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Quantum machine learning, an emerging field at the intersection of quantum computing and classical machine 
learning, has shown great promise in enhancing computational capabilities beyond classical bounds. A key 
element in this area of research is the utilization of Quantum Kernel Estimators, traditionally grounded in the 
symmetries of SU(2) groups associated with qubits. This study extends the conceptual framework of Quantum 
Kernel Estimators to incorporate a broader spectrum of symmetry groups. By harnessing the various structures 
of Lie groups, we develop novel quantum-inspired feature maps that offer more flexible and potentially powerful 
ways to encode and compress classical data into quantum states. We present a comprehensive theoretical 
introduction for this approach, followed by a methodology that integrates the developed feature maps into 
quantum-inspired kernel classifiers. Our results, derived from a series of computational experiments across 
various datasets, demonstrate the efficacy of this approach in comparison to traditional quantum and classical 
machine learning models. The findings not only underline the versatility of Lie-group theory in potentially 
enhancing quantum machine learning algorithms but also open new avenues for exploring complex symmetries 
in quantum information processing. This research bridges a gap between the study of symmetries and machine 
learning, paving the way for more sophisticated quantum algorithms capable of tackling complex, high-

dimensional data in ways previously unattainable.
1. Introduction

Despite the considerable theoretical potential of quantum technolo-

gies, their practical implementation within quantum computers and 
circuits remains at a developmental stage, particularly when compared 
to the ongoing advancements and capabilities of classical computing 
systems. However, the potential improvements through quantum infor-

mation processing technologies such as Quantum Computers, Quantum 
Key Distribution (QKD), and, as is the focus of this article, Quantum 
Machine Learning (QML), are widely recognized and extensively re-

searched [1–3].

QML is an area of research that combines the principles of quantum 
computing with machine learning concepts, offering a potential way to 
enhance the computational speeds and capabilities of machine learning 
approaches by mapping data-based learning approaches to quantum ar-

chitectures. Central to the advancement of QML, and the focus of this 
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article, are Quantum Kernel Estimators (QKEs), which blend quantum 
information processing and the classical concept of kernel estimators 
[4]. We build on the foundational work of Schuld et al., which has been 
instrumental in demonstrating the application of quantum computing 
principles in the machine learning landscape [4–6]. Additionally, lever-

aging developments within IBM’s Qiskit platform [7], our study delves 
deeper into the potential capabilities of quantum information process-

ing. Past research has shown that the capabilities of QML approaches 
are limited compared to state-of-the-art classical machine learning ap-

proaches [8], emphasizing the need to refine the conceptual framework 
of QML.

In examining the current state of QKEs, we find that these are con-

fined by SU(2)-esque group symmetries, due to the corresponding limi-

tations of quantum hardware. Our aim is to show that these information 
processing infrastructures can be extended to arbitrary Lie groups in 
a straightforward manner. By extending the theoretical and practical 
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framework of QKEs to include arbitrary Lie groups, we align our work 
with advances in particle physics, where symmetries beyond SU(2) are 
commonly used [9].

Contributions

• Extending Quantum Kernel Estimators (QKEs) to include arbitrary 
Lie groups.

• Evaluating the performance of extended Lie group symmetries in 
QKEs against basic SU(2)-based QKEs and classical machine learning 
classifiers.

• Providing a comprehensive framework and code repository for re-

producibility and further research in the field.

We present our ideas and work in the following way: First, in Sec-

tion 2, we discuss related work to our approach. Then, in Section 3, 
we introduce Quantum Kernel Estimators and the corresponding fea-

ture maps. We then show where SU(2) symmetries are used in basic 
QML feature maps and provide an extension of these to arbitrary Lie 
groups in Section 3.2. We then test these extended quantum feature 
maps for a range of standard classification datasets against basic quan-

tum feature maps and a standard classical machine learning approach as 
baselines. Next, we describe our experimental setup and the correspond-

ing datasets in Section 4, whereas we present and discuss the results in 
Section 5. A discussion on our findings is provided in Section 6 and we 
conclude our findings in Section 7. The complete code for our approach 
and our experiments can be found in a corresponding GitHub repository

for reproducibility.

2. Related work

The potential improvements through quantum information process-

ing technologies such as Quantum Computers, Quantum Key Distribu-

tion (QKD), and Quantum Machine Learning (QML) are widely recog-

nized and extensively researched [1–3]. Schuld et al. have been instru-

mental in demonstrating the application of quantum computing princi-

ples in the machine learning landscape [4–6]. Past research has shown 
that the capabilities of QML approaches are limited compared to state-

of-the-art classical machine learning approaches [8].

Recent work by Glick et al. [10] has demonstrated the efficacy of 
quantum kernels for data with inherent group structures, suggesting 
ways to deconstruct symmetries into SU(2) algebras. This aligns with our 
aim to extend quantum information processing structures beyond SU(2). 
Our study builds on these foundations, evaluating the performance of ex-

tended Lie group symmetries in QKEs against basic SU(2)-based QKEs 
and classical machine learning classifiers.

The study by Heredge et al. (2024), [11] explores the novel appli-

cation of non-unitary operations in quantum machine learning through 
the Linear Combination of Unitaries (LCU) method. The authors intro-

duce quantum-native implementations of Residual Networks (ResNet) 
and average pooling layers, which traditionally face challenges due to 
the unitary nature of quantum operations. Their approach potentially 
mitigates the issue of barren plateaus in quantum variational circuits, a 
significant obstacle in deep quantum neural networks, by probabilisti-

cally implementing quantum ResNets. Additionally, the paper proposes 
a method for projecting quantum-encoded data onto irreducible repre-

sentation subspaces, offering a flexible framework to enforce symmetry 
in quantum data encoding.

In the work by West et al. [12], the authors propose a novel frame-

work for quantum data analysis that focuses on the principles of sym-

metry and invariant theory within the quantum realm. They introduce 
a class of quantum neural networks that are inherently equivariant to 
the actions of symmetry groups, particularly emphasizing the role of Lie 
groups in encoding symmetries into quantum circuits by focusing on ex-
2

pressive sub-Hilbertspaces.
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3. Methodology

Quantum Machine Learning (QML) merges the potential of quantum 
computing with the data-driven approaches of machine learning. Here, 
we focus on Quantum Kernel Estimators (QKE) [4], exploring how their 
inherent mechanisms can be expanded to work with various group sym-

metries beyond the properties of standard qubits alone.

QKEs operate on two pivotal steps: feature encoding and kernel com-

putation. Feature encoding transforms classical data into quantum states 
through a quantum feature map Φ, mapping input data 𝑥 into a Hilbert 
space . This process can be represented as:

|𝜓(𝑥)⟩ =𝑈Φ(𝑥) |0⟩ , (1)

where 𝑈Φ(𝑥) is a unitary operation dependent on 𝑥, encoding the data 
into a quantum state |𝜓(𝑥)⟩ starting from the initial state |0⟩.

The corresponding kernel computation in QKEs is then defined as 
the inner product between these quantum states:

𝐾(𝑥,𝑥′) = |⟨𝜓(𝑥)|𝜓(𝑥′)⟩|2, (2)

where |𝜓(𝑥)⟩ and |𝜓(𝑥′)⟩ are the quantum states corresponding to data 
points 𝑥 and 𝑥′, respectively. This quantum kernel function is then 
straightforwardly used as a precomputed kernel matrix in a support vec-

tor framework, i.e., Support Vector Machines (SVM) [13], for tasks like 
classification and regression.

The methodology of QKE builds on a quantum feature map’s ability 
to encode data into quantum states and the quantum system’s capacity 
to compute complex kernel functions efficiently. These feature maps, 
especially those of the Pauli class, are based on SU(2) symmetry proper-

ties, meaning they are matrix transformations that follow certain rules 
to project arbitrary data onto a qubit. However, we aim to show that 
this concept can be expanded to arbitrary Lie groups, provided one can 
produce the corresponding algebra of a Lie group. To demonstrate this, 
we will first discuss quantum feature maps, including one used in IBM’s 
Qiskit [14], show where the mechanics of Lie groups are utilized, and 
expand this approach to several other Lie groups.

3.1. Feature maps

Feature maps are necessary in QML, serving to make classical data 
quantum, i.e. project classical data onto quantum states. Among vari-

ous and custom quantum feature maps, the Z and ZZ feature maps are 
standard choices implemented in IBM’S Qiskit, [7]. These feature maps 
use the properties of Pauli matrices to generate rotations in a complex 
two-dimensional space to encode classical data into the quantum realm. 
The basic idea here is that similar to a standard rotation matrix, pa-

rameterized using an angle 𝜃 ∈ [0, 2𝜋], one expands this methodology 
to complex rotations which are parameterized using the Pauli-matrices, 
the generators of SU(2). This gives rise to the following feature maps:

3.1.1. The Z feature map

The Z feature map employs the Pauli-Z operator to encode classical 
data into quantum states. For a given data point 𝑥, it applies a phase 
rotation to each qubit, proportional to the corresponding feature value 
in 𝑥. Mathematically, this operation is described by:

𝑈𝑍 (𝑥) = exp

(
𝑖
∑
𝑗

𝑥𝑗𝑍𝑗

)
, (3)

where 𝑍𝑗 is the Pauli-Z-matrix acting on the 𝑗-th qubit, and 𝑥𝑗 is the 𝑗-th 
component of 𝑥. This results in a rotation around the Z-axis of the Bloch 
sphere, effectively encoding the data within the phase of the quantum 
state. Throughout the remainder of this article, we denote all results 

associated with the Z feature map with 𝑄𝑍 .

https://github.com/Raubkatz/Quantum_Inspired_Kernel_Matrices
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3.2. Exploring symmetry in feature maps

The Pauli matrices, integral to the Z and other feature maps, are 
essential in quantum computing, reflecting the SU(2) Lie group’s alge-

braic structure. Their application through the exponential map gener-

ates SU(2) elements, indicative of rotations in three-dimensional space, 
and exemplifies the connection between quantum feature maps and Lie 
group theory.

These feature maps, i.e., unitary transformations, especially those of 
the Pauli class, are based on SU(2) symmetry properties, meaning that 
there are matrix transformations that follow certain rules to project ar-

bitrary data on a qubit. The behavior of these Pauli-class feature maps is 
governed by the Pauli matrices, which are three 2 ×2 complex matrices:

𝜎𝑥 =
(
0 1
1 0

)
, 𝜎𝑦 =

(
0 −𝑖
𝑖 0

)
, 𝜎𝑧 =

(
1 0
0 −1

)
(4)

This connection shows that the Z map leverages the SU(2) Lie group 
structure via Pauli matrices, facilitating the encoding of data into quan-

tum states and integrating SU(2)’s structure into Quantum Machine 
Learning (QML). However, the Pauli matrices are not exactly genera-

tors of SU(2), such that they need to be slightly changed. The Lie algebra 
su(2) is then spanned by the Pauli matrices multiplied by 12 𝑖:

su(2) =
{1
2
𝑖𝜎𝑥,

1
2
𝑖𝜎𝑦,

1
2
𝑖𝜎𝑧

}
(5)

Building upon this, we introduce a methodology to employ arbitrary 
Lie groups for data encoding, extending beyond the conventional SU(2) 
based feature maps. Lie groups, a blend of algebra and geometry named 
after Sophus Lie, encapsulate continuous symmetries as mathematical 
entities that marry group properties with manifold smoothness. These 
groups articulate rotational and translational symmetries within mathe-

matical and physical realms, offering a potent framework for describing 
symmetries [9,15].

Central to Lie groups is the concept of generators, the elements of 
the corresponding Lie algebra representing “infinitesimal” symmetries. 
Through the exponential map, denoted as exp, these generators facilitate 
the construction of Lie group elements from algebra elements, bridging 
Lie algebra and Lie groups and enabling the expression of group ele-

ments as exponentials of algebra components. This framework allows 
for the expansive use of Lie groups in our approach, providing a mech-

anism for encoding data into Hilbert spaces.

Thus, we can build feature maps that harness the structure and sym-

metries of various Lie groups beyond SU(2). For instance, for an arbi-

trary Lie group with generators 𝑇𝑖, we can define a generalized feature 
map as:

𝑈 (𝑥⃗) = exp

(
𝑖
∑
𝑗

𝑥𝑗𝑇𝑗

)
, (6)

where 𝑥𝑗 ∈ [0, 𝜋] are normalized components of the classical data, and 
𝑇𝑗 are the generators of the Lie algebra associated with the group, 𝑈 is 
the resulting group element. This approach allows for encoding classical 
data into Hilbert space by arbitrary Lie groups.

For our encodings, we always identify a Lie group 𝐺 that is suf-

ficiently large, specifically one within the families of SO(𝑛), SL(𝑛), 
SU(𝑛), GL(𝑛), U(𝑛), O(𝑛), T(𝑛) which has an adequate number of gen-

erators, i.e., more or equal to the number of features, to parameterize 
each feature on the Lie group. We use our normalized feature vector 
𝑥⃗ =

(
𝑥0, 𝑥1,… , 𝑥𝑚

)
to parameterize the generators, thereby obtaining 

the corresponding group element 𝑈G

(
𝑥⃗
)
:

𝑈G

(
𝑥⃗
)
= exp

(
𝑖
∑
𝑗

𝑥𝑗𝑇G,𝑗

)
, (7)

where 𝑥𝑗 are again the individual components of the normalized feature 
3

vector, 𝑇G,𝑗 are the generators of the selected symmetry group G, and 
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𝑈G

(
𝑥⃗
)

is a 𝑛 ×𝑛matrix representing the group element, with 𝑛 being the 
dimension of the resulting group element. This is illustrated in Fig. 1.

Should the number of generators exceed the number of features, we 
set the parameters for the excess generators to zero. This encoding trans-

forms our data samples or vectors into a new feature space represented 
by:

||𝜓(𝑥⃗)⟩ = 1√
𝑛

⎛⎜⎜⎝
1
⋮
1

⎞⎟⎟⎠
T

⋅𝑈G

(
𝑥⃗
)

, (8)

Symmetry Groups

In our experiments, we consider various Lie groups in dimension 𝑛
to encode multidimensional data. The in-depth details are discussed in 
Appendix A.

3.3. Employed symmetry group families

• Orthogonal Group, 𝑂(𝑛)
• Special Orthogonal Group, 𝑆𝑂(𝑛)
• Special Linear Group, 𝑆𝐿(𝑛, ℝ)
• General Linear Group, 𝐺𝐿(𝑛, ℝ)
• Unitary Group, 𝑈 (𝑛)
• Special Unitary Group, 𝑆𝑈 (𝑛)

4. Experimental setup

The primary aim of this research is to demonstrate the practical vi-

ability and effectiveness of our proposed methodology, thereby serving 
as a proof of concept for the underlying ideas. We test our previously 
discussed ideas on a diverse collection of publicly accessible datasets, 
all of them classification tasks. These datasets mostly consist of numer-

ical values; however, to incorporate non-numerical data seamlessly, we 
adopted a strategy of mapping each unique non-numerical value to a 
distinct numerical representation within the [0, 𝜋] interval. This con-

version ensures uniform data treatment across all experiments.

Further, all features are normalized to be in the range [0, 𝜋].
Furthermore, we partition each dataset using an 80/20 split for train-

ing and testing, respectively.

Our methodology is compared against two baselines to benchmark 
its performance. The first comparison is with standard feature maps, 
e.g., the z-feature map utilized in quantum machine learning platforms 
like Qiskit. The second baseline is the CatBoost classifier/regressor, 
renowned for its efficacy across various tasks even with default settings 
[17,8,16,18], which is precisely how we are using it. These compar-

isons are important for contextualizing our contributions among other 
machine-learning approaches, thus highlighting the potential advan-

tages and disadvantages.

The effectiveness of our algorithms is shown using accuracy, preci-

sion, recall, and the F1 score as primary metrics. Following the conven-

tions and implementations established by scikit-learn [14], our selection 
of metrics ensures adherence to the best practices for evaluating classi-

fication tasks.

4.1. Datasets

We employed the following four binary classification task data sets 
to verify our ideas:

4.1.1. Climate model simulation crashes dataset

Climate Model Simulation Crashes Dataset (OpenML: climate-

model-simulation-crashes, ID: 1467): This dataset, hosted on OpenML 
and originally from the UCI repository, contains simulated data related 
to climate model crashes. It consists of a total of 540 instances with 
18 numerical attributes. The dataset is used to predict whether a cli-

mate model simulation will crash (binary outcome: 0 for no crash, 1 for 

crash). The attributes include various environmental and operational 

https://www.openml.org/d/1467
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Fig. 1. Illustration of our data encoding strategy using the SU(3) group. A data sample with 8 features parameterizes the Gell-Mann matrices, which are then 
transformed into a group element via the exponential map. This group element is applied to a normalized “empty” input vector, yielding a complex three-component 
vector that embeds the information of the data sample. Note that the imaginary unit i is part of Exp in this depiction.
conditions under which the climate model runs, such as temperature, 
pressure, and humidity.

4.1.2. Indian Liver Patient Dataset (ILPD)

Indian Liver Patient Dataset (ILPD) (OpenML: ilpd, ID: 1480): 
Compiled by Bendi Venkata Ramana, M. Surendra Prasad Babu, and N. 
B. Venkateswarlu, this dataset focuses on diagnosing liver disease in pa-

tients from the north-east region of Andhra Pradesh, India. It includes 
records of 583 patients, with 416 liver patient records and 167 non-

liver patient records. The dataset has 441 male and 142 female patient 
records and contains 11 attributes, including age, gender, and various 
liver function tests (like Total Bilirubin, Direct Bilirubin, Alkaline Phos-

phatase, Alanine Aminotransferase, Aspartate Aminotransferase, Total 
Proteins, Albumin), and Albumin and Globulin Ratio. The class label 
indicates whether the patient has liver disease (1) or not (2).

4.1.3. Volcanoes on Venus - E5

Volcanoes on Venus - E5 (OpenML: volcanoes-e5, ID: 1527): This 
dataset, hosted on OpenML, originates from radar images of Venus 
taken by the Magellan spacecraft. It focuses on the classification of vol-

canic structures. The dataset includes 152 instances with 4 numerical 
attributes that describe characteristics of the radar images, such as di-

ameter, depth, and other morphological features. The target variable 
is binary, indicating whether the structure is a volcano (1) or not (0). 
This dataset is commonly used in image analysis and planetary science 
research to study the surface features of Venus.

4.1.4. Thoracic surgery data

Thoracic Surgery Data (OpenML: thoracic-surgery, ID: 4329): This 
dataset was collected retrospectively at Wroclaw Thoracic Surgery Cen-

tre for patients who underwent major lung resections for primary lung 
cancer between 2007 and 2011. The Centre is associated with the De-

partment of Thoracic Surgery of the Medical University of Wroclaw 
and Lower-Silesian Centre for Pulmonary Diseases, Poland. The research 
database is part of the National Lung Cancer Registry, administered by 
the Institute of Tuberculosis and Pulmonary Diseases in Warsaw, Poland. 
It comprises 470 instances with 17 attributes, including preoperative 
and operative characteristics such as age, diagnosis, forced vital capac-
4

ity, and performance status. The binary class label (Risk1Yr) indicates 
the one-year survival status of the patient post-surgery (1 for survived, 
0 for not survived).

4.2. Lie group symmetries and data

Lastly, we need to discuss connections between Lie group symmetries 
and data. The work by [12] is exemplary in taking advantage of symme-

tries in data. The researchers built a quantum neural network approach 
specifically designed to take advantage of the symmetries present in the 
data it was trained on. This means they ensured that their encoding 
commuted for different layers of their approach, thus respecting rota-

tional symmetry by reducing the Hilbert space to a space that respects 
rotational symmetry. Furthermore, they selected qubits that could well 
express the carried information.

However, for the data presented in Section 4.1, we cannot identify 
certain symmetries based on its composition, as these datasets are not, 
in particular, e.g., image data with a particular symmetry present. Apart 
from datasets with rather obvious symmetries, one does not generally 
know if a dataset succumbs to certain symmetries, especially not for 
categorical data. Thus, it is necessary to test quantum machine learning 
approaches also on datasets with no apparent symmetries, as the previ-

ously discussed datasets are standard datasets chosen for availability and 
variety among numbers of features, and being made up of categorical 
and numerical features. These datasets serve as evidence that quantum 
learning approaches can perform reasonably even in non-professionally 
guided scenarios. However, what about datasets where obvious sym-

metries are incorporated in the presented dataset, also in the case of 
non-image but categorical and/or generally numerical data? Here, the 
approach by Raubitzek et al. [8] presents such a discussion for SU(2) 
symmetry, where the authors construct a dataset based on SU(2) sym-

metry, i.e., generating a classification dataset where certain parts of the 
SU(2) hypersphere are identified with one of two classes, i.e., construct-

ing a binary classification with a feature space built from the symmetry. 
The researchers observe that no quantum advantage is given for these 
rather generally constructed datasets; sophisticated modern boost classi-

fiers perform overall best. However, it needs to be mentioned that QML 
approaches performed (subjectively) reasonably, i.e., they did not un-

derperform abysmally but provided, given a certain optimized set of 

hyperparameters, performances that could be used in a real-life classifi-

https://www.openml.org/d/1480
https://www.openml.org/d/1527
https://www.openml.org/d/4329
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cation task, though not being the best overall performances, especially 
in terms of speed.

Given the prior discussion on symmetry in data, we extend the ap-

proach from the work of Raubitzek et al. [8] to our current method. 
Specifically, we extend the SU(2)-based data approach to arbitrary sym-

metries and analyze if the proposed multi-Lie-group-encompassing QKE 
approach can yield reasonable performance in datasets where a respec-

tive part of the regarded Hilbert space is selected and identified with a 
certain class. Thus, we construct our dataset in the following way ac-

cording to our prior introduction of the approach in Section 3.

Given a set of generators of an arbitrary Lie Group 𝑇G,j and the cor-

responding group element:

𝑈G

(
𝑥⃗
)
= exp

(
𝑖
∑
𝑗

𝑥𝑗𝑇G,𝑗

)
, (9)

we know that this construction via the exponential map spans parts of 
our Lie manifold. We then choose our feature vector such that we assign 
a very particular part of our Lie manifold to a certain class, either 1 or 
0, thus creating a binary classification task. Therefore, all we need to 
do is create a dataset consisting of a particular number of features 𝑚, 
ensuring that we have two regions of the Lie manifold to identify classes 
with.

We thus use a feature vector 𝑥⃗ =
(
𝑥0, 𝑥1, 𝑥2

)
, where we select—via 

parametrization of this feature vector—two regions of the Lie manifold 
as:

Class =

{
0 if 0 < 𝑥0 ≤

𝜋

3 ,

1 if
2𝜋
3 < 𝑥0 < 𝜋,

where we choose 𝑥0 to be a random number within the boundaries of 
Classes 0 and 1.

The other components 𝑥1, 𝑥2, … are then chosen to be random num-

bers 0 < 𝑥2 < 𝜋 and 𝑥1 is set to zero at all times.

It is important to note that these boundaries for feature-components 
are chosen arbitrarily, and different choices could be made depending 
on the specific application or depending on the study of the desired 
symmetry properties, e.g., researching the zeroth generator compared 
to the first one in terms of expressivity by setting one random and the 
other fixed.

Thus, we create a dataset consisting of 2 classes, 3 features, and gen-

erate 100, 250, 500, and 1000 samples overall, i.e., different amounts of 
data. Using this dataset with the discussed feature maps creates unique 
kernel matrices depending on the symmetry groups employed.

5. Results

This section consists of two parts; first, we discuss our exemplary 
real-life data set approaches, and then we discuss the approaches using 
synthetic data.

Our evaluation comprises several experiments documented in Ta-

bles 1, 2, 3, and 4, which detail the accuracy, precision, recall, and 
F1-score, respectively. These experiments leverage Lie group-based ker-

nel matrices within a Support Vector Machine classifier framework. 
As noted by Shalev-Shwartz and Ben-David [19] and echoing the “No 
Free Lunch” Theorem [20], our findings affirm that no single algorithm 
universally outperforms across various datasets. This underscores the 
importance of tailoring assumptions in model selection, as a model’s 
performance significantly depends on data compatibility and method-

ological appropriateness.

In particular, the data reveal the need for assumptions regarding data 
symmetries for effective feature mapping onto manifolds, thereby distin-

guishing between classes. Our results illustrate that while non-quantum 
sophisticated boost classifiers like CatBoost generally dominate, the Z-

feature map and other tested feature maps occasionally surpass the 
5

baseline, aligning with findings by Raubitzek et al. [8]. This indicates 
Physics Letters A 525 (2024) 129895

that different symmetry groups yield varying levels of performance de-

pending on the problem at hand, reaffirming the principle that no single 
approach is universally applicable.

Specific Observations:

• For the climate-model-simulation-crashes dataset, the Special Linear 
Group (SL) and General Linear Group (GL), along with CatBoost, 
provide the highest accuracy. Precision, recall, and F1-score metrics 
indicate varying top performers, with the SL group showing partic-

ularly strong results according to the F1-score.

• The haberman dataset sees CatBoost outperforming all other ap-

proaches in all metrics, with SL and the Z-feature map also delivering 
competitive results.

• In the Indian Liver Patient (ilpd) dataset, while CatBoost leads in ac-

curacy, the Z-feature map shows the best precision and F1-score.

• For the thoracic-surgery dataset, CatBoost again leads in accuracy, 
with the SL group and Z-feature map excelling in precision and re-

call/F1-score respectively.

Key Findings:

• All approaches perform reasonably well across different datasets.

• The SL group exhibits the strongest performance among our Lie 
group-based approaches.

• CatBoost confirms its effectiveness with robust performance across 
all metrics without the need for hyperparameter tuning, underscor-

ing its utility in delivering high-quality results with minimal config-

uration.

5.1. Kernel matrices

In addition to our performance comparison, we also depicted the 
constructed kernel matrices using correlation plots, as done in similar 
work [21–24]. This approach provides another layer of interpretation 
for our experiments. Different groups compress data differently, leading 
to varying encoding dimensions of the data under study.

Observing the plots in Fig. 2, we notice that our Lie group-based 
feature maps produce kernel matrices for the SL(𝑛) case that are denser 
and exhibit less variation than the standard Z feature map. Although 
the variation in absolute values is higher for the SL(𝑛) case, the relative 
variation is less, as indicated by the many dark blue areas. We conclude 
that this is because the Lie group approaches compress the data, whereas 
the Z feature map expands the feature space. Furthermore, the standard 
Z feature map reveals a strongly visible line of correlation, which is 
barely noticeable in the SL(𝑛)-based kernel matrix. To illustrate these 
differences, we have plotted the best-performing kernel matrix, i.e., the 
SL(𝑛)-group-based one.

Additionally, we plotted in Fig. 2 a kernel matrix for the same prob-

lem that also has high accuracy and looks similar to the standard Z fea-

ture map, i.e., a very visible line of correlation in the center. Overall, we 
conclude that the best-performing kernel matrices of our approach can 
be fundamentally different from the standard feature map approaches 
both because of compression and because the encoding happens along 
many degrees of freedom, whereas the standard Z feature map manipu-

lates only one degree of freedom, rotations on the Z-axis, and expands 
the features onto a complex 2-dimensional space using the respective 
Pauli generator.

5.2. Results synthetic data

Our second line of experiments details how the different Lie groups 
for encoding data work on a simple dataset where we know the result 
for sure, i.e., the dataset described in Section 4.2. Our results are col-
lected in Tables 5, 6, 7, 8. What these results should show is that certain 
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Table 1

Accuracy of various approaches across different datasets.

Data Set \ Approach Q𝑍 SO SL SU GL U O CatBoost

climate-model-simulation-crashes 0.8457 0.3519 0.9136 0.9074 0.9136 0.9074 0.3519 0.9136

haberman 0.7283 0.4783 0.7391 0.4130 0.7283 0.4130 0.4783 0.7500

ilpd 0.7200 0.4400 0.7143 0.5029 0.6629 0.5029 0.4400 0.7314

thoracic-surgery 0.7943 0.7305 0.8085 0.7447 0.7801 0.7518 0.7305 0.8227

Table 2

Precision of various approaches across different datasets.

Data Set \ Approach Q𝑍 SO SL SU GL U O CatBoost

climate-model-simulation-crashes 0.5503 0.5309 0.7120 0.4565 0.4568 0.4565 0.5309 0.4568

haberman 0.6498 0.4877 0.6780 0.4675 0.6513 0.4675 0.4877 0.6896

ilpd 0.6451 0.4595 0.3634 0.5311 0.5269 0.5311 0.4595 0.6478

thoracic-surgery 0.5278 0.4882 0.5608 0.4980 0.4104 0.4486 0.4882 0.4143

Table 3

Recall of various approaches across different datasets.

Data Set \ Approach Q𝑍 SO SL SU GL U O CatBoost

climate-model-simulation-crashes 0.5598 0.5806 0.5647 0.4966 0.5000 0.4966 0.5806 0.5000

haberman 0.6008 0.4848 0.5851 0.4627 0.5659 0.4627 0.4848 0.6276

ilpd 0.6470 0.4489 0.4883 0.5390 0.5204 0.5390 0.4489 0.6279

thoracic-surgery 0.5118 0.4899 0.5203 0.4984 0.4701 0.4696 0.4899 0.4957

Table 4

F1-score of various approaches across different datasets.

Data Set \ Approach Q𝑍 SO SL SU GL U O CatBoost

climate-model-simulation-crashes 0.5541 0.3238 0.5882 0.4757 0.4774 0.4757 0.3238 0.4774

haberman 0.6077 0.4575 0.5856 0.4086 0.5590 0.4086 0.4575 0.6391

ilpd 0.6460 0.4194 0.4167 0.4878 0.5177 0.4878 0.4194 0.6349

thoracic-surgery 0.5024 0.4883 0.5107 0.4964 0.4382 0.4556 0.4883 0.4514
symmetries should work perfectly for the discussed data, as the infor-

mation on the correct class is not obscured by a compression of the ex-

ponential map, thus generating expressive kernel matrices. In contrast, 
other symmetries should perform less well, depicting the information 
less accurately, compressing the information too much, and allowing 
the random or zero part of the feature to dominate the composition of 
the qubit/vector. And this is exactly what we see: the presented tables 
show that the Pauli-Z feature map always provides 100% accuracy, just 
like our CatBoost classifier. This is because the Pauli-Z matrix feature 
map projects each feature onto a single qubit, thus allowing the ker-

nel classifier to easily single out the information about the correct class. 
CatBoost, on the other hand, is just an easy-to-use sophisticated boost 
classifier which, given the evidence of its successful applications across 
various problems, should also be capable of singling out the feature that 
contains the information about the correct class.

The situation looks different, however, for the different quantum-

inspired feature maps based on varying Lie groups. Here, we see that the 
orthogonal and special orthogonal groups show almost perfect scores 
across all experiments and all metrics, except for the case with 1000 
data points where the score is diminished. We interpret this diminished 
score for all metrics as a result of the dataset being composed of two ran-

dom components, which might confuse the kernel estimator at a certain 
number of data points and thus slightly shift the boundary vector mar-

gins within the built model, generating a less than optimal model. We 
conclude, however, that the orthogonal and special orthogonal groups 
O(𝑛) and SO(𝑛) allow for good separation in this case. The SU(2) group, 
like the unitary group, does not allow for good separation in this case. 
The special linear group and the general linear group also allow for rea-

sonable scores across all metrics and different amounts of data. What 
is also visible here is that the special orthogonal SO(𝑛) and orthogo-
6

nal O(𝑛) groups allow for the same expressivity in terms of good scores 
for the encoding of the data, as do the special linear SL(𝑛) and general 
linear GL(𝑛) groups, and the same for the unitary U(𝑛) and special uni-

tary groups SU(𝑛). We can thus group these matrices into three families, 
and we conclude, given this evidence, that the special unitary and uni-

tary groups do not allow for further compressing the information onto 
qubits, whereas the others do to varying degrees. This is supported by 
the fact that Pauli-Z encoding also does not compress the data onto a 
qubit but rather encodes one feature at a time onto one qubit.

6. Discussion

We performed a range of experiments to demonstrate how one can 
extend the computation of kernel matrices by employing arbitrary sym-

metry groups, i.e., Lie groups. Here, we built on a framework from 
Quantum Machine Learning where feature maps are used to encode data 
onto qubits. We extended this idea by generalizing the encoding process, 
which, in the standard case, is based on SU(2) symmetry and uses ro-

tation to encode data onto a qubit. We extended this approach by not 
only using SU(2) symmetries but also a range of different Lie groups, 
i.e., SO(𝑛), SL(𝑛), SU(𝑛), GL(𝑛), U(𝑛), O(𝑛). The standard Pauli-Z matrix 
approach uses the exponential map and one of the generators of SU(2); 
we use the exponential map and more than one generator per qubit. Our 
approach differs from the standard approach in terms of compression, 
i.e., we allow more information to be encoded onto one qubit/vector.

We tested this approach using standard machine learning classifica-

tion data with mixed numerical and categorical features (Section 4.1) 
and a very simple dataset to observe the differences among different 
Lie groups in terms of encoding simplified data points (Section 4.2). 
Our results for the real-life datasets show that extending the quantum 
kernel estimator framework can provide reasonable results for certain 

datasets compared to our baseline, a CatBoost classifier. By “reason-
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Fig. 2. Kernel matrices for the climate-model-simulation-crashes datasets. The left image depicts our SL(n) based kernel matrix, while the right image shows the 
kernel matrix generated using the Z-feature map. The bottom image is the GL(n) based Kernel matrix.

Table 5

Accuracy of various approaches across synthetic datasets.

Data Set \ Approach Q𝑍 SO SL SU GL U O CatBoost

Synthetic_100 1.0000 1.0000 0.9000 0.6000 0.8667 0.6000 1.0000 1.0000

Synthetic_250 1.0000 1.0000 0.9733 0.4133 0.8800 0.4133 1.0000 1.0000

Synthetic_500 1.0000 1.0000 0.9933 0.5867 0.8333 0.5867 1.0000 1.0000

Synthetic_1000 1.0000 0.8667 0.9633 0.5233 0.8533 0.5233 0.8667 1.0000

Table 6

Precision of various approaches across synthetic datasets.

Data Set \ Approach Q𝑍 SO SL SU GL U O CatBoost

Synthetic_100 1.0000 1.0000 0.9250 0.5928 0.8667 0.5928 1.0000 1.0000

Synthetic_250 1.0000 1.0000 0.9714 0.4192 0.8991 0.4192 1.0000 1.0000

Synthetic_500 1.0000 1.0000 0.9936 0.6371 0.8526 0.6371 1.0000 1.0000

Synthetic_1000 1.0000 0.8860 0.9669 0.5198 0.8704 0.5198 0.8860 1.0000
7
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Table 7

Recall of various approaches across synthetic datasets.

Data Set \ Approach Q𝑍 SO SL SU GL U O CatBoost

Synthetic_100 1.0000 1.0000 0.8846 0.5928 0.8733 0.5928 1.0000 1.0000

Synthetic_250 1.0000 1.0000 0.9762 0.4502 0.8669 0.4502 1.0000 1.0000

Synthetic_500 1.0000 1.0000 0.9932 0.5942 0.8302 0.5942 1.0000 1.0000

Synthetic_1000 1.0000 0.8630 0.9621 0.5165 0.8570 0.5165 0.8630 1.0000

Table 8

F1-score of various approaches across synthetic datasets.

Data Set \ Approach Q𝑍 SO SL SU GL U O CatBoost

Synthetic_100 1.0000 1.0000 0.8942 0.5928 0.8661 0.5928 1.0000 1.0000

Synthetic_250 1.0000 1.0000 0.9731 0.3731 0.8743 0.3731 1.0000 1.0000

Synthetic_500 1.0000 1.0000 0.9933 0.5550 0.8300 0.5550 1.0000 1.0000

Synthetic_1000 1.0000 0.8640 0.9632 0.4983 0.8524 0.4983 0.8640 1.0000
able,” we mean that when choosing the right symmetry group, we can 
achieve results comparable to or with the same accuracy as a powerful 
modern boost classifier; Tables 1, 3, 2, 4. We observed similar insights 
from the results for the synthetic datasets, where we produced an easy-

to-solve classification with varying numbers of samples and inherent 
noise; Tables 5, 7, 6, 8. In many cases, the different symmetry feature 
maps are capable of encoding the data such that we can achieve a per-

fect score, just like our CatBoost baseline. However, there are certain 
cases where they do not provide good results, i.e., drastically underper-

form. In these cases, because of the composition of our synthetic dataset, 
we can conclude that the employed Lie group did not expressively map 
the information onto the qubit/vector. This means that due to the com-

position of our synthetic dataset and the parametrization of the different 
generators of the employed Lie groups, we see that the data maps onto 
certain regions of the Lie manifold, thus producing matrices that are 
certainly unique. However, as these obtained matrices from the param-

eterized generators in the exponential are applied to our qubits/vectors, 
we can lose information and the ability to properly express the encoded 
data. Contrary to this, we see that the standard Pauli-Z matrix feature 
map does not suffer from bad performance in this regard. Given this 
evidence, we conclude that the standard Pauli feature encoding does 
not compress the encoded data too much to blur information and fur-

ther, this Pauli-Z matrix allows for expressive data encoding. For our 
approach and the other Lie groups, this is not the case, such that our 
approach always comes with a compression (assuming we have more 
than one feature) as all features are encoded onto one qubit/vector (with 
varying length), and further, we did not particularly choose the most ex-

pressive generators, i.e., parts of the Hilbert space. Thus, we conclude 
that information about the dataset at hand, about its symmetry proper-

ties in terms of the orthogonality of the different features to each other, 
and information about which generators of which group allow for ex-

pressive encodings can improve the performance of this Lie-group-based 
learning approach.

Several works emphasize that analyzing the data at hand and choos-

ing an expressive encoding, and further altering the Hilbert space with 
respect to the symmetry properties at hand, can yield quantum machine 
learning approaches with superior performance compared to classical 
machine learning approaches. Here we want to mention the work by 
West et al. [12], where the researchers report drastically outperforming 
classical machine learning approaches by considering the symmetry of 
the data and identifying rotationally equivariant sub-Hilbert spaces for 
the discussed data, such that one can reduce the Hilbert space of the data 
at hand to trainable subspaces and feasible quantum machine learning 
approaches. This also emphasizes the need for developing highly spe-

cialized architectures for quantum machine learning, just as for neural 
networks. Our results and study tie into this work such that the pre-

sented approach can be used for a similar goal, i.e., to reduce the size 
of the Hilbert space and thus make the approach more feasible, but not 
8

by singling out relevant subspaces but by encoding multiple features 
onto the same qubit using a more dense encoding. We already discussed 
that this more dense encoding, and the resulting compression comes 
with drawbacks, but it also comes with opportunities to scale down the 
Hilbert space and thus the number of required qubits.

However, our approach still deals with all of this on an abstract level, 
and to the best of our knowledge, most of the regarded symmetries and 
encodings cannot be realized experimentally yet, as real-life quantum 
systems not only do not adhere to many of the regarded symmetries 
but are also bound to principles such as unitarity. Here, we need to 
mention another article that ties into this line of research. The work 
by [11] discusses ideas for non-unitary quantum machine learning. I.e., 
they present probabilistic quantum algorithms that overcome the nor-

mal unitary restrictions by employing a Linear Combination of Unitaries 
(LCU) method. Furthermore, they propose a framework for identifying 
irreducible quantum subspace projections for quantum encoded data. 
Thus, our approach might be linked to this work such that this identi-

fication of irreducible quantum subspaces could be used to identify the 
best level of compression of the presented encodings, and further since 
restrictions such as unitarity can be circumvented to some degree. This 
might pave the way for further breaking restrictive symmetry proper-

ties and thus allow for a greater variety of symmetry considerations in 
quantum information processing in general.

So, we ask one final question: Do quantum machine learning ap-

proaches always require sophisticated engineering solutions for the 
Hilbert space and feature engineering to show quantum advantage? Tak-

ing into account the results from [12,11], where the researchers report 
outperforming classical machine learning approaches by considering the 
symmetry of the data at hand, and our results, the answer is yes—for the 
current state-of-the-art. Considering this, our presented Quantum Ker-

nel Estimator approaches are not nicely generalizable, such that one 
cannot simply apply a standard approach to arbitrary datasets and ex-

pect reasonable results. On the contrary, there seem to be particular Lie 
groups that are well-suited for certain datasets, allowing for the most ex-

pressive encoding. This is because quantum encodings span regions of 
the Lie manifold via the exponential map, which are then encoded onto 
a qubit. If the chosen encoding cannot separate the data adequately, 
i.e., distribute it onto the Hilbert space effectively, one might encounter 
non-expressive qubits. In such cases, even though the element of the Lie 
group is unique and expressive, the resulting qubit/vector after encod-

ing isn’t. This means that different Lie group elements might provide 
similar qubits/Hilbert space vectors. Thus, as with most learning-based 
approaches, the no-free-lunch theorem applies, implying that to obtain 
the best possible solution for a given task, one needs to explore the task, 
obtain information, and incorporate this information into the architec-

ture of the learning approach to obtain quantum advantage [20]. In 
other words, no algorithm/approach fits every dataset best, and we have 
to choose the most suitable encoding and possibly manipulate the corre-

sponding Hilbert space in order to obtain the best results and a trainable 

quantum classifier.
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Still, sophisticated boost classifiers like CatBoost [17] are a strong 
baseline to which researchers should compare their results, as these clas-

sifiers not only perform well in terms of accuracy on a wide range of 
datasets but can also be easily implemented and tested against.

7. Conclusion

In this study, we explored the application of Lie group-based kernel 
matrices in a Support Vector Machine classifier framework. Our exper-

iments confirmed that no single algorithm, including advanced non-

quantum classifiers like CatBoost, consistently outperforms others on 
all metrics, which aligns with the “No Free Lunch” Theorem [20]. This 
variability underscores the importance of choosing appropriate model 
assumptions based on the specific data symmetries and features of each 
dataset. Among our presented ideas, the Special Linear Groups (SL(𝑛)) 
often showed superior performance for real-life data sets, suggesting 
that different symmetry groups might be suited for different data sets, 
as one would expect from a novel data-based learning approach.

A major limitation, however, is the incompatibility of arbitrary Lie 
groups with standard quantum architectures, which predominantly op-

erate on 𝑆𝑈 (2) symmetries and unitary transformations. Despite this, 
the diversity in quantum computing approaches provides a theoretical 
foundation for potential future hardware that can exploit, e.g. 𝑆𝑈 (3)
symmetries. This would allow us to construct quantum kernel matrices 
similar to those created using 𝑆𝑈 (2) encodings, e.g. z-feature map en-

codings. The work by Chi et al. [25] on high-dimensional quantum infor-

mation processing, particularly using qudits, highlights the potential of 
high-dimensional quantum states (qudits) to enhance quantum compu-

tation and quantum simulations beyond the standard qubit frameworks. 
Integrated photonic platforms, as discussed, offer a promising pathway 
for implementing scalable and programmable high-dimensional quan-

tum architectures. Thus higher dimensional quantum machine learning 
approaches employing actual quantum hardware are not completely 
out-of-reach.

There is much freedom in choosing the particular quantum encod-

ing and parametrizations, the standard z-feature map approach uses one 
parametrized Pauli matrix to encode one feature onto a qubit. Theoreti-

cally, one could use all three generators of the 𝑆𝑈 (2) group to encode a 
feature onto a qubit using each generator. However, the standard ap-

proach leads to an expansion of the feature space, as one feature is 
projected onto a 2D complex vector. In contrast, using more genera-

tors of the 𝑆𝑈 (2) group would lead to a more compressed approach. 
Following this line of thought, moving into higher dimensions with arbi-

trary Lie groups produces even greater compression. For example, with 
𝑆𝑈 (3), one can encode 8 features onto 3 complex components, thus 
compressing the feature space into fewer dimensions. However, this 
makes different approaches variably expressive and, considering that 
we are discussing machine learning approaches here, a compression of 
the analyzed data is sometimes not desirable as it might lead to dimin-

ished classification accuracies for certain datasets.

In general, the takeaway from this article is that one can choose 
arbitrary Lie groups to construct kernel matrices, thus performing quan-

tum(-inspired) machine learning using arbitrary Lie groups and, respec-

tively, their algebra to encode data onto 𝑛-dimensional real or complex 
vectors/qubits/qudits, [25]. In the future, this approach could utilize 
more exotic quantum hardware that allows for different data processing 
strategies, and particularly, encodings that diverge from current 𝑆𝑈 (2)-
Pauli-matrices-based approaches.

Given further development in this direction and the previously 
demonstrated quantum advantages shown by quantum machine learn-

ing approaches that either break unitarity [11] and/or build particular 
symmetry-based data engineering for specific datasets [12], we estimate 
that the inclusion of a broader variety of Lie groups, and thus possibili-

ties for different information processing, allows for better capturing the 
9

complexity inherent in real-life datasets.
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Appendix A. Symmetry groups

In our experiments, we consider various Lie groups in dimension 
𝑛 to encode multidimensional data. This appendix provides a concise 
overview of these groups and their associated Lie algebras:

Orthogonal Group, 𝑂(𝑛)
The Orthogonal Group in dimension 𝑛, denoted as 𝑂(𝑛), comprises all 

𝑛 ×𝑛 orthogonal matrices that preserve a fixed point in an 𝑛-dimensional 
Euclidean space. The group operation is matrix multiplication. Orthog-

onal matrices, denoted by 𝑄, satisfy 𝑄⊤𝑄 =𝑄𝑄⊤ = 𝐼 , where 𝑄⊤ is the 
transpose of 𝑄, and 𝐼 is the identity matrix.

The Lie algebra associated with 𝑂(𝑛) is so(𝑛), consisting of all 𝑛 × 𝑛
skew-symmetric matrices, 𝐴, such that 𝐴⊤ = −𝐴. Key properties of the 
generators of so(𝑛) include:

• Skew-Symmetry: Each generator is a skew-symmetric matrix, equal 
to the negative of its transpose.

• Closure under the Commutator: The commutator of any two gen-

erators is a linear combination of the generators.

• Orthogonality: Exponentiating any generator results in an orthog-

onal matrix.

• Dimensionality: Each generator is an 𝑛 × 𝑛 matrix.

• Number of Generators: There are 𝑛(𝑛−1)2 generators.

The Special Orthogonal Group, 𝑆𝑂(𝑛), is a normal subgroup of 𝑂(𝑛)
consisting of matrices with determinant 1, preserving orientation. While 
the Lie algebra so(𝑛) is the same for both 𝑂(𝑛) and 𝑆𝑂(𝑛), 𝑆𝑂(𝑛) rep-
resents the connected component of the identity in 𝑂(𝑛).
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Special Orthogonal Group, 𝑆𝑂(𝑛)
The Special Orthogonal Group in dimension 𝑛, denoted 𝑆𝑂(𝑛), is 

a subgroup of the Orthogonal Group consisting of matrices with de-

terminant 1. It represents the group of rotations in an 𝑛-dimensional 
Euclidean space.

The Lie algebra associated with 𝑆𝑂(𝑛), denoted so(𝑛), consists of 
all 𝑛 × 𝑛 skew-symmetric matrices. The generators of so(𝑛) exhibit the 
following properties:

• Skew-Symmetry: Each generator is a skew-symmetric matrix.

• Closure under the Commutator: The commutator of any two gen-

erators is a linear combination of the generators.

• Orthogonality: Exponentiating any generator results in an orthog-

onal matrix.

• Determinant +1: The determinant of exponentiated generators is 
+1.

• Dimensionality: Each generator is an 𝑛 × 𝑛 matrix.

• Number of Generators: There are 𝑛(𝑛−1)2 generators.

Special Linear Group, 𝑆𝐿(𝑛, ℝ)
The Special Linear Group, 𝑆𝐿(𝑛, ℝ), consists of 𝑛 × 𝑛 matrices with 

determinant 1, under matrix multiplication and inversion. It is a normal 
subgroup of the General Linear Group 𝐺𝐿(𝑛, ℝ).

The Lie algebra sl(𝑛, ℝ) comprises traceless 𝑛 × 𝑛 matrices, with the 
Lie bracket defined as the commutator [𝐴, 𝐵] = 𝐴𝐵 −𝐵𝐴. Properties of 
the generators of 𝑆𝐿(𝑛, ℝ) include:

• Closure under the Commutator: The commutator of any two gen-

erators remains within the span of the generators.

• Determinant Condition: Exponentiating any generator yields a ma-

trix with determinant 1.

• Dimensionality: Each generator is an 𝑛 × 𝑛 matrix.

• Number of Generators: There are 𝑛2 − 1 generators.

General Linear Group, 𝐺𝐿(𝑛, ℝ)
The General Linear Group, 𝐺𝐿(𝑛, ℝ), includes all invertible 𝑛 × 𝑛

matrices over the real numbers, capturing all possible linear transfor-

mations such as rotations, reflections, scalings, and shears.

Its Lie algebra, gl(𝑛, ℝ), is composed of all 𝑛 ×𝑛matrices, representing 
all possible infinitesimal transformations. Properties of the generators of 
𝐺𝐿(𝑛, ℝ) include:

• Closure under the Commutator: The commutator of any two gen-

erators remains within the span of the generator set.

• Invertibility: Matrices generated from any random linear combina-

tion of the generators are invertible.

• Dimensionality: Each generator is an 𝑛 × 𝑛 matrix.

• Number of Generators: The set contains 𝑛2 generators.

Unitary Group, 𝑈 (𝑛)
The Unitary Group, 𝑈 (𝑛), includes all 𝑛 × 𝑛 unitary matrices, which 

are crucial in quantum mechanics where transformations must preserve 
the inner product structure of state spaces.

The corresponding Lie algebra u(𝑛), composed of skew-Hermitian 
matrices, reflects the infinitesimal versions of these transformations. 
Properties of the generators of u(𝑛) include:

• Skew-Hermitian: Each generator is equal to the negative of its com-

plex conjugate transpose.

• Traceless (for 𝑆𝑈 (𝑛) subset): For the 𝑆𝑈 (𝑛) subgroup, the gener-

ators are traceless.

• Number of Generators: There are 𝑛2 generators.

• Algebra Closure: The commutator of any two generators is a linear 
combination of the generators.

• Unitarity: Exponentiating any generator yields a unitary matrix.
10

• Dimensionality: Each generator is an 𝑛 × 𝑛 matrix.
Physics Letters A 525 (2024) 129895

• Global Phase Factor: The generators include a purely imaginary 
multiple of the identity matrix, reflecting the 𝑈 (1) subgroup within 
𝑈 (𝑛).

Special Unitary Group, 𝑆𝑈 (𝑛)
The Special Unitary Group, 𝑆𝑈 (𝑛), contains all 𝑛 × 𝑛 unitary matri-

ces with determinant 1, essential in quantum mechanics for symmetry 
operations that preserve probabilities.

The Lie algebra su(𝑛) includes traceless skew-Hermitian matrices. 
Properties of the generators of su(𝑛) include:

• Skew-Hermitian: Each generator is equal to the negative of its com-

plex conjugate transpose.

• Traceless: The trace of each generator is zero.

• Number of Generators: There are 𝑛2 − 1 generators.

• Algebra Closure: The commutator of any two generators is a linear 
combination of the generators.

• Unitarity: Exponentiating any generator yields a unitary matrix.

• Determinant = 1: The determinant of exponentiated generators is 
1.

• Orthogonality: Generators are orthogonal under the Hilbert-

Schmidt inner product.
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