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Abstract—This study introduces a novel two-stage method,
GPAction, for detecting environment drift in reinforcement
learning settings. We first train a Gaussian process predicting
the reinforcement learning agents’ actions and then detect envi-
ronment drifts by monitoring the mean squared error between
the predicted actions of a Gaussian process action predictor and
actual actions. Our proposed method is evaluated against three
baselines across four environments with continuous action spaces.
Results demonstrate the superior performance of GPAction in
detecting environment drift. In an ablation study, by analyzing
the plots and AUC values of the MSEs, we show that our method
GPAction can provide more distinguishable monitoring metrics
than the Gaussian process state predictor.

Index Terms—Reinforcement Learning, Environment Drift,
MLOps

I. INTRODUCTION

Reinforcement learning (RL) is a machine learning (ML)
paradigm. It learns agents’ policies to map states to actions
from an environment. The agents are not told which actions
to take but, instead, discover which actions yield the most
reward by interacting with the environment through trial and
error [1]. Machine learning operations (MLOps) is a set of
practices aiming to deploy, monitor, and maintain ML models
in production environments reliably and efficiently [2]. In the
context of RL, MLOps involves continuous monitoring of the
agent’s performance to detect any degradation that may occur
due to environment drift, i.e., changes in the underlying envi-
ronment dynamics P (St+1|St, At) [3]. Traditional monitoring
metrics, such as step rewards and their moving averages, are
commonly used during training but may not always provide
the most sensitive or accurate drift detection. There are several
reasons for this limitation: (1) Uninformative rewards in some
environments: In some RL environments, step rewards may not
be informative about the agent’s performance. (2) Insensitivity
to subtle drifts: Step rewards are often designed to reflect
an action’s immediate success or failure, which means they
may not be sensitive to slight or gradual changes in the
environment’s dynamics.

This study aims to establish a better monitoring metric
by learning a Gaussian Process (GP) model in the training
environment and monitoring its performance in the production
environment. We assume that the performance of the GP

will drop if environment drift happens. By comparing the
effectiveness of this approach with traditional metrics, we seek
to improve the detection of environment drift and enhance
the robustness of RL policies in production environments.
Previous research has demonstrated the utility of GP in vari-
ous machine learning applications, including model-based RL
methods such as PILCO [4], which employs GPR to predict
state transitions.

In our study, we address the following research questions:
• RQ1 How effective is a GPR predicting P (At|St,∆St)

in detecting environment drift compared to a GPR pre-
dicting P (∆St|St, At) used in PILCO [4]?

• RQ2 How effective is a GPR predicting P (At|St,∆St)
in detecting environment drift compared to traditional
metrics, such as step rewards and moving averages of
step rewards?

By exploring these questions, we aim to comprehensively
evaluate GP-based monitoring metrics and their potential to
improve environmental drift detection in RL systems. Our
main contributions are:

• We introduce a two-stage method leveraging a Gaussian
Process to detect environment drift.

• We evaluate our method across four environments and
compare it with three baselines, demonstrating its supe-
rior performance.

• We conduct an ablation study to provide insights into the
benefits of our approach.

The rest of the paper is organized as follows: Section II
formalizes the problem statement. Section III reviews related
works. Section IV presents our methodology. Section V de-
tails the experimental setup and results. Finally, Section VI
concludes the paper and discusses future work.

II. PROBLEM STATEMENT

Environment drift in reinforcement learning (RL) is defined
by Wang et al. [3] as changes in the conditional distribution
P (St+1|St, At), where St and St+1 are the states at times
t and t+ 1, and At is the action at time t. Environment
drift detection aims to predict the time step at which the
environment drift happens. The scope of this work is limited
to RL environments with continuous action spaces.



III. RELATED WORKS

In this section, we compare our work to related works
on handling concept drift in supervised learning and the
more specific concept of environment drift in reinforcement
learning.

A. Handling Concept Drift in Supervised Learning

In general, in supervised learning and especially in the
context of Machine Learning Operations (MLOps), where
production deployment and monitoring are essential, observing
and handling concept drift is crucial for maintaining the
performance and reliability of machine learning models in
production. MLOps is a set of practices that aims to deploy
and maintain machine learning models in production reliably
and efficiently [2]. In supervised learning, concept drift refers
to the changes in the relationship between the input data and
the dependent variables [5], which can be denoted by the
conditional distribution P (y|x), where x is the input and y
is the label. Most Concept Drift Detection works are based
on tracking the prediction error rate of the machine learning
models [6]. That is, the error rate of the models will increase
if concept drift happens. Gamma et al. [7] proposed the
Drift Detection Method (DDM), which monitors the online
error rate of a model and raises the alarm when statistically
significant changes are detected. Baena-Garcı́a et al. [8] pro-
posed the Early Drift Detection Method (EDDM), focusing
on detecting gradual drifts by monitoring the distance between
classification errors. Frias-Blanco et al. [9] developed HDDM,
which leverages Hoeffding’s bounds with a moving weighted
average test to detect changes in the distribution of data
streams. Bifet et al. [10] introduced ADWIN, which maintains
an adaptive sliding window for detecting the changes in the
data stream. Raab et al. [11] used the Kolmogorov-Smirnov
(KS) statistical test [12] to detect concept changes. All of these
error rate-based methods require access to the ground-truth
labels. To overcome this limitation, Baier et al. [13] developed
Uncertainty Drift Detection (UDD), which firstly estimates the
uncertainty of deep neural network with Monte Carlo Dropout,
and then ADWIN [10] is used on the uncertainty estimates
to detect concept drift. Unlike these works for concept drift
detection in supervised learning, our work focuses on detecting
environment drift in reinforcement learning.

B. Handling Environment Drift in Reinforcement Learning

Compared with supervised learning tasks, MLOps for re-
inforcement learning (RL) tasks have not been sufficiently
studied. Li et al. [14] proposed the concept of reinforcement
learning operations (RLOps), focusing on the principles to
deliver RL policies to the industry.

The term corresponding to concept drift in RL is environ-
ment drift [3], which refers to the change in the underlying
environment dynamics, denoted by P (St+1|St, At). Environ-
ment drift can impact the RL agent’s production performance.
In the context of RLOps, detecting and adapting to envi-
ronment drift is crucial for maintaining the effectiveness of
RL agents in dynamic and evolving environments. Despite its

significance, only a few works studied environment drift in
RL tasks.

Wang et al. [3] used a detector-agent to detect environment
drift by exploring the new environment with equal probability,
and incremental learning was used to update the Q function to
make it adapt to the drifted environment. This work has some
obvious limitations: (1) Using a detector agent to explore the
environment in a production scenario is unrealistic, and the
detector agent can only explore a finite state space, which
makes this approach unsuitable for infinite state space. (2)
The definition of a drifted environment in this work is for a
deterministic environment, not for a stochastic environment.
(3) The incremental learning approach is designed for table-
based Q-learning. Therefore, it might not be suitable for other
RL algorithms.

Greenberg et al. [15] proposed a method for detecting the
deterioration of episodic performance, which can serve as
an indicator of environment drift. This method monitors the
episodic returns of the RL agent and raises alarms when
significant declines are detected, suggesting potential changes
in the environment. While this approach helps identify envi-
ronment drift, its application is limited in realistic production
environments where episodes are not clearly defined. In many
real-world scenarios, interactions are continuous and do not
naturally segment into discrete episodes, making it challeng-
ing to apply episodic performance-based methods. Therefore,
more general approaches that do not rely on episodic structures
are needed to effectively detect and manage environment drift
in diverse and continuous production environments.

Compared with these works, our approach can detect drifts
for RL environments with infinite state space, continuous
action space, and stochastic dynamics in the unit of steps,
and our approach is independent of the RL policies.

Some works model environment drift detection as out-
of-distribution detection problems. Danesh et al. [16] and
Haider et al. [17] used neural networks to predict the next
states, and the prediction error was used as an indicator
for drifts. Compared with these works, our approach applied
Gaussian Processes, which are simpler in model structure and
interpretability and easier to tune.

IV. METHODOLOGY

This study introduces a novel method for online detecting
drifts in reinforcement learning environments through a two-
stage process. Initially, we employ a Gaussian Process (GP) to
predict the current actions based on states, i.e., P (At|St,∆St),
where At denotes the action at time t, St is the current
state, and ∆St represents the state change. This probabilistic
model enables us to estimate the likely actions given the
observed state changes. We then compute the Mean Squared
Error (MSE) between predicted and true actions observed.
We assume that the MSE will remain relatively low in a
stable environment where no drift occurs and will increase
if environment drift occurs.

Subsequently, we leverage drift detection algorithms to
monitor this MSE of GP over time. The primary objective



of this stage is to identify drifts in the environment that might
affect the RL agent’s performance. These drifts are detected
when the MSE significantly increases, suggesting changes in
the underlying environment dynamics, i.e., P (∆St|St, At).
By continuously monitoring the MSE, our method provides
a robust mechanism for detecting environment drift, thereby
facilitating timely adjustments to the RL policy to maintain its
accuracy and reliability.

Our approach can be regarded as applying a Gaussian
Process to convert environment drift detection in reinforce-
ment learning into error rate-based concept drift detection in
supervised learning by monitoring the MSE of the Gaussian
Process.

A. Gaussian Process

Our method for detecting environment drift is inspired by
the work of PILCO [4], a model-based RL method that utilizes
GP models to predict the next states given the current states
and actions, i.e., P (∆St|St, At), where ∆St ≡ St+1 − St.
Instead of predicting P (∆St|St, At), in our work, a GP
predicting P (At|St,∆St), which is trained in the training
environment and then deployed in the production environment.
The proof of P (At|St,∆St) ∝ P (∆St|St, At) when the
policy π is fixed is shown in Equation 1.

Since in most reinforcement learning environments, the
action space is smaller than the observation space, detect-
ing the changes of P (At|St,∆St) can suffer less curse of
dimensionality [18] compared with that of P (∆St|St, At).
As dimensionality increases, the space volume increases ex-
ponentially, meaning data points become sparser. In high-
dimensional spaces, the amount of data required to maintain
the same density (or coverage) increases exponentially with the
number of dimensions, and distance metrics such as Euclidean
distance become less discriminative [19]. This phenomenon,
known as distance distortion, makes distinguishing between
different distributions or detecting small changes difficult. The
relationship between distance distortion and the use of MSE
of GP as an indicator to monitor environment drift is critical.
In high-dimensional spaces, distance distortion can influence
the calculation of MSE by making it less sensitive to changes.
Although applying a GP predicting the action At given the
current state St and the change of the current state ∆St

could significantly increase the input dimensions when dealing
with high-dimensional state space, dimensionality reduction
techniques such as Principle Component Analysis (PCA) can
be applied to mitigate this problem.

P (At|St,∆St) =
P (St, At,∆St)

P (St,∆St)

=
P (St)P (At|St)P (∆St|St, At)

P (St,∆St)

=
P (St)π(St)

P (St,∆St)
P (∆St|St, At)

∝ P (∆St|St, At)

(1)

We apply the squared exponential kernel for the Gaus-
sian process regression, the same method as in PILCO [4].
To further enhance the scalability and efficiency of our
method, we employ Stochastic Variational Gaussian Processes
(SVGPs) [20] instead of Exact GPs. SVGPs offer several
benefits that are particularly advantageous in the context of
large datasets:

1) Scalability: Exact GPs have a computational complexity
of O(n3) due to the inversion of the covariance matrix,
where n is the number of data points. SVGPs, on the
other hand, use inducing points and variational inference
to approximate the GP posterior, significantly reducing
the computational burden to O(m2n), where m is the
number of inducing points and m ≪ n.

2) Handling Large Datasets: By leveraging stochastic op-
timization techniques, SVGPs can handle mini-batches
of data during training, making it feasible to train on
large datasets that would be prohibitive for Exact GPs.
This is particularly beneficial in reinforcement learning,
where policy training usually requires many interactions
with the environment. Utilizing SVGPs allows us to
effectively manage and learn from the substantial tran-
sition data generated through these interactions.

B. Drift Detection Algorithms

We employ several widely used drift detection algorithms
to detect environment drift effectively, each with unique
strengths. These algorithms help us monitor changes in the
underlying distribution of MSE between the predicted actions
Ât by the Gaussian Process and the true actions At, allowing
for online detection of drifts in the RL environments that could
affect the performance of RL policies. The drift detection
algorithms used in this work include Probability Cumulative
Sum (Prob CUSUM) [21], Page-Hinkley [22], Adaptive Win-
dowing (ADWIN) [10], and Kolmogorov-Smirnov Windowing
(KSWIN) [11]. These four drift detection algorithms are par-
ticularly suitable for detecting drifts in real-valued data, unlike
other algorithms such as Drift Detection Method (DDM) [7]
and Hoeffding’s Drift Detection Method (HDDM) [9], which
are primarily designed for categorical data.

V. EXPERIMENTS

In this section, we evaluate the effectiveness of our pro-
posed method for detecting environment drift in reinforcement
learning (RL) environments. Before presenting the results,
we first discuss the environments and RL policies used in
our experiments, the evaluation metrics employed to access
performance, the baseline methods for comparison, and the
experimental setup.

A. Environments and RL Policies

We employed four distinct RL environments, each with spe-
cific RL policies to evaluate the effectiveness of our proposed
method for detecting environment drift.



a) Pendulum with SAC: The Pendulum environment in-
volves a single pendulum that swings around, to balance it up-
right. We utilized the Soft Actor-Critic (SAC) [23] algorithm,
a state-of-the-art off-policy method known for its stability and
efficiency in continuous action spaces. The trained RL policy
can be found at HuggingFace.1

b) MountainCarContinuous with SAC: MountainCar is
a classic RL problem where an underpowered car must drive
up a steep hill. The continuous version of this environment is
used in the Experiments with the SAC policy. The trained RL
policy can be found at HuggingFace.2

c) LunarLanderContinuous with PPO: LunarLander is a
simulated environment where the agent controls a lander to
touch down on the moon’s surface safely. In our experiments,
we set the action space to continuous. We used the Proximal
Policy Optimization (PPO) algorithm [24] for this environ-
ment. The trained RL policy can be found at HuggingFace.3

d) Reacher with PPO: The Reacher environment in-
volves controlling a robotic arm to reach a target location.
PPO was chosen for this environment. The trained RL policy
can be found at HuggingFace.4

B. Evaluation Metrics
To evaluate the effectiveness of our proposed method for

detecting environment drift, we used two metrics: false alarms
(F ) and delay (D). False alarms refer to instances where
the drift detection method incorrectly predicts a drift when
none has occurred. This metric is critical because a high
rate of false alarms can lead to unnecessary interventions,
such as retraining the model or adjusting policies, which
can be costly and time-consuming. Delay measures the time
the drift detection method takes to identify a true drift after
it has occurred correctly. This metric is crucial because a
shorter delay means the RL agent can respond more quickly
to environmental changes, maintaining optimal performance.
A longer delay, on the other hand, can result in prolonged
periods of suboptimal performance and missed opportunities
for timely interventions. To combine these two metrics, we
use the data from the experiment results first to normalize
false alarms and delay, to get the normalized metrics F̃ e

i,j and
D̃e

i,j , shown in Equation 2 and Equation 3, respectively. This
step gives the two metrics the same scales. e is the index of the
experiment; i denotes the method i and j denotes the jth result
of experiment e. µF e and σF e denote the mean and standard
deviation of false alarms of the experiment e, respectively, and
µDe and σDe denote the mean and standard deviation of delay
of the experiment e, respectively.

F̃ e
i,j =

F e
i,j − µF e

σF e

(2)

D̃e
i,j =

De
i,j − µDe

σDe

(3)

1https://huggingface.co/sb3/sac-Pendulum-v1
2https://huggingface.co/sb3/sac-MountainCarContinuous-v0
3https://huggingface.co/sb3/ppo-LunarLanderContinuous-v2
4https://huggingface.co/fatcat22/ppo-reacher-v4

Then we combine the two normalized metrics F̃ e
i,j and D̃e

i,j

by computing the average of them to get a normalized score
Se
i,j , shown in Equation 4.

Se
i,j =

F̃ e
i,j + D̃e

i,j

2
(4)

By normalizing and combining these metrics, we can eval-
uate the overall performance of the drift detection methods
consistently and comprehensively, balancing the trade-offs
between false alarms and detection delay.

C. Baselines

We will compare the results of our method with the follow-
ing method baselines. All the baseline methods are followed
by drift detection algorithms mentioned in Section IV-B,
consistent with our method.

• GP predicting states (GPState): A stochastic varia-
tional Gaussian Process (SVGP) is used to predict state
transitions, i.e., P (∆St|St, At), the same as the GP
in the work of PILCO [4]. Drift detection algorithms
monitor the MSE of the SVGP to detect environment
drift. To compare our method with this baseline, we can
demonstrate if our method can improve the detection of
environment drift by changing predicting P (∆St|St, At)
to predicting P (At|St,∆St).

• Moving Average Step Rewards Distribution
(AveStepRew): Many works monitor the performance
of agents using the episode rewards, such as Mnih et
al. [25] and Greenberg et al. [15]. Unlike training
environments, where episodes are typically well-defined
with a clear start and end, production environments
may involve continuous tasks without explicit episodic
boundaries. As a result, monitoring episode rewards
becomes impractical, and in our work, we aim to
detect environment drift in the unit of steps rather
than episodes. To address this challenge, we estimate
the moving average of step rewards to monitor overall
performance, similar to episode rewards. The moving
average could smooth out short-term fluctuations and
provide a clearer picture of the agent’s performance
trends over time. This approach helps understand the
long-term behaviour and stability of the RL agent in the
production environment. We used two settings of the
number of steps, 100 and 200, to compute the moving
average step rewards in our experiments.

D. Experiment Settings

To simulate the environment drift, we slightly modify the
parameters of each RL environment:

• Pendulum: The gravity parameter increased from the
default value of 10.0 to 10.5.

• MountainCarContinuous: A leftward wind with a
power of 0.35 was added.

• LunarLander: Wind was enabled, and the wind power
was set to 5.

https://huggingface.co/sb3/sac-Pendulum-v1
https://huggingface.co/sb3/sac-MountainCarContinuous-v0
https://huggingface.co/sb3/ppo-LunarLanderContinuous-v2
https://huggingface.co/fatcat22/ppo-reacher-v4


• Reacher: The motor gear parameter was decreased from
200 to 185.

The performance of the RL agents in undrifted and drifted
environments are listed in Table I.

TABLE I
PERFORMANCE OF AGENTS IN UNDRIFTED AND DRIFTED

ENVIRONMENTS

Env (Policy) Undrifted Env Drifted Env

Pendulum (SAC) -143.44±81.23 -147.99±85.73
MountainCarContinuous (SAC) 94.65±1.10 93.76±2.07
LunarLander (PPO) 271.82±26.40 251.82±56.96
Reacher (PPO) -4.41±1.32 -4.52±1.48

To train the stochastic variational Gaussian Process (SVGP)
models, we collected transitions by running each training
environment for 20,000 steps. The SVGP models are im-
plemented with GPytorch [26]. To evaluate the effectiveness
of our environment drift detection method and the baselines,
we ran each production environment for 6000 steps. The
environment drift was introduced at the 3000th step, allowing
us to calculate the number of false alarms and the delay
metrics. If the method fails to detect any drift after the 3000th
step in one experiment, the delay will be set to 4000. The mean
and standard deviation of the monitoring metrics, i.e., MSEs
of GPs and moving average step rewards from the training
environment, were used to normalize the monitoring metrics
in the production environment. This normalization ensures that
all monitoring metrics have the same scale, allowing us to
use the same parameters for the drift detection algorithms
on different monitoring metrics since these drift detection
algorithms are sensitive to the scale of the monitoring metrics.
The significance level of the Prob CUSUM is set to 0.05. For
the other three drift detection algorithms, we used their default
parameters as suggested by river5. In each environment, we
train three GPs. Each GP will be tested ten times for each drift
detection algorithm. Therefore, there will be 30 experiments
for each drift detection algorithm in each environment. For
the moving average step rewards baselines, we will test them
30 times, consistent with the 30 experiment results of the GP
methods. Therefore, there will be 120 experiment results for
each method in each environment.

The code of the experiments is available in this Github
repository.6

E. Results

We present the results of our experiments comparing the
proposed method with the baseline methods for detecting
environment drift in RL environments. The results are listed
in Table III in Appendix A. According to Table III, in terms of
false alarms, the baseline GPState outperforms other methods
in most experiments. Both methods based on Gaussian process
regression outperform the moving average step rewards-based

5https://riverml.xyz/latest/
6https://github.com/fatcatZF/EnvironmentDriftGP

methods. Regarding delay and normalized score, our method
GPAction outperforms all the baselines.

To compare the methods across multiple experiments from
different environments, we applied the Friedman chi-square
test [27] to check for significant differences between rank
means. Subsequently, the Nemenyi post-hoc test [28] was used
to identify significant pairwise differences in average ranks.
The ranking of the methods is visualized by critical differences
(CD) diagrams [28], with a significance level of 0.05, which
is shown in Figure 1. The CD-diagram for false alarms in
Figure 1a indicates that GPState has the lowest average rank
(1.5). GPAction also performs well but slightly worse than
GPState. The CD-diagram for delay shown in Figure 1b
shows that GPAction achieves the best performance with the
lowest average rank (1.8). This indicates that GPAction has
the shortest delay in detecting environment drifts compared to
other methods. GPState and the moving average step rewards
methods (AveStepRew-100 and AveStepRew-200) have higher
ranks, indicating longer delays. The CD-diagram for the nor-
malized score shown in Figure 1c, which combines both false
alarms and delay, shows that GPAction has the best overall
performance with the lowest average rank (1.4). GPState is the
second-best, followed by AveStepRew-100 and AveStepRew-
200.

(a) False Alarms

(b) Delay

(c) Normalized Score

Fig. 1. CD-Diagrams of False Alarms, Delay and Normalized Score.

F. Ablation Study
This ablation study aims to delve deeper into comparing the

effectiveness of GPAction and GPState in detecting environ-

https://riverml.xyz/latest/
https://github.com/fatcatZF/EnvironmentDriftGP


ment drift. By analyzing the Mean Squared Error (MSE) over
6000 steps in four environments—Pendulum, MountainCar-
Continuous, LunarLander, and Reacher, we aim to determine if
the ActionPredictor provides better distinguishability between
undrifted and drifted states than the StatePredictor. We use
the Area Under the Curve (AUC) [29] of the MSE plots as a
measure of this distinguishability. Higher AUC values suggest
greater sensitivity and effectiveness in detecting environment
drift, indicating that the predictor can distinguish between
undrifted and drifted states more effectively. The AUC is
particularly beneficial as it is independent of the specific drift
detection algorithms and their settings, providing an objective
measure of the methods’ sensitivity to environment drift.
All MSEs are normalized based on the mean and standard
deviation of the undrifted environment (first 3000 steps) to
better align the plots, thus providing better visualization. The
plots of the MSEs of GPAction and GPState of the four
environments are shown in Figure 2. The AUC values are
presented in Table II.

TABLE II
AUC VALUES FOR GPACTION AND GPSTATE ACROSS DIFFERENT

ENVIRONMENTS

Environment GPAction AUC GPState AUC

Pendulum (SAC) 0.994±0.003 0.977±0.005
MountainCarContinuous (SAC) 0.999±0.001 0.737±0.012
LunarLander (PPO) 0.912±0.013 0.643±0.028
Reacher (PPO) 0.719±0.048 0.701±0.026

Based on the MSE plots and the AUC values presented
in Table, GPAction consistently demonstrates superior perfor-
mance in distinguishing between undrifted and drifted envi-
ronments. The higher AUC values for GPAction, especially
in environments like MountainCarContinuous and Pendulum,
indicate greater sensitivity in detecting environment drift than
GPState. These results are corroborated by the visual analysis
of the MSE plots, where GPAction shows more significant
changes post-drift. Thus, GPAction is a more reliable method
for monitoring and detecting environment drift in reinforce-
ment learning settings.

VI. CONCLUSION AND FUTURE WORK

This study introduced a novel two-stage method for detect-
ing environment drift in reinforcement learning environments
by leveraging Gaussian Process Regression to predict actions.
By comparing our method with three baselines across four en-
vironments, we demonstrated the effectiveness of our method
in detecting environment drift.

In future work, it is worth exploring suitable kernels in
the Gaussian Process for detecting environment drift, how to
extend our current method to the environments with discrete
action space, and the software architecture aspects of environ-
ment drift detection through industrial case studies.
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(a) Pendulum (SAC)

(b) MountainCarContinuous (SAC)

(c) LunarLander (PPO)

(d) Reacher (PPO)

Fig. 2. Mean and Standard Deviation of MSE for GPAction and GPState
across different environments.
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[5] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and
A. Bouchachia, “A survey on concept drift adaptation,”
ACM computing surveys (CSUR), vol. 46, no. 4, pp. 1–
37, 2014.

[6] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang,
“Learning under concept drift: A review,” IEEE trans-
actions on knowledge and data engineering, vol. 31,
no. 12, pp. 2346–2363, 2018.

[7] J. Gama, P. Medas, G. Castillo, and P. Rodrigues,
“Learning with drift detection advances in artificial in-
telligence,” in Proc. of 17th Brazilian Symp. on Artificial
Intelligence, pp. 286–295.

[8] M. Baena-Garcıa, J. del Campo-Ávila, R. Fidalgo, A.
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APPENDIX A
TABLES

TABLE III
THE TABLES BELOW PRESENT THE RESULTS OF EXPERIMENTS ACROSS VARIOUS ENVIRONMENTS AND DRIFT DETECTION METHODS. EACH TABLE

PRESENTS THE RESULTS FROM ONE ENVIRONMENT, INCLUDING THE METRICS FOR FALSE ALARMS (F ), DELAY (D), AND THE COMBINED NORMALIZED
SCORE S FOR DIFFERENT METHODS. EACH ROW OF A TABLE DENOTES ONE DRIFT DETECTION ALGORITHM. GPACTION AND GPSTATE DENOTE THE

STOCHASTIC VARIATIONAL GAUSSIAN PROCESS PREDICTING P (At|St,∆St) AND P (DeltaSt|St, At), RESPECTIVELY. AVESTEPREW-100 AND
AVESTEPREW-200 DENOTE THE MOVING AVERAGE STEP REWARDS METHODS, WHICH SET THE NUMBER OF STEPS TO 100 AND 200, RESPECTIVELY.

SMALLER VALUES INDICATE BETTER PERFORMANCE. THE RESULTS WITH THE SMALLEST MEAN IN EACH ROW ARE HIGHLIGHTED IN BOLD TEXT.

GPAction GPState AveStepRew-100 AveStepRew-200

F D S F D S F D S F D S

ProbCUSUM 2.77±2.42 1.9±5.35 -0.56±0.08 2.57±2.94 2.57±6.74 -0.56±0.1 12.57±13.25 2055.77±1765.74 0.43±0.54 21.27±20.62 1927.87±1762.44 0.69±0.68

PageHinkley 4.53±2.56 0.87±2.15 -0.43±0.44 2.9±1.83 1.63±4.72 -0.71±0.32 8.8±1.4 211.4±159.33 0.86±0.47 3.73±1.08 320.3±204.08 0.28±0.52

ADWIN 0.57±0.94 50.73±39.85 -0.58±0.18 0.4±0.5 49.67±48.52 -0.6±0.16 11.97±2 83.8±84.29 0.67±0.27 4.37±2.22 279±242.8 0.51±0.78

KSWIN 5.73±3.65 35.03±18.09 -0.76±0.38 9.87±2.13 16.23±10.51 -0.38±0.23 13.3±1.47 134.03±72.84 0.36±0.3 11.7±6.27 311.17±187.05 0.77±0.75

(a) Pendulum (SAC)

GPAction GPState AveStepRew-100 AveStepRew-200

F D S F D S F D S F D S

ProbCUSUM 0.67±1.15 2.83±9.02 -0.66±0.05 0.57±0.77 1370.37±1137.19 -0.19±0.39 9.37±8.13 1722.87±1713.3 0.32±0.52 16.07±16.08 1444.23±1596.31 0.53±0.67

PageHinkley 2.43±2.62 0.53±2.92 -0.67±0.37 0.67±0.8 395.67±245.37 -0.01±0.58 7.67±2.02 163.27±177.93 0.45±0.49 7.07±1.53 108.13±114.39 0.23±0.35

ADWIN 0.83±0.99 28.33±15.34 -0.65±0.09 0±0 4000±0 0.45±1.69 9.93±5.55 150.9±206.77 0.2±0.47 7.8±4.77 131.8±138.94 0.01±0.42

KSWIN 3.53±2.37 40.63±33.78 -0.41±0.2 1.33±1.24 874.93±842.16 0.16±0.77 8.67±7.41 146.6±214.93 0.11±0.6 9.3±6.29 123.47±207.81 0.14±0.54

(b) MountainCarContinuous (SAC)

GPAction GPState AveStepRew-100 AveStepRew-200

F D S F D S F D S F D S

ProbCUSUM 2.37±4.17 267.8±208.09 -0.54±0.14 0.77±1.59 2064.3±1316.3 0.05±0.48 9.17±10.69 1500.27±1625.72 0.16±0.54 21.27±17.8 738.87±1194.48 0.34±0.65

PageHinkley 2.93±1.68 56.5±53 -0.61±0.21 0.47±0.68 836.23±510.93 0.01±0.6 9.2±0.81 174.27±205.84 0.33±0.29 8.77±1.33 174.47±190.11 0.27±0.3

ADWIN 1.67±1.24 145.57±179.38 -0.64±0.12 0.13±0.35 2844.9±1405.05 0.19±0.5 11.03±1.4 107.27±68.13 0.22±0.13 11.23±2.28 99.8±73.91 0.23±0.22

KSWIN 4.47±1.24 86.7±105.74 -0.416±0.12 0.6±0.89 1003.83±1128.2 -0.09±0.8 17.83±1.76 42.97±44.46 0.43±0.12 13.23±3.38 70±59.42 0.12±0.23

(c) LunarLander (PPO)

GPAction GPState AveStepRew-100 AveStepRew-200

F D S F D S F D S F D S

ProbCUSUM 2±2.51 405.43±423.92 -0.66±0.12 1.77±4.47 2581.37±1709.06 -0.05±0.44 10.6±14.88 2487.83±1676.69 0.23±0.63 15.3±22.32 2839.83±1664.72 0.49±0.8

PageHinkley 1.67±2.01 214±346.37 -0.55±0.4 1.2±1.21 1872.9±1572.34 0.13±0.73 6.33±1.56 199.73±186.81 0.35±0.29 4.5±0.86 341.93±236.12 0.06±0.2

ADWIN 0.03±0.18 2397.33±1638.44 -0.25±0.45 0±0 3820.2±684.36 0.14±0.19 10.73±2.89 160.7±183.63 0.12±0.26 9.2±2.62 222.23±202.95 -0.01±0.25

KSWIN 3.47±3.27 225.8±327.8 -0.42±0.41 0.97±1.19 772.53±885.39 -0.91±0.03 14.33±2.71 136.43±146.62 0.3±0.24 13.17±5.41 164.63±182.72 0.24±0.45

(d) Reacher (PPO)
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