
Cloud Programming Languages and Infrastructure
from Code: An Empirical Study

Georg Simhandl
Research Group Software Architecture, Faculty of

Computer Science, University of Vienna
Vienna, Austria

georg.simhandl@univie.ac.at

Uwe Zdun
Research Group Software Architecture, Faculty of

Computer Science, University of Vienna
Vienna, Austria

uwe.zdun@univie.ac.at

Abstract
Infrastructure-from-Code (IfC) is a new approach to DevOps
and an advancement of Infrastructure-as-Code (IaC). One
of its key concepts is to provide a higher level of abstrac-
tion facilitated by new programming languages or software
development kits, which automatically generate the neces-
sary code and configurations to provision the infrastructure,
deploy the application, andmanage the cloud services. IfC ap-
proaches promise higher developer productivity by reducing
DevOps-specific tasks and the expert knowledge required.
However, empirical studies on developers’ performance, per-
ceived ease of use, and usability related to IfC are missing.
We conducted a controlled experiment (n=40) to assess the
usability of the cloud programming languages (PL) and soft-
ware development kits (SDK). Both approaches involve simi-
lar effectiveness. We found that the PL-based approach was
moderately less efficient but increased correctness with time
spent on programming. Tracing generated infrastructure
configurations from code was more challenging with the
SDK-based approach. Applying thematic analysis, 19 themes
emerged related to usability barriers, supporting factors, se-
curity, cloud cost, and enhancement areas. We conclude with
five findings and future directions.

CCS Concepts: • Computer systems organization →
Cloud computing; • General and reference→ Empiri-
cal studies; • Software and its engineering→ Domain
specific languages.

Keywords: Programming Language, Cloud, Infrastructure
From Code, Empirical Study, Experiment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SLE ’24, October 20–21, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1180-0/24/10
https://doi.org/10.1145/3687997.3695643

ACM Reference Format:
Georg Simhandl and Uwe Zdun. 2024. Cloud Programming Lan-
guages and Infrastructure from Code: An Empirical Study. In Pro-
ceedings of the 17th ACM SIGPLAN International Conference on Soft-
ware Language Engineering (SLE ’24), October 20–21, 2024, Pasadena,
CA, USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.
1145/3687997.3695643

1 Introduction
Infrastructure-from-Code [5] defines approaches generating
infrastructure and application deployment configurations
from code. IfC combines software development and devel-
opment operations (DevOps) [27] by abstracting the infra-
structure-relevant declarations, e.g., infrastructure-as-code
(IaC) [16]. The two primary approaches are IfC Programming
Languages (PL), compiling to IaC and optimized application
code accessing the generated IaC, and IfC Software Develop-
ment Kits (SDK), offering language-agnostic programmatic
interfaces to infrastructure resources and attributes, such as
policies.

Whereas IaC deployment necessitates specialized knowl-
edge in cloud architecture and subsequent code or model
abstraction, IfC aims to simplify this process. It generates
cloud infrastructure and deployment scripts from applica-
tion source code, eliminating the need for a domain-specific
language and reducing the risk of manual operations er-
rors [5]. IfC thus offers a promising solution to streamlining
the configuration of cloud resources and its provisioning
process, using comprehensible abstractions and underlying
transpilation processors.
A key challenge in IaC is security, particularly identity

and access management, and ensuring the least privilege of
resources. IfC aims to provide easy-to-use software language
concepts to ensure these critical security objectives. Consid-
ering the potential of IfC, it is necessary to evaluate its us-
ability, especially for novices. Our primary research question
is:What are the developer productivity (efficacy) and usability
of the two different IfC concepts, i.e., SDK-based and PL-based
approaches? From this, we derive several sub-questions:

RQ1 How do novices comprehend IfC language concepts
of SDK- and PL-based approaches?

RQ2 How efficient and effective are novices working with
the two different approaches?

https://orcid.org/0000-0003-0516-3274
https://orcid.org/0000-0002-6233-2591
https://doi.org/10.1145/3687997.3695643
https://doi.org/10.1145/3687997.3695643
https://doi.org/10.1145/3687997.3695643


SLE ’24, October 20–21, 2024, Pasadena, CA, USA Georg Simhandl and Uwe Zdun

RQ3 How do novices comprehend generated IaC artifacts
and their link to SDK- and PL-based abstractions?

RQ4 What are the two approaches’ perceived usability and
ease of use, good practices to expand, and critical bar-
riers to adopting the IfC approaches from a novices’
point of view?

We are particularly interested in finding differences in usabil-
ity and developers’ productivity and identifying underlying
supporting factors and barriers affecting developer expe-
rience themes. Using the participant’s feedback, we apply
thematic analysis to identify critical success factors for cloud
programming languages and aggregate the emerging themes
into findings and future directions.

This paper is structured as follows: We describe the back-
ground and related work in Section 2, the experimental de-
sign adhering to guidelines for controlled experiments [14]
in Section 3 and analyze the efficiency and effectiveness, mea-
sured by correctness and time to complete the task in Section
4. Themes that emerged from survey results are reported
in Section 5. We further report the results and findings in
Section 6, discuss threats to validity (Section 7), conclude
with implications, and synthesize our findings with recom-
mendations and potential future directions (Section 8).

2 Background and Related Work
Infrastructure as Code (IaC) has its roots in the mid-2000s,
particularly with the release of Amazon’s Web Services Elas-
tic Compute Cloud (EC2) and declarative, domain-specific
languages such as Puppet and Ansible. These early tools
were soon followed by Terraform, which aimed to standard-
ize cloud provisioning practices.

Initial IaC solutions like Ansible [3] and Chef [8] employed
imperative scripting approaches. In contrast, declarative so-
lutions such as Puppet [19] allowed developers to specify
desired states, significantly enhancing adaptability and ro-
bustness. Modern IaC tools, including AWS CloudFormation
[1], Terraform [24], and Pulumi [18], further this approach
by utilizing typed, directed, acyclic resource graphs [26].
These tools also leverage general-purpose programming lan-
guages (GPL) like Go, Python, and TypeScript for defining
infrastructure states.

The PIACERE project has contributed significantly to this
field by developing the DevOpsModelling Language (DOML).
This language describes cloud applications independently of
specific cloud providers and IaC tools through a multi-layer
approach, encompassing application, abstract, and concrete
infrastructure layers. DOML enables developers to map soft-
ware components to infrastructure elements, facilitating var-
ious deployment options [9]. A study by [23] involving 73
IT professionals revealed that, in practice, manual coordi-
nation is often employed for correct deployments despite
expectations of superior software delivery and operations
performance through fully automated approaches.

A recent study identified 14 key cloud infrastructure prac-
tices and evaluated the limitations of current cloud automa-
tion technologies like Infrastructure as Code (IaC), noting
their complexity and need for specialized knowledge. The
authors introduced the Infrastructure from Python Code ap-
proach to address these issues, automatically generating
cloud deployment templates from application source code.
They evaluated it through a case study with 24 student de-
velopment teams [4].

2.1 Infrastructure from Code Approaches
The first and second generations of IaC used domain-specific
languages, e.g., Chef, Puppet, and Ansible, to configure in-
frastructure, leading to repetitive and verbose configurations.
The third generation of IaC, e.g., Pulumi or CDK, uses GPLs
to solve this problem. With the growing number of cloud
resources, development and operation teams, infrastructure
configurations, and runtime code are further separated. IfC
tries to close this DevOps gap. Instead of separate infras-
tructure and application code, they eliminate the former,
leaving only the application code, and the infrastructure is
completely derived from code.

SDK-based IfC approaches represent the next step in evo-
lution, mainly using an SDK to access cloud resources’ func-
tionalities and configurations. SDK-based approaches or ap-
proaches using a combination of SDKs and annotations rely
on well-known GPLs, e.g., Python, Go, and TypeScript. For
instance, Encore [13], Shuttle [22], Ampt [2], and Nitric [17]
are characterized by GPLs and SDK to abstract infrastructure
configurations.

Conversely, the PL-based approach takes a different path,
introducing a new programming language and distinct execu-
tion concepts. For example, Darklang [12] and Wing [25] in-
troduce new syntax and new concepts like biphasic program-
ming [20], where the new programming language is used to
express computations executed in two different phases, e.g.,
infrastructure configuration and application while remain-
ing consistent behavior across the phases. Wing represents
one of the first cloud programming languages to apply this
concept to cloud-native development.
To compare the understandability of an SDK-based vs. a

PL-based approach, we thoroughly evaluated IfC approaches
according to availability, cloud-agnostic support, and produc-
tion readiness criteria. We chose Nitric [17] and Wing [25].
Wing and Nitric aim to facilitate cloud application develop-
ment by abstracting infrastructure concerns. However, their
concepts differ significantly. Nitric is well suited as a base-
line (control) as it uses established programming language
concepts for infrastructure and application code, while Wing
is a new programming language introducing new concepts.
WingLang (Wing) is a novel programming language

for cloud development. It integrates cloud concepts directly
into application code. Wing transpiles applications into Ter-
raform and JavaScript for cloud deployment.



Cloud Programming Languages and Infrastructure from Code: An Empirical Study SLE ’24, October 20–21, 2024, Pasadena, CA, USA

Nitric provides Software Development Kits (SDKs) for
existing languages, e.g., TypeScript, JavaScript, Python, and
Go. SDKs interact with a deployment engine and providers to
deploy applications across various clouds. Both approaches,
Nitric andWing, aim to enhance productivity, but their imple-
mentation methods cater to different developer preferences
and use cases.
Wing, as a programming language, introduces two ma-

jor concepts. First, Inflight code implements application
behavior, e.g., handling API requests and processing queue
messages. It can be executed on various cloud computing
platforms, including function services, e.g., AWS Lambda,
containers, e.g., ECS, Kubernetes, and virtual machines or
physical servers. Second, Preflight code runs once at com-
pile time and transpiles this code to infrastructure configu-
rations, e.g., Terraform. Preflight code has no special annota-
tion and is Wing’s default execution phase.

3 Experiment
3.1 Experimental Design
The user study was carefully designed, adhering to ethical
and privacy-related requirements of the authors’ institution
and country’s laws, i.e., participants were informed about
the study’s purpose, data collection procedure, participants’
rights, and anonymization strategy.

The dependent variables, time to complete a task and cor-
rectness of the task, influenced by the independent variable
(treatment groups), solution approach 𝑊 (presenting the
PL-based approach), and 𝑁 (representing the SDK-based ap-
proach), are moderated by (confounding) factors, such as
knowledge, skills, and work experience in the area of cloud
computing, programming language proficiency and general
software engineering related problem-solving skills. We as-
sessed these factors with a pre-experiment survey.

3.2 Procedure
We recruited participants from the authors’ institution and
announced the experiment during a distributed systems en-
gineering course two weeks before the event. Along with the
announcement, we provided a reading list featuring expert ar-
ticles on IaC and tutorials on SDK-based approaches (e.g., Pu-
lumi and Nitric) and PL-based approaches (e.g., WingLang).
The experiment was conducted in the institution’s com-
puter laboratory, where each workstation was equipped with
Linux, pre-installed Nitric and Wing frameworks, and Visual
Studio Code with Wing and TypeScript extensions.

To guide participants through the experiment, we utilized
the Moodle learning platform. Participants were required
to fill out a consent form with a unique pseudonym (e.g.,
B42) to ensure anonymity and minimize bias. Each partici-
pant entered this pseudonym at the start of the experiment.
Figure 1 shows the procedure We collected basic informa-
tion such as demographics, prior knowledge, and preferred

Randomized Controlled Experiment

Pre-Survey Tasks 1-4 Post-survey

Study Information, Declaration of Consent,
Data Protection and Pseudonymization

Figure 1. Experimental design and procedure of the study.

programming languages. Tasks and materials were prepared
for two experiment groups. Participants were instructed to
record their start time for each task and, upon completion,
to note the end time and rate the task’s difficulty level and
their confidence in their answers.

The final section of the survey assessed the perceived use-
fulness and ease of use of the programming languages. It
also included open-ended questions regarding interesting
and distracting features. In the post-hoc survey, participants
were asked to rank the activities based on the time required
to complete each task. For example, participants might spend
most of their time reading the source code, consulting API
documentation, writing source code, writing tests, and exe-
cuting tests.

3.3 Material
To assess the understandability of key concepts of IfC in
terms of correctness and time to complete the tasks, we pre-
pared a URL shortener application implementation, both for
Wing and Nitric. The simplified implementation and poten-
tial solution code excerpts can be found in Appendix A. The
sample application uses three cloud services: The API Gate-
way, a simple key-value storage (a bucket in Wing), and an
encrypted secret storage. The secret storage is used to store
the API-Key to avoid API-Key leakage. TheGET-request han-
dler retrieves the target URL from a key-value store, where
the key is the alias or short name, making a short URL, and
relocates to the target URL. We provided a basic authentica-
tion middleware using the encrypted cloud storage for the
API key to create new short to long URL mappings, realized
by an POST-request handler. Both approaches transform or
generate infrastructure code. To compare the source-code-
to-configuration-code-tracability, we had to implement a
new provider (plugin) for Nitric. The provider generates the
necessary Terraform configuration in JSON format, similar
to Wings transpilation output.



SLE ’24, October 20–21, 2024, Pasadena, CA, USA Georg Simhandl and Uwe Zdun

3.4 Tasks - Group A
To avoid potential sequencing effects, i.e., favoring the first
tasks, and fatigue effects, i.e., decreasing correctness or in-
creasing time to complete a task due to increasing cognitive
load, we designed a controlled two-group intra-subject ex-
periment consisting of Groups A and B.
Task 1 - Wing’s Concept Comprehension: Participants
were asked to read the code and comprehend the core con-
cepts of Wing. We asked participants to check out a git
repository of a simple URL shortener cloud app, compile or
run the program, view the local cloud emulator, and count
the number of cloud services used in the application. Us-
ing a multiple-choice test, we further examined participants’
knowledge of the IfC approach. Task 2 - Implementing
using Wing: Treatment𝑊 (Wing) represents the program-
ming language approach that is similar to TypeScript lan-
guage and introduces Wing’s inflight and preflight concept.
We evaluate the understandability of these new language
concepts by asking participants to read the code and ex-
tend the application. Participants were asked to write a new
serverless (Lambda) function requiring understanding and
applying both concepts. We prepared a URLShortenerAlgo-
rithm in Javascript code. The goal of this task is to 1) reference
an external source code, the URLShortenerAlgorithm, and 2)
offload the URL shortening (hashing) to a serverless function.
Task 3 - Traceability of Nitric IfC: This third task requires
inspecting the infrastructure configuration and assessing the
participant’s understandability of the (compiled) output and
the time to inspect and summarize it. Group A inspected
the Terraform configuration generated by Nitric. Task 4 -
Implementation using Nitric: To evaluate the understand-
ability of the SDK-based approach, we asked participants to
write a DELETE-request handler, requiring the participant
to understand the concept of implied access control of the
reference to a cloud service, here the key-value store, and
adding the delete parameter in the allow-method. This task
evaluates the cloud programming language’s API and its
documentation.

3.5 Tasks - Group B
Group B participants performed tasks involving equal effort
but in a different order and adapted task descriptions. Task 1
- Nitric Concept Comprehension: This task corresponds
to Task 1 for Group A, i.e., Wing’s Concept Comprehension.
We adapted the multiple choice questions to Nitric’s core
concept of implied permissions. Task 2 - Implementing
with Nitric: This task corresponds to Task 4 of Group A
(Implementing using Nitric). Task 3 - Traceability ofWing
IfC: This task corresponds to Task 3 of Group A, i.e., Trace-
ability of Nitric IfC. We slightly adapted the multiple-choice
questions for Wing. Task 4 - Implementing using Wing:
This task corresponds to Task 2 of Group A (Implementing
using Wing).

3.6 Participants
The participants are students in their final year of a Bache-
lor’s or the beginning of their Master’s program with a major
in computer science, data science, or business informatics.
Participants were granted course credits as an incentive. In
Figure 2, we provide an overview of participants’ demograph-
ics. We invited 42 participants.
One participant opted out and did not sign the consent

sheet, and another participant did not finish the experiment,
mentioning in the post-hoc survey that ”without any experi-
ence (it is) impossible to finish the task.” Hence, this subject
was excluded from further analysis.

21 22 23 24 25 26+
Age (years)

0.0

2.5

5.0

0 1 2 3 4 5 6 7+
Programming (years)

0.0

2.5

5.0

0 1 2 3 4+
JavaScript/TypeScript (years)

0

5

Fr
eq

ue
nc

y

Group A Group B

Figure 2. Demographics of participants.

The remaining 40 participants were evenly divided into
two groups. Group A consisted of three females and 17 males,
with eight in a Master’s program and 12 in a Bachelor’s
program, including five in Business Informatics, two in Data
Science, and 13 in Computer Science. Group B also had three
females and 17 males, with ten in a Master’s program and ten
in a Bachelor’s program, including 15 in Computer Science
and five in Business Informatics.
Participants in Group A were slightly younger, with 23.7

(±1.89), than in Group B, with 25.35 (±3.87) years. We pro-
vide the complete dataset, results, and necessary material to
replicate the study1.

4 Analysis
We aim to analyze the impact of two IfC concepts on de-
veloper effectiveness and efficiency: the PL-based approach,
Wing (𝑊 ), and the SDK-based approach, Nitric (𝑁 ). Given
the indications of non-normality in the metric-dependent
variables of correctness and response time, parametric test-
ing assumptions are violated, rendering parametric tests

1https://doi.org/10.5281/zenodo.12622490

https://doi.org/10.5281/zenodo.12622490


Cloud Programming Languages and Infrastructure from Code: An Empirical Study SLE ’24, October 20–21, 2024, Pasadena, CA, USA

unsuitable. The non-parametric Kruskal-Wallis test cannot
be utilized instead, as it assumes that distribution shapes do
not differ except in their central locations. Thus, due to the
properties of our data, we use Cliff’s delta [10], a robust non-
parametric measure that remains unaffected by distribution
and non-normal data changes. It is recommended as a robust
approach in empirical software engineering [15].

Furthermore, we analyzed responses to open-ended ques-
tions using thematic analysis. This involved systematically
coding the data, translating the codes into potential themes,
reviewing these themes by examining and augmenting the
codes with quotes, and minimizing the overlap between
themes. To understand participants’ mental models, we em-
ployed the card-sorting technique. The resulting themes are
defined and reported with descriptive names, and the trust-
worthiness of the synthesis is thoroughly assessed.

4.1 Outlier Detection
For the 41 participants, we aggregated the results by 𝛿𝐶𝑠

=

𝐶𝑠 (𝑊 ) − 𝐶𝑠 (𝑁 ) , and 𝛿𝑇𝑠 = 𝑇𝑠 (𝑊 ) − 𝑇𝑠 (𝑁 ) for each subject to
detect outliers, e.g., when a subject (s) significantly used less
time to complete the programming tasks, using a one-tailed
t-test (𝛼 = 0.005). In group A, the mean 𝛿𝑇𝑠 is 33 minutes
(± 18 minutes and 10 seconds). One group A subject spent
significantly less, and three spent no time on the second
programming task. In group B, themean𝛿𝑇𝑠 is 15minutes and
15 seconds (± 15 minutes and 17 seconds). Three participants
of group B spent significantly less, and two participants spent
no time on the second programming task. These participants
were excluded from the analysis for Task 4.

4.2 Hypotheses
We designed the experiment to compare Treatment Wing,
𝑊 , and Control, Nitric, 𝑁 in terms of effectiveness, measured
by correctness 𝐶 , and efficiency, measured by time to com-
plete the task 𝑇 , of performing realistic comprehension and
programming tasks. Group B in Task 1 summarizes code 𝑁
(Nitric), Task 2 corresponds to Task 4 in Group A, Task 3
reads code and inspects output in𝑊 , and Task 4 corresponds
to Task 2 in Group A.

For each of the concept comprehension, the programming
and the code-to-infrastructure-traceability tasks and 𝑅𝑄1
to 𝑅𝑄3 respectively, the following null (𝐻𝑂 ) and alternative
(𝐻𝐴𝑙𝑡 ) hypotheses can be stated:

H0𝐶 Treatment𝑊 does not affect the number of correctly
answered questions or decrease it compared to 𝑁 .

H0𝑇 Treatment𝑊 does not affect the average time needed
to answer a question correctly or increase it compared
to 𝑁 .

H𝐴𝑙𝑡𝐶 Treatment𝑊 increases the number of correctly an-
swered questions compared to 𝑁 .

H𝐴𝑙𝑡𝑇 Treatment𝑊 decreases the average time needed to
answer a question compared to 𝑁 correctly.

For 𝑅𝑄4 we formulate the null hypothesis, that Treatment
𝑊 does not affect the average usability and ease of use or
decrease them compared to 𝑁 H0𝑈 and the related alterna-
tive hypothesis H𝐴𝑙𝑡𝑈 whereas Treatment𝑊 increases the
usability and ease of use compared to 𝑁 .

4.3 Analysis Results
Detailed results are in Table 4.4 summarizing each task’s re-
sult mean and standard deviation and the hypothesis testing
results using Cliff’s 𝛿 , including the related effect size descrip-
tion. Specifically, the table shows the results for Task 1, in-
cluding sub-tasks for code summarization (Resource Count),
and the multiple-choice test (Concept Comprehension, Task
2 (Programming Task), and Task 3, including sub-tasks for
locating configuration and comprehending infrastructure
configurations.

4.4 Concept Comprehension
For RQ1, we evaluated the understandability of PL-based
and SDK-based approaches with two sub-tasks: The correct
number of declared cloud resources, 𝐶11 , was evaluated bi-
narily, and participants gained one point if they identified
the three resources. Each correct answer on the multiple-
choice test was awarded 0.2 points, and incorrect answers
were deducted 0.2 points, with a minimum score of 0 and
a maximum of 1 point. Figure 3 illustrates the cumulative
results of both sub-tasks with a kernel density plot.
In Group A, which worked on the PL-based approach,

participants struggled with two statements: Only 57% of the
participants said the following statement is incorrect: The
GET-request handler, handling redirections, needs to be com-
piled to infrastructure configurations to get executed on cloud
computing resources. Only 62% said that The function create
cannot be executed during preflight because inflight APIs as-
sume all resources have already been deployed. is correct.
In Group B, which worked on the SDK-based approach,

four out of five multiple-choice questions were mostly an-
swered correctly. The most difficult-to-answer question was
about Nitric’s implied permission concept. 60% of participants
incorrectly assumed that during deployment the CLI command
converts accessor decorators, e.g., @allow("read","write"),
of resources to policies based on the targeted cloud provider.

Comparing the correctness of both sub-tasks (𝐶11 and𝐶12 ),
we cannot reject 𝐻0𝐶1. However, Cliff’s 𝛿 > 0.3 indicates
a medium effect size for the duration (𝐻0𝑇1), with the PL-
based approach (Wing) decreasing the average time needed
to answer correctly compared to the SDK-based approach
(Nitric). The results for the perceived difficulty of Task 1 (𝛿 =

−0.36) suggest that the PL-based approach was moderately
easier to understand. There was a negligible difference in
the confidence that the answers were correct.



SLE ’24, October 20–21, 2024, Pasadena, CA, USA Georg Simhandl and Uwe Zdun

Table 1. Evaluation results for Tasks 1 to 3 for Treatment Wing and Control Nitric.

Task Sub-Task Wing Nitric
Mean Std Mean Std Cliffs 𝛿 Effect size

Task 1 𝐶11 Correctness of Resource Count 0.450 0.510 0.350 0.489 0.100 negligible
𝐶12 Correctness of Concept Comprehension 0.530 0.339 0.600 0.311 -0.115 negligible
𝑇1 Total time spent on Task 1 15.300 4.231 18.900 6.069 -0.378 medium
Perceived Task’s Difficulty 2.950 0.945 3.600 0.681 -0.360 medium
Perceived Confidence 3.350 1.089 3.600 1.046 -0.113 negligible

Task 2 𝐶2 Correctness of Programming Task 0.375 0.393 0.375 0.275 -0.037 negligible
𝑇2 Total time spent on Task 2 35.850 15.776 26.400 11.905 0.380 medium
Perceived Task’s Difficulty 4.250 1.020 4.400 0.883 -0.087 negligible
Perceived Confidence 4.000 1.376 4.350 0.933 -0.085 negligible

Task 3 𝐶31 Correctness of Code-to-Infrastructure Traceability 0.533 0.516 0.333 0.488 0.200 small
𝐶32 Correctness of Configuration Comprehension 0.533 0.516 0.467 0.516 0.067 negligible
𝑇3 Total time spent on Task 3 10.133 7.453 9.467 3.907 -0.098 negligible
Perceived Task’s Difficulty 3.267 1.280 4.400 0.910 -0.498 large
Perceived Confidence 3.333 1.345 4.400 0.910 -0.471 medium

0.0 0.2 0.4 0.6 0.8 1.0
Correctness

0.5

1.0

1.5

2.0

De
ns
ity

Wing
Nitric

Figure 3. Understandability of concepts Wing vs. Nitric

4.5 Programming Task and Developer Productivity
Developer productivity (efficacy) is measured by the time
to complete a programming task (𝑇2) and the correctness
of the implementation (𝐶2). Groups A and B were tasked
with implementing a Serverless function using WingLang
and extending a Nitric-based API with a request handler to
delete alias-to-URL mappings.

For Wing, correctness (𝐶2) was evaluated on a three-level
scale: fully correct (1 point), partially correct (0.5 points, e.g.,
implementing the lambda function but failing to invoke it
correctly), and incorrect (0 points). For Nitric, the evalua-
tion considered two sub-tasks: fully correct (1 point) sub-
missions included correctly set IAM permissions by adding
the delete parameter, correctly implementing the request
handler, and identifying the resulting configuration changes
(KeyValueStoreDelete) in the generated Terraform config-
urations file.
Among 20 participants in each group, 14 from Group B

(Nitric) and only 5 from Group A (Wing) correctly set the

permissions. Most participants (95%) working with Nitric
could not trace the required changes in the IaC file.
Figure 4 shows a scatter plot of 𝐶2 (correctness) and 𝑇2

(completion time) for bothWing (Treatment) and Nitric (Con-
trol). The trend line (indicated by the red line) shows that
for Wing, correctness increases with time spent, while Ni-
tric shows no evidence of a learning effect. Comparing the
correctness (𝐶2) of the submitted solutions, we cannot reject
𝐻0𝐶2, as both approaches yield similar correctness. Partici-
pants spent more time (𝑇2) completing the task with Wing
than with Nitric, resulting in a medium effect size. There-
fore, we cannot reject the null hypothesis 𝐻0𝑇2 ; Treatment
W (Wing) increases the average time needed to complete the
task compared to N (Nitric).

Participants working with both treatments perceived the
task difficult to very difficult and were slightly to very un-
certain about the correctness of their submission. There is
a negligible difference when comparing the confidence that
the answers were correct.

4.6 Cloud Resource Traceability
Wing and Nitric automatically generate infrastructure from
code but differ significantly in their approaches (see Section
2.1). To addressRQ3, we evaluated traceability, i.e., the ability
to link code to generated infrastructure configurations, by
comparing the PL- and SDK-based approaches.
Participants were tasked with localizing generated IAM

configurations in the Terraform code and understanding
specific configuration parameters, such as the retention pe-
riod for AWS CloudWatch logs (Wing) or identifying assets
configuring IAM roles for buckets (Nitric).
Figure 5 illustrates the aggregated results of both sub-

tasks, 𝐶21 and 𝐶22 , using a kernel density plot. Participants



Cloud Programming Languages and Infrastructure from Code: An Empirical Study SLE ’24, October 20–21, 2024, Pasadena, CA, USA

0 20 40 60
0.0

0.5

1.0
Co

rre
ct

ne
ss

 [1
]

Wing

0 20 40

Nitric

Duration [min]

Figure 4. Scatter plot of correctness, 𝐶2 of the implementation versus time spent for the programming task, 𝑇2, for Wing and
Nitric (combined groups). The red line illustrates the apparent trend.

0.0 0.2 0.4 0.6 0.8 1.0
Correctness

0.5

1.0

De
ns
ity

Nitric
Wing

Figure 5. Kernel density plot of the Correctness, 𝐶3 of Task
3 on code to infrastructure configuration traceability with
Wing and Nitric

using Wing (Treatment) achieved slightly higher correctness
(𝐶31 ) than those using Nitric (Control), with a small effect
size (𝛿 = 0.2). Wing moderately increased the number of
correctly answered questions, providing weak support for
the alternative hypothesis 𝐻𝐴𝑙𝑡𝐶3.
However, as indicated by Cliff’s 𝛿 > 0.067, the negligi-

ble effect size for the duration (𝐻0𝑇3) suggests that Wing
does not significantly affect the average time needed to an-
swer a question compared to Nitric correctly. The results
for perceived difficulty (𝛿 = −0.498) show that the PL-based
approach was significantly easier to understand. Addition-
ally, the medium effect size indicates that participants using
Wing were moderately more confident in the correctness of
their answers.

4.7 Usability and Ease-of-Use
Regarding RQ4, we assessed the two approaches’ perceived
usefulness and ease of use. Participants rated Wing’s useful-
ness 2.725 (±0.816) as useful to neutral and perceived Nitric
slightly less useful, 3.275 (±0.8). The perceived ease of use
of the PL-based approach was an average of 2.775 (±1.062)
easy to neutral, while participants rated Nitric an average of

3.45 (±1.01) neutral to difficult. The effect size for usefulness
(𝛿 = −0.0244) and ease of use (𝛿 = −0.0844) is in both cases
negligible. The quantitative analysis can only partially an-
swer RQ4 related to the perceived usability and ease of use
of both approaches.

Qualitative analysis is needed to evaluate users’ feedback
on supporting factors and critical barriers to adopting cloud
programming approaches, facilitate good practices, and an-
alyze enhancement areas to expand IfC approaches in the
future.

5 Thematic Analyis
Thematic Analysis is a robust qualitative research method
utilized to identify and elicit themes from qualitative discur-
sive data [7] also frequently used in software engineering
research [11]. We use this method to understand participants’
experiences with the different IfC approaches. We systemati-
cally coded the data from the semi-structured survey answers
with 178 initial codes and identified 21 recurring themes. We
organized these themes into five categories: Usability chal-
lenges and barriers and supporting factors affecting the de-
veloper experience, security, cost estimation, and suggested
areas of enhancement from a novices’ point of view. Figure 6
illustrates the shares of the individual themes and how they
relate to the participant’s experience with cloud computing.
We used a Sankey chart, a type of flow diagram in which
the width of the arrows is proportional to the flow rate. It is
used to visualize the flow of data from one set of values to
another, helping to identify patterns and relationships in the
data [21]. Participants with advanced knowledge and skills
worked more than three years with cloud development toolk-
its or IaC and at least two years classified as intermediate.
The cluster of participants at the beginner-level is defined by
at least one year of experience with cloud computing while
Novices didn’t gain any experience yet.



SLE ’24, October 20–21, 2024, Pasadena, CA, USA Georg Simhandl and Uwe Zdun

5.1 Usability Challenges and Barriers
Several usability challenges and barriers hinder developer
experience. In this context, seven themes emerged from the
participant’s survey.
Learning Curve: This theme reflects the challenges of

learning and adapting to new abstractions, including new
programming paradigms, novel frameworks, or new lan-
guages. For example, B18 highlighted this theme, expressing
that the PL-based approach is more difficult to learn, and B9,
working with this PL-based approach, mentions the com-
plexity and that (...) it takes time to get (yourself) around. The
code looks bulk, especially JSON. Similarly, subject A25 meant
that the Paradigm can take some time to click with newcomers.
To a lesser extent, this theme can be found in the context of
SDK-based approaches. B2, for example, mentions that: it is
not very easy to get used to it.

Language Syntax Barriers: The learning curve is closely
related to the degree of difficulty learning a new program-
ming language or framework. To this regard, A4 mentioned
the new functions and new methods which again have to be
incorporated in the context of the SDK-based approach. Sub-
ject B4, also working with this SDK-based approach, said I
didn’t feel like I understood any concept deeply, a lot of magic.
Novel languages similar to known language designs also
lead to confusion or even unacceptance if there is a lack
of knowledge of the basic concepts. Participant A9 men-
tioned that the syntax is kind of confusing to me, don’t really
know why since it’s close to JavaScript, but still, I had trouble
with it. while A22 meant: I did not like that it was based on
JavaScript. I do not know JavaScript and therefore struggled
with everything (...). In contrast, SDK-based approaches like
Nitric strive to support many popular languages. Missing
language support, documentation, and examples may limit
the developer’s experience. In this context, participant A10
perceived the approach as not language agnostic.

Usability Constraints: This theme encompasses the var-
ious aspects of code and project structure that contribute
to difficulties in understanding, navigating, and managing
the software effectively. It highlights issues like confusing
code structure, excessive configurations, and overwhelm-
ing file organization that can hinder developers’ productiv-
ity and comprehension. 15 participants mentioned usability
constraints. With the PL-based approach, participant A14
noticed less information of user errors, while B21 had trou-
ble navigating the code structure and meant it was hard
to get used to the order (...). In this regard, participant A14
mentioned the rather verbose code structure. In contrast, the
SDK-based approach has limited support for some advanced
features according to A11. The perceived usability was also
constrained by setting up and performing testing, e.g., B3
mentioned the unsuccessful attempts to test the app and
infrastructure generated with the SDK-based approach.

Performance Lags: Another critical factor affecting the
usability of new cloud programming languages or frame-
works is performance. Participants A11 and A24 reported
occasional performance lags in the context of the PL-based
approach.

Infrastructure Configuration Complexity: This theme
captures developers’ challenges with understanding, locat-
ing, and managing numerous intricate configurations, partic-
ularly in Terraform JSON format. Infrastructure configura-
tions of both approaches were perceived as equally difficult
to comprehend. The generated terraform files are difficult to
understand (B4). While novices mention that they don’t un-
derstand where to find the Terraform JSON file, users with
intermediate experience levels find that it is hard to keep (the)
overview with many different folders (A17), containing the
Terraform templates. B8 mentions that there are quite a few
configuration files I don’t like too much.

Insufficient support resources: This theme encompasses
the difficulties developers face due to the lack of commu-
nity support, outdated or inadequate documentation, and
overly simplistic examples and tutorials that do not meet
their needs. Participant A23 summarizes these problems:
The docu is partially outdated, extremely lacking in examples,
only JS supported (at least with the given example project),
onboarding/getting started tutorials are not nearly sufficient
for the given task. Yes, this is the same feedback as for the PL-
based approach. They suffer from the same problem. A24 also
mentions that the (...) documentation can be insufficient for
complex scenarios. Subject B16 emphasizes the importance
of support resources: The main problem is that it is hard to
find help with the (...) SDK-based approach if you cannot solve
your problem with the documentation alone. The limited docu-
mentation and community support can make troubleshooting
difficult (...) as participant B7 mentioned.
Unclear use cases: Finally, this theme captures devel-

opers’ challenges when unsure about the specific use cases
or scenarios where the approach or the provided features
should be applied. This is emphasized by participant B8: I’m
not quite sure which use case the PL-based approach(sic!) even
tries to solve.

5.2 Supporting Factors
Novel programming languages and frameworks, in particular,
require accessible onboarding, including comprehensive doc-
umentation, tutorials, and working examples to support the
learning process. Easy-to-understand APIs and intuitive us-
age are equally important factors in adopting a new approach.
Specific to Cloud Programming Languages and Frameworks
is the seamless integration with cloud service providers and
tooling support, for instance, enhanced debugging and visu-
alization.

Accessible Onboarding: This theme highlights the avail-
ability of good tutorials, comprehensive documentation, and
easy setup processes (32 mentions). Participants emphasized



Cloud Programming Languages and Infrastructure from Code: An Empirical Study SLE ’24, October 20–21, 2024, Pasadena, CA, USA

Advanced

Beginner

Intermediate

Novice

Experience

accessible_onboarding

cloud_integration
friendly_interface

no_benefits

no_experience
useful_console

Supporting
Factors infra_complexity

insufficient_support

language_syntax

learning_curve
no_barriers

no_experience
performance_lags
unclear_use_case

usability_constraints

Usability Challenges
and Barriers

combine_wing_and_nitric
design_first

enhance_wing_console

microservices_architecture

modular_architecture

no_suggestions

split_dev_and_ops
testingtesting_support

Enhancement
Areas

Figure 6. Sankey Chart of themes emerged from the survey

that the SDK-based approach can be used with programming
languages I already knew (A21), and is easy to understand
(A11). The PL-based approach is easy to use once under-
standing the basics provided a comprehensive documenta-
tion (A14). Tutorials help to start from zero and get some
basic output. (B29).

User-Friendly Interface: This theme reflects the impor-
tance of intuitive usage, easy-to-understandAPIs, straightfor-
ward creation of infrastructure and cloud resources, minimal
coding, and clean interfaces. Participant B10, for example,
perceives the management of cloud resources is abstracted
useful and mentions I don’t have to think about that (...) and
can switch from Azure to AWS and back without changing
(the) code. After completing the tasks using the PL-based
approach, participant A3 meant that Wing is very uncom-
plicated and straightforward if you know JavaScript. At the
same time, A12 said that you have to write considerably less
code.
Seamless Cloud Integration: The advantages of cloud

agnosticism, simplified identity and accessmanagement (IAM),
worry-free infrastructure configurations, cloud security, and
seamless integration with cloud services and ease of deploy-
ment (A24) were mentioned by eleven participants. B4 com-
mented that I do not have to worry about the infrastructure.
Like the SDK-based approach, subject A3workingwithWing
mentioned: You can implement cloud function very easily.
Enhanced Debugging and Visualization: This theme

captures the benefits of having local simulation and visualiza-
tion tools that aid in debugging, tracking changes, receiving
immediate feedback, and visualizing component interactions.
Both experiment treatments provide a local cloud develop-
ment dashboard. Participant A4 perceived Wing’s Console
useful, as it (...) keeps track of your created functions, and A9
highlighted that it is intuitive to use while A12 found that
the local simulation makes it easy to track and test your re-
sources and find any problems in your code. The SDK-based
approach also visualizes component interactions and test-
ing tools, whereas participant A9 highlighted the intuitive

user interface providing all the details needed. In total, eight
participants found the local emulation environment useful.

5.3 Security Concerns
In the context of the programming task using the SDK-based
and PL-based approaches, we asked participants to assess
potential vulnerabilities, threats and exploits when deploying
the application with a cloud service provider. One of the
most mentioned themes is Risks of Data Breaches, involving
many aspects such as API Key Leakage. Further, two themes
emerged regarding security concerns: Cloud Service Provider
Dependency, and Uncertain Cloud Costs.
Risks of Data Breaches and Attacks: This theme en-

compasses the various security threats that can lead to data
breaches, including API key leakage, injection attacks, and
account hijacking. The survey results reveal the participant’s
awareness of various identified threats, risks, and vulnerabil-
ities. Participant A3 commented that the application devel-
oped with PL- and SDK-based approaches (...) is exposed to
many threats, like someone intercepting the data while trans-
ferring., and B17, for instancementioned that potential threats
are data breaches, DDoS, (...) data leakage due to misconfigu-
raitons or badly written code could leave some things exposed
(A22). Eight participants mentioned distributed denial-of-
service attacks, e.g., participant A20 thinks the application
might be exposed to DDoS attacks. A12’s assessment also in-
cludes DDoS attacks, where (...) attackers could create a huge
load of service requests, resulting in high costs. Participant
B8 said that the biggest risk is probably exploding costs. This
contributes to the recurring theme Uncertain Cloud Costs
(detailed in 5.4).

A data breach is a security incident that involves the unau-
thorized release of private and sensitive information to the
public. API key leakage due to misconfiguration or broken
user authenticationrepresents one of the (...) highest risks in
cloud-native systems, as B8 put it. In this regard, subject B4 ex-
pands this to potential risks when (...) IAM and AWS accounts
(are) compromised. Serverless architectures are exposed to
further risks, as discussed by Participant B15: Data stored



SLE ’24, October 20–21, 2024, Pasadena, CA, USA Georg Simhandl and Uwe Zdun

cloud_cost

csp_dependency

csp_trust

data_breaches

lack_of_knowledge
no_answer

Security
Concerns

Advanced

Beginner

Intermediate

Novice

Cloud
Experience

combine_wing_and_nitric
design_first

enhance_wing_console
microservices_architecture

modular_architecture

no_suggestions

split_dev_and_ops
testingtesting_support

Enhancement
Areas

Figure 7. Sankey diagram of themes grouped by cloud expe-
rience, security concerns, and enhancement areas.

in the Lambda execution context that persists across invoca-
tions can be exploited if not properly managed; also, API keys
hard-coded in the application or stored in publicly accessible
repositories can be exploited. Participant B16 augments this
analysis: Attempts to hack the password/gain unauthorized ac-
cess or app-level exploits, as otherwise, the main target would
be the cloud service provider themselves. referring another
recurring theme, Dependency on Cloud Service Providers.

Dependency on Cloud Service Providers: This theme
reflects the security concerns and vulnerabilities related to
relying on cloud service providers, such as API changes,
and the reliance on providers for infrastructure and cloud
security. In this context, participant’s opinions diverge. Par-
ticipant A9, for example, mentions: In my opinion, I think
it’s generally safe to use these cloud service providers since
they pride themselves on security and usability and represents
a group of participants thinking that security is the cloud
provider’s responsibility (B24) and (...) trust the cloud service
itself, there should be no problem (A7). This contrasts with
the other group of participants, who are more skeptical. The
Cloud Provider might change its API, pricing plan, cease to
exist (B29) summarizes the risks of reliance on cloud ser-
vices providers. Figure 7 illustrates the proportion of themes
discussed by participants with different experience levels
and security concerns. It shows that participants with no
cloud programming experience tend to trust cloud service
providers more than participants with little experience, while
a larger share of participants experienced in cloud computing
rather address the risks of relying on cloud service providers
concerning security.

5.4 Uncertain Cloud Costs
This theme captures the uncertainty regarding the costs
of cloud resource usage. Participant B8 estimates that the
biggest risk is probably exploding costs. Like B4 and A25, par-
ticipant A12 addresses the risk of financial damage: With
DDoS attacks, attackers could create a huge load of service
requests resulting in many costs. We asked participants to

1K 10K 1M

100

101

102

103

104

105

Co
st

s (
EU

R/
US

D)

Group A
Group B

Figure 8. Participant’s estimation of the URLShortener’s
daily cloud Costs for 1K, 10K, and 1M requests per hour (log
scale).

estimate the costs of the URL-shortening application they
worked on during the experiment. Figure 5.4 shows the aver-
age and range of cloud costs per group. The estimates range
from EUR 0.00-3500.00 for thousand (1K), EUR 0.70-12,500.00
for ten thousand (10K), and EUR 5.00-EUR 100,000.00 for one
million (1M) requests per hour for group A, and EUR 0.00-
9.84 for 1K, EUR 1.20-84.00 for 10K, and EUR 12.00-500.00
per 1M requests per hour for group B.

5.5 Areas of Enhancement
In the context of a larger application, participants proposed
the following enhancements:
Modular Architecture and Microservices Architec-

tural Style: This theme highlights the importance of using
a microservice architectural style, structuring code within
single repositories, separating application and infrastructure
code, and utilizing specific tools provided by cloud service
providers. Six participants suggested applying a modular
architecture to scale cloud-native applications, and five pro-
posed following the principles of the microservices architec-
tural style. A21 proposes to (...) a microservices architecture
where each component is a separate service with its own repos-
itory and visualize the big picture with a detailed architecture
diagram showing the interactions between services, data flows,
and dependencies. Subject B19 would choose a modular archi-
tecture with separate code repositories and mentions applying
monitoring, logging, code review, (and) collaboration best prac-
tices.
Comprehensive Testing Support: This theme focuses

on the necessity of robust testing support, including unit, in-
tegration, local, and cloud testing. For example, subject A23
would suggest comprehensive testing tools to improve the
developer experience and productivity. Participant B29 sug-
gests supporting test component by component in a modular
architecture.
Design First: This theme emphasizes the importance of

starting with high-level models. In subject A12’s opinion, the
PL-based approach to the application is already pretty well



Cloud Programming Languages and Infrastructure from Code: An Empirical Study SLE ’24, October 20–21, 2024, Pasadena, CA, USA

visualized with the Wing console. Before implementing every-
thing, though, I would probably create some UML diagrams
to design the architecture. A25 reverts to existing UML de-
sign tools and would start with architecture diagrams in lucid
chart. Similarly, B29 would fully plan every single component
and how they interact before starting with the implementation
and B11 would also use high-level architecture diagrams,
particularily to (...) show interactions between components.

Some participants, e.g., B10, suggest integrating the design-
first-approach in cloud programming languages using amod-
ular way by using Wing because Wing simplifies the visual-
ization of the project.
Split Development and Operations: Six participants

would revert to the separation of development and develop-
ment operations (DevOps) practices. For instance, partici-
pant A5 would use something(sic!) like AWS or Google cloud.
They have good predefined components. Subject B8 would use
the tools of the specific cloud I am using. and justifies the
suggestions: There are many tools to organize code and visu-
alize from AWS or Azure.. Also, B4 (...) would prefer to split
infrastructure and code and proposes: I would like to visualize
and manage my infrastructure through a GUI. B16 proposed
different docker containers managed via an IaC approach. Par-
ticipant A13 (...) would leave to people who understand how to
do that and B21 also suggests that everything regarding cloud
connection and stuff, is handled by its(sic!) own department.

Enhance Cloud Programming Language: This theme
captures the proposals to enhance the PL-based approach.
Some participants perceive the cloud programming languages
and frameworks already usable for larger applications, em-
phasizing the cloud simulation and visualization of the com-
ponents (B6). A23 would use the PL-based approach, some
form of easy-to-read and write/understand language, close to
one already known to most users or supporting multiple users.
and in addition, the subject proposes a graphical represen-
tation of the created application with monitoring and testing
tools as a bonus. Participant A12 (...) would give every resource
in wing their own file or directory and (...) separate the code
between preflight and inflight functions, and further suggests
to (...) divide the code into different single responsible mod-
ules (authentication, user management, data processing and
emphasizes to (...) stay independent from AWS, Azure, etc. by
using wing.

6 Results and Findings
The combined quantitative and thematic analysis of the con-
trolled experiment on developer experience of cloud pro-
gramming languages reveals five major findings. Regard-
ing the comprehensibility of concepts, participants work-
ing with the PL-based approach were moderately faster in
summarizing the application code and answering concept

comprehension-related questions than the SDK-based ap-
proach. Despite the novelty of Wing’s programming lan-
guage features, the comprehension task was perceived as
moderately easier. As participants had unrestricted access
to the Internet, e.g., to search the API documentation, the
completion time may also be affected by the efficiency of
retrieving task-relevant information. Comprehensive and
up-to-date documentation is crucial for new programming
languages and frameworks. Further analysis reveals that easy
setup and local cloud emulation support users with little or
no cloud programming experience. In contrast, seamless
cloud integration and easy-to-use command line interfaces
are important for advanced users and users with working
experience with cloud services.

Finding 1 - Insufficient Support Resources: The results
suggest the need for up-to-date documentation, clear use
cases, extensive working examples, and comprehensive tuto-
rials tailored to different target groups for both approaches.
Community support, such as public forums like StackOver-
flow, is also crucial. High-level abstractions, e.g., new pro-
gramming languages features, the implied permission con-
cept, and complexity of code-to-infrastructure transpilation,
may hinder comprehensibility, cause confusion, and reduce
developer productivity. The explicit-implicit trade-off needs
to be carefully designed in the context of software language
engineering. The quantitative analysis of programming tasks
(Task 2) shows no difference in effectiveness between PL- and
SDK-based approaches, but the PL-based approach requires
more time. Developers must learn and adopt new paradigms
and abstractions, which can be confusing, especially given
the similarity to TypeScript. As Figure 4 shows, there is a
learning effect with the PL-based approach: more correct
implementations are achieved with increasing time. In con-
trast, the SDK-based approach lacks support for some users’
favorite programming languages, which, along with high-
level abstractions and concept comprehension issues, may
explain the decreasing trend in developer productivity. Other
usability challenges and barriers affect the efficacy, e.g., per-
formance lags and missing support for advanced features for
debugging and testing. Many participants failed to set up or
extend existing test code, particularly with the SDK-based
approach. These factors are critical for larger cloud-native
applications.
Finding 2 - Modular Architecture for Larger Cloud

Applications: Many participants suggested a modular archi-
tecture and proposed applying the microservice architectural
style and designing the application first to improve the code
structure and maintainability. In addition, local cloud emu-
lation environments and comprehensive testing and mon-
itoring support can significantly improve developers’ pro-
ductivity. The complexity of infrastructure configurations,
assessed with Task 3, represents a main barrier, particularly
for beginners in cloud computing. The quantitative analysis
clearly emphasizes the novices’s difficulty in understanding



SLE ’24, October 20–21, 2024, Pasadena, CA, USA Georg Simhandl and Uwe Zdun

infrastructure configurations. The Terraform JSON format is
difficult to read and trace back to invocations in code. Ter-
raform templates organized in many folders, as used in the
SDK-based approach, are overwhelming.
Finding 3 - Lack of Infrastructure Traceability and

Testing Support: The traceability of code to generated in-
frastructure is crucial in managing infrastructure configura-
tions. The study results suggest that configuration templates
decrease comprehensibility. This is also reflected in the per-
ceived task difficulty, which was significantly higher with
Terraform templates than single file Terraform JSON format.
The thematic analysis (Sec. 5) reveals two more findings:

Finding 4 - Cloud Cost: Facing the uncertainty of esti-
mating the financial implications (see Section 5.3) of cloud-
native applications, the integration of cost estimation tools,
including graph-based estimation methods, to predict and
manage cloud expenses to reduce the risk of exploding costs
is evident. [6], for instance, proposes a directed graph-based
cost model enabling monetary cost estimations from code
through static analysis, integrated into a code editor for
immediate visualization. This approach can simplify cost ex-
ploration, making it part of the development process without
relying on external tools.
Finding 5 - Cloud Security Risks and Cloud Service

Provider Dependency: Besides usability constraints, lan-
guage and syntax comprehensibility, and uncertain cloud
costs, cloud security risks and the dependency on cloud ser-
vice providers are crucial barriers to adopting cloud program-
ming approaches. While some novices and beginners tend to
trust cloud service provider’s security measures and would
remain cloud service provider independent using a cloud
programming framework, participants with advanced and
intermediate cloud computing knowledge are skeptical about
the dependency on cloud service providers. The emerging
themes regarding security concerns (Section 5.3) related to
enhancement areas suggest that these participantswouldmit-
igate these risks by splitting application and infrastructure
code and using cloud provider-specific and comprehensive
testing and observability tools.

7 Threats to Validity
Threats to Internal Validity: There were no disruptions
during the experimental sessions. Participants received an
introduction and could ask questions individually without
affecting the overall process. The short session duration
minimized maturation effects, which were not observed.
Each participant contributed only once, eliminating inter-
session learning effects. Different task scopes prevented
intra-session learning from favoring either Treatment or
Control. Equal scoring opportunities prevented instrumen-
tal bias, and random group assignment eliminated selection
bias. Measures to minimize cross-contamination included
restricting access to the survey and source code to session

times, spacing out sessions, and using only laboratory PCs
with identical setups.

Threats to External Validity: The small sample size may
affect statistical significance. To mitigate this, we used robust
statistical methods suitable for our sample size, ensuring
accurate analysis.
Threats to Construct Validity In Section 3, we exam-

ined correctness and time to complete tasks, commonmetrics
for assessing understandability and efficacy. However, other
metrics might better capture understandability. We supple-
mented our quantitative analysis with a thematic analysis of
survey results. Solutions were excluded based on limitations
like mandatory paid subscriptions or extensive training re-
quirements, e.g., Shuttle’s use of Rust. This may have led to
a non-representative set of IfC approaches being evaluated.
Nitric and WingLang were selected based on availability,
cloud-agnostic support, and production readiness criteria.
Threats to Content Validity: No threats to content va-

lidity were identified. Tasks were relevant and unbiased,
instructions were clear, and participant expertise was repre-
sentative of the target population. Multiple data sources and
controlled contextual factors ensured comprehensive task
coverage and systematic thematic analysis.
Threats to Conclusion Validity: We mitigated threats

to conclusion validity by providing the information mate-
rial to all participants, offering the necessary prerequisite
knowledge for their participation in the study. Any incon-
sistencies or ambiguities in the experiment material would
have affected both groups equally, ensuring fairness.

8 Conclusion
The study identifies barriers and supporting factors in adopt-
ing two Infrastructure as Code (IfC) approaches, highlight-
ing areas for improvement. While both approaches aimed
to enhance productivity, no significant difference in con-
cept comprehension or implementation correctness was ob-
served. However, participants using the PL-based approach
improved implementation correctness over time, suggesting
that cloud-native languages, with comprehensive support,
can improve code quality and maintainability.

Regardless of the approach, clear use cases and comprehen-
sive support resources tailored to specific target groups are
critical for success. Based on our findings, future research on
programming languages for IfC should focus on enhancing
local cloud emulation, expanding cloud integration support,
and developing tools for code-to-infrastructure traceability,
cost estimation, and systematic security checks to improve
developer productivity and system maintainability.

Acknowledgments
This research was funded by the Austrian Science Fund
(FWF) project “Infrastructure-as-code Architecture Decision
Compliance (IAC2)”, project number I4731.



Cloud Programming Languages and Infrastructure from Code: An Empirical Study SLE ’24, October 20–21, 2024, Pasadena, CA, USA

A Code Excerpts

bring cloud;

// Preflight code runs once, compiles to IaC
let mapping = new cloud.Bucket();
let api = new cloud.Api() as "shorturl";

api.get("/:alias", inflight (req) => {
let alias = req.vars.get("alias");
try {

let target = mapping.get(alias);
return {

status: 307,
headers: { location: target }

};
} catch e {

return { status: 404, };
}

});

Figure 9. Comparison of a simple short URL forwarding
service: Wing version.

import * as nitric from "@nitric/sdk";

// Creates a readable/writable reference to a
// KeyValue store
const mapping = nitric.kv('Map').allow('get','set');
const api = nitric.api("main");

api.get("/:alias", async (ctx) => {
const { alias } = ctx.req.params;
try {

const kv = await mapping.get(alias);

ctx.res.status = 307;
ctx.res.headers['location'] = [kv.target];

} catch (error) {
ctx.res.status = 404;

}
});

Figure 10. Comparison of a simple short URL forwarding
service: Nitric version.

let hashFunc = new cloud.Function(
inflight (s: str?): str => {

return StringShortenAlgo.hash(s);
});

api.post("/alias", inflight (
req: cloud.ApiRequest) => {

...
let alias = hashFunc.invoke(url);
mapping.put(alias,url);

});

Figure 11. Excerpt of a possible solution for the task Imple-
menting using Wing.

const mapping =
nitric.kv('Map').allow('get','set','delete');

api.delete("/:alias", async (ctx) => {
try {

const { alias } = ctx.req.params;
await mapping.delete(alias);
ctx.res.status = 204;

} catch (error) {
ctx.res.status = 400;

}
});

Figure 12. Excerpt of a possible solution for the task Imple-
menting using Nitric.

References
[1] Amazon Web Services, Inc. 2024. Infrastructure As Code Provisioning

Tool - AWS CloudFormation. Amazon Web Services, Inc. Retrieved
May 21, 2024 from https://aws.amazon.com/cloudformation/

[2] Ampt Web Services, Inc. 2024. The most efficient way to get things done
in the cloud. Ampt Web Services, Inc. Retrieved June 21, 2024 from
https://getampt.com

[3] Red Hat 2024. Ansible Collaborative. Red Hat. Retrieved May 21, 2024
from https://www.ansible.com

[4] Itzhak Aviv, Ruti Gafni, Sofia Sherman, Berta Aviv, Asher Sterkin, and
Etzik Bega. 2023. Cloud infrastructure from python code–breaking
the barriers of cloud deployment. In European Conference on Software
Architecture, ECSA.

[5] Itzhak Aviv, Ruti Gafni, Sofia Sherman, Berta Aviv, Asher Sterkin, and
Etzik Bega. 2023. Infrastructure From Code: The Next Generation
of Cloud Lifecycle Automation. IEEE Software 40, 1 (2023), 42–49.
https://doi.org/10.1109/MS.2022.3209958

[6] Lukas Böhme, Tom Beckmann, Sebastian Baltes, and Robert Hirschfeld.
2023. A Penny a Function: Towards Cost Transparent Cloud Pro-
gramming. In Proceedings of the 2nd ACM SIGPLAN International
Workshop on Programming Abstractions and Interactive Notations,
Tools, and Environments (Cascais, Portugal) (PAINT 2023). Associa-
tion for Computing Machinery, New York, NY, USA, 1–10. https:
//doi.org/10.1145/3623504.3623566

[7] Virginia Braun and Victoria Clarke. 2012. Thematic analysis. American
Psychological Association. 65–81 pages. https://doi.org/10.1037/13620-
004

https://aws.amazon.com/cloudformation/
https://getampt.com
https://www.ansible.com
https://doi.org/10.1109/MS.2022.3209958
https://doi.org/10.1145/3623504.3623566
https://doi.org/10.1145/3623504.3623566
https://doi.org/10.1037/13620-004
https://doi.org/10.1037/13620-004


SLE ’24, October 20–21, 2024, Pasadena, CA, USA Georg Simhandl and Uwe Zdun

[8] Progress Software Corporation 2024. Chef Software DevOps Automation
Solutions. Progress Software Corporation. Retrieved May 21, 2024
from https://www.chef.io

[9] Michele Chiari, Elisabetta Di Nitto, Adrián Noguero Mucientes, and
Bin Xiang. 2022. Developing a New DevOps Modelling Language to
Support the Creation of Infrastructure as Code. In European Conference
on Service-Oriented and Cloud Computing. Springer, 88–93. https:
//doi.org/10.1007/978-3-031-23298-5_8

[10] Norman Cliff. 2010. Answering Ordinal Questions with Ordinal Data
Using Ordinal Statistics. Multivariate Behavioral Research 31 (06 2010),
331–350. https://doi.org/10.1207/s15327906mbr3103_4

[11] Daniela S Cruzes and Tore Dyba. 2011. Recommended steps for the-
matic synthesis in software engineering. In 2011 international sympo-
sium on empirical software engineering and measurement. IEEE, 275–
284. https://doi.org/10.1109/ESEM.2011.36

[12] Dark Inc. 2024. darklang. Dark Inc. Retrieved June 27, 2024 from
https://darklang.com

[13] Encoretivity AB 2024. Development Platform for type-safe distributed
systems. Encoretivity AB. Retrieved June 24, 2024 from https://encore.
dev

[14] Andreas Jedlitschka, Marcus Ciolkowski, and Dietmar Pfahl. 2008.
Reporting experiments in software engineering. Guide to advanced
empirical software engineering (2008), 201–228. https://doi.org/10.
1007/978-1-84800-044-5_8

[15] Barbara Kitchenham, Lech Madeyski, David Budgen, Jacky Keung,
Pearl Brereton, Stuart Charters, Shirley Gibbs, and Amnart Pohthong.
2017. Robust statistical methods for empirical software engineering.
Empirical Software Engineering 22 (2017), 579–630. https://doi.org/10.
1007/s10664-016-9437-5

[16] Kief Morris. 2020. Infrastructure as code. O’Reilly Media.
[17] Nitric Inc. 2024. Next Generation Cloud Development. Nitric Inc. Re-

trieved June 27, 2024 from https://nitric.io
[18] Pulumi Corporation 2024. Pulumi - Infrastructure as Code in Any

Programming Language. Pulumi Corporation. Retrieved May 20, 2024

from https://www.pulumi.com
[19] Perforce Software, Inc. 2024. Puppet Infrastructure and IT Automation

at Scale. Perforce Software, Inc. Retrieved May 21, 2024 from https:
//www.puppet.com

[20] Chris Rybicki. 2024. Exploring biphasic programming: a new approach
in language design. Retrieved June 30, 2024 from https://rybicki.io/
blog/2024/06/30/biphasic-programming.html

[21] Mario Schmidt. 2008. The Sankey diagram in energy and material flow
management: part II: methodology and current applications. Journal of
industrial ecology 12, 2 (2008), 173–185. https://doi.org/10.1111/j.1530-
9290.2008.00015.x

[22] Openquery Ltd. 2024. Build Backends Fast. Openquery Ltd. Retrieved
June 21, 2024 from https://www.shuttle.rs

[23] Daniel Sokolowski, Pascal Weisenburger, and Guido Salvaneschi. 2021.
Automating serverless deployments for DevOps organizations. In Pro-
ceedings of the 29th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software
Engineering. 57–69. https://doi.org/10.1145/3468264.3468575

[24] HashiCorp 2024. Terraform. HashiCorp. Retrieved May 20, 2024 from
https://www.terraform.io

[25] Wing Cloud, Inc. 2024. A programming language for the cloud. Wing
Cloud, Inc. Retrieved June 27, 2024 from https://www.winglang.io

[26] Michael Wurster, Uwe Breitenbücher, Michael Falkenthal, Christoph
Krieger, Frank Leymann, Karoline Saatkamp, and Jacopo Soldani. 2020.
The essential deployment metamodel: a systematic review of deploy-
ment automation technologies. SICS Software-Intensive Cyber-Physical
Systems 35 (2020), 63–75. https://doi.org/10.1007/s00450-019-00412-x

[27] Liming Zhu, Len Bass, and George Champlin-Scharff. 2016. DevOps
and its practices. IEEE software 33, 3 (2016), 32–34. https://doi.org/10.
1109/MS.2016.81

Received 2024-07-01; accepted 2024-08-30

https://www.chef.io
https://doi.org/10.1007/978-3-031-23298-5_8
https://doi.org/10.1007/978-3-031-23298-5_8
https://doi.org/10.1207/s15327906mbr3103_4
https://doi.org/10.1109/ESEM.2011.36
https://darklang.com
https://encore.dev
https://encore.dev
https://doi.org/10.1007/978-1-84800-044-5_8
https://doi.org/10.1007/978-1-84800-044-5_8
https://doi.org/10.1007/s10664-016-9437-5
https://doi.org/10.1007/s10664-016-9437-5
https://nitric.io
https://www.pulumi.com
https://www.puppet.com
https://www.puppet.com
https://rybicki.io/blog/2024/06/30/biphasic-programming.html
https://rybicki.io/blog/2024/06/30/biphasic-programming.html
https://doi.org/10.1111/j.1530-9290.2008.00015.x
https://doi.org/10.1111/j.1530-9290.2008.00015.x
https://www.shuttle.rs
https://doi.org/10.1145/3468264.3468575
https://www.terraform.io
https://www.winglang.io
https://doi.org/10.1007/s00450-019-00412-x
https://doi.org/10.1109/MS.2016.81
https://doi.org/10.1109/MS.2016.81

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Infrastructure from Code Approaches

	3 Experiment
	3.1 Experimental Design
	3.2 Procedure
	3.3 Material
	3.4 Tasks - Group A
	3.5 Tasks - Group B
	3.6 Participants

	4 Analysis
	4.1 Outlier Detection
	4.2 Hypotheses
	4.3 Analysis Results
	4.4 Concept Comprehension
	4.5 Programming Task and Developer Productivity
	4.6 Cloud Resource Traceability
	4.7 Usability and Ease-of-Use

	5 Thematic Analyis
	5.1 Usability Challenges and Barriers
	5.2 Supporting Factors
	5.3 Security Concerns
	5.4 Uncertain Cloud Costs
	5.5 Areas of Enhancement

	6 Results and Findings
	7 Threats to Validity
	8 Conclusion
	A Code Excerpts
	References

