code or other
bfuscations. For example, a packer modifies the complete binary
y encoding or encrypting the program’s entire code as data. This

undamental structural modification of the binary seems more difficult

2 
to hide than protections with lower coverage. However, past literature
proposed approaches such as using Huffman encodings [8] to make
the packed code look structurally like actual binary code or shell code
that looks like English prose [9]. While English prose can clearly be
distinguished from actual shell code, the context where shell code is
utilized (e.g., as part of natural language text sent to a system) makes
it a perfect camouflage. Thus, coverage alone is not a good indicator of
the stealthiness of an obfuscation.

Previous approaches to obfuscation detection are mainly founded
on basic code structures such as opcode frequencies. [10] proposed an
artificiality metric that measures the degree to which protected code
can be distinguished from unprotected code. Their results showed that
while some types of obfuscations strongly impact code artificiality,
such as code encryption, others, e.g., control-flow modifying obfusca-
tions such as CFG flattening, have a minimal effect. [11] proposed a
method for identifying the obfuscation tool, the applied obfuscation,
and its configuration for protected Android applications. The method
is based on machine learning using a feature vector from the Dalvik
bytecode of the app. A related methodology was presented by [12]
in 2018. It utilizes features extracted from the Smali representation
of the application’s bytecode. [13] proposed a machine-learning based
approach for the detection of class-level obfuscations in Android ap-
plications. Another machine-learning based obfuscation identification
technique which can be applied to binary code was introduced by [14].
A model for detecting bogus control flow transformations added with
the Obfuscator-LLVM framework was trained using an annotation ap-
proach in which the obfuscator’s transformations were first annotated
and used to create labels for unannotated binaries. LOM by [15] uses
a neural network-based classifier on the opcode distribution of binary
code for obfuscation identification. [16] extracted Term Frequency
Inverse Document Frequency (TF-IDF) features from Tigress-protected
samples for the identification of six different obfuscation methods. [17]
used a 5-gram birthmark of Java bytecode to identify the obfuscation
tool used for protection. [18] introduced a trigram based classifier for
the detection of boot sector viruses.

3. Preliminaries

3.1. Code obfuscation

Obfuscating transformations convert code – either in the form of
source, byte, or executable code – into code that is more difficult to
understand for a human code analyst and/or difficult to process for
automated code analysis tools (e.g., the obfuscation might make a
static disassembling tool fail on the binary). The development of new
code obfuscation techniques is mainly driven by the desire to hide the
specific implementation of a program. This includes malware authors
aiming to hide the malicious purposes of their code. Thus, identifying
obfuscations in binary code is a fundamental prerequisite of malware
detection and analysis. [19] categorized code obfuscations into various
classes, such as layout transformations (which modify the superficial
structure of the code) or control flow transformations (which alter the
control flow path of a program while retaining its semantics).

Obfuscations are usually applied to code through automatic tools.
Some commercial source code protection solutions are offered on the
market (e.g., Cloakware by Irdeto1), but also many freely available
tools and online services exist. In the scientific community, the Tigress
obfuscator by [5] is widely used. Tigress is a C source-to-source ob-
fuscator, meaning that the obfuscating transformations are applied to
C source code and the protected code is returned as C source code.
It was developed based on the C Intermediate Language CIL [20] and
MyJit2 and can protect code with a variety of obfuscation methods.

1 https://irdeto.com (Accessed: March, 14th 2023)
2 https://myjit.sourceforge.net (Accessed: March, 14th 2023)

https://irdeto.com
https://myjit.sourceforge.net
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Table 1
Applied obfuscations.

Technique Abbreviation Description

Opaque predicates Opa Makes it more difficult to evaluate expressions for
conditional jumps

Virtualization Virtualize Transforms binary code to byte code of a custom
virtual machine

CFG flattening Flatten Redirects all control-flow transfers to a central
dispatcher

Mixed-Boolean arithmetic (MBA) Encode Replaces simple integer arithmetic with complex
expressions

Function splitting Split Splits functions in two ore more smaller functions
Anti branch analysis Opabaea Makes it more difficult to determine the target of

branches. Only used in combination with opaque
predicates and MBA in our work.
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However, considerable uncertainty exists as to whether – and, if so,
to what extent – a protection is transferred to the binary program
during compilation. [21] demonstrated empirically that not all types of
protection survive the compilation process. This undesired effect results
from the fact that software protections intentionally make code more
complicated. A compiler, however, attempts to generate efficient binary
code through various optimization strategies. Thus, it often removes the
protections or at least significantly reduces their strength.

In recent years, it was demonstrated that code obfuscation can
also be applied to intermediate code representations during the com-
pilation process after the optimizations have been conducted. With
the Obfuscator LLVM (OLLVM) framework [22], it was prototypically
demonstrated that compile-time protection of code is feasible. How-
ever, implemented protections are of low complexity and tailored
de-obfuscation algorithms exist.3

In this work, we use the Tigress obfuscator for sample genera-
tion. Specifically, we used six different classes of obfuscations and 16
layering combinations. Table 1 describes the applied obfuscations. In
Appendix A, the Tigress configurations for all 16 combinations are
listed for reproducibility.

3.2. Structural code patterns

Program code has a variety of structural patterns from which dif-
ferent program properties can be derived. The opcode distribution,
for example, can be used to draw conclusions about its functionality.
Previous literature has shown that cryptographic algorithms (e.g., in
ransomware) can be identified by the high share of arithmetic and
logical operations [23]. Other structural patterns of program code in-
clude cyclomatic complexity, the number of Boolean or logic tests in the
program, its branching behavior, and the number of storage or transfer
operations of data into a variable. Since the 1970s, several metrics
have been presented in the literature that attempt to quantify these
structural patterns in program code. In software development, these
are often used to evaluate the complexity of a program, although not
all of them were specifically designed for measuring code complexity.
In the following, we present the metrics we used in our obfuscation
classification methodology.

3.2.1. Halstead complexity metrics
As an early pioneer of software science, [24] was one of the first

to analyze software and its structures quantitatively. His work resulted
in the formalization of the Halstead complexity metrics, which consist of
several sub-metrics.

3 https://blog.quarkslab.com/deobfuscation-recovering-an-ollvm-
rotected-program.html (Accessed: March, 14th 2023)
 1

3 
• Halstead difficulty measures how difficult it is to write or under-
stand the code of a program. It is defined as 𝐷 = 𝑛1

2 ⋅ 𝑁2
𝑛2

, where
𝑛1 is the number of distinct operators, 𝑛2 is the number of distinct
operands and 𝑁2 is the total number of operands.

• Halstead volume estimates the required space for storing the pro-
gram and is defined as 𝑉 = 𝑁 ⋅ log2 𝑛, where 𝑁 = 𝑁1 +𝑁2 (𝑁1 is
the total number of operators) and 𝑛 = 𝑛1 + 𝑛2.

• Halstead level defines the implementation level 𝐿 = 𝑉𝑝
𝑉 where 𝑉𝑝

is the potential or minimal volume 𝑉𝑝 = (2 + 𝑛2) ⋅ log2(2 + 𝑛2).
• Halstead effort estimates the effort required for writing or under-

standing the program. It is defined as 𝐸 = 𝐷 ⋅ 𝑉 .
• Halstead time estimates the time required for writing the program

and is defined as 𝑇 = 𝐸
18 . Since Halstead time differs from the

Halstead effort by a constant factor only, we excluded it from our
measurements.

3.2.2. Cyclomatic complexity
Cyclomatic Complexity describes the structure of software through

he number of possible independent paths in its control flow graph [25–
1]. To calculate McCabe’s cyclomatic complexity, a flow graph G is
reated, and its cyclomatic value 𝑣 is generated by 𝑣(𝐺) = 𝑒 − 𝑛 + 2𝑝.
ere, 𝑒 denotes the number of edges, 𝑛 is the number of nodes, and 𝑝 is

he number of connected entities in 𝐺. In code obfuscation, it was used
n the past to measure the strength of protecting transformations [32].
Myer’s interval [33] is an extension of McCabe’s cyclomatic complex-

ty. It is defined as 𝑣(𝐺) ∶ 𝑣(𝐺)+𝐿 adds the number of logical operators
to the measure.

.2.3. ABC metric
Despite its traditional categorization as a size metric, the ABC

etric [34] lends itself to the assessment of code complexity, given
he quantitative focus on the evaluation of software components. Fur-
hermore, the three components utilized within the ABC metric are
undamental constructs for any programming language, making them
elevant in understanding the overall complexity of a software project.
he three components, number of assignments (A), branches (B), and
onditions (C), as a triplet, build the first representation (vector) of the
BC metric. The other possible representation is a number (Euclidean
orm, L2 norm) calculated by the square root of the sum of the squared
ndividual numbers: |𝐴𝐵𝐶| =

√

𝐴2 + 𝐵2 + 𝐶2. Assuming there is at least
ne assignment, branch, or condition, the ABC metric consequently is
lways a positive number |𝐴𝐵𝐶| > 0.

.2.4. Maintainability index
As the name already suggests, the maintainability index [35–37]

as originally designed to measure how maintainable code is. It is
ased on the Halstead difficulty metric and is defined as 𝑀𝐼𝑤𝑜𝑐 =
25 − 10 ⋅ log(𝐻𝐸), where 𝐻𝐸 is the Halstead effort. A more complex
ariant is the maintainability index without comments, which combines
he Halstead volume, McCabe’s cyclomatic complexity, and the lines of
ode (LoC). It is defined as 𝑀𝐼𝑤𝑜𝑐 = 171 − 5.2 ⋅ ln(𝐻𝑉 ) − 0.23 ⋅ 𝐶𝐶 −

6.2 ⋅ ln(𝐿𝑂𝐶).

https://blog.quarkslab.com/deobfuscation-recovering-an-ollvm-protected-program.html
https://blog.quarkslab.com/deobfuscation-recovering-an-ollvm-protected-program.html
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3.2.5. Applications for code obfuscation
These code structure metrics were initially created to help build

reliable, readable, and maintainable software constructs. A higher value
indicates a more complex code structure with regards to the measured
properties of a program. [38] first suggested to use code structure
metrics for measuring obfuscation potency, i.e., how well humans are
able to comprehend the code. Obfuscating transformations make code
artificially more complicated, reducing its comprehensibility for hu-
mans. And indeed, a recent literature survey by [39] confirms that code
structure metrics are frequently used to measure obfuscation potency.
In 2023, we first showed how code structure metrics can also be used
for measuring obfuscation stealth [4]. Obfuscations can be classified
effectively by their characteristic modifications to the code structure.

4. Approach

For our study, we created a dataset from 85 programs which we
treated with various obfuscation configurations using the Tigress ob-
fuscator. These programs are single-function and single-file C source
codes from different categories, such as hashing and sorting algorithms.
In addition to self-written programs, we included samples from the
obfuscation benchmark repository by [40], which was composed with
the aim of representing both typical algorithms and varying code char-
acteristics (e.g., number of loops, depth of nested control flow, etc.). All
85 programs were then compiled and obfuscated in different combina-
tions. First, a set of non-obfuscated samples was generated using four
different compilers (GCC, clang, Tendra, and TinyCC). For GCC and
clang we created samples on four different compiler optimization levels
(O0 to O3) each. Then, we applied a total of 16 different obfuscation
configurations to the 85 programs using Tigress. The focus was put on
the layering of obfuscations, i.e., the sequential application of two or
more protections to the program code to explore how layering affects
the structural properties of the generated programs. Starting from the
hypothesis that the order of the application of different obfuscations
significantly impacts the structural properties of the generated samples,
the goal was to determine to what extent the structural properties
of earlier applied obfuscations are obscured by later obfuscations.
For achieving this goal, we discuss the classification performances of
several ML classifiers for which we give as inputs the structural code
patterns of an obfuscated program and ask to guess which obfuscation
techniques have been applied to the original program.

We did not create all possible layering combinations but instead
selected a subset that includes layerings of protections affecting sim-
ilar structural properties of the code and those working on different
properties. Special focus was placed on the last protection applied, as
we hypothesized that it has the most significant impact on the final
structure of the program.

This first step of the pipeline is depicted in the left part of Fig. 1,
and denoted as the dataset part.

4.1. Data preparation

We pooled the classes corresponding to the Tigress configuration,
i.e., we combined the different optimization levels per obfuscation
class. Further, we created a single class for all non-obfuscated samples
from the different compilers. In total, we ended with 17 classes (one
non-obfuscated and 16 obfuscation classes). The Tigress configurations
are listed in Appendix A. Not all obfuscating treatments of the original
85 programs resulted in valid binaries. We performed a functional
check for each binary program and automatically discarded broken
ones.

The code structure metrics used for classification were originally
developed for source code and have limited applicability for the mea-

surement of the complexity of binary code. We therefore disassembled

4 
each binary sample using the Rizin disassembler toolkit4 to obtain an
assembly representation. Disassembling binary code is an error-prone
process, especially when obfuscation techniques have been applied
to the code. Thus, there is a risk that the disassembled code is not
completely error-free and subsequently the calculation of the code
structure measures might also be slightly incorrect, which in turn
could have a negative impact on the classification capabilities of the
model. However, since we do not make any statements about the
actual complexity of code, but rather use the measures as features
for our machine learning methodology, we do not consider potential
data imprecision to be critical. Some metrics can be applied directly to
assembly code. In the Halstead measures, for example, the assembly
operators (opcodes) and their operands are used directly. For other
metrics, we have designed our own mapping for assembly code. For
the ABC metric, for example, we created a set of data manipulating
instructions, including arithmetic and logical operations, shift rotates,
etc. for the assignment count, CALL, JMP, RET, etc. instructions for the
branch count, and conditionals (e.g., a conditional jump or call) for the
condition count.

It is clear from the correlation matrix in Fig. 2 that some of the
features are highly correlated. This is due to the nature of the metrics.
Some of them are combinations or extensions of each other, as de-
scribed in Section 3.2. For example, the ABC metric is composed of A, B,
and C, which are also included in the original feature set. Nonetheless,
given our specific goal of understanding how structural code patterns
influence model effectiveness, we maintained all complexity metrics as
features. This approach ensures an exhaustive evaluation by analyzing
the full range of complexity metrics, allowing for a more detailed
assessment of the impact of each structural pattern on the model’s
performance.

4.2. Experimental setup

For our training and testing setup, we conducted two separate
trials. In the first trial, we implemented a randomized 80/20 split for
the training and testing data. This involved shuffling all samples and
allocating 20% for testing while the remainder was used for training.
In the second trial, we divided the training and testing datasets based
on programs. Out of 85 programs, we selected 68 for training and 17
for testing, which again corresponds to an approximate 80/20 split.
This strategy allowed us to evaluate concepts of training and testing
splits, enabling us to determine whether our approach is agnostic to
the presence of the same program in both the training and testing sets.
In other words, we assessed whether a program is exclusively in either
the training or testing set to estimate if our approach is generalizable.
Additionally, to address the issue of slightly imbalanced data (our
dominant class is non-obfuscated code), we employed the ADASYN
(Adaptive Synthetic Sampling, [41]) technique to generate synthetic
data, thereby balancing the dataset and increasing the number of sam-
ples per obfuscation class to 2000. We employed ADASYN for both the
80/20 split and the program-wise split and always after the train/test
split and only on the training dataset. We rescaled all data before
training using Sci-kit Learn’s StandardScaler [42], i.e., shifting the
data to have a mean of zero and a standard deviation of 1.

We decided for models that are both explainable and interpretable
to potentially identify patterns for classifying obfuscation classes. This
approach leverages well-established strategies for interpreting machine
learning models, notably through the use of SHAP (SHapley Additive
exPlanations) values [43] and feature importance analysis [44]. These
techniques provide insights into the contribution of each feature to the
model’s predictions, enabling a deeper understanding of the underlying
decision-making processes. From a data perspective, they offer inter-
pretable insights into the data. SHAP values [43], in particular, quantify

4 https://rizin.re (Accessed: March, 14th 2024)

https://rizin.re
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Fig. 1. Schematic depiction of our pipeline. The left part illustrates the constituents of the dataset, i.e., the samples generated from the 85 source code files and the information
on their obfuscation, transformed into a dataset with structural code metrics. The right part depicts our machine learning approach, highlighting the three employed classifiers,
and the estimated obfuscation type.
Fig. 2. Correlation coefficients for all code structure metrics.
the impact of each feature on the prediction outcome. Incorporating
feature importance analysis, especially for gradient boosting classi-
fiers, enhances our model’s interpretability by identifying the most
influential attributes in predicting obfuscation schemes. This method-
ology is consistent with established practices in tree-based modeling,
as outlined in the scikit-learn documentation, [44].

For our analysis, we thus selected Extremely Randomized Trees
(ExtraTrees, [45]), Extreme Gradient Boosting (XGBoost, [46]), and
Light Gradient Boosting Machine (LightGBM, [47]) as our classifiers, as
we can make use of the previously outlined interpretation techniques,
as depicted in Fig. 1. Further, these methods are known for their high
5 
performance across various problems [48–51], and were indicated to
perform well by employing lazy learner, [52].

To optimize the hyperparameters of each model, we conducted a
100-step Bayesian optimization with 5-fold cross-validation on exten-
sive parameter grids for each algorithm to find the optimal model,
i.e., the optimal hyperparameters. Hyperparameter tuning via Bayesian
optimization is a model-based optimization algorithm that leverages
past loss data to determine an optimal parameter set for each model.
Using prior information in Bayesian optimization significantly increases
its efficiency compared to traditional methods such as grid search
or random search, as highlighted by [53]. For this hyperparameter
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Table 2
Algorithms Performances for the Test dataset. 80/20 Split.

Accuracy Recall Precision F1 score

Extra trees 0.5712 0.5876 0.5712 0.5783
LGBM 0.5784 0.5960 0.5784 0.5862
XGBoost 0.5632 0.5813 0.5632 0.5715

Table 3
Algorithms Performances for the Test dataset. Program-wise 68/17 Split.

Accuracy Recall Precision F1 score

Extra trees 0.6869 0.6781 0.6869 0.6795
LGBM 0.6645 0.6653 0.6645 0.6631
XGBoost 0.6669 0.6661 0.6669 0.6638

optimization, we used an existing implementation from Scikit-
optimize. The accuracy of each model was then evaluated using a
range of metrics, including classification accuracy, F1 score, precision,
and recall. The full code and data can be found in our corresponding
GitHubRepository.

5. Results

In this section, we discuss our best models, and the achieved results.
Specifically, we detail the outcomes of our experiments, classification
metrics, and corresponding confusion matrices. Additionally, we study
the interpretation of our models through SHAP analysis and discuss the
feature importance of each model. Given the extensive nature of the
results, our focus will be on the classifiers that achieved the highest
accuracy, with supplementary results provided in Appendix B.

5.1. Model results

As indicated in Tables 2 and 3, which show the results for our test
data, we see that for the regular 80/20 split, the ExtraTrees Classifier
performed best, whereas for the program-wise split, the LGBM classifier
performed best. Here it is surprising that the results for the program-
wise split are significantly better than the ones for the regular split.
Meaning that our best results are approximately ≈ 0.1 better for the
program-wise split. I.e., the ExtraTrees classifier trained on program-
wise-split data achieved an accuracy of approximately 0.6869, whereas
the best LGBM classifier trained on the 80/20-split data achieved an
accuracy of approximately 0.5784. The same is true for all other em-
ployed metrics featured in Tables 2 and 3. This increase in performance
for the program-wise split is also depicted in our cross-validation results
presented in Table 4, i.e., the results for the program-wise split always
outperform the results for the 80/20 split. This table shows the best
cross-validation accuracy scores for both train–test-split scenarios and
all algorithms. These are the best results achieved by the Bayesian Cross
Validation Search, meaning that these scores depict how well each
algorithm performs on the training dataset.

Thus, we see a significant impact of the train–test split on machine
learning model performance, which is markedly evident in our study
for both train and test data, i.e., when comparing cross-validation (CV)
scores and test scores. This significant variance underscores the impact
of the split choice on training effectiveness and model validation.
Importantly, the program-wise split, which ensures all versions of one
obfuscated program are contained within the same subset, appears to
provide a more comprehensive set of data, suggesting that a program-
wise split enhances generalizability, as not only the accuracy of test
data is improved, but also the accuracy on training data.

We also depicted these results in confusion matrices 3 and 4 for
the two best-performing models, thus highlighting the results on in-
dividual classes for the test data. The remaining confusion matrices
are collected in Appendix B.1. The featured confusion matrices show

for both splits that we have classes that can be classified with a very
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Table 4
Best CV Accuracy Scores for Each Algorithm Across Different Splits. This score is the
accuracy obtained for the best model during hyperparameter optimization.

Algorithm 80/20 Split Program-wise 68/17 Split

Extra trees 0.7591 0.7957
LGBM 0.7705 0.7802
XGBoost 0.7574 0.7671

high accuracy, i.e., 0.9 and above, some even with 1.0, highlighting
a perfect classification of these classes in the training dataset. For all
confusion matrices, we see that classes the classes No-Obfuscation,
Encode, Virtualize and VirtualizeSplit are classified with
high accuracy, i.e., 0.9 and above. Here, Virtualize and Virtu-
alizeSplit are oftentimes classified with perfect accuracy, i.e., no
single one of these instances was classified wrong. This not only shows
the strength of our approach in, first of all, differentiating between
obfuscated and non-obfuscated code but also shows that code treated
with certain obfuscation combinations is particularly vulnerable to
being identified as originating from this obfuscation configuration. In
contrast, other obfuscations and or layered obfuscations do not allow to
being identified that easily. Here, we want to emphasize three particu-
lar clusters that are present in all of our results. I.e., obfuscations that
are often mistaken for each other and/or not classified correctly. The
first pair here is the FlattenSplit and FlattenSplitEncode;
these two combinations are particularly strongly mistaken for each
other, as e.g. Confusion Matrix Fig. B.9 shows where FlattenSplit
is identified as FlattenSplitEncode on average with a score of
0.86. The other two clusters that exhibit similar behavior for being
mistaken are OpaFlatten and OpaSplit; and finally Split and
Flatten.

Focusing on the obfuscation layering’s impact on classification, our
analysis revealed significant insights into how certain obfuscations
obscure others’ structural patterns when layered together. This intri-
cacy is, as previously mentioned, particularly evident in the confusion
across obfuscation techniques that share at least one layer, e.g. _Opa*,
_Flatten*, and so on. Our initial hypothesis was that the order of
applied code transformations plays a critical role in the structure of
the resulting binary code. Obfuscations applied later would override
structural changes made by earlier obfuscations if they modify similar
structural code properties. This would lead to confusions between
classes that share the same transformations at the end of the layer-
ing process. In two of the three identified clusters with particularly
high confusions, we observed that transformations applied earlier in
the layering process are responsible for the observed confusions. In
the cluster FlattenSplit and FlattenSplitEncode, the only
difference in the layering is the Encode transformation. This transfor-
mation modifies data structurally, unlike Flatten and Split, which
alter the control flow graphs of the programs. Therefore, Encode
is unable to hide the characteristic properties of the Flatten and
Split transformations, resulting in increased confusions between the
two layerings. In the cluster OpaFlatten and OpaSplit, the last
transformations, Flatten and Split, modify similar structural code
properties (i.e., the control flow graphs), and thus, the confusions seem
explainable here. However, it must be assumed that the initially applied
Opa transformation in both classes significantly influences the observed
confusions, as such confusions do not occur in other classes with Split
and Flatten at the end of the layering process (e.g., EncodeSplit
and OpaFlatten). Furthermore, in the classes EncodeSplit and
SplitFlatten, slightly increased confusions can be observed (0.12).
We conclude that the influence of covering transformations through
later applied ones is less significant than initially assumed, and the
contained transformations have a bigger impact on classification accu-
racy. The classifier often struggled to distinguish between classes with
a shared subset of transformations, thus highlighting a challenge in
identifying layered obfuscations correctly.

https://github.com/Raubkatz/Classifying_Layered_Software_Obfuscations
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Fig. 3. Confusion matrix for LGBM, 80/20 train test split.

Fig. 4. Confusion matrix for ExtraTrees, 68/17 program-wise split.
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Fig. 5. Feature importances for LGBM, 80/20 train test split.

5.2. Explainability

The final part of our analysis aims to analyze, interpret, and ex-
plain our results through a feature importance analysis and SHAP
values. This approach goes beyond the initial analysis of classification
scores and confusion matrices, enabling us to deduce the relationships
between features within our classification process and furthering the
conversation on the complexities introduced by obfuscation layering.

For the two algorithms that outperformed others—each represent-
ing the best for a particular split—we discuss the results within the
main text. The feature importance for these models is illustrated in
Figs. 5 and 6, with a corresponding selected SHAP values analysis
detailed in Figs. 7 and 8. For a more extensive review, including the
analyses of additional classifiers, we refer to Appendices B.2 and B.3.

Building on our prior discussion regarding the complexity intro-
duced by various obfuscation techniques, our investigation reveals that
different complexity metrics carry varying degrees of importance in our
classification process. As shown in Figs. 5 and B.15, features labeled A,

, and C consistently rank among the top five in terms of importance.
his observation holds across most classifiers (refer to Appendix B.2)
ith a few exceptions. Additionally, cyclomatic complexity stands as
top-five feature in five out of the six models reviewed. Halstead-

ased metrics display more variation in their importance, with Hal-
tead_Level appearing three times and Halstead_Volume twice
ithin the top five across various analyses. The SHAP values, which we
xamine next, echo these findings and reveal further interconnections.

Looking at the SHAP values for both of our best classifiers, as
isplayed in Figs. 7 and 8,5 we encounter a consistent theme. The plots
ategorize each feature according to its importance for the model to
orrectly classify a given class or obfuscation. Specifically, for well-
lassified categories such as No-Obfuscation, Encode, Virtual-
ze, and VirtualizeSplit, we find that the B feature is crucial

or accurate classification. This finding aligns with the earlier feature
mportance analysis, detailed in Figs. 3 and 6. In those analyses, B
merges as the top feature for the program-wise split and consistently
anks in the top five for importance. This pattern holds across the
oard for other classifiers and their respective SHAP values, as outlined
n Appendix B.3, where B invariably appears as a key feature across
lasses.

5 Here we show selected classes important for this analysis. The full
pectrum is collected in Appendix B.3.
8 
Fig. 6. Feature importances for ExtraTrees, program-wise train test split.

Turning to the implications of obfuscation layering, it is crucial to
examine the three clusters where classes are frequently misidentified,
as well as the classes with the highest performance, as depicted in
Figs. 5 and B.15. In these instances, the B feature emerges as the most
significant, ranking as the top influencer for the program-wise split and
consistently appearing among the top five for other splits. This pattern
holds across all classifiers and is reflected in their SHAP values, as
detailed in Appendix B.3, where B is invariably the most crucial feature
for classes such as No-Obfuscation and Encode, to classes which
we can identify with high accuracy. Consequently, we deduce that B
stands out as the paramount code metric for distinguishing between
obfuscated and non-obfuscated code, a conclusion supported by its
prominence across various classes in the SHAP value analyses.

Examining our three clusters where obfuscation layers often lead
to misclassification, we notice that B emerges as the most critical
metric in all SHAP value analyses for FlattenSplit and Flat-
tenSplitEncode. However, the significance of other code metrics
varies, with cyclomatic complexity frequently ranking as one of the
most influential. In contrast, for OpaFlatten and OpaSplit, no
single feature consistently dominates, indicating that these classes are
particularly challenging to distinguish. This suggests that our cur-
rent set of code complexity metrics might not adequately represent
the structural changes of these transformations. In the third cluster,
involving Split and SplitFlatten, where we also see weaker
performance and frequent misclassifications, B remains a key feature.
Interestingly, among the 12 SHAP plots available for these classes,
Halstead_Volume is identified as the second most crucial metric in
seven instances, implying its relevance in classifying these categories
accurately, albeit not sufficiently on its own.

Furthermore, we note that Myers_Interval and Halstead_
Effort frequently rank at the lower end of feature importance accord-
ing to our SHAP value analysis. This trend is consistent with our feature
importance findings for both the top classifiers and the additional
analyses provided in Appendix B.2. However, it is noteworthy that
Myers_Interval is often identified as the least significant feature in
the program-wise split, yet it assumes greater importance in the 80/20
split. This discrepancy might seem contradictory, especially since our
80/20 splits generally underperform compared to the program-wise
splits. From this observation, we deduce that Myers_Interval may
not effectively capture the intricacies of obfuscations and layering,
underscoring its limitations as a metric for distinguishing obfuscated

code.
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Fig. 7. SHAP value plots, selected classes, LGBM-Classifier, 80/20 split.
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Fig. 8. SHAP value plots, selected classes, extratrees-Classifier, program-wise split.
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5.3. Summary

In wrapping up our analysis of Machine Learning experiments fo-
cused on code obfuscation, we briefly revisit our methodology and
key discoveries with respect to the outlined research objectives of
this article. Our exploration spanned various obfuscation techniques,
employing three principal algorithms across two distinct data splits—
the traditional 80/20 split and a more nuanced program-wise split.
This approach allowed us to rigorously evaluate the efficacy of code
complexity metrics in identifying specific obfuscations and their layer-
ings. Specifically, we show how code complexity metrics can be used as
features to identify obfuscations and their layerings. We identify which
complexity metrics are the most expressive for recognizing obfuscated
code and examine if and how the layering of obfuscations complicates
their identification. ,

Summary of Main Findings:

• Algorithm Performance Under Different Splits: The LGBM and
ExtraTrees algorithms demonstrate superior performance under
the 80/20 and program-wise splits, respectively. This variance
in effectiveness emphasizes the significant role of train–test split
choice on model training and validation. The program-wise split,
by including all versions of obfuscated programs within the same
subset, provides a more holistic dataset, potentially enhancing
the learning environment and, by extension, model generalization
and accuracy.

• Impact on Model Generalization: Our findings suggest that data
structuring, influenced by the train–test splitting strategy, plays a
crucial role in algorithm performance. The differences in cross-
validation scores between splits indicate that no algorithm uni-
versally excels, pointing to the importance of dataset composition
and split strategy in achieving optimal model performance.

• Obfuscation Identification: We successfully pinpointed types
of obfuscations and their combinations that can be accurately
identified. This means that, based on code complexity metrics, we
are capable of discerning if and how, through specific techniques
and layering, the employed obfuscation can be detected with high
precision.

• Obfuscation Clusters: We identified three clusters of obfuscation
techniques that tend to be confused with one another, leading
to clusters characterized by low accuracy. Contrary to our initial
assumption, the order of obfuscations in the layering process has
only a minor impact on classification accuracy.

• Feature Significance: The B feature emerged as particularly
pivotal, significantly aiding in differentiating between obfuscated
and non-obfuscated code. This reinforces the idea that not all
metrics carry equal weight in the identification process.

• Metric Efficacy: The analysis underscored that no single code
complexity metric is fully capable of capturing the breadth of
obfuscation techniques, suggesting a need for more refined or
additional metrics to improve detection rates.

• Data Split Impact: The importance of Myers_Interval varied
notably between the two data splits, hinting at its limited relia-
bility as a metric for obfuscation identification. This variability
points to the challenges inherent in using static metrics to detect
dynamic coding practices.

. Conclusions

In this work, we provided novel insights into the impact of ob-
uscation layering on the code structure of protected binaries and the
imitations of obfuscation classification due to layering.

Our initial hypothesis suggested that the order of applied code
ransformations plays a crucial role in the structure of the resulting

inary code. While we assumed that later applied obfuscations would

11 
obscure earlier ones if they modified similar structural characteristics,
our findings indicate that this hypothesis does not hold completely.
Instead, the contained transformations, even if applied earlier in the
layering process, are crucial for classification and later applied trans-
formations do not undo their characteristic structural patterns enough
to prevent classification.

The results of our research can be used to improve the stealth of
future protection methodologies. By understanding which obfuscation
techniques and combinations are most effective at concealing structural
patterns of their individual obfuscation, developers can create obfusca-
tion strategies that are harder to classify through machine-learning.
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ppendix A. Tigress configurations

CFG flattening (Flatten):
--Transform=Flatten \

--Functions=init_program

Opaque predicates, anti branch analysis, MBA (Opabaea):
--Seed=0 \
--Inputs=’+1:int:42,-1:length:1?10’ \
--Transform=InitEntropy \

--Functions=init_program \
--InitEntropyKinds=vars \

--Transform=InitOpaque \
--Functions=init_program \
--InitOpaqueStructs=list,array,input,env \

--Transform=InitBranchFuns \
--InitBranchFunsCount=1 \

--Transform=AddOpaque \
--Functions=init_program \
--AddOpaqueStructs=list \
--AddOpaqueKinds=true \
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--Transform=AntiBranchAnalysis \
--Functions=init_program \
--AntiBranchAnalysisKinds=branchFuns \
--AntiBranchAnalysisObfuscateBranchFunCall=false \
--AntiBranchAnalysisBranchFunFlatten=true \

--Transform=EncodeArithmetic \
--Functions=init_program

Virtualization (Virtualize):
--Transform=Virtualize \

--VirtualizeDispatch=direct \
--Functions=init_program

MBA (Encode):
--Transform=EncodeArithmetic \

--Functions=init_program

Function splitting, MBA (SplitEncode):
--Transform=Split \

--SplitKinds=deep,block,top \
--SplitCount=100 \
--Functions=init_program \

--Transform=Split \
--SplitKinds=block \
--SplitCount=100 \
--Functions=init_program \

--Transform=EncodeArithmetic \
--Functions=init_program

Function splitting (Split):
--Transform=Split \

--SplitKinds=deep,block,top \
--SplitCount=100 \
--Functions=init_program \

--Transform=Split \
--SplitKinds=block \
--SplitCount=100 \
--Functions=init_program

CFG flattening, function splitting (FlattenSplit):
--Transform=Flatten \

--Functions=init_program \
--Transform=Split \

--SplitKinds=deep,block,top \
--SplitCount=100 \
--Functions=init_program \

--Transform=Split \
--SplitKinds=block \
--SplitCount=100 \
--Functions=init_program

Function splitting, CFG flattening (SplitFlatten):
--Transform=Split \

--SplitKinds=deep,block,top \
--SplitCount=100 \
--Functions=init_program \

--Transform=Split \
--SplitKinds=block \
--SplitCount=100 \
--Functions=init_program \

--Transform=Flatten \
--Functions=init_program

CFG flattening, function splitting, MBA (FlattenSplitEncode):
--Transform=Flatten \

--Functions=init_program \
--Transform=Split \

--SplitKinds=deep,block,top \
--SplitCount=100 \
--Functions=init_program \

--Transform=Split \
--SplitKinds=block \
--SplitCount=100 \
--Functions=init_program \

--Transform=EncodeArithmetic \
--Functions=init_program

Virtualization, function splitting (VirtualizeSplit):
--Transform=Virtualize \

--VirtualizeDispatch=direct \
--Functions=init_program \

--Transform=Split \
--SplitKinds=deep,block,top \
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--SplitCount=100 \
--Functions=init_program \

--Transform=Split \
--SplitKinds=block \
--SplitCount=100 \
--Functions=init_program

- Function splitting, virtualization (SplitVirtualize):
--Transform=Split \

--SplitKinds=deep,block,top \
--SplitCount=100 \
--Functions=init_program \

--Transform=Split \
--SplitKinds=block \
--SplitCount=100 \
--Functions=init_program \

--Transform=Virtualize \
--VirtualizeDispatch=direct \
--Functions=init_program

- Opaque predicates (Opa):
--Seed=0 \
--Inputs=’+1:int:42,-1:length:1?10’ \
--Transform=InitEntropy \

--Functions=init_program \
--InitEntropyKinds=vars \

--Transform=InitOpaque \
--Functions=init_program \
--InitOpaqueStructs=list,array,input,env \

--Transform=InitBranchFuns \
--InitBranchFunsCount=1 \

--Transform=AddOpaque \
--Functions=init_program \
--AddOpaqueStructs=list \
--AddOpaqueKinds=true

- Function splitting, opaque predicates (SplitOpa):
--Transform=Split \

--SplitKinds=deep,block,top \
--SplitCount=100 \
--Functions=init_program \

--Transform=Split \
--SplitKinds=block \
--SplitCount=100 \
--Functions=init_program \

--Seed=0 \
--Inputs=’+1:int:42,-1:length:1?10’ \
--Transform=InitEntropy \

--Functions=init_program \
--InitEntropyKinds=vars \

--Transform=InitOpaque \
--Functions=init_program \
--InitOpaqueStructs=list,array,input,env \

--Transform=InitBranchFuns \
--InitBranchFunsCount=1 \

--Transform=AddOpaque \
--Functions=init_program \
--AddOpaqueStructs=list \
--AddOpaqueKinds=true

- Opaque predicates, function splitting (OpaSplit):
--Seed=0 \
--Inputs=’+1:int:42,-1:length:1?10’ \
--Transform=InitEntropy \

--Functions=init_program \
--InitEntropyKinds=vars \

--Transform=InitOpaque \
--Functions=init_program \
--InitOpaqueStructs=list,array,input,env \

--Transform=InitBranchFuns \
--InitBranchFunsCount=1 \

--Transform=AddOpaque \
--Functions=init_program \
--AddOpaqueStructs=list \
--AddOpaqueKinds=true \

--Transform=Split \
--SplitKinds=deep,block,top \
--SplitCount=100 \
--Functions=init_program \

--Transform=Split \
--SplitKinds=block \
--SplitCount=100 \
--Functions=init_program
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Fig. B.9. Confusion matrix for ExtraTrees, 80/20 train test split.

- Opaque predicates, CFG flattening (OpaFlatten):
--Transform=Flatten \

--Functions=init_program \
--Seed=0 \
--Inputs=’+1:int:42,-1:length:1?10’ \
--Transform=InitEntropy \

--Functions=init_program \
--InitEntropyKinds=vars \

--Transform=InitOpaque \
--Functions=init_program \
--InitOpaqueStructs=list,array,input,env \

--Transform=InitBranchFuns \
--InitBranchFunsCount=1 \

--Transform=AddOpaque \
--Functions=init_program \
--AddOpaqueStructs=list \
--AddOpaqueKinds=true

- CFG flattening, opaque predicates (FlattenOpa):
--Transform=Flatten \

--Functions=init_program \
--Seed=0 \
--Inputs=’+1:int:42,-1:length:1?10’ \
--Transform=InitEntropy \

--Functions=init_program \
--InitEntropyKinds=vars \

--Transform=InitOpaque \
--Functions=init_program \
--InitOpaqueStructs=list,array,input,env \

--Transform=InitBranchFuns \
--InitBranchFunsCount=1 \

--Transform=AddOpaque \
--Functions=init_program \
--AddOpaqueStructs=list \
--AddOpaqueKinds=true

Appendix B. Additional results

This appendix presents the results for all additional setups, i.e., we
tested and discussed only the best-performing results in Section 5.1; this
appendix serves to present the remaining results. Thus, we provide the
full spectrum of our analysis.

B.1. Confusion matrices

See Figs. B.9–B.12.
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Fig. B.10. Confusion matrix for XGBoost, 80/20 train test split.

Fig. B.11. Confusion matrix for LGBM, 68/17 program-wise split.

B.2. Feature importances

See Figs. B.13–B.16.

B.3. SHAP value plots

See Figs. B.17–B.22.
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Fig. B.12. Confusion matrix for XGBoost, 68/17 program-wise split.
Fig. B.13. Feature importances for ExtraTrees, 80/20 train test split.

Fig. B.14. Feature importances for XGBoost, 80/20 train test split.
14 
Fig. B.15. Feature importances for LGBM, 68/17 program-wise split.

Fig. B.16. Feature importances for XGBoost, 68/17 program-wise split.
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Fig. B.17. SHAP value plots, all classes, ExtraTrees-Classifier, 80/20 split.
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Fig. B.18. SHAP value plots, all classes, LGBM-Classifier, 80/20 split.
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Fig. B.19. SHAP value plots, all classes, XGBoost-Classifier, 80/20 split.
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Fig. B.20. SHAP value plots, all classes, ExtraTrees-Classifier, program-wise split.
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Fig. B.21. SHAP value plots, all classes, LGBM-Classifier, program-wise split.
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Fig. B.22. SHAP value plots, all classes, XGBoost-Classifier, program-wise split.
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