
A Model-Driven, Metrics-Based Approach to Assessing Support for Quality Aspects in
MLOps System Architectures

Stephen John Warnetta,b,∗, Evangelos Ntentosa, Uwe Zduna

aResearch Group Software Architecture, Faculty of Computer Science, University of Vienna, Währinger Straße 29,1090 Vienna, Austria,
bUniVie Doctoral School Computer Science DoCS, Faculty of Computer Science, University of Vienna, Währinger Straße 29, 1090 Vienna, Austria,

Abstract

In machine learning (ML) and machine learning operations (MLOps), automation serves as a fundamental pillar, streamlining the
deployment of ML models and representing an architectural quality aspect. Support for automation is especially relevant when
dealing with ML deployments characterised by the continuous delivery of ML models. Taking automation in MLOps systems as
an example, we present novel metrics that offer reliable insights into support for this vital quality attribute, validated by ordinal
regression analysis. Our method introduces novel, technology-agnostic metrics aligned with typical Architectural Design Decisions
(ADDs) for automation in MLOps. Through systematic processes, we demonstrate the feasibility of our approach in evaluating
automation-related ADDs and decision options. Our approach can itself be automated within continuous integration/continuous
delivery pipelines. It can also be modified and extended to evaluate any relevant architectural quality aspects, thereby assisting in
enhancing compliance with non-functional requirements and streamlining development, quality assurance and release cycles.

Keywords: software architecture quality, metrics, distributed system modelling, distributed software architecture, MLOps,
machine learning

1. Introduction

Machine learning (ML) systems pose unique challenges
compared to traditional software architectures due to the in-
tricate interplay of software development, data science, data
engineering, ML models as a service and ML-related end-
service engineering in the form of machine learning operations
(MLOps) and its parallels with DevOps. Noteworthy chal-
lenges in ML application software structure include complex
dependencies among software modules [1], technical debt, anti-
patterns [2] and design challenges in ML model engineering
such as model selection and reuse [3, 4]. Model provision-
ing and production runtime monitoring of ML service perfor-
mance, often in a distributed environment, further exacerbate
complexity and underscore the intricacies in organising and de-
composing ML systems. Paleyes et al.’s [5] survey of case
studies identifies practical challenges in ML system architec-
ture, encompassing tools, services, and architectures within the
deployment structure, as well as potential disparities between
ML and data science, and software engineering practices. This
complexity has led to the emergence of Automated ML [6, 7]
and MLOps [8–10] as sub-disciplines within DevOps [11, 12]
and continuous delivery (CD) [13].

Studies on open source systems [14], scientific litera-
ture [15], and practitioner insights [16] highlight that adopt-

∗Corresponding author
Email addresses: stephen.warnett@univie.ac.at (Stephen

John Warnett, evangelos.ntentos@univie.ac.at (Evangelos
Ntentos), uwe.zdun@univie.ac.at (Uwe Zdun)

ing DevOps and CD results in a complex deployment and de-
livery architecture. This complexity extends beyond the soft-
ware architecture of the intended system. It becomes even
more pronounced in MLOps systems, where additional aspects
such as ML model management and deployment, continuous
integration/continuous delivery (CI/CD) pipeline behaviours,
ML pipeline behaviours, and ML-specific component architec-
tures [8, 9, 17] must be considered. Compounding the complex-
ity of MLOps systems are the myriad tools and technologies
available [8, 9, 18, 19].

Whilst the introduction of MLOps is welcome, the complex-
ity of MLOps systems as described above and the variety of
practices [20–22] make it difficult to determine which Architec-
tural Design Decisions (ADDs) were applied. The multitude
of supporting technologies and programming languages make
it even more challenging to achieve this programmatically and
generically, especially through source code parsing. It is just as
challenging to determine which decision options an architect
selected, which specific patterns and practices were applied,
and the extent of support for core architectural quality attributes
such as automation, model management and simplified deploy-
ment of models in the systems. Within MLOps systems, as ex-
emplified in this study, implementing an automated assessment
method would significantly augment understanding of the over-
all properties of the systems and their alignment with preferred
practices and desired qualities. Background on the most impor-
tant MLOps and ADD concepts and terms used in this study
can be found in Section 2.

The necessary understanding outlined above is particularly
pertinent in the realm of automation in MLOps systems be-

Preprint submitted to The Journal of Systems and Software November 20, 2024

cause the level of automation is directly influenced by prac-
tices related to integration and delivery, such as data process-
ing and pipeline triggering — especially within an automated
CD framework [23]. MLOps systems supporting automation
help to streamline and accelerate the deployment and manage-
ment of ML models in production environments. Teams can
iterate quickly, maintain consistency, and ensure reliability in
ML workflows. Automation also reduces manual effort, min-
imises errors, and enhances efficiency, allowing organisations
to deploy and maintain ML models at scale whilst improving
time-to-market and overall productivity.

In previous work [20, 21], we identified several ADDs along
with corresponding decision options and their respective deci-
sion drivers (which are synonymous with, or closely related to,
quality aspects). In those studies, we achieved theoretical satu-
ration, which is the stage in a grounded theory study where the
collection and analysis of further data no longer produce any
new theoretical insights. It is important to note that the work
described in this paper is not based solely on our prior work.
Our findings from those studies were also noted in related work
(see Section 3). Indeed, we studied much scientific and prac-
titioner literature from other authors [8, 19, 22, 24–28] since
our initial studies were published, and these studies corrobo-
rated our original findings based on grey literature. Note that
a renewed search of practitioner and scientific literature before
commencing this study did not yield any new insights concern-
ing ML ADDs. Therefore, we concluded that there was no need
for a further extensive literature review.

Several crucial quality attributes for ML systems that are es-
sential for ensuring their effectiveness and robustness include
performance efficiency, which ensures optimal resource use,
and maintainability, which focuses on ease of modification for
improvements; scalability and portability, which address a sys-
tem’s ability to adapt to different capacities and environments;
and interoperability, which ensures seamless information ex-
change between systems. Process and work automation in ML
is also a significant quality attribute — automation enhances
consistency, reduces human error, and accelerates the deploy-
ment of ML models. Key automated processes include CI/CD
pipelines, automated testing, and model monitoring. These pro-
cesses ensure that ML models are consistently validated, up-
dated, and maintained without manual intervention, leading to
improved reliability and efficiency in production environments.
Automation thus plays a critical role in maintaining high quality
and operational excellence in MLOps systems. Together, these
attributes help in developing high-quality ML systems with ro-
bust architectural designs in MLOps. Note that we are not as-
suming any particular automation concept, paradigm or set of
predefined practices. In this study, we modelled and manually
assessed twenty-two system architectures, each of which fol-
lowed its particular level of automation and set of practices (see
Section 6).

The ADDs selected for this study are a subset of those dis-
covered in the aforementioned work, specifically those linked to
automation-related factors since the study is concerned specif-
ically with automation-related aspects of ML architectures and
automation-relevant practices. The ADDs under consideration

are “How to Automate Integration and Delivery in a Machine
Learning Context?”, “How to Trigger a Machine Learning
Pipeline or Orchestrator?” and “How to Automatically Pro-
cess the Data Used for Model Building?” and are described
in detail in Section 5 and listed in the first column of Table 2
together with their respective decision options. The ADDs
are derived from established practices found in grey literature,
such as informal guidelines for practitioners, blog posts, public
repositories, and similar sources. Building upon this architec-
tural knowledge, we aim to automatically evaluate the degree
of architectural conformance to automation-relevant practices
within modelled MLOps system architectures. Thus, this paper
aims to explore whether it is possible to determine the level
of support for automation as a central quality aspect within
MLOps systems.

The focus of this paper is thus to address the following re-
search questions (RQs):

• RQ1 How can MLOps systems’ support for the core qual-
ity aspect of automation be assessed in the context of Ar-
chitectural Design Decisions and their respective decision
options?

• RQ2 What types of metrics can be applied to evaluate
these levels of support, and how effective are they?

To tackle these research questions, we introduced a set of
metrics designed for diverse ADDs related to automation, en-
compassing all known decision options. We describe a model-
driven, metrics-based methodology that relies on modelling el-
ements solely obtainable from MLOps systems, architectural
descriptions, reference architectures, or industrial architecture
guides. These quantifiable system models encapsulate the ar-
chitecture, properties, and behavioural aspects of the systems,
thereby facilitating the evaluation of support for ADDs and
enabling automated measurement for quality assessment of
MLOps system architectures via custom metrics.

Our approach involves establishing a ground truth through
the manual evaluation of a set of system models, gauging their
adherence to the full spectrum of considered decision options
and their combinations. Specifically, the pertinent ADDs and
their associated decision options focus on Integration and De-
livery, Pipeline Triggers, and Data Processing.

The ground truth creation entails objectively assessing each
decision option’s presence and level of support in a system. We
develop an ordinal rating scheme, establishing a scale to mea-
sure the degree of automation support.

Implementing detectors in Python for analysing modelled
systems and calculating our custom metrics, we assess the ef-
fectiveness of our metrics in predicting the ground truth through
ordinal regression analysis. We show that simple yet effective
metrics provide reliable insights, particularly regarding automa-
tion, which is crucial for practitioners. Our prediction mod-
els demonstrate remarkable accuracy in predicting the ground
truth assessment. Our approach can be automated within a
CI/CD pipeline to help identify complex architectural features
like ADDs and quality attributes, streamline development cy-
cles and ensure compliance with non-functional requirements.

2

The core contributions of this paper are (1) a novel ap-
proach for the semi-automated, model-driven and metrics-
based statistical assessment of conformance of MLOps systems
to automation-related ADDs; (2) detailed modelling of twenty-
two MLOps system architectures and the continued develop-
ment of a reusable MLOps metamodel; (3) the definition and
application of novel, technology-agnostic automation-specific
metrics for assessing MLOps systems.

In contrast to our prior works, which investigated the
ML workflow and identified workflow and deployment-related
ADDs, this paper considers automation metrics and their quan-
tification for the assessment of automation support as an
MLOps system quality.

Another novel contribution of our study is the systematic pro-
cess employed in sourcing, modelling, and assessing various
MLOps system architectures. Whereas our prior work mostly
focused on the discovery of ML-related ADDs or modelled only
certain aspects of very few systems, this study comprehensively
models a number of MLOps system architectures in great detail
and develops an extensive MLOps metamodel.

Our paper offers another contribution to the MLOps archi-
tecture field by providing new technology-agnostic metrics tai-
lored to evaluate support for automation-related ADDs. We
provided empirical validation of the metrics by performing or-
dinal regression analysis to develop reliable and reusable pre-
diction models. In contrast, our prior work was more qualitative
than quantitative.

This paper is organised as follows: Section 2 provides back-
ground on MLOps and ADD concepts and terms. Section 3
compares related work, whilst Section 4 outlines our research
methods, ground truth definition, and the system modelling ap-
proach. Section 5 details the ADDs and associated decision
options considered in the study. The assessment process for the
ground truth is explained in Section 6. Moving forward, Sec-
tion 7 introduces our proposed metrics, and Section 8 presents
the results of the metric calculations and ordinal regression
analysis. Section 9 discusses our research questions, results,
a practical application of our approach and potential threats to
validity. Future work is discussed in Section 10, and Section 11
provides concluding remarks.

2. Background

This section provides background information on MLOps
concepts and terminology as they are understood in this study,
as well as ADD concepts and terms.

2.1. MLOps: Concepts and Terms

MLOps is a holistic approach to the ML workflow involving
training, deploying, and managing ML models in production
environments [8]. It is rapidly becoming an essential approach
for engineering ML systems, as it defines processes and prac-
tices for models’ availability and stability throughout their life-
time. Nevertheless, MLOps is still at a somewhat early stage,
and there is only sometimes agreement or consensus regard-
ing what MLOps as a relatively new set of practices actually

means [18, 24, 25, 29]. To aid understanding of the main con-
cepts, we will describe how MLOps is defined in this work and
how it relates to DevOps and the deployment and management
of ML systems as a whole. Note that this section provides a
high-level general description of the concepts and terminology.
We do not claim that any particular set of practices is correct or
prescribe rules for how MLOps systems should be structured,
nor do we prescribe links between concepts (e.g. validation)
and particular practices (e.g. use of a CI/CD pipeline).

Although MLOps refers specifically to ML tasks, it has many
similarities with DevOps: the optimisation of collaboration and
automation of the processes of software and ML deployment.
Both adopt cross-functional collaboration, process automation,
integration/automation of processes and utilisation of CI/CD
pipelines for multiple iterations and builds/deployments. They
also convey the basic idea of monitoring their performance
on an ongoing basis and providing feedback for performance
enhancement. However, as a separate practice, MLOps tar-
gets concerns related to data, model life cycle, model moni-
toring and experimentation, which are not typical concerns of
DevOps. Therefore, it enables the blending of conventional
DevOps approaches with an ML-suitable workflow and prac-
tices [24].

The exemplary MLOps workflow, shown in Figure 1, depicts
several key steps. The following are the five stages that are typ-
ically involved: pipeline triggering, data ingestion and process-
ing, model building, model deployment and model monitoring.

Triggers are used to automatically initiate certain actions,
pipelines or workflows based on predefined events or condi-
tions [27]. As in DevOps, CI/CD pipelines often make use of
triggers to initiate processes - in the case of ML, to automate
the ML workflow. For example, a trigger could be set up to
automatically start the data ingestion process when new data
becomes available in a data repository or when model perfor-
mance degrades beyond a specific threshold.

Data ingestion is the stage where data is introduced into the
system. This data may be ingested, for example, by request,
automatically streamed, provided in batches or provided manu-
ally [28]. The raw data may be stored in a data store and then
passed onto a further pipeline or pipeline step for processing.

In the data processing [30] stage, the raw data are cleaned,
preprocessed and transformed into a suitable format for use in
model training. Various types of solutions exist for performing
data processing, for instance a data pipeline, an ETL pipeline or
a data processing component. Features for use in model training
may also be engineered or extracted at this point. This stage is
for preparing data that is suited for model training since poorly
prepared data would lead to a reduction in the model’s perfor-
mance. Feature stores are used to store the processed data and
their features used for training and evaluating models. Both
data-related steps are not needed for machine learning that is
not based on data sets, e.g. reinforcement learning.

Model building [8] involves using machine learning algo-
rithms on the prepared data to identify patterns and relation-
ships. Selecting the proper algorithms and hyperparameters
may greatly affect the performance of the final model, and the
best configuration has to be searched depending on the prob-

3

Figure 1: A high-level abstraction of common ML workflow tasks in MLOps.

lem. Models are also validated at this stage. Validation is the
process of assessing the performance of the trained model on
unseen data. It involves evaluating model metrics and perfor-
mance indicators like accuracy, precision, recall, and F1 score
to ascertain the suitability of a trained model. Model evaluation
is essential for ensuring that trained models are performing as
expected and for identifying areas where improvements can be
made.

The deployment of models [31] makes trained models avail-
able for use on target systems. This process involves the pack-
aging of the model and its dependencies into a deployable
artefact, such as a Docker container or a serverless function.

Through this process, it is ensured that models can be easily
and consistently deployed across various environments - devel-
opment, staging, and production. The delivery of models can
be performed, for instance, via build and deployment scripts,
in a custom CI/CD pipeline or by an ML orchestrator. For the
archiving and versioning of trained ML models and their re-
lated artefacts, model repositories can be utilised. These arte-
facts include model files, as well as related model metrics and
metadata. Such versioning of models enables, for example, the
possibility of rolling back to previous model versions when nec-
essary.

After a model has been deployed to a production environ-

4

ment, the continuous assessment of the model’s performance
through model monitoring begins and involves the collection
and analysis of the model’s inputs, outputs, and performance
metrics to identify any performance degradation. Through
model monitoring, it is ensured that the model continues to
perform as expected over time. In the tracking of model per-
formance degradation, factors such as prediction latencies, er-
rors, and model or environmental drift can also be considered.
As previously mentioned, should model performance degra-
dation be detected, the ML workflow may be automatically
triggered[27].

2.2. Architectural Design Decisions: Concepts and Terms
In architectural design, there are some critical decisions –

ADDs – to make that form the base on which a software sys-
tem is constructed. These ADDs establish the architecture and
layout of the system and its components and integration along-
side highly influencing quality aspects such as speed, extensi-
bility, modularity, security, and modifiability. Of significance in
ADDs are relations, which refer to connections and interactions
between system components [32]. These relations encapsulate
aspects like functionality, communication, and data flow.

Software architects have to consider a number of factors
when deciding on the architectural design of the system. These
factors include functionalities required from the system, the en-
vironment that is available and its capacity, necessary tools and
technologies, as well as the abilities and preferences of the de-
velopment team. They also need to make judgements on the
relative costs and benefits of various decision options and their
impacts on quality characteristics, such as performance, relia-
bility and security [33]. These factors can be considered deci-
sion drivers (or forces) in the context of ADDs, and they en-
compass the dynamic aspects and constraints shaping the deci-
sions. These aspects can be external or internal, spanning qual-
ity aspects, functional and non-functional requirements, tech-
nological limitations, organisational policies, and market con-
ditions. Software architects balance the trade-offs among forces
to achieve desired outcomes, addressing stakeholder needs ef-
fectively through informed decisions.

When making architectural design decisions, software archi-
tects often utilise tools and techniques that include but are not
limited to elements such as architectural patterns, architectures,
and decision frameworks. They also make joint decisions with
other stakeholders including developers, project managers, and
the end-users on the decisions made. Patterns [34] and prac-
tices refer to established guidelines, methodologies, techniques,
and approaches practitioners apply to make informed decisions
and design effective software architectures. They are typically
derived from industry best practices, architectural principles,
and lessons learned from previous projects and described in
practitioner literature. They represent decision options that can
be selected depending on preferred forces.

3. Related Work

This section delves into the existing research concerning ML
practices, patterns, quality aspects and metrics, and we draw

comparisons between this body of related work and our study.

3.1. Patterns and Practices and Their Relation to Quality As-
pects

ML and MLOps systems have grown in complexity and be-
come more prevalent within the industry. Consequently, more
scientific research cataloguing and documenting quality aspects
and related patterns and practices is being conducted. Patterns
and practices are relevant to ADDs because they represent spe-
cific decision options, which are then, in turn, associated with
decision drivers (forces), which represent quality aspects that
may be of interest to practitioners and help guide the practi-
tioner to the most suitable design decisions.

Sharma and Davaluri [35] detected and analysed design and
architectural patterns in two ML applications. They identified
various quality attributes of relevance, including reusability,
flexibility and testability, which are critical for the sustainable
development and maintenance of ML systems.

Washizaki, Uchida et al. [36] analysed ML systems’ engi-
neering, architecture, and design (anti-)patterns, suggesting that
improving crucial ML quality aspects such as complexity, per-
formance, reliability, and ML model quality can be achieved
through best practices.

In Washizaki, Khomh et al.’s [37] multivocal literature re-
view, including an ML practitioner survey, they identified var-
ious software engineering design patterns for ML applications.
They propose that adopting these patterns could enhance sys-
tem and software quality attributes, such as usability, reliability,
and maintainability, along with ML quality attributes, like ML
model robustness, explainability, and fairness.

Kreuzberger et al. [8] conducted mixed-method research, in-
cluding a literature review, tool assessment, and expert inter-
views, providing a comprehensive overview of diverse ML as-
pects like components, architecture, and workflows. They con-
nect principles and practices, exploring the automation poten-
tial of manual ML processes and highlighting the importance of
automation in MLOps.

Faubel and Schmid [22] conducted a pilot case study assess-
ing MLOps applications in the industry. They observed MLOps
practices, architectural patterns, and diverse automation types
in surveyed companies. They noted commonalities with as-
pects relevant to this study, including pipeline triggers, CI/CD
automation, pipeline automation, scripts and orchestrators.

A systematic literature review conducted by Lima et al. [26]
focused on practices, patterns, roles, maturity models, chal-
lenges, and tools for automating operational activities in ML
model deployment. Emphasising the significance of automa-
tion in deploying ML models, they recognised that existing ma-
turity models indirectly gauge activities in ML model develop-
ment. However, they highlighted the absence of direct assess-
ments related to MLOps, suggesting an opportunity for further
research.

The cited related works collectively explore various facets of
ML and MLOps systems, often highlighting practices and pat-
terns similar to those considered in this study and their relation
to quality aspects. They acknowledge the importance of au-
tomation in MLOps systems, aligning with our understanding

5

of automation as a core quality attribute. Automation stream-
lines processes, reduces human error, and enhances efficiency
— all critical factors in MLOps systems. Moreover, automated
pipelines and workflows enable scalability, allowing organisa-
tions to handle increasingly large and complex datasets and
models.

However, our approach differs in focus and methodology
from the related work described previously, as we leverage our
knowledge of patterns, practices and automation as a quality
attribute to develop a model-driven, metrics-based approach
for assessing support for automation in the context of ADDs
in MLOps systems. By integrating automation assessment di-
rectly into the architectural design and development phases,
quality assurance for automation can be employed from the out-
set, ensuring that MLOps systems are designed with automa-
tion in mind. This proactive approach minimises the need for
retrofitting automation into existing systems, reducing technical
debt and accelerating time to market for ML solutions.

Furthermore, our metrics-based approach provides quantifi-
able measures of automation support, enabling stakeholders to
make informed decisions about the trade-offs between automa-
tion and other quality attributes. By quantifying automation
readiness at the architectural level, organisations can prioritise
investments in automation infrastructure and tooling, strate-
gically allocating resources to maximise automation benefits
whilst mitigating associated risks. Ultimately, our study ex-
tends beyond acknowledging the importance of automation in
MLOps systems to providing an approach for evaluating and
enhancing automation support as a first-class quality attribute.

3.2. ML Metrics
There is a distinct lack of studies addressing the quantitative

architectural evaluation of ML and MLOps systems. However,
authors have explored using runtime metrics to assess crucial
aspects of ML and MLOps systems or ML models.

Cardoso Silva et al. [38] emphasise the significance of factors
such as task completion time, CPU and GPU usage, memory
usage, disk input/output, and network traffic in MLOps. They
propose an ML benchmarking approach to monitor solutions
in production, aiding decision-making, resource provision, and
operation of ML systems.

Y. Zhou et al. [30] created a functional DevOps-capable ML
platform. They built and executed ML pipelines with diverse
layers and hyperparameters, collecting and evaluating metrics
for ML pipeline steps, the ML platform, and ML models.
The study identified potential performance bottlenecks, such as
GPU utilisation, offering a valuable practical reference for con-
structing ML pipeline platforms.

J. Zhou et al. [39] conducted a survey offering an overview
of methods proposed in the literature to assess ML model ex-
planations. They identify properties of explainability as targets
of quantitative metrics and discuss qualitative, human-centric
metrics.

A literature review conducted by Carvalho et al. [40] identi-
fies established methods and metrics for interpreting ML mod-
els. It highlights valuable work in interpretability assessments
and recommends future research areas.

The acknowledged works are relevant to our study as they
assess various quality aspects of ML systems and ML mod-
els. However, they focus on runtime performance metrics rather
than system architecture metrics and do not specifically evalu-
ate ML system support for automation-related ADDs. Whilst
runtime metrics are crucial for understanding the operational
efficiency and performance of ML systems during execution,
they do not provide insights into the underlying patterns and
practices that influence automation capabilities. Our approach
involves a model-driven, metrics-based strategy to assess au-
tomation support in MLOps architectures by incorporating ar-
chitectural quality metrics into our analysis.

To our knowledge, no prior studies consider architectural
quality metrics on modelled MLOps systems, marking the ini-
tiation of a new research direction in this field. By leveraging
architectural modelling techniques and novel quality metrics,
we can systematically evaluate the readiness of MLOps archi-
tectures for automation and identify opportunities for improve-
ment.

4. Research Method

In this section, we outline our overall research process, de-
tail our MLOps system search and selection methodology, and
give an overview of our ADD ground truth assessments, system
modelling method and detectors. Figure 2 provides an overview
of our research process. All artefacts are available in our repli-
cation package [41].

4.1. Contributions from Prior Work

Our study makes use of results and contributions from pre-
vious work [20, 21], where we performed a Grey Literature
Search and Grounded Theory Analysis [42–44] through itera-
tive consideration of practitioner literature. This process en-
abled us to Formulate Core ADDs for ML, the ones of interest
for our study being automation-related (see Section 5).

As outlined in Section 1, our previous findings were sup-
ported by subsequent scientific literature. Our methodologi-
cal choices were influenced by the nature of the literature we
analysed. To obtain industry-relevant insights, we employed
a deductive approach based on Straussian Grounded Theory,
which is well-suited for an unbiased exploration of ML-related
phenomena grounded in first-hand practitioner experience, es-
pecially since we found no prior ML-related Grounded The-
ory studies. For the white literature (peer-reviewed articles),
we adopted an inductive approach to ensure our initial findings
aligned with those of other researchers. The combination of
these approaches provided us with a confident and nuanced un-
derstanding of ML-related practices, particularly in the context
of MLOps.

We also devised an Initial MLOps System Modelling
method [45], which we make use of in this study. Replication
packages containing relevant artefacts from our prior studies are
available in long-term repositories [46–48].

6

Core Activities and Contributions of This Work

Contributions from Prior Work

Grey Literature
Search

Grounded Theory
Analysis

Ground Truth
Assessment

Ordinal Regression
Analysis

Model MLOps
Systems

Implement Detectors
and Metrics
Calculations

Define a Manual
Ground Truth Rating

Scheme

Define Metrics

Search Web
Resources for

Candidate Systems

Apply
Inclusion/Exclusion

Criteria

Formulate Core
ADDs

Initial MLOps System
Modelling

Figure 2: Overview of the research process we followed in this study.

4.2. Core Activities and Contributions of this Work

Search Web Resources for Candidate Systems
Our first step involved using popular topic portals (InfoQ,
DZone), search engines (Google, DuckDuckGo, Bing) and
source code repositories on GitHub to source relevant MLOps
systems and descriptions thereof. Our search terms included
“MLOps implementation”, “MLOps system architecture” and
“MLOps system example”.

Apply Inclusion/Exclusion Criteria
The next step involved deciding which MLOps architectures
resulting from our search to include in our study based on
predefined inclusion-exclusion criteria. If a resource met one
of the inclusion criteria, then we checked the exclusion criteria,
whereas if the resource met none of the inclusion criteria, then
we immediately excluded it. If an exclusion criterion was
immediately apparent, then we checked neither the inclusion
criteria nor any further exclusion criteria. Out of the thirty-two
candidates we identified, only nine met our suitability criteria
for inclusion in the study. For reproducibility and traceability,
this stage of the research process is included in our replication
package [41].

We defined our inclusion criteria as follows:

• MLOps systems: we considered systems that provide end-

to-end solutions for the training, deployment and manage-
ment of ML models in production environments.

• Architectural descriptions: we included sources that pro-
vide detailed descriptions of the architecture and design of
MLOps systems.

• Reference architectures: we included reference architec-
tures that serve as blueprints or guidelines for building
MLOps systems.

• Industrial architecture guides: we considered guides and
best practices for architecting MLOps solutions in an in-
dustrial setting.

We established the following exclusion criteria:

• Student and pet projects: we omitted projects made by stu-
dents for educational purposes or personal experiments.
We categorised pet projects as GitHub repositories with
fewer than 100 stars and 40 forks, suggesting low accep-
tance and maturity.

• Experimental or proof of concept examples: we excluded
sources that discuss or implement technologies unsuitable
for real-world industrial use. These include systems that
lack production-ready functionality, scalability, or depend-
ability.

• Tools and libraries: we omitted sources that only discuss
or implement specific tools or libraries used in the ML
workflow, such as data preprocessing libraries or model
training frameworks since these sources do not offer a
thorough overview of MLOps architectures as a whole.

• Specific parts of the ML workflow: we excluded sources
that do not address the entire ML workflow, such as those
focusing only on data preparation or model deployment,
since they do not take into account the complete MLOps
architecture.

• Advertisements: we omitted sources that primarily pro-
mote commercial items or services since they may not give
objective architectural information.

• Lack of practical architectural examples: we excluded
sources that did not provide realistic examples of MLOps
architectures applicable to an industrial setting.

• Marketing: we omitted sources that discuss consultancy
organisations’ techniques since they may not be reflective
of general real-world MLOps designs.

Define a Manual Ground Truth Rating Scheme and Ground
Truth Assessment
In the subsequent steps, we established a ground truth rating
scheme for MLOps systems to understand their support for
automation-related ADDs. We performed a manual ground
truth assessment as described in Section 6.

Model MLOps Systems

7

We systematically modelled MLOps system architectures and
their variations, ensuring comprehensive coverage of the design
space. We utilised an MLOps system metamodel and followed
a systematic modelling approach [45] to construct formal ar-
chitectural models. These models, implemented in Python us-
ing Codeable Models1 and visualised as UML diagrams using
PlantUML2, comprise nodes and connectors representing com-
ponents and relationships.

The modelling process resulted in twenty-two models based
on real-world MLOps systems from vendors providing comput-
ing services for ML application developers, including Alibaba
Cloud, Amazon AWS, Google, Microsoft, and Red Hat. We as-
signed each modelled system an ID: base systems, whose IDs
always end with a “1”, include “AP1”, “MA1” and “AC1”, and
variants of the base systems, whose IDs always end with a num-
ber other than “1” such as “AP2”, “MA2” and “AC2”. Table 1
lists the modelled systems, the size of each model in terms of
how many nodes, connectors and pipelines (see our replication
package [41] for the source code and model diagrams), a de-
scription of each system, and the URL of the source of each
base system.

MLOps system model views commonly include component
and pipeline views. Component views depict nodes represent-
ing various elements such as execution environments, cloud
components, platforms, and connectors indicating their rela-
tionships, specifying details like artefact (e.g. ML model) pro-
vision, triggers (typically pipeline triggers), trigger data, i.e.
the data associated with a trigger event, such as information
on the trigger event itself or data relevant for the component or
pipeline that was triggered, deployment targets (e.g. the com-
ponents or environments where models will be deployed and
executed to make decisions or predictions), and pipeline inter-
actions and relations. Figure 3 depicts a component view of the
modelled MLOps system AP1 (see Table 1).

Pipeline views display internal pipeline details, including
an initial node, pipeline nodes for execution order, and a fi-
nal node. Fork nodes allow parallel execution, converging at
a join node. They convey various aspects like triggers (de-
scribed above), data processing (the stage where raw data is
transformed into a format that is suited for ML, like data sani-
tisation, feature engineering and normalisation), model training
(the process by which a model learns from data), testing and
evaluation (using a test dataset to assess how well a model gen-
eralises to unseen data), validation (tuning the hyperparameters
of a model with a validation dataset and preventing overfitting)
and deployment (described above), with metadata describing
automation (e.g. whether a pipeline step runs automatically)
and deployment or runtime environments (such as the specific
component associated with the environment). Figure 4 illus-
trates a pipeline UML view of system AP1.

Define Metrics
We defined objective, technology-agnostic metrics to measure
conformance to previously identified automation-relevant

1https://github.com/uzdun/CodeableModels
2https://plantuml.com

decision options for ADDs. Our custom metrics are described
in detail in Section 7.

Implement Detectors and Metrics Calculations
Modelling MLOps system architectures enabled us to create
source code detectors that analyse components, pipelines, and
their relationships, automatically calculating custom metrics
and supporting ordinal regression analysis. These detectors
enable the detection of metrics-relevant architectural proper-
ties, offering a reusable approach for new systems and metrics.
While the detectors can be adapted for a checklist approach,
this alternative is less effective and requires more manual effort
during a system analysis than our metrics.

Ordinal Regression Analysis
Finally, we applied ordinal regression analysis, a common
statistical approach, to assess how well the metrics predicted
the previously established ground truth for the selected design
decisions and modelled architectures. Our analysis and
evaluation are described further in Section 8.

5. Architectural Design Decisions

This section introduces three automation-related ADDs and
their associated decision options. We selected them for the sig-
nificance of their influence on automation in MLOps. These
ADDs encompass various decision drivers (forces), relations
and practices found in the grey literature. The following discus-
sion on the relevance of these decision options on automation
supports our rationale for the manual ground truth assessment
detailed in Section 6.

5.1. How to Automate Integration and Delivery in a Machine
Learning Context? (“Integration and Delivery”)

When deciding How to Automate Integration and Delivery in
a Machine Learning Context, choosing No Integration or De-
livery Automation is the most straightforward option. However,
numerous experts strongly discourage this approach, emphasis-
ing its adverse effects on various factors, notably process and
work automation.

An alternative option for continuously automating the de-
ployment process involves utilising a CI/CD Pipeline. Our
sources strongly endorse this option, especially for process and
work automation and for facilitating automated provisioning,
which pertains to the actual automation of the deployment step.
In Figure 3, for instance, relevant components are AWS Code
Build and AWS Code Pipeline, and in Figure 4, the pipeline
nodes from Train onwards are relevant.

Another approach involves executing automated deploy-
ments through Build and Deployment Scripts. Whilst this
choice contributes to process and work automation, it might
involve manual intervention instead of achieving complete au-
tomation.

The Machine Learning Orchestrator represents another vi-
able decision option. Employing an orchestrator enhances pro-
cess and work automation, reducing the reliance on manual ex-

8

https://github.com/uzdun/CodeableModels
https://plantuml.com

«reads dataset»
«writes ML model»

«CI Pipeline Orchestration»
«Continuous Integration Tool»

«Deployment Pipeline Orchestration»
AWS Code Pipeline : Component

«Script»
«Data Processing Task»

Preprocessing Script : Component

«Model Serving Component»
«Cloud Component»

 SageMaker Endpoints :
Component

«Model Evaluation Component»
«Model Integration and Delivery Task Type»

«Cloud Component»
 SageMaker Evaluation Processing Task :

Component

«Data Repository»
«Data Versioning»

«ML Model Repository»
«Cloud Component»

 S3 Repository for Versioned
Datasets and Trained Models :

Component

«Local Workstation»
Local Workstation : Execution Environment

«Cloud Environment»
 AWS : Execution Environment

«deployed on»

«Version Control Repository»
 Version Control Repository : Component

«Continuous Integration Tool»
«Cloud Component»

AWS Code Build : Component

«Model Training Component»
«Model Integration and Delivery Task Type»

«Cloud Component»
SageMaker Training Task : Component

«deployed on»

«deployed on»

«deployed on»

«deployed on»

«deployed on»

«runs in execution environment»

«API call»

«API call»
called via lambda function

«API call»
called via lambda

function

«API call»
called via lambda

function

«deployed on»

«reads dataset»
«writes dataset»

«reads dataset» «reads dataset»
«reads ML model»

«reads dataset»

Figure 3: Component UML model diagram for the MLOps system AP1.

: Initial Node

«Commit Event»
Commit :

Pipeline Send Signal Action
automatic = True
runs in = Version Control Repository

«Approval Gate»
Performance Check :

Pipeline Decision Node

automatic = True
runs in = AWS Code Pipeline
environments = [AWS]

«Integration»
Train : Pipeline Node

automatic = True
runs in = AWS Code Pipeline
invokes = [SageMaker Training Task]
input from = [S3 Repository for Versioned
Datasets and Trained Models]
output to = [S3 Repository for Versioned
Datasets and Trained Models]
environments = [AWS]

«Triggered by Commit Event»
Triggered by Commit Event :
Pipeline Accept Event Action

automatic = True
input from = [Version Control Repository]

«Delivery»
Deploy : Pipeline Node

automatic = True
runs in = AWS Code Pipeline
invokes = [SageMaker Endpoints]
input from = [S3 Repository for Versioned
Datasets and Trained Models]
output to = [SageMaker Endpoints]
environments = [AWS]

«Integration»
Evaluate : Pipeline Node

automatic = True
runs in = AWS Code Pipeline
invokes = [SageMaker Evaluation Processing Task]
input from = [S3 Repository for Versioned Datasets
and Trained Models]output to = [S3 Repository for
Versioned Datasets and Trained Models]
environments = [AWS] : Final Node

[yes]

[no]

Figure 4: Deployment pipeline UML model diagram for the MLOps system AP1.

ecution and minimising the potential for human error, thereby
allowing engineers to focus on other tasks.

5.2. How to Trigger a Machine Learning Pipeline or Orches-
trator? (“Pipeline Triggers”)

ML pipelines and orchestrators can be initialised via triggers.
Triggers exhibit diverse characteristics, and the decision op-
tions’ forces for this ADD are inherited from any higher-level
decision option, e.g. whether a CI/CD Pipeline, Build and De-
ployment Scripts or Machine Learning Orchestrator was used.
The trigger options themselves imply various levels of support
for automation.

The trivial case is not to use an automated trigger, that is, to
use an On-Demand Trigger (i.e. manual execution, such as by
a human operator), which suggests no automation. This lack of
automation allows the omittance of this trigger in the study. An
On Commit Trigger activates components following a commit
event in a source control management or data version repos-
itory system, thus offering some degree of automation. For
system AP1, for instance, this is visible in the Triggered by
Commit Event pipeline accept event action in Figure 4. An On
Schedule Trigger initiates a component at specific times or with
defined regular intervals. An On Availability of New Training
Data Trigger can lead to the triggering of a CI/CD Pipeline,
Build and Deployment Scripts or Machine Learning Orchestra-

9

Table 1: Included MLOps System Architectures: IDs, Model Sizes, Descriptions and Sources

System Model Size System Description
AP1 18 nodes, 25 con-

nectors, 1 pipeline
Guide to building an automated MLOps pipeline using Amazon AWS CodePipeline, CodeBuild, Sage-
Maker, Lambda, S3, the AWS container registry and Docker (source: https://tinyurl.com/mlops-system-
ap).

AP2 21 nodes, 25 con-
nectors, 2 pipelines

Variant of AP1 with partial support for automated Build and Deployment Scripts, advanced triggers but
no basic triggers, and support for data processing via a Data Pipeline.

AP3 19 nodes, 22 con-
nectors, 2 pipelines

Variant of AP1 with support for Build and Deployment Scripts, a single basic trigger and no data process-
ing automation.

MA1 55 nodes, 58 con-
nectors, 3 pipelines

Reference architecture for a Microsoft Azure project that demonstrates how to automate an end-to-end
ML/AI workflow (source: https://tinyurl.com/mlops-system-ma).

MA2 53 nodes, 56 con-
nectors, 3 pipelines

Variant of MA1 with partial support for integration and delivery automation via CI/CD Pipelines, no
basic trigger support but support for an advanced trigger, and partial data processing automation via an
ETL Pipeline.

MA3 24 nodes, 24 con-
nectors, 1 pipeline

Variant of MA1 with no integration and delivery automation, support for a single advanced trigger but no
basic triggers, and data processing automation support via a Data Pipeline.

AC1 33 nodes, 67 con-
nectors, 1 pipeline

Reference architecture and workshop/tutorial to implement an Amazon AWS MLOps pipeline that auto-
mates the typical procedures used by ML practitioners (source: https://tinyurl.com/mlops-system-ac).

AC2 31 nodes, 63 con-
nectors, 1 pipeline

Variant of AC1 with support for Build and Deployment Scripts, a single advanced trigger but no basic
trigger and partial support for data processing automation via a Data Processing Component.

AC3 36 nodes, 71 con-
nectors, 1 pipeline

Variant of AC1 with support for a Machine Learning Orchestrator, full trigger support and partial support
for data processing automation via an ETL Pipeline.

GV1 78 nodes, 137 con-
nectors, 3 pipelines

Google Cloud Platform implementation of MLOps with Vertex AI, Smart Analytics, Keras, TFX and
Model Builder SDK (source: https://tinyurl.com/mlops-system-gv).

GV2 54 nodes, 96 con-
nectors, 1 pipeline

Variant of GV1 with no integration and delivery automation, no automation via triggers, but support for
data processing automation via a Data Pipeline.

GV3 70 nodes, 126 con-
nectors, 3 pipelines

Variant of GV1 with partial Machine Learning Orchestrator support, support for a single basic trigger and
partial support for data processing automation via a Data Processing Component.

AS1 35 nodes, 55 con-
nectors, 1 pipeline

Alibaba Cloud repository and article focusing on the ML pipeline with MLOps using Serverless
Workflow, Function Compute, and Container Service for Kubernetes provided by GitHub (source:
https://tinyurl.com/mlops-system-as).

AS2 36 nodes, 57 con-
nectors, 1 pipeline

Variant of AS1 with partial support for an ML Orchestrator, support for almost all triggers, and support
for data processing automation via a Data Processing Component.

AS3 34 nodes, 56 con-
nectors, 1 pipeline

Variant of AS1 with partial support for all three integration and delivery automation options, full trigger
support and support for data processing automation via a Data Processing Component.

RO1 34 nodes, 61 con-
nectors, 1 pipeline

MLOps architecture description using Red Hat OpenShift, applying DevOps and GitOps principles
(source: https://tinyurl.com/mlops-system-ro).

RO2 29 nodes, 53 con-
nectors, 1 pipeline

Variant of RO1 with partial CI/CD Pipeline support, support for a single advanced trigger but no basic
triggers and no data processing automation support.

RO3 19 nodes, 32 con-
nectors, 0 pipelines

Variant of RO1 with absolutely no automation support.

GM1 18 nodes, 16 con-
nectors, 1 pipeline

Google Cloud Architecture Center description of an MLOps architecture at the basic level of maturity,
where building and deploying ML models is entirely manual (source: https://tinyurl.com/mlops-system-
gm).

GA1 55 nodes, 69 con-
nectors, 2 pipelines

Describes an architecture with continuous model training via an automated ML pipeline, automated re-
training on new data, automated data and model validation, pipeline triggers and metadata management to
achieve continuous delivery of a model prediction service (source: https://tinyurl.com/mlops-system-ga).

GC1 64 nodes, 77 con-
nectors, 3 pipelines

Architecture for a robust, automated CI/CD system for building, testing, and deploying new pipeline
components to a target environment (source: https://tinyurl.com/mlops-system-gc).

GC2 64 nodes, 77 con-
nectors, 3 pipelines

Variant of GC1 with similar support for integration and delivery automation and automation via triggers,
but slightly worse support for data processing automation via Data Pipelines.

tor when new training data becomes available. An On Model
Performance Degradation Trigger can be used when ML model
performance deteriorates, and an On Changes to the Data Dis-
tribution Trigger can be applied when statistical changes in
any dataset used for training ML models surpass a predefined
threshold.

5.3. How to Automatically Process the Data Used for Model
Building? (“Data Processing”)

A fundamental automation-related ADD pertains to data pro-
cessing automation for ML model building. The trivial option
is to opt for No Data Processing Automation. Three alterna-
tive decision options to the trivial case offer vital advantages to

10

https://tinyurl.com/mlops-system-ap
https://tinyurl.com/mlops-system-ap
https://tinyurl.com/mlops-system-ma
https://tinyurl.com/mlops-system-ac
https://tinyurl.com/mlops-system-gv
https://tinyurl.com/mlops-system-as
https://tinyurl.com/mlops-system-ro
https://tinyurl.com/mlops-system-gm
https://tinyurl.com/mlops-system-gm
https://tinyurl.com/mlops-system-ga
https://tinyurl.com/mlops-system-gc

varying degrees, such as facilitating automated data collection
and the potential for a high level of process and work automa-
tion, and are described below.

Some practitioners advocate for an ETL pipeline, where
“ETL” refers to Extract, Transform, and Load. It entails ex-
tracting data from diverse sources, transforming it for analysis
or storage, and loading it into a database, data warehouse, or
data lake. The main aim is to ready the data for downstream an-
alytics or applications, often integrating and consolidating data
from various sources to ensure quality and consistency. ETL
pipelines are typically batch-oriented and scheduled periodi-
cally for data upkeep. However, this approach is documented
to be only occasionally employed in practice [20].

A prevalent choice among the automation architectures com-
monly suggested in the previously cited work is using a Data
Pipeline. This approach involves conducting data processing
within a dedicated, adaptable pipeline. Unlike ETL pipelines,
data pipelines encompass a wider range of operations beyond
just extraction, transformation, and loading. They can include
tasks such as data ingestion, data preprocessing, feature engi-
neering, ML model training, evaluation, and deployment. This
decision option stands out as the most versatile among the au-
tomated choices.

Whilst pipeline architectures are frequently proposed, there
are also suggestions for Data Processing Components that do
not adhere to a pipeline structure. Unlike an ETL pipeline, a
data processing component may not necessarily involve the ex-
traction and loading of data and, in contrast to data pipelines,
which encompass the entire flow of data, Data Processing Com-
ponents instead focus on performing specific data processing
tasks such as data transformation, feature engineering, data
augmentation, scaling, and other preprocessing steps required
for ML model training and analysis.

6. Ground Truth Rating Scheme and Assessment

This section offers insight into establishing the ground truth
data for each ADD outlined in Section 5.

We established the ground truth by a thorough systematic
manual assessment of the selected systems based on the find-
ings from grey literature in prior studies, as well as multiple
rounds of independent review and validation by all three mem-
bers of the author team. We discussed any instances of dis-
agreement in the ground truth assessment and refined it until
we reached a consensus. Thanks to our use of a high-level ab-
straction of MLOps systems according to an existing, extensi-
ble MLOps metamodel during the modelling process (see Sec-
tion 4.2), it was straightforward for us to identify the elements
relevant to the ground truth assessment collectively. We cor-
rected any inconsistencies both in the metamodel and in our
ground truth assessment.

We categorised the relevant decision options as either sup-
ported, partially supported, or not supported (denoted by S, P,
or N, respectively in Table 2), or, for decision options that are
simply present or absent, with Boolean values.

By combining the outcome of all decision options for each
ADD and system and informed by the descriptions from the

literature of the force impacts of the various decision options in
Section 5, we then derived an ordinal assessment of how well
the decision as a whole was supported in each modelled system,
according to the following ordinal scale:

• ++: Automation is very well supported.

• +: Automation is well supported, but aspects of the system
could be improved to better support automation.

• o: Aspects of the system need to be improved concern-
ing automation, but substantial support for automation is
present.

• -: Aspects of the system need to be improved concerning
automation, but some support for automation is present.

• --: No support for automation is present.

Whilst our ordinal scale of -- to ++ adheres to the given or-
der, it does not assume equal intervals, unlike a Likert scale.
The specific assessment criteria for each ADD are described in
Sections 6.1, 6.2 and 6.3, and we recorded the resulting ordinal
assessments in the “Assessments” rows of Table 2.

Consider system AP1 in Table 2, for instance. For the Inte-
gration and Delivery ADD, AP1 does not support the decision
option Build and Deployment Scripts (category N), it supports
the decision option CI/CD Pipeline (category S), and it does
not support the decision option Machine Learning Orchestra-
tor (category N). With reference to the scoring scheme defined
in Section 6.1, this system receives a score of ++ for this ADD
since the decision option CI/CD Pipeline is supported and all
integration and delivery tasks are automated and take place
within a CI/CD Pipeline. This score also corresponds to the
generic scoring scheme defined above, where ++ denotes that
automation is very well supported.

Following the establishment and assessment of the ground
truth data, we assessed how well the novel metrics defined in
Section 7 predicted the ground truth data by performing an or-
dinal regression analysis. We describe the ordinal regression
analysis in Section 8.

6.1. Integration and Delivery
In Section 5, we discuss the level of support for automation

for each Integration and Delivery option, and on that basis, we
devised the following scoring framework for our ground truth
assessment of this decision.

• ++: All integration and delivery tasks are automated and
take place within a CI/CD Pipeline.

• +: The majority of (but not all) integration and deliv-
ery tasks are automated and take place within a CI/CD
Pipeline OR all integration and delivery tasks are auto-
mated and take place via a Machine Learning Orchestra-
tor.

• o: The majority of (but not all) integration and delivery
tasks are automated and take place via a Machine Learn-
ing Orchestrator OR the majority or all integration and

11

delivery tasks are automated and take place within Build
and Deployment Scripts.

• -: Some (but not the majority or all) integration and de-
livery tasks are automated and take place within a CI/CD
Pipeline, via a Machine Learning Orchestrator or within
Build and Deployment Scripts.

• --: No integration and delivery task automation is sup-
ported.

6.2. Pipeline Triggers

Drawing upon the reasoning provided in Section 5 in support
of the Pipeline Triggers decision, we established the ensuing
scoring scheme for our ground truth assessment:

• ++: At least one basic trigger (On Commit Trigger or
On Schedule Trigger) is supported, and all applicable ad-
vanced automatic triggers are supported (On Availability
of New Training Data Trigger, On Model Performance
Degradation Trigger, On Changes to the Data Distribu-
tion Trigger).

• +: At least one basic trigger (On Commit Trigger or On
Schedule Trigger) is supported, and at least one advanced
automatic trigger is supported (On Availability of New
Training Data Trigger, On Model Performance Degrada-
tion Trigger, On Changes to the Data Distribution Trig-
ger).

• o: At least one basic trigger (On Commit Trigger or On
Schedule Trigger) is supported, but no advanced triggers
are supported.

• -: At least one advanced trigger is supported (On Avail-
ability of New Training Data Trigger, On Model Perfor-
mance Degradation Trigger, On Changes to the Data Dis-
tribution Trigger), but no basic triggers are supported (On
Commit Trigger or On Schedule Trigger).

• --: No automatic triggers are supported.

6.3. Data Processing

Lastly, based on the forces we described in Section 5 for
the Data Processing decision, we can establish the subsequent
scoring scheme for our ground truth assessment:

• ++: All model-building-relevant data processing tasks are
automated and occur within a Data Pipeline.

• +: The majority of model-building-relevant data process-
ing tasks are automated and occur within a Data Pipeline
OR all model-building-relevant data processing tasks are
automated and occur within an ETL Pipeline or Data Pro-
cessing Component.

• o: The majority of model-building-relevant data process-
ing tasks are automated and occur within an ETL Pipeline
or Data Processing Component.

• -: Some model-building-relevant data processing tasks
are automated and occur within a Data Pipeline, an ETL
Pipeline or a Data Processing Component.

• --: No data processing automation is supported.

7. Metrics

This section presents the metrics we have proposed for each
decision option discussed in Section 5. Following our itera-
tive manual assessment and modelling of the MLOps system
architectures from Table 1 to establish the ground truths ratings
described in Section 6 and summarised in Table 2, we defined
at least one metric per ADD decision option to measure their
support for automation. In Section 8, we describe how we per-
formed ordinal regression analysis to assess how well the cus-
tom metrics defined below in this section predicted the ground
truth data.

The metrics have been deliberately designed to be straight-
forward, allowing them to represent each decision effectively.
They may be either a Boolean value indicating the absence or
presence of a given decision option within the respective system
or a continuous value in [0, 1], with 0 signifying the worst-case
scenario where there is no support for the decision option, and
1 symbolising an ideal scenario in which the decision option
receives full support.

7.1. Metrics for the Integration and Delivery Decision

The ratio of components that support the Build and Deploy-
ment Scripts option is calculated by the BDS metric.

BDS =

|integration and delivery tasks
in build and deployment scripts|

|integration and delivery tasks in the system|

The proportion of components enabling the CI/CD Pipeline
option is revealed by the CID metric.

CID =

|integration and delivery tasks
automated in a CI/CD pipeline|

|integration and delivery tasks in the system|

The fraction of components that back the Machine Learning
Orchestrator option is given by the MLO metric.

MLO =

|integration and delivery tasks
automated in an ML orchestrator|

|integration and delivery tasks in the system|

7.2. Metrics for the Pipeline Triggers Decision

We devised the following Pipeline Triggers metrics:

• The existence of the On Commit Trigger option is signified
by the COT metric, which yields a Boolean value.

• Presence of the On Schedule Trigger option is conveyed
by the Boolean SCT metric.

12

Table 2: Ground Truth Data for ADDs, Decision Options and the Included MLOps System Architectures

ADDs/Decision Options A
P1

A
P2

A
P3

M
A

1

M
A

2

M
A

3

A
C

1

A
C

2

A
C

3

G
V

1

G
V

2

G
V

3

A
S1

A
S2

A
S3

R
O

1

R
O

2

R
O

3

G
M

1

G
A

1

G
C

1

G
C

2

Integration and Delivery

Build and Deployment Scripts N P S N N N N S N N N N N N P N N N P N N N
CI/CD Pipeline S N N P P N S N N S N N N N P P P N N S S S
Machine Learning Orchestrator N N N P N N N N S N N P S P P N N N N P P P

Assessments ++ - o + - -- ++ o + ++ -- + + - o + - -- -- ++ ++ ++

Pipeline Triggers

On Commit T F F T F F T F T T F F T T T T F F F F T T
On Schedule F F F T F F F F T T F T F T T F F F F T T T
Availability of New Training Data F T F T F F T T T F F F F T T F F F F T T T
Model Performance Degradation F T F T F F F F T F F F F F T T T F F T T T
Changes to the Data Distribution F T F F T T F F T F F F F T T F F F F T T T

Assessments o - -- + - - + - ++ o -- o o + ++ + - -- -- ++ ++ ++

Data Processing

Data Pipeline N S N N N S N N N N S N N N N N N N N P P P
ETL Pipeline N N N N P N S N P N N N N N N N N N N N N N
Data Processing Component N N N N N N N P N P N P S S S N N N N N N N

Assessments -- ++ -- -- - ++ + o - o ++ o + + + -- -- -- -- + + -

• Whether the On Availability of New Training Data Trigger
option is represented in the system is signified by the TDT
metric, also a Boolean.

• An indicator for the presence of the On Model Perfor-
mance Degradation Trigger option is the Boolean MPT
metric.

• The availability of the On Changes to the Data Distribu-
tion Trigger option is informed by the Boolean DDT met-
ric.

The following equation thus gives the value for any of the
above metrics:

COT, S CT,T DT,

MPT,DDT
=

True : if the model contains

at least one link of
the relevant trigger type;

False : otherwise.

7.3. Metrics for the Data Processing Decision

The proportion of components in favour of the Data Pipeline
option is indicated by the DAP metric.

DAP =

|data processing tasks
automated in a data pipeline|

|data processing tasks in the system|

The share of components supporting the ETL Pipeline option
is revealed by the ETP metric.

ET P =

|data processing tasks
automated in an ETL pipeline|

|data processing tasks in the system|

The ratio of components that are aligned with the Data Pro-
cessing Component option is shown by the DPC metric.

DPC =

|data processing tasks
in a data processing component|

|data processing tasks in the system|

When applying the methodology described in this paper, a
human architect familiar with the system architecture would
be involved in classifying system features, interpreting metrics,
and setting thresholds. Generally, a lower value is worse than a
higher value, depending on how desirable supporting a decision
option is for an architect. In this context, please note that the
system’s modularity does not directly influence the value of the
metrics; instead, it is the nature of the containing component
that matters.

8. Ordinal Regression Analysis

Ordinal regression models the relationship between an ordi-
nal dependent variable and independent predictors. It helps un-
derstand the odds of an observation belonging to a specific cate-
gory, assess the strength and direction of relationships, evaluate
predictor significance, and build accurate regression models for
predictions with new data.

The results of the ordinal regression analysis3 concerning
each ADD are showcased in Table 4. The outcome variables,
which depend on the ground truth assessments (ordinal vari-
ables) for each decision as elucidated in Section 6 and shown in
Table 2, are integral to the analysis. Furthermore, the metrics
expounded upon in Section 7 and summarised in Table 3 serve
as the independent predictor variables and are either Boolean or
continuous values measured within the interval [0, 1].

3When conducting the ordinal regression analysis, we utilised the lrm func-
tion from the rms package in R [49].

13

Table 3: Metrics Calculation Results for the Included MLOps Architectures

Metrics AP1 AP2 AP3 MA1 MA2 MA3 AC1 AC2 AC3 GV1 GV2 GV3 AS1 AS2 AS3 RO1 RO2 RO3 GM1 GA1 GC1 GC2

Integration and Delivery

BDS 0 0.333 1 0 0 0 0 1 0 0 0 0 0 0 0.667 0 0 0 0 0 0 0
CID 1 0 0 0.615 0.462 0 1 0 0 1 0 0 0 0 0 0.875 0.375 0 0 1 1 1
MLO 0 0 0 0.385 0 0 0 0 1 0 0 0.857 1 0.333 0 0 0 0 0 0.429 0.375 0.375

Pipeline Triggers

COT T F F T F F T F T T F F T T T T F F F F T T
SCT F F F T F F F F T T F T F T T F F F F T T T
TDT F T F T F F T T T F F F F T T F F F F T T T
MPT F T F T F F F F T F F F F F T T T F F T T T
DDT F T F F T T F F T F F F F T T F F F F T T T

Data Processing

DAP 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0.5 0.5 0.333
ETP 0 0 0 0 0.333 0 1 0 0.333 0 0 0 0 0 0 0 0 0 0 0 0 0
DPC 0 0 0 0 0 0 0 0.5 0 0.6 0 0.8 1 1 1 0 0 0 0 0 0 0

The ordinal response variable is divided into increasing in-
tercept categories, where each of ≥ [-], ≥ [o], ≥ [+], ≥ [++] as
introduced in Section 6 and expanded upon in Section 6 repre-
sents the transition point of the corresponding level (i.e. for the
dependent variable). The intercept coefficients in our regression
models quantify the impact of each independent predictor vari-
able on the outcome, indicating how they influence the odds of
transitioning between response categories. Positive coefficients
suggest an increased likelihood of moving to a higher category
with each unit increase in the independent variable, whilst neg-
ative coefficients imply the opposite, indicating a reduced like-
lihood. For example, a +5 coefficient corresponds to a five-fold
increase in the dependent variable for every unit increase in the
independent variable, and a -30 coefficient signifies a thirty-fold
decrease.

The regression model C-index, also known as the concor-
dance index or the area under the Receiver Operating Charac-
teristic (ROC) curve, measures the discriminatory power [50]
of a regression model. The original C-index assesses how well
a regression model distinguishes between different categories
or levels of the ordinal response variable. The bias-corrected C-
index accounts for potential bias in a regression model. C-index
values are continuous in the interval [0, 1], with higher val-
ues indicating better discriminatory power. Harrell [49] recom-
mends the utilisation of bootstrapping, a resampling technique,
to obtain nearly unbiased estimates of a regression model’s fu-
ture performance4. A C-index of 1 represents perfect discrimi-
nation, whilst 0.5 indicates random chance. Regression models
are considered good when the C-index exceeds 0.7 and strong
when it surpasses 0.8. A C-index value of 1 signifies perfect
predictive power. As illustrated in Table 3, all C-index values
exceed 0.8, affirming our regression models’ effectiveness in
predicting individual outcomes.

The Brier score in ordinal regression assesses the quality of
probabilistic predictions by measuring the mean squared differ-
ence between predicted probabilities and actual outcomes [51].
Unlike simple accuracy metrics, it offers a nuanced evaluation

4We employed the validate function from the rms package to achieve boot-
strapping and the subsequent calculation of the bias-corrected C-index.

of calibration and accuracy. Lower scores signify better predic-
tive accuracy, with 0 representing a perfect match. All three re-
gression models demonstrate low Brier scores, indicating their
capability for accurate predictions.

In ordinal regression, p-values for regression model coeffi-
cients indicate predictor significance, often below 0.05 for sta-
tistical significance [52]. In Table 4, all p-values are below 0.05,
confirming the models’ statistical significance and highlighting
the substantial influence of included metrics on dependent vari-
ables.

Ordinal regression analysis is used for outcome variables
with ordered categories that do not have equal distances be-
tween them. Using an overall metric based on average weight
can violate the fundamental assumption of ordinal regression,
as it implies equal intervals between categories, which may not
be the case. Moreover, ordinal regression allows for modelling
the probability of being in a particular category or lower based
on a set of predictors. For this reason, we do not use averages of
the various decision option metrics to achieve an overall score
for a modelled system since this could oversimplify the com-
plex relationships between predictors and outcome variables.
Determining appropriate weights for the various components of
composite metrics is challenging, and relying on an average re-
quires an accurate reflection of each component’s significance.
This issue is similar to those encountered with other metrics,
such as the Maintainability Index [53]. Analysing each ADD
separately and applying ordinal regression analysis provides a
more nuanced understanding of the data than taking averages
(see Table 4) and results in reusable ordinal regression models,
so it is highly suited to this study.

Our multi-metric approach ensures a robust assessment of
regression model performance. All three models emerge as
strong, statistically significant predictors of their respective or-
dinal response variables, collectively providing a comprehen-
sive understanding of automation-related ADD support. Each
model contributes valuable insights, collectively offering a
well-rounded perspective.

14

Table 4: Ordinal Regression Analysis Results for the Metrics

Statistical Measures Values

Integration and Delivery

Intercept: ≥ [-] -0.4118
Intercept: ≥ [o] -2.2673
Intercept: ≥ [+] -3.5752
Intercept: ≥ [++] -5.7906
Metric Coefficient (BDS) 2.9438
Metric Coefficient (CID) 5.8622
Metric Coefficient (MLO) 4.4388

Regression Model p-value 8.2844e-09
Regression Model Brier Score 0.0637
Regression Model C-index (original) 0.9895
Regression Model C-index (bias-corrected) 0.9192

Pipeline Triggers

Intercept: ≥ [-] -0.1809
Intercept: ≥ [o] -2.2715
Intercept: ≥ [+] -4.0512
Intercept: ≥ [++] -6.4206
Metric Coefficient (COT) 2.4227
Metric Coefficient (SCT) 1.7147
Metric Coefficient (TDT) 1.1081
Metric Coefficient (MPT) 1.4322
Metric Coefficient (DDT) 1.0823

Regression Model p-value 1.6090e-07
Regression Model Brier Score 0.0842
Regression Model C-index (original) 0.9585
Regression Model C-index (bias-corrected) 0.9363

Data Processing

Intercept: ≥ [-] -0.8649
Intercept: ≥ [o] -2.1320
Intercept: ≥ [+] -3.3447
Intercept: ≥ [++] -6.4474
Metric Coefficient (DAP) 7.4840
Metric Coefficient (ETP) 4.2296
Metric Coefficient (DPC) 4.1724

Regression Model p-value 5.5376e-09
Regression Model Brier Score 0.05585
Regression Model C-index (original) 0.9946
Regression Model C-index (bias-corrected) 0.9595

9. Discussion

In this section, we address the research questions, discuss
a practical application of our approach and examine potential
threats to validity.

9.1. Discussion of the Research Questions
Our study addressed two key research questions (RQs) re-

garding the assessment of automation support in MLOps sys-
tems.

RQ1 How can MLOps systems’ support for the core quality
aspect of automation be assessed in the context of Architectural
Design Decisions and their respective decision options?

In addressing RQ1, we conducted a rigorous evaluation of
MLOps systems’ support for automation-related ADDs and
their respective decision options. Through an iterative mod-
elling and evaluation process, we established a comprehen-
sive ground truth, ensuring thorough coverage of the design
space. Our technology-agnostic metrics, assigned to each deci-
sion option, and subsequent ordinal regression analysis demon-
strated the effectiveness of our approach in objectively assess-
ing the level of automation support in MLOps systems. This
methodology ensures a thorough understanding of the nuances
of automation-related ADDs and decision options within the
context of MLOps. This iterative process can be valuable in
other domains where intricate architectural decisions impact
system quality aspects.

RQ2 What types of metrics can be applied to evaluate these
levels of support, and how effective are they?

In response to RQ2, we introduced generic, technology-
agnostic metrics closely tied to typical ADDs concerning au-
tomation in MLOps. We programmatically applied these met-
rics via our detectors, and the regression analysis statistically
reinforced their effectiveness in evaluating automation support.
Developing technology-agnostic metrics is advantageous as it
allows for a broad application across diverse MLOps systems.
The effectiveness of the metrics, as demonstrated by regression
analysis, suggests a promising avenue for objectively assessing
automation support.

RQ2 logically follows from RQ1 as it builds upon the foun-
dational work established in addressing RQ1. In RQ1, we rigor-
ously evaluated the support for automation in MLOps systems
by manually assessing ADDs and their associated decision op-
tions. For RQ2, we introduced generic, technology-agnostic
metrics specifically tailored to these ADDs, expanding upon the
evaluation framework developed in RQ1 to provide a broader,
more generalisable assessment of automation support across di-
verse MLOps systems, thereby demonstrating a clear relation-
ship between the two research questions and their measurement
methodologies.

Our study employs an iterative evaluation process and
technology-agnostic metrics to describe a useful modelling and
evaluation process for MLOps researchers and practitioners.
Our approach facilitates the modelling of MLOps systems, ob-
jective assessment and evaluation of support for automation-
related ADDs and the introduced metrics contribute to advanc-
ing the understanding of how to detect and assess quality as-
pects of MLOps systems, with the scope for wider applicability.

The objective of this study is to determine the extent to which
various ADD options are supported. Suppose a metric’s value is
zero (or false, in the case of Boolean metrics). In that case, it in-
dicates that the type of automation associated with this decision
option is not feasible within the system. Conversely, a non-zero

15

value (or true) signifies the presence of the decision option, but
it does not guarantee perfect or even correct implementation.

Our methodology and metrics allow us to assess the degree
of coverage of automation-related decision options in terms of
how well they are supported, enabling us to measure our in-
tended goals and consider automation as a measurable system
quality. An architect familiar with a given project would be
aware of the relevant decision options based on the force im-
pacts described in Section 5, which provide insights into the
preferable decision options considering the trade-offs between
them.

9.2. Practical Application

Automated Steps in a CI/CD Pipeline

One-Time Manual Steps

Define Metrics for
Quality Aspects of

Interest

Ground Truth
Assessment and

System Evaluation

Architecture Analysis Actions
(report generation and
pipeline continuation/

warning/failure)

Ordinal Regression
AnalysisMetrics Calculation

Technology-
Independent

Approach: Generate
Model

Run Detectors (on
Model or Source

Code)

Implement Detectors
and Metrics
Calculations

Technology-
Independent

Approach: Implement
Model Generators

CI/CD Pipeline Steps Configuration

CI/CD Pipeline Trigger or
Preceding Pipeline Step

Completion

Figure 5: A proposed practical application of our solution.

We have demonstrated our approach’s effectiveness in detect-
ing and assessing complex quality aspects of MLOps systems,
such as ADDs and pipeline and component properties, which
are challenging to identify manually in source code — incorpo-
rating our approach as automated steps within a CI/CD pipeline,
as depicted in Figure 5, would offer substantial practical bene-
fits.

The manual effort in initial ground truth assessment and
system evaluation need only be expended once. We demon-
strated our approach for this paper by manually modelling a
range of systems, requiring some initial manual effort due to the
technology-agnostic approach but enabling subsequent automa-
tion of analysis thanks to the high-level abstraction provided by
the models. In a real-world application of a specific system,
practitioners can avoid the manual modelling effort by automat-
ing the most repetitive and labour-intensive steps for their spe-

cific system and its technologies within a CI/CD pipeline, ei-
ther leveraging source code detectors for a specific set of tech-
nologies or automating the generation of system architecture
model abstractions for analysis with model detectors if a more
technology-independent approach is required.

The subsequent regression model analysis can also be auto-
mated within a CI/CD pipeline, a report of the outcome gen-
erated, and further actions within the pipeline taken such as
continuing with the pipeline, failing or issuing a warning. The
proposed application of this solution could be utilised as a
form of regression testing within the quality assurance pro-
cess to aid practitioners in automatically identifying when qual-
ity aspects of their system in an MLOps context fall below
a predefined threshold. More generally, this automated pro-
cess can yield early indications of how the system is evolving
and whether refactoring may be necessary. Thus our reusable
ADDs, detector-based analysis and regression models facilitate
automation, allowing practitioners to invest effort a single time
and reuse results repeatedly and automatically. Through au-
tomation of the analysis, organisations can gain valuable in-
sights into the qualities of their MLOps systems whilst accel-
erating the development cycle and ensuring compliance with
non-functional requirements, in particular with regard to qual-
ity aspects.

Further extensions could involve more detailed specific de-
sign guidance on measures that could be taken or automated op-
timisation of the system architecture with respect to quality at-
tributes where necessary and appropriate and depending on the
practitioner’s needs. Indeed, the scope of application is not lim-
ited to automation-related ADDs or automation-related qual-
ities of the system architecture: numerous quality aspects of
MLOps systems, specifically those ADDs, qualities and forces
that practitioners find most critical on a case-by-case basis, for
instance, those that enhance model management and reusabil-
ity, and generally reduce technical debt, could be supported.

9.3. Threats to Validity
Ensuring generalisability across diverse MLOps contexts

may compromise the external validity of our findings. How-
ever, our confidence in the representativeness of our modelled
systems remains strong, as they cover a comprehensive set of
automation-related ADDs and systems documented in practi-
tioner and scientific literature [20, 21, 45].

When modelling MLOps system architectures, there is a risk
of unintentionally omitting architectural elements, affecting ex-
ternal validity. However, our experience in architectural mod-
elling ensured diligent coverage of encountered phenomena, ul-
timately affirmed by our results.

We studied, modelled and evaluated third-party systems to
enhance internal validity and minimise bias in system composi-
tion. Despite potential omissions in our search procedures, we
mitigated this through a systematic approach, strict inclusion-
exclusion criteria, and thorough searches. Furthermore, multi-
ple experienced authors rigorously reviewed the sources.

To maintain internal validity amid potential subjectivity in
ground truth assessment, we simplified the evaluation of deci-
sion option support. We used straightforward heuristics and a

16

simple three-step ordinal scale. Our goal was to reduce false
positives, enable technology-independent evaluation, and en-
sure a non-controversial interpretation.

Although there is a potential risk of interpretive bias in the
system modelling process, our experienced author team aimed
to develop system models faithfully representing observed phe-
nomena. However, this risk does not significantly impact our
study, as our primary objective was ensuring system model ac-
curacy rather than uniformity with models created by other re-
searchers.

Another potential risk to internal validity involves the devel-
opment of system variants by the authors. However, it is crucial
to note that these variants align with documented ADDs and de-
cision options found in the literature [20, 21], and we took care
to modify only the necessary aspects for each variant whilst
maintaining consistency in all other respects.

10. Future Work

Future work will involve applying our results to specific
industrial systems, showcasing the applicability and practical
benefits of our approach in real-world scenarios. We plan to
extend our system modelling techniques to cover other types of
ML systems, particularly those with less coverage in the sci-
entific literature. Specifically, we will apply our approach to
reinforcement learning operations (RLOps) systems, using in-
dustry case studies to evaluate support for automation and other
core quality aspects through an automated metrics-based anal-
ysis using source code detectors and large language models
as opposed to the manual modelling step as proposed in Sec-
tion 9.2. The solution will involve identifying quality deficits
and suggesting necessary extensions by assessing the current
coverage of the design space (expressed as ADDs) for MLOps
or RLOps systems. We also plan to incorporate our work into an
automated process as suggested in Section 9.2 for continuously
assessing MLOps or RLOps architectures in an industrial set-
ting, where metrics are repeatedly evaluated to detect changes
in system quality.

11. Conclusion

In this study, we focused on developing a method to assess
the support for automation-related ADDs and decision options
in MLOps systems, demonstrating the feasibility of this ap-
proach. We followed a systematic process involving sourc-
ing, modelling, and assessing various MLOps systems and their
variants.

We introduced novel metrics covering all potential decision
options and implemented detectors to analyse the modelled sys-
tems and compute the metrics. We have demonstrated that sim-
ple yet effective metrics provide reliable insights into crucial
system aspects, such as automation, which are paramount to
practitioners. We employed statistical methods, specifically or-
dinal regression analysis, to establish prediction models, which
demonstrated high accuracy in predicting the ground truth as-
sessment. The validation of our novel metrics and metrics-
based approach underscores our contribution.

CRediT Authorship Contribution Statement

The CRediT Authorship Contribution Statement will be in-
cluded in a future revision or the final version of the paper.

Declaration of Competing Interest

The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

Data Availability

All relevant source code and artefacts are available in our
replication package [41], which is published as a long-term
archive.

Acknowledgements

This work was supported by the FFG (Austrian Research
Promotion Agency) project MODIS (no. FO999895431).

References

[1] P. Kriens and T. Verbelen, “Software engineering practices for machine
learning,” CoRR, vol. abs/1906.10366, 2019. [Online]. Available:
http://arxiv.org/abs/1906.10366

[2] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden techni-
cal debt in machine learning systems,” in Proceedings of the 28th Interna-
tional Conference on Neural Information Processing Systems - Volume 2,
ser. NIPS’15. Cambridge, MA, USA: MIT Press, 2015, p. 2503–2511.

[3] S. Amershi, A. Begel, C. Bird, R. A. Deline, H. C. Gall,
E. Kamar, N. Nagappan, B. Nushi, and T. Zimmermann, “Software
engineering for machine learning: A case study,” 2019 IEEE/ACM
41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pp. 291–300, 2019. [Online].
Available: https://api.semanticscholar.org/CorpusID:88499204

[4] M. S. Rahman, E. Rivera, F. Khomh, Y. Guéhéneuc, and B. Lehnert,
“Machine learning software engineering in practice: An industrial
case study,” CoRR, vol. abs/1906.07154, 2019. [Online]. Available:
http://arxiv.org/abs/1906.07154

[5] A. Paleyes, R.-G. Urma, and N. D. Lawrence, “Challenges in
deploying machine learning: A survey of case studies,” ACM
Computing Surveys, vol. 55, pp. 1 – 29, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:227053929

[6] Q. Yao, M. Wang, Y. Chen, W. Dai, Y.-F. Li, W.-W. Tu, Q. Yang, and
Y. Yu, “Taking human out of learning applications: A survey on auto-
mated machine learning,” 2019.

[7] M.-A. Zöller and M. F. Huber, “Benchmark and survey of automated ma-
chine learning frameworks,” 2021.

[8] D. Kreuzberger, N. Kühl, and S. Hirschl, “Machine learning operations
(MLOps): Overview, definition, and architecture,” IEEE Access, vol. 11,
pp. 31 866–31 879, 2023.

[9] N. T. Hewage and D. A. Meedeniya, “Machine learning operations:
A survey on MLOps tool support,” ArXiv, vol. abs/2202.10169,
2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:
247011728

[10] D. Sweenor, S. Hillion, D. Rope, D. Kannabiran, T. Hill, M. O’Connell,
and a. O. M. C. Safari, ML Ops: Operationalizing Data Science.
O’Reilly Media, Incorporated, 2020. [Online]. Available: https:
//books.google.at/books?id=StTvzQEACAAJ

[11] L. Bass, I. Weber, and L. Zhu, DevOps: A Software Architect’s Perspec-
tive, 1st ed. Addison-Wesley Professional, 2015.

17

http://arxiv.org/abs/1906.10366
https://api.semanticscholar.org/CorpusID:88499204
http://arxiv.org/abs/1906.07154
https://api.semanticscholar.org/CorpusID:227053929
https://api.semanticscholar.org/CorpusID:247011728
https://api.semanticscholar.org/CorpusID:247011728
https://books.google.at/books?id=StTvzQEACAAJ
https://books.google.at/books?id=StTvzQEACAAJ

[12] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “DevOps,” IEEE
Software, vol. 33, no. 3, pp. 94–100, 2016.

[13] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation, 1st ed.
Addison-Wesley Professional, 2010.

[14] U. Zdun, E. Ntentos, K. Plakidas, A. E. Malki, D. Schall, and F. Li,
“On the design and architecture of deployment pipelines in cloud- and
service-based computing - a model-based qualitative study,” 2019 IEEE
International Conference on Services Computing (SCC), pp. 141–145,
2019. [Online]. Available: https://api.semanticscholar.org/CorpusID:
201810286

[15] M. Shahin, M. Zahedi, M. Ali Babar, and L. Zhu, “An empirical study of
architecting for continuous delivery and deployment,” Empirical Software
Engineering, vol. 24, 08 2018.

[16] G. Schermann, J. Cito, P. Leitner, U. Zdun, and H. Gall, “An empirical
study on principles and practices of continuous delivery and deployment,”
PeerJ Preprints, Tech. Rep., 2016.

[17] D. A. Tamburri, “Sustainable MLOps: Trends and challenges,” 2020
22nd International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing (SYNASC), pp. 17–23, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:232063132

[18] G. Symeonidis, E. Nerantzis, A. Kazakis, and G. A. Papakostas, “MLOps
- definitions, tools and challenges,” in 2022 IEEE 12th Annual Computing
and Communication Workshop and Conference (CCWC), 2022, pp. 0453–
0460.

[19] S. Moreschi, G. Recupito, V. Lenarduzzi, F. Palomba, D. Hastbacka, and
D. Taibi, “Toward end-to-end MLOps tools map: A preliminary study
based on a multivocal literature review,” 2023.

[20] S. J. Warnett and U. Zdun, “Architectural design decisions for the ma-
chine learning workflow,” Computer, vol. 55, no. 3, pp. 40–51, 2022.

[21] ——, “Architectural design decisions for machine learning deployment,”
in 2022 IEEE 19th International Conference on Software Architecture
(ICSA). IEEE, 2022, pp. 90–100.

[22] L. Faubel and K. Schmid, “An analysis of MLOps practices,” Software
Systems Engineering, Institut für Informatik, Universität Hildesheim, -
Universitätsplatz 1, 31134 Hildesheim, Hildesheimer Informatik-Berichte
1/2023, SSE 1/23/E, 2023.

[23] J. Humble and D. Farley, Continuous Delivery: Reliable Software Re-
leases through Build, Test, and Deployment Automation. Addison-
Wesley Professional, 2010.

[24] T. Mboweni, T. Masombuka, and C. Dongmo, “A systematic review of
machine learning DevOps,” in 2022 International Conference on Electri-
cal, Computer and Energy Technologies (ICECET), 2022, pp. 1–6.

[25] M. Testi, M. Ballabio, E. Frontoni, G. Iannello, S. Moccia, P. Soda, and
G. Vessio, “MLOps: A taxonomy and a methodology,” IEEE Access,
vol. 10, pp. 63 606–63 618, 2022.

[26] A. Lima, L. Monteiro, and A. Furtado, “MLOps: Practices,
maturity models, roles, tools, and challenges - a systematic literature
review,” in International Conference on Enterprise Information Systems,
2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:
248718186

[27] Y. Luo, M. Raatikainen, and J. K. Nurminen, “Autonomously adap-
tive machine learning systems: Experimentation-driven open-source
pipeline,” in 2023 49th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), Sep. 2023, pp. 44–52.

[28] Y. Haviv and N. Gift, Implementing MLOps in the enterprise. Se-
bastopol, CA: O’Reilly Media, Dec. 2023.

[29] P. Ruf, M. Madan, C. Reich, and D. Ould-Abdeslam, “Demystifying
MLOps and presenting a recipe for the selection of open-source
tools,” Applied Sciences, vol. 11, no. 19, 2021. [Online]. Available:
https://www.mdpi.com/2076-3417/11/19/8861

[30] Y. Zhou, Y. Yu, and B. Ding, “Towards MLOps: A case study of ML
pipeline platform,” in 2020 International Conference on Artificial Intelli-
gence and Computer Engineering (ICAICE), 2020, pp. 494–500.

[31] S. Garg, P. Pundir, G. Rathee, P. Gupta, S. Garg, and S. Ahlawat, “On
continuous integration / continuous delivery for automated deployment of
machine learning models using MLOps,” in 2021 IEEE Fourth Interna-
tional Conference on Artificial Intelligence and Knowledge Engineering
(AIKE), 2021, pp. 25–28.

[32] A. Jansen and J. Bosch, “Software architecture as a set of architectural
design decisions,” 5th Working IEEE/IFIP Conference on Software

Architecture (WICSA’05), pp. 109–120, 2005. [Online]. Available:
https://api.semanticscholar.org/CorpusID:13492610

[33] R. Kazman, J. Asundi, and M. Klein, “Quantifying the costs
and benefits of architectural decisions,” in Software Engineering,
International Conference on. Los Alamitos, CA, USA: IEEE
Computer Society, may 2001, p. 0297. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/ICSE.2001.919103

[34] O. Zimmermann, U. Zdun, T. Gschwind, and F. leymann, “Combin-
ing pattern languages and reusable architectural decision models into a
comprehensive and comprehensible design method,” in Seventh Working
IEEE/IFIP Conference on Software Architecture (WICSA 2008), 2008,
pp. 157–166.

[35] R. Sharma and K. Davuluri, “Design patterns for machine learning ap-
plications,” in 2019 3rd International Conference on Computing Method-
ologies and Communication (ICCMC), 2019, pp. 818–821.

[36] H. Washizaki, H. Uchida, F. Khomh, and Y.-G. Guéhéneuc, “Machine
learning architecture and design patterns,” IEEE Software, vol. 8, 2020.

[37] H. Washizaki, F. Khomh, Y.-G. Guéhéneuc, H. Takeuchi, N. Natori,
T. Doi, and S. Okuda, “Software-engineering design patterns for machine
learning applications,” Computer, vol. 55, no. 3, pp. 30–39, 2022.

[38] L. Cardoso Silva, F. Rezende Zagatti, B. Silva Sette, L. Nildaimon dos
Santos Silva, D. Lucrédio, D. Furtado Silva, and H. de Medeiros Caseli,
“Benchmarking machine learning solutions in production,” in 2020 19th
IEEE International Conference on Machine Learning and Applications
(ICMLA), 2020, pp. 626–633.

[39] J. Zhou, A. H. Gandomi, F. Chen, and A. Holzinger, “Evaluating
the quality of machine learning explanations: A survey on methods
and metrics,” Electronics, vol. 10, no. 5, 2021. [Online]. Available:
https://www.mdpi.com/2079-9292/10/5/593

[40] D. V. Carvalho, E. M. Pereira, and J. S. Cardoso, “Machine learning
interpretability: A survey on methods and metrics,” Electronics, vol. 8,
no. 8, 2019. [Online]. Available: https://www.mdpi.com/2079-9292/8/8/
832

[41] S. J. Warnett and U. Zdun, “A Model-Driven, Metrics-Based
Approach to Assessing Support for Quality Aspects in MLOps System
Architectures: Replication Package,” Oct. 2024. [Online]. Available:
https://doi.org/10.5281/zenodo.13941649

[42] B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory:
Strategies for Qualitative Research. New York, NY: Aldine de Gruyter,
1967.

[43] A. L. Strauss and J. M. Corbin, Basics of qualitative research: techniques
and procedures for developing grounded theory. Sage Publications,
Thousand Oaks, Calif, 1998.

[44] J. Corbin and A. L. Strauss, “Grounded theory research: Procedures,
canons, and evaluative criteria,” Qualitative Sociology, vol. 13, pp. 3–20,
1990.

[45] S. J. Warnett and U. Zdun, “On the understandability of MLOps sys-
tem architectures,” IEEE Transactions on Software Engineering, vol. 50,
no. 5, pp. 1015–1039, 2024.

[46] ——, “Architectural Design Decisions for the Machine Learning
Workflow: Dataset and Code,” Nov. 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.5730291

[47] ——, “Architectural Design Decisions for Machine Learning De-
ployment: Dataset and Code,” Jan. 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.5823459

[48] ——, “On the Understandability of MLOps System Architectures:
Dataset and Code,” Feb. 2024. [Online]. Available: https://doi.org/10.
5281/zenodo.7752176

[49] J. Frank E. Harrell, Regression Modeling Strategies: With Applications to
Linear Models, Logistic and Ordinal Regression, and Survival Analysis,
2nd ed. Springer, 2015.

[50] A. Airola, T. Pahikkala, W. Waegeman, B. De Baets, and T. Salakoski,
“An experimental comparison of cross-validation techniques for estimat-
ing the area under the ROC curve,” Computational Statistics & Data
Analysis, vol. 55, no. 4, pp. 1828–1844, 2011.

[51] G. W. Brier, “Verification of forecasts expressed in terms of probability,”
Monthly Weather Review, vol. 78, no. 1, pp. 1 – 3, 1950.
[Online]. Available: https://journals.ametsoc.org/view/journals/mwre/78/
1/1520-0493_1950_078_0001_vofeit_2_0_co_2.xml

[52] M. Cowles and C. Davis, “On the origins of the .05 level of statistical
significance,” American Psychologist, vol. 37, pp. 553–558, 05 1982.

18

https://api.semanticscholar.org/CorpusID:201810286
https://api.semanticscholar.org/CorpusID:201810286
https://api.semanticscholar.org/CorpusID:232063132
https://api.semanticscholar.org/CorpusID:248718186
https://api.semanticscholar.org/CorpusID:248718186
https://www.mdpi.com/2076-3417/11/19/8861
https://api.semanticscholar.org/CorpusID:13492610
https://doi.ieeecomputersociety.org/10.1109/ICSE.2001.919103
https://doi.ieeecomputersociety.org/10.1109/ICSE.2001.919103
https://www.mdpi.com/2079-9292/10/5/593
https://www.mdpi.com/2079-9292/8/8/832
https://www.mdpi.com/2079-9292/8/8/832
https://doi.org/10.5281/zenodo.13941649
https://doi.org/10.5281/zenodo.5730291
https://doi.org/10.5281/zenodo.5823459
https://doi.org/10.5281/zenodo.7752176
https://doi.org/10.5281/zenodo.7752176
https://journals.ametsoc.org/view/journals/mwre/78/1/1520-0493_1950_078_0001_vofeit_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/mwre/78/1/1520-0493_1950_078_0001_vofeit_2_0_co_2.xml

[53] D. I. K. Sjøberg, B. Anda, and A. Mockus, “Questioning software main-
tenance metrics: A comparative case study,” in Proceedings of the 2012
ACM-IEEE International Symposium on Empirical Software Engineering
and Measurement, 2012, pp. 107–110.

Stephen John Warnett is a researcher with the Research
Group Software Architecture at the Faculty of Computer Sci-
ence, University of Vienna, Austria. His research interests in-
clude the intersection of software engineering, software archi-
tecture and artificial intelligence. Stephen received a bachelor
of science degree with First Class Honours in computer science
from the University of Edinburgh, Scotland, and a master of sci-
ence degree with distinction in engineering from the University
of Applied Sciences Technikum Wien, Austria.

Evangelos Ntentos is a PostDoc researcher with a Doctoral De-
gree in Software Architecture from the University of Vienna.
He has been involved in various research projects focusing on
DevOps and MLOps practices and architecture evaluation. His
teaching experience spans several years as a teaching assistant
in the Research Group Software Architecture at the University
of Vienna. Evangelos has published in peer-reviewed confer-
ences and journals on topics such as architectural design de-
cisions, architecture evaluation in microservices, RLOps and
Infrastructure as Code.

Uwe Zdun is a full professor of software architecture at the
Faculty of Computer Science, University of Vienna. His re-
search focuses on software design and architecture, distributed
systems engineering (service-based, cloud, IoT, and microser-
vices systems), SW engineering for ML, ML for SW engineer-
ing, DevOps and continuous delivery, and empirical software
engineering. Uwe has published over 300 peer-reviewed arti-
cles and co-authored 4 professional books. He is Associate Ed-
itor of the Journal of Systems and Software (JSS) published by
Elsevier, Associate Editor of the Computing journal published
by Springer, and Associate Editor for design and architecture
for the IEEE Software magazine.

19

	Introduction
	Background
	MLOps: Concepts and Terms
	Architectural Design Decisions: Concepts and Terms

	Related Work
	Patterns and Practices and Their Relation to Quality Aspects
	ML Metrics

	Research Method
	Contributions from Prior Work
	Core Activities and Contributions of this Work

	Architectural Design Decisions
	How to Automate Integration and Delivery in a Machine Learning Context? (``Integration and Delivery'')
	How to Trigger a Machine Learning Pipeline or Orchestrator? (``Pipeline Triggers'')
	How to Automatically Process the Data Used for Model Building? (``Data Processing'')

	Ground Truth Rating Scheme and Assessment
	Integration and Delivery
	Pipeline Triggers
	Data Processing

	Metrics
	Metrics for the Integration and Delivery Decision
	Metrics for the Pipeline Triggers Decision
	Metrics for the Data Processing Decision

	Ordinal Regression Analysis
	Discussion
	Discussion of the Research Questions
	Practical Application
	Threats to Validity

	Future Work
	Conclusion

