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Abstract: Assembly Theory provides a promising framework to explain the complexity of systems
such as molecular structures and the origins of life, with broad applicability across various disciplines.
In this study, we explore and consolidate different aspects of Assembly Theory by introducing a
simplified Toy Model to simulate the autocatalytic formation of complex structures. This model
abstracts the molecular formation process, focusing on the probabilistic control of catalysis rather than
the intricate interactions found in organic chemistry. We establish a connection between probabilistic
catalysis events and key principles of Assembly Theory, particularly the probability of a possible
construction path in the formation of a complex object, and examine how the assembly of complex
objects is impacted by the presence of autocatalysis. Our findings suggest that this presence of
autocatalysis tends to favor longer consecutive construction sequences in environments with a low
probability of catalysis, while this bias diminishes in environments with higher catalysis probabilities,
highlighting the significant influence of environmental factors on the assembly of complex structures.

Keywords: assembly theory; autocatalytic sets; complexity; formation of molecules; origin of life;
autocatalysis

1. Introduction

The search for a comprehensive framework to discuss and describe complexity re-
mains ongoing, despite the development of numerous theories over the years. Complexity
science, which seeks to understand the behaviors and properties of complex systems, has
introduced various concepts such as emergence, self-organization, and non-linearity. These
have been instrumental in fields ranging from biology to economics. However, contempo-
rary challenges—such as modeling global climate change, understanding large-scale social
dynamics, and managing highly interconnected technological systems—continue to test
the limits of existing frameworks [1,2]. This ongoing evolution of ideas underscores that
our quest to understand complexity is far from complete.

Among the myriad theories that serve to describe the formation of complex structures
are Assembly Theory and the theory of autocatalysis, which are the focus of this work. We
must disclaim at this point that although the following discussion is framed within the
context of chemistry, as was the original context of these frameworks, this article addresses
these concepts on a more abstract level.

Assembly Theory provides a quantitative measure of molecular complexity through
the molecular assembly (MA) index, which can be experimentally verified using mass spec-
trometry. This framework is crucial for identifying complex molecules that signify life, both
on Earth and potentially on other planets. It posits that living systems produce complex
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molecules in abundance, which are highly unlikely to be created randomly or abiotically [3].
This MA index differentiates between biological and non-biological molecules, offering
a robust, experimentally tractable measure of complexity that does not rely on specific
biochemical pathways [3,4].

On the other hand, autocatalytic sets and autocatalysis in general are fundamental in
understanding biochemical networks and the origin of life. These sets consist of chemical
reactions where the catalysts for the reactions are produced by the reactions within the set
itself, creating a self-sustaining system. Introduced by Stuart Kauffman in the early 1970s,
autocatalytic sets have been pivotal in exploring the emergence and evolution of complex
biochemical systems [5]. Further developments by researchers like Eigen and Schuster
have emphasized the robustness and evolutionary potential of these networks [6].

The motivation for integrating Assembly Theory and the concept of autocatalysis
lies in their complementary approaches to understanding complexity. Assembly Theory
discusses pathway probabilities, while autocatalytic sets highlight the necessity for in-
creased pathway probabilities to sustain certain biochemical processes. By merging these
concepts, we aim to explore whether the principles of autocatalysis influence the funda-
mental pathways proposed by Assembly Theory. This integration is essential for a deeper
understanding of how complex structures form and evolve.

This work aims to merge these two concepts and discuss their interplay using a sim-
plified Toy Model. We demonstrate that autocatalysis impacts even the basic foundations
of the connections that constitute complex structures. Our results illustrate that the likeli-
hood of autocatalytic processes affects the pathways through which complex structures are
formed. We achieve this by constructing a simplified Toy Model, analyzing its fundamental
properties, and providing arguments on how and where our findings can be applied to
real-life complexity. Our approach and the most significant results are presented in Figure 1.

Figure 1. A simplified preliminary depiction of our results. Autocatalysis favors more consecutive
builds of complex objects in environments with low catalysis. The left side portrays possible ways to
form a complex object “ABCDEF”, and the right side shows the builds favored by autocatalysis.

Specifically, we analyze multiple ways to form a complex object and find that in en-
vironments where the probability of catalyzing necessary processes is low, autocatalysis
favors more consecutive rather than parallel builds of complex objects.
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This article is structured as follows. Section 2 provides a brief review of historical
sources on autocatalytic sets and Assembly Theory in chronological order for readers to
obtain an overview of key developments. Section 3 describes the employed concepts and
tools from both Assembly Theory and autocatalytic sets. Section 4 introduces the developed
Toy Model and discusses the assumptions and technical details involved. Next, we discuss
our numerical experiments and results in Section 5, followed by an in-depth discussion in
Section 6 and a final conclusion in Section 7.

2. Related Work

This section is a collection of past research that we consider as key developments
and/or neat resources for the interested reader to obtain an overview of both Assembly
Theory and the implications of autocatalysis.

2.1. Assembly Theory

Assembly Theory, as a framework for understanding the formation and complexity
of systems, has received significant attention across various scientific disciplines, from
biological to chemical and even abstract mathematical contexts.

But what is it actually about? Assembly Theory, conceived by Sara Walker, Lee Cronin,
and their team, has been around for several years (Marshall et al. [3,7,8]; Liu et al. [9]) and
has already sparked controversy in disciplines such as complexity science [10].

Originally developed as a tool for detecting biosignatures in the atmospheres of
distant exoplanets [3,8], Assembly Theory offers a simplified, rule-based framework for
understanding the combinatorial processes that drive innovation in abstract worlds of
recombining elements. It serves as an example of computational complexity theory, partic-
ularly in its application to the emergence of complex structures. By applying its metrics to
natural systems, Assembly Theory enables researchers to determine whether higher levels
of organization, beyond the fundamental laws of physics, have emerged.

However, these are bold claims, and the work by Jaeger provides a more grounded
perspective, offering clear arguments to temper the expectations surrounding Assembly
Theory [11]. In essence, Jaeger boils it down to the following: What Assembly Theory really
does is detect and quantify bias caused by higher-level constraints in well-defined rule-based worlds.

This is precisely how we apply Assembly Theory in this work—to identify biases
resulting from autocatalysis in sampled assembly spaces.

Below is a compilation of key works for readers interested in Assembly Theory and
the concept of autocatalysis.

The foundational concept of Assembly Theory is detailed in [12], where the authors
introduce the notion of pathway assembly. This graph-based approach quantifies the
number of steps required to assemble an object based on its hypothetical formation history,
estimating the likelihood of its formation without biological processes. This early work
provides a novel measure to distinguish randomly occurring objects from biologically
assembled ones, setting the stage for later developments in Assembly Theory.

Building upon these early theoretical constructs, the authors of [4] discuss how As-
sembly Theory quantifies selection and evolution, particularly in biological systems. This
work provides the theoretical underpinning for understanding how complexity can arise
and be quantified in various contexts, establishing a foundation for subsequent research.
Further, Reference [7] introduce a probabilistic framework for identifying biosignatures
using pathway complexity. This approach allows for a more nuanced understanding of
complex structure formation and identification, adding depth to deterministic views.

Theoretical advancements have significantly expanded the framework of Assembly
Theory. The authors of [3] provide a comprehensive mathematical framework, focusing on
constructing objects from basic elements within defined assembly spaces. This innovative
method differentiates between objects formed by random processes and those resulting
from directed biological or technological actions, offering a novel metric for assessing com-
plexity and origins. Complementing this, Reference [3] introduce the concept of assembly
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spaces, providing a formalized approach to understanding the pathways leading to life’s
formation, emphasizing the predictive power of Assembly Theory. Reference [9] explores
the chemical space with molecular assembly trees, providing tools to map and navigate
the vast possibilities within chemical spaces. This paper is crucial for extending the utility
of Assembly Theory beyond biological contexts, demonstrating its relevance in chemistry
and material science. Finally, Reference [13] delve into the assembly pathways of binary
messages, showcasing the versatility of Assembly Theory in abstract mathematical contexts.
This study provides a mathematical basis for understanding information assembly and
hints at potential applications in computational sciences and information theory.

On the experimental front, several studies have applied Assembly Theory to practical
scenarios. The authors of [8] introduce a novel approach for detecting extraterrestrial
life by using mass spectrometry to measure molecular complexity through the molecular
assembly index (MA). They validate this method on several million molecules, aiming
to establish a universal criterion for identifying biosignatures, which is essential for both
space missions and synthetic biology experiments on Earth. The authors of [14] present an
experimental framework for quantifying molecular complexity, making significant strides
in the direct measurement of MA using spectroscopic techniques. This approach not only
enhances our understanding of molecular evolution but also holds potential for broad
applications in drug development and origin-of-life research. The authors of [8] apply
Assembly Theory to mass spectrometry, providing a practical framework for identifying
molecules as biosignatures, thus bridging theoretical constructs and practical applications.
Their study showcases how Assembly Theory can identify complex molecular structures
that might indicate the presence of life. Additionally, Reference [4] provides empirical
evidence and quantitative metrics for selection and evolution across biological and physical
systems. They introduce a refined method for calculating the assembly index, demonstrat-
ing its practical application in distinguishing between random and directed processes. This
work underscores the theory’s utility in experimentally measurable contexts, highlighting
its relevance for both theoretical exploration and practical applications in understanding
complex system formation.

Notably, the theoretical advancements, such as those presented by [3], complement the
experimental insights provided by [8]. These studies collectively emphasize the predictive
power of Assembly Theory and its structured approach to exploring the theoretical spaces
within which complex structures can form. Together, these papers form a comprehensive
overview of Assembly Theory’s applicability across multiple domains. They collectively
highlight the theory’s potential to explain and predict complex structures in both natural
and artificial systems, making a significant contribution to our understanding of complexity
and the processes leading to the formation of life and other complex entities.

2.2. Autocatalysis

Autocatalysis, a concept central to the origin of life, has been extensively studied
and developed over the years. Autocatalysis plays a fundamental role in the origin of
life and chemical evolution. Despite its importance, a unified framework for studying
autocatalysis has been lacking. Initially, the idea was independently introduced several
times in the context of early life models [5,15,16]. The foundational work of Manfred Eigen
and Peter Schuster on the hypercycle in the late 1970s introduced the idea of self-replication
in molecules, a process crucial for biological systems. Although primarily biological, the
hypercycle concept provides insights into general principles of complex systems that ex-
tend to other domains [16,17]. Building on this, Stuart Kauffman explored the formation
of autocatalytic sets. He posited that life emerges as a phase transition, suggesting that
given a sufficiently diverse mix of molecules, the formation of an autocatalytic system,
which is self-maintaining and self-reproducing, becomes almost inevitable [18]. The core
principle involves chemical reaction systems (CRSs), where a set of molecule types and
reactions form self-sustaining networks that can grow and evolve. This is formally cap-
tured in the Reflexively Autocatalytic and Food-generated (RAF) theory, which defines an
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autocatalytic set as a subset of reactions where every reaction is catalyzed by molecules
produced within the set, and all reactants can be generated from a basic food set through
these reactions [19,20].

A significant milestone in the development of RAF theory was the introduction of
the binary polymer model by Kauffman [5], where molecule types are represented as bit
strings, and reactions involve the ligation and cleavage of these strings. This model helped
demonstrate that autocatalytic sets can emerge with high probability under realistic levels
of catalysis [5,21]. Subsequent work by Hordijk and Steel further refined the mathematical
framework, proving that a linear growth rate in catalysis suffices to form RAF sets, and
developing efficient algorithms to detect such sets within CRSs [21,22]. Empirical studies
have shown that RAF sets are not necessarily large; they often consist of smaller, interde-
pendent subsets called subRAFs, which can themselves be autocatalytic. This structural
decomposability has profound implications for the evolvability and robustness of these
systems. For example, an autocatalytic set can potentially be broken down into irreducible
RAFs (irrRAFs), each capable of sustaining autocatalysis independently. This hierarchical
organization allows for complex behaviors such as inheritance, mutation, and competition,
akin to biological evolution [20,23]. The notion of RAF sets has expanded beyond origin-
of-life studies to other fields like ecology and economics, where systems can be seen as
networks of interdependent entities catalyzing each other’s production and survival [19,20].
For instance, in economics, production processes involving raw materials, intermediates,
and catalysts (such as machinery) form autocatalytic-like networks, highlighting the univer-
sality and broad applicability of RAF theory [21]. Similarly, Lorenzo Napolitano’s analysis
of technological networks reveals that innovation and patenting dynamics are shaped
by autocatalytic structures. These structures grow as interconnected technological fields
mutually benefit from their connections, reflecting a self-reinforcing pattern of innova-
tion [24]. Also, Wim Hordijk’s work on the emergence of autocatalytic sets in models of
technological evolution shows that these sets can form in simple models, providing insights
into economic models and innovation dynamics [25]. Mike Steel’s concept of the adjacent
possible complements these ideas by describing how human creativity involves combining
existing items in new ways to generate further growth. This combinatorial approach is
fundamental to innovation and can explain the accelerating pace of innovations. Steel’s
model suggests that the adjacent possible refers to new opportunities that arise given the
current state of existence [26].

The recent work by Kauffman and Roli further extends this by proposing that the
emergence of life is an expected phase transition in the evolving universe. This theory
unites the concepts of Collectively Autocatalytic Sets (CAS) and the Theory of the Adjacent
Possible (TAP). In this context, TAP theory suggests that as the diversity and complexity
of molecules increase, a phase transition occurs, leading to the spontaneous formation of
molecular reproduction systems [27]. This integration provides a comprehensive view of
how life can emerge from non-living matter through a predictable and inevitable process
driven by increasing molecular complexity and catalytic interactions. The concept of cat-
alytic closure, where every reaction in the system is catalyzed by at least one molecule
within the system, is central to this theory and aligns with the principles outlined in RAF
theory. This work not only reinforces the importance of autocatalysis in the origin of life but
also suggests new avenues for research in astrobiology and the search for life on exoplanets
by identifying potential catalytic networks [23,27].

Overall, the development of autocatalytic sets and RAF theory represents a significant
leap in understanding the emergence and evolvability of complex systems, offering insights
into the fundamental processes that underpin life’s origin and its diverse manifestations.

We also want to highlight the work by Blokhuis et al. [28], which provides a systematic
classification of minimal autocatalytic motifs, referred to as autocatalytic cores. These motifs
are the basic building blocks of all known autocatalytic systems, and new motifs are
identified through this classification. The study also extends the range of autocatalytic
systems by considering the emergence of autocatalysis from coupled compartments.
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Autocatalysis is defined as a process where a substance catalyzes its own formation,
which is crucial for self-replication in living systems. The authors propose general stoichio-
metric conditions to determine whether a subnetwork within a larger chemical network
can exhibit catalytic or autocatalytic behavior. Autocatalytic networks are classified into
five categories based on the nature of their reaction motifs. These classifications allow for
the identification of novel autocatalytic cycles, some of which were previously unknown.

3. Methodology

Assembly Theory provides a framework for quantifying the complexity of molecular
structures by measuring the information required to assemble them. On the other hand, the
concept of autocatalysis often arises when dealing with chemical reactions in organic matter,
leading to the formation of complex structures. This section introduces the mathematical
tools from Assembly Theory, focusing on the Assembly Index and pathway probability.
Additionally, we briefly introduce the concept of autocatalysis.

3.1. Assembly Index (AI)

The Assembly Index is a measure of the complexity of a molecular structure, defined
as the minimum number of steps required to construct the molecule’s graph by recursively
combining simpler substructures. To illustrate this, consider the example of constructing
the word “ABRACADABRA” from its constituent letters.

• The word “ABRACADABRA” consists of 11 characters but only 5 unique letters:
{A, B, R, C, D}.

• Begin with the letter “A”. Combine “A” with “B” to form “AB”. This is the first
step. That is, we allow only for the following operation where two objects, not
necessarily unique letters, are joined: [X] + [Y] → [XY], where [X] and [Y] can be
“A”, “AB”, “ABRA”, “ABBA”, “ACAB”, or any other combination of unique letters
of arbitrary length.

• Repeat this process to form “ABRA” in subsequent steps.
• The structure “ABRA” can then be reused to complete the word in fewer steps than

starting from scratch each time.

We took this example from http://www.molecular-assembly.com/ (accessed on 18
September 2024) the Assembly Theory homepage [29]. The fewest number of steps, required
to assemble “ABRACADABRA” by combining two components is thus 7, as detailed below:

Step 1: A + B→ AB

Step 2: AB + R→ ABR

Step 3: ABR + A→ ABRA

Step 4: ABRA + C → ABRAC

Step 5: ABRAC + A→ ABRACA

Step 6: ABRACA + D → ABRACAD

Step 7: ABRACAD + ABRA→ ABRACADABRA

(1)

The assembly process involves constructing an object by sequentially joining a finite
set of basic components. In this process, once an object is constructed, it can be reused in
subsequent steps to form more complex structures. This process occurs within a defined
framework known as the assembly space. The assembly space provides a formal structure
in which all possible assembly pathways can be explored. It defines the relationships
between basic components and the more complex structures they can form. The assembly
space is essentially a map of all potential ways an object can be assembled, starting from its
simplest components and leading to the final complex structure.

http://www.molecular-assembly.com/
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3.2. Linking Assembly Space, Molecular Assembly Index, and Pathway Probability

The concept of an assembly space is directly connected to the molecular assembly
index and pathway probability. The molecular assembly index quantifies the complexity of
a structure by determining the minimum number of steps needed to assemble it from basic
components within the assembly space. This index reflects how “simple” or “complex” it
is to build the structure, with a higher index indicating a more complex assembly process.
Pathway probability comes into play when considering the likelihood of a specific assembly
pathway being followed in the assembly space. Not all pathways are equally likely; some
are favored due to factors like autocatalysis, as discussed in this article, which can bias the
assembly process toward certain sequences of steps. A higher pathway probability suggests
that a particular sequence of assembly steps is more likely, potentially indicating a non-
random or biological origin for the structure [3]. In summary, the assembly space provides
the foundational framework for understanding the construction of complex objects. The
molecular assembly index quantifies the complexity of this construction process, while
pathway probability evaluates the likelihood of different assembly pathways within the
space, helping to distinguish between abiotic and biotic origins of complex molecules [3].

3.3. Autocatalytic Sets

The concept of autocatalysis is frequently discussed in the expanding body of literature
modeling the emergence of self-sustaining biochemical systems essential for life [20]. It
directly ties into the origin of life and the possibility of life forming by chance, given specific
environmental conditions that catalyze chemical reactions, leading to the production of
increasingly complex molecules and interactions. A formal definition of autocatalysis is
often given in terms of RAF sets. Given a catalytic reaction system (CRS)—a network of
molecule types and catalyzed chemical reactions—a (sub)set R of such reactions (plus the
molecules involved in the reactions in R) is called

1. Reflexively autocatalytic (RA) if every reaction in R is catalyzed by at least one
molecule involved in any of the reactions in R;

2. F-generated (F) if every reactant in R can be constructed from a small “food set” F by
successive applications of reactions from R;

3. Reflexively autocatalytic and F-generated (RAF) if it is both RA and F.

The food set F contains molecules assumed to be freely available in the environ-
ment. Therefore, an RAF set formally captures the notion of “catalytic closure”, i.e., a
self-sustaining set supported by a steady supply of (simple) molecules from some food
set [20]. A simple example of such an RAF set is provided in Figure 2.

Figure 2. Schematic illustration of a catalytic reaction system (CRS) consisting of molecule types
{A, B, C, D, E, F, G} (solid nodes) and four reactions {R1, R2, R3, R4} (open nodes). The food set is
F̂ = {A, B}. Solid arrows represent reactants entering and products leaving a reaction, while dashed
arrows represent catalysis. The subset R̂ = {R1, R2} (highlighted with bold arrows) forms an RAF
set. This example is taken and adapted from [20].
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Summed up, in this context, autocatalysis refers to a process where a chemical reaction
is catalyzed by one of its own products, enabling a self-sustaining chain or network of
reactions. This concept is central to understanding the origin of life, as it suggests that
under the right conditions, simple molecules can catalyze the formation of increasingly
complex systems, leading to the emergence of life. Additionally, the framework presented
by Blokhuis et al. [28], extends the diversity of known autocatalytic systems by identifying
minimal motifs that form the building blocks of more complex networks. These motifs
allow for the formation of increasingly intricate systems under the right conditions.

4. A Toy Model for Autocatalytic Sets

We developed a Toy Model to discuss aspects of Assembly Theory and autocatalytic
sets within one framework. Building upon the earlier example from Section 3.1, i.e., the
“ABRACADABRA” construction, we simplify the model by avoiding repetitions. This
means we build words of only unique letters. For example, we consider a word of length 6,
“ABCDEF”, and explore its various constructions by always merging two constituents, as il-
lustrated in Figure 3. However, this suggests hybrid model conflicts with previous research
and corresponding foundations on Assembly Theory, as, in order to assemble a complex ob-
ject, one is allowed to use already existing objects at each step of the construction [3,30–32].
For example, adding the already existing “ABRA” to the consecutive construction to form
“ABRACADABRA” in step 7 in Equation (1). We avoid using already existing elements in
the chain, allowing only unique constituents of an object. This simplification is necessary
for our Toy Model to gain an initial understanding of the problem at the most fundamental
level, in the most sterile scenario, and to determine if a connection between Assembly
Theory and autocatalytic sets exists at this level. Our approach should be expanded in
future work, for example, to include cases similar to Step 7 from Equation (1), allowing for
greater complexity and variety among the covered symbolic reactions.

Figure 3. Suggested Toy Model: Two possible pathways/constructions to create the object “ABCDEF”
within the confines of our model. The left construction, 1⃝, depicts a more parallel construction,
whereas the right one, 2⃝, illustrates a more consecutive construction of “ABCDEF”.

Next, we assign catalysts to our scheme/diagram (or suggestion) of reactions/events,
as shown in Figure 4. This assignment is governed by probability, meaning we randomly
determine whether a catalyst is assigned to a reaction with a probability from the set
{0, 0.1, 0.2, . . . , 0.9, 1.0}. After determining if a reaction is catalyzed, we choose the cata-
lyst from all elements involved in the reaction. We consider two methods for selecting
the catalyst:
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1. We choose an all-equally random catalyst. Further, we do not allow this catalyst to be
used again.

2. We choose a catalyst with a weighted probability and allow catalysts to be used more
than once.

Figure 4. The depiction of how different reactions within the Toy Model can be catalyzed. For
example, we can choose catalysts for a reaction from all products and constituents available in the
entire chain/tree of reactions. The dashed lines show which reactions are catalyzed by which element,
with the arrows pointing to the catalyzed reactions and the dashed lines starting at the chosen catalyst.

The result of building a tree of reactions and randomly assigning a catalyst is shown
in Figure 5, illustrating a direct output obtained by our code, which can be found in a
Github repository (github.com/Autocatalytic-Sets-and-Assembly-Theory, accessed on 18
September 2024).

Summed up, we are creating random construction schemes/trees/constructions for
an object/final product, e.g., “ABCDEF”, from its unique building blocks “A”, “B”, “C”,
“D”, “E” and “F”, and all interactions are always sorted in alphabetical order to further
simplify the model. All possible constructions are the assembly space of an object/final
product. Thus, we formally describe the suggested model in the following way: For
each final product X, which consists of nX unique elements/letters {x̄1, x̄2, . . . , ¯xnX} and a
corresponding construction ΦX , with nX − 1 reactions, and nX − 2 intermediate products
{x1, x2, . . . , xnX−2}, we build up the final product X from the unique elements. Next, for
each final product X, we can find the minimum depth, i.e., the corresponding depth for a
maximal parallel distribution in the manner of 1⃝ from Figure 3, via the following relation,
which is independent of the construction Φ, analogous to binary search trees, [33,34] :

minDepth(X) = ⌈log2 nX⌉, (2)

where again nX is the number of unique elements of X. Thus, this minimal depth of each
final product X is similar to the assembly index of a complex molecule as discussed by
Assembly Theory [3,8]. In this construction Φ, we find a set of constituents and a set of
products. The products

PX = {X, x1, x2, . . . , xnX−2}, (3)

https://github.com/Raubkatz/Autocatalytic-Sets-and-Assembly-Theory
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contain the final product X and all elements created up to the final product xj, but not the
unique elements x̄i. In contrast, the constituents

C(ΦX) = {x1, x2, . . . , xnX−2, x̄1, x̄2, . . . , x̄nX}, (4)

contain everything but the final product. Together, they form the set of all elements:

E(ΦX) = P ∪ C = {X, x1, x2, . . . , xnX−2, x̄1, x̄2, . . . , x̄nX}, (5)

containing a total of 2nX − 1 elements. All catalysts are then chosen randomly from this
set of all elements and form the set of catalysts K, with a maximum possible number of
catalysts equal to the number of reactions nX − 1. We use two ways to choose the catalysts
randomly: first, equally random without using one catalyst twice, and second, allowing it
to use catalysts more than once but with a weighted probability such that longer catalysts
are more probable to be chosen, such that

W(e) =
len(e)

max(len[E(ΦX)])
individual weights for each element e ∈ E(ΦX), (6)

W[E(ΦX)] = ∑
e∈E(ΦX)

W(e) accumulated weight for the set of all elements E(ΦX),

P(e) =
W(e)

W[E(ΦX)]
normalized probability of choosing an element e as a catalyst,

where len(e) is the length of an element e, or a set of lengths for all elements len[E(ΦX)].

Figure 5. An illustration of one of the many possible ways to assemble “ABCDEFGH”, i.e., one
construction among all possible ones in the assembly space for “ABCDEFGH”. This graph is a direct
output from the code implementation (Python) of the Toy Model. Each product and component is
assigned a unique color, and if that item is used as a catalyst, we also use that color for the arrows
depicting the reaction.

We define a construction for a final product to be autocatalytic if all catalysts are within
the set of all elements, KX ⊂ E(ΦX), which is always the case if at least one catalyst is
assigned. A possible construction for a given final product “ABCDEFGH” is depicted
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in Figure 5.
However, within each construction Φ, we find a construction ϕj for each intermediate

product xj and corresponding sets Pj, Cj, Ej, and Kj, which contain all products, constituents,
elements in general, and catalysts, respectively, for each intermediate product. For example,
in the case of the intermediate product “EFG” from Figure 5, this would correspond to

Pj = {EFG, FG}
Cj = {E, F, G, FG}

Ej = {EFG, FG, E, F, G} (7)

Kj = {CD, EFG}

Here, the same definition for autocatalysis holds for every subconstruction ϕj; i.e., all
catalysts Kj must be contained within the set of all elements Ej for a subconstruction to be
autocatalytic, which is obviously not the case for the above example, since the catalyst CD
is not among the elements Ej, as illustrated in Figure 6

Figure 6. Assessing the autocatalysis of subnetworks: This scheme depicts how we assess whether
a subnetwork/subconstruction of a construction is autocatalytic. Subconstructions with a purple
shadow are not autocatalytic, as their catalysts are not contained within them. Conversely, subcon-
structions with a green shadow are autocatalytic, with all catalysts present among the products and
constituents of the subconstruction. 0⃝: The whole set is defined to be autocatalytic if at least one
catalyst is assigned, which is true in this case. 1⃝: We find this first subset to be autocatalytic since all
catalysts are contained within it. 2⃝: This subset is not autocatalytic since one of the catalysts BCDEF
is not within the set of all elements of this subset. 3⃝: Autocatalytic subset. 4⃝: This subset is not
autocatalytic since the catalyst DEF is not within this subset.

Assembly Theory and Autocatalysis within the Toy Model

Next, we need to discuss the proposed model in an Assembly Theory context. This
means we want to assess the assembly index, or the assembly properties of the regarded
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objects, and consider the pathway probability of each possible construction. However, the
assembly index of each possible construction of a set of letters, e.g., “ABCDEF”, is trivial
since the number of interactions/reactions/events necessary to construct this assembly of
letters is always its length minus one, i.e., the steps it takes to construct this object. Thus,
the assembly index of different words is

AI(ABC) = 2

AI(ABCD) = 3

AI(ABCDE) = 4 (8)

AI(ABCDEF) = 5
...

Still, there are different ways to build the objects, which are not captured by this rather
strictly defined assembly index or by counting the number of interactions it takes to build
an object but rather (just in our Toy Model) by a proxy for it, i.e., the depth of the set
of reactions building up the final product “X”. We then analyze the distribution of these
depths for a given element and determine the minimum depth as an approximation of
the assembly index, as described in Equation (2). We depict these differences in depth
in Figure 3. The first object, denoted 1⃝, depicts a balanced structure where two strands,
“ABC” and “DEF”, are constructed in parallel, corresponding to the minimal depth, Equa-
tion (2). The other chain of events is more consecutive, denoted as 2⃝. Both chains of
reactions have the same number of reactions, but the second chain ( 2⃝) has an increased
depth compared to 1⃝. Comparing these two chains of events to our initial example of how
to build “ABRACADABRA” (Equation (1)), we see that 1⃝ can be interpreted as a chain of
events where, as in the “ABRACADABRA” case, a larger object joins at a later point in the
reaction chain; i.e., “ABC” and “DEF” join to build “ABCDEF’‘. In contrast, 2⃝ depicts a
more consecutive chain of events where no two larger objects are joining. Thus, we use the
depth to characterize a construction and, consequently, the minimal depth as a proxy for
the assembly index. Here, 1⃝ has a depth of 3 and 2⃝ a depth of 5. Thus, we differentiate
between the individual constructions ΦX by assessing the depth of a chain of reactions.
The proxied “assembly index”, i.e., the minimal depth of this object, is 3, as you cannot
construct this object without using a minimal depth of 3.

We also want to account for the pathway probability of each possible construction,
and we carry this out by assessing the autocatalytic properties of a given catalyzed
construction of an object. This means that each catalyzed construction of a given fi-
nal product is autocatalytic such that all catalysts need to be part of the set of prod-
ucts and constituents, if at least one catalyst is set. Constituents are all elements that
produce another one in a merging process, and products are all elements that are con-
structed by merging two constituents. Given our previous example from Figure 4, the
set of all products is {ABCDEF, ABC, BC, DEF, EF} and the set of all constituents is
{A, B, C, D, E, F, BC, EF, ABC, DEF}. We then count, for each construction, the number of
sub-autocatalytic sets, meaning that we look at each sub-reaction/event and check if all
used catalysts are contained within this set of products and constituents. This process is
depicted in Figure 6. We deconstruct a catalyzed construction of an object into sub-objects
and analyze the subsequent construction for being autocatalytic. For each final product and
a particular construction, we increase the pathway probability of a particular construction
based on its autocatalytic subset count. This is based on the intuition that if a certain process
is autocatalytic, it is more likely to happen, as the corresponding set of reactions inherently
amplifies itself. We implemented this in a way that adds multiples of the observed depth
of a construction Φ to our distribution of Depths DX for all possible constructions Φ. First,
we obtain the depth of a construction for each ΦX , i.e., d(ΦX). This forms our initial case
for building a distribution and a corresponding baseline—we collect all depths of a set of
nΦ random constructions Φ of a final product X. Next, we alter this distribution to account
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for autocatalysis by including each depth of a construction Φ nautocatalysis times, where
nautocatalysis is determined such that

nautocatalysis =

{
1, no autocatalytic subsets
(1 + k)2, k autocatalytic subsets

(9)

We refer to this as exponential autocatalytic amplification below.
In sum, we analyze four distributions of depths across all constructions Φ for each

final product X:

1. Equally randomly chosen catalysts, no weighting, no reuse;
No autocatalytic amplification.
This serves as our baseline distribution.

2. Equally randomly chosen catalysts, no weighting, no reuse;
Exponential autocatalytic amplification.

3. Weighted randomly chosen catalysts, reuse allowed;
No autocatalytic amplification.

4. Weighted randomly chosen catalysts, reuse allowed;
Exponential autocatalytic amplification.

5. Numerical Experiments

Based on the previous description of our Toy Model and the corresponding assump-
tions in Section 4, we built an experimental setup to observe the influence of different
catalyst probabilities and the presence of autocatalysis on the depth of a reaction chain
leading to the formation of a particular object, and thus the final product. Specifically, we
analyzed the distribution of different constructions that form a particular object within a
sample assembly space consisting of 10,000 random constructions of that object, confined to
the boundaries of the previously discussed Toy Model. We further modified the assembly
space to include several copies of the construction in the presence of autocatalysis, accord-
ing to Equation (9).

We tested different probabilities of catalysis, i.e., {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0},
to observe how they influence the formation of different objects with and without the au-
tocatalytic amplification of a particular construction scheme. For our experiments, we
selected objects within a range of unique elements, starting from six unique elements
“ABCDEF” up to 20 unique elements “ABCDEFGHI JKLMNOPQRST”. We tested the
formation of these objects under various conditions and observed the average depth within
the collected distributions of the assembly spaces to assess whether there is a bias in the
construction of these objects and how this bias changes under different conditions.

5.1. Toy Model Implementation

The following section outlines the implementation of the previously discussed Toy
Model. The Python code for this implementation is available at https://github.com/Rau
bkatz/Autocatalytic-Sets-and-Assembly-Theory (accessed on 18 September 2024).

Starting with the final product X, we recursively divide it into two parts until we
construct a full tree of reactions, as illustrated in Figure 5. In the second step, we randomly
apply catalysts to each reaction, either uniformly randomly or using weighted randomness.
The Algorithm 1 below formally describes this procedure. We repeated these processes
10,000 times for each parameter set, including different conditions such as autocatalytic
amplification, varying catalyst assignments, and a range of catalyst probabilities. We then
analyzed the maximal depths of each reaction tree and calculated the average depths to
identify potential biases in the sampled assembly spaces under different conditions, such
as catalyst probabilities and the presence or absence of autocatalytic amplification.

https://github.com/Raubkatz/Autocatalytic-Sets-and-Assembly-Theory
https://github.com/Raubkatz/Autocatalytic-Sets-and-Assembly-Theory
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Algorithm 1 Creaqting a Construction ΦX

Algorithm to construct the autocatalytic sets from the proposed Toy Model Initialization:
• final_product← X Target product to synthesize, e.g., “ABCDEF”
• catalyst_probability← pcat Probability of assigning a catalyst
• switch_cat← strategy defined in Section 4, Equation (6) Catalyst assignment strategy
• reaction_set← ∅ Set to store all reactions
• all_elements← ∅ Set to store all unique elements
• layer← 0
Recursive Product Decomposition:

1: Function: split_product(product←final_product, layer)
2: Add product to all_elements
3: if length(product) = 1 then
4: return Base case: product is a single element
5: end if
6: Randomly split product into two reactants, r1 and r2
7: Add the reaction {product, r1, r2, layer} to reaction_set
8: split_product(r1, layer + 1) Recursively process the first reactant
9: split_product(r2, layer + 1) Recursively process the second reactant

Catalyst Assignment:
1: for each reaction Ri in reaction_set do
2: Generate a random number r in the range [0.0, 1.0]
3: if r ≤ catalyst_probability then
4: Choose ci ∈ all_elements

based on random or weighted random strategy set by switch_cat
5: Assign catalyst ci from all_elements to Ri:

Ri ← Ri ∪ {ci}
6: end if
7: end for
8: return reaction_set The set of all reactions characterizes a construction ΦX

5.2. Results

We obtained results for a range of different catalysis probabilities pcat ∈{0.0, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} and a range of different object lengths lobject consisting of
unique letters, where lobject ∈ Z and 6 ≤ l ≤ 20.

We further tested these conditions with and without amplification for autocatalysis
and with and without a weighted catalyst assignment. This means we obtained a sample
distribution of the assembly space for each probability (11), each length l (15), with and
without catalysis amplification (2), and with and without catalyst weighting (2). Thus,
11× 15× 2× 2 = 660 distributions were analyzed for their average construction depth,
and we searched for biases within these distributions, particularly focusing on whether
autocatalytic amplification influences these distributions and favors certain constructions
over others.

We show the average depths in the sample assembly spaces for probabilities 0.0, 0.1,
0.5, and 1.0, for all catalysis and autocatalysis configurations in Figure 7. Additional plots
are collected in Appendix A. These graphics show that we do not observe a separation, and
thus no bias, for autocatalysis or weighted catalysts when the catalysis probability is 0.0 or
1.0. Furthermore, across all plots, we do not see a difference or bias in how the catalysts
are chosen—whether weighted or not. However, in the cases with probabilities 0.1 and 0.5,
we observe a separation and thus a bias toward longer reaction depths for all cases with
autocatalytic amplification, with the greatest separation observed for a catalysis probability
of 0.1.
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Random catalyst assignment without reuse
No autocatalysis amplification
Random catalyst assignment without reuse
Exponential autocatalysis amplification
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No autocatalysis amplification
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Figure 7. Line plots showing the average depth in the sampled assembly space for various settings,
including weighted and non-weighted, and with or without autocatalytic amplification, across
different probabilities of catalysis.

We also depicted the results for all analyzed distributions in 3D surface plots. Here, we
used the case without weighted catalysts and no autocatalytic amplification as a baseline,
which we subtracted from all three other cases, i.e., weighted catalysis and no autocatalytic
amplification, weighted catalysts and autocatalytic amplification, and non-weighted cata-
lysts with autocatalytic amplification. These 3D surface plots are depicted in Figure 8. First,
as a proof of concept, we see that the baseline is zero, clearly indicating which case is used
as a baseline. Next, we observe a strong separation, with the strongest separation occurring
for a probability of 0.1, and increasing the separation for increasing object lengths, in both
cases with and cases without weighted catalysts and autocatalytic amplification. However,
the case with non-weighted catalysts shows slightly more separation. Furthermore, we do
not observe any interpretable trends for the case without autocatalytic amplification.
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Figure 8. Three-dimensional surface plots for different scenarios: with and without autocatalytic
amplification and with weighted and non-weighted catalysts. The upper left plot (a) is the baseline,
which we subtracted from all other cases to highlight the differences, i.e., the separation from the
baseline. The remaining plots show how different sampled assembly spaces vary in terms of the
average reaction depth. (b) Random catalyst assignment without reuse, with autocatalytic ampli-
fication. (c) Weighted random catalyst assignment with reuse, without autocatalytic amplification.
(d) Weighted random catalyst assignment with reuse, with autocatalytic amplification.

Thus, given the previously discussed results presented in Figures 7 and 8, we conclude
the following.

• The autocatalytic amplification, which alters the distribution in the sampled assembly
space for certain constructions/pathways, causes a bias toward longer chains of
reactions/events and thus greater depths of the observed constructions.

• We cannot conclude that the weighting of the catalysts has any impact on the distribu-
tion of pathways in the observed sample assembly spaces.

• We observe an increasing separation of the average depths between cases with and
without autocatalytic amplification in our sampled assembly spaces for lower proba-
bilities of catalysis (i.e., highest for pcat = 0.1) and increasing object lengths lobject.

6. Discussion

Our results showed that autocatalysis can favor longer consecutive reaction chains,
indicated by a bias towards increased average depths, rather than reaction chains occurring
in parallel. This is somewhat evident from our definition of autocatalysis used in our
model (Section 4). Specifically, if all catalysts are part of all reactions within the model, we
consider it autocatalytic. This implies that organizing events into a longer consecutive chain
increases the probability of incorporating all autocatalysts, as the cascading sequence en-
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compasses most events. However, this bias disappears at different probabilities of catalysis.
When the probability of catalysis is increased, this bias diminishes, allowing more dis-
tributed and less consecutive chains to be equally prevalent among our possible reactions.

To explain further, in environments with a low probability of catalysis, the preferred
way of building complex, catalyzed objects is through a consecutive chain of events (e.g.,
A + B→ AB, AB + C → ABC, etc.). In contrast, environments with a higher probability of
catalysis favor more parallel or interconnected catalyzed reaction chains.

In terms of Assembly Theory, this suggests that the pathway probability of forming
complex objects is closely tied to their environment. Analyzing a complex object without
considering its environment might give a distorted view of the probability of a particular
pathway. Though this study does not directly deal with an interpretable assembly index,
we conclude that the dependency of pathways on environmental conditions (i.e., the
probability of catalysis) could mean that the shortest or longest assembly index for a
particular object might never be realized in certain environments. Thus, sampled assembly
spaces and the statistics thereof might suffer from a bias toward more consecutive, and
thus longer, chains of reactions and events in environments with a lower probability of
catalysis. On the other hand, we might only observe the shortest chains of reactions and
events in environments with a high probability of catalysis, e.g., biological environments
developed to produce complex molecules. We thus conclude that the statistics of sampled
assembly spaces are indicative of a certain environment, as these sampled assembly spaces
might suffer from a bias toward longer reaction chains in environments with a low catalysis
probability. Given certain edge cases, this might obscure the actual assembly index of the
construction of a complex object by only slightly increasing constructions. Furthermore, this
might enable the detection of autocatalysis indirectly by analyzing the statistics of different
sampled assembly spaces of the same process/construction in different environments.
This, of course, applies to the original use-case of Assembly Theory, i.e., the analysis
of molecular structures [3]. However, we also want to provide an example in terms of
software development.

Given an environment of a small team of software developers within a small com-
pany with very limited infrastructure, this team will have to build everything step by step
themselves and cannot draw on results from other teams within the company. Such a team
might, for example, build an initial implementation, then build a server structure to test it
on, and so on. This corresponds to an environment with a low probability of catalysis, i.e.,
the team cannot draw on infrastructure (catalysts) from other teams or products; they need
to build the catalysts themselves, which only become available to earlier steps afterward.
Thus, in such an environment, a team of developers needs to follow a more consecutive
chain of events/reactions. In a bigger company where a lot of infrastructure and other
resources are available, a team aiming to build the same product might draw on infras-
tructure, e.g., available servers, at every step of the way to the final product, i.e., draw on
more catalysts. Though not all processes are autocatalyzed, they are catalyzed within the
company environment, and thus an environment like this can run more parallel builds, as
products from a variety of teams are always available to each team.

Overall, we believe the presented work is a reasonable contribution to the growing
body of both Assembly Theory and autocatalysis. However, to connect our results, or
more precisely our ideas, with a more realistic scenario, one might apply our ideas, e.g., of
increased pathway probabilities to RAF and TAP models and similar use-cases [20,25] and
observe the distribution of the length of assemblies or another proxy for this within the
generated networks—i.e., analyze sampled assembly spaces of, e.g., RAF and TAP models
and conclude, e.g., with pathway probabilities from these approaches.

In a more complex build, we need to find out which pathways in the assembly are
connected to autocatalysis and thus analyze the statistics of the assembly space, taking into
account pathway probabilities to make pathways associated with autocatalysis visible.

Further, we want to mention a very speculative guess that Assembly Theory, and
particularly this statistical analysis of sampled assembly spaces with corresponding path-
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way probabilities and assembly indices, might help in showing phase transitions for the
emergence of life in unions of TAP and RAF models, as proposed in a recent work by Stuart
Kauffman [27].

7. Conclusions

Our research aims to find a connection between autocatalysis in a reaction network
and Assembly Theory, a relatively recent theory developed to characterize the complexity
of objects, particularly molecules. We discuss both key concepts, i.e., Assembly Theory and
autocatalysis in a given reaction network, and, based on the basic principles of these frame-
works, develop a Toy Model that explores how certain objects of different complexities
form in the presence of autocatalysis.

The developed Toy Model takes into account varying probabilities of catalysis in
the construction of objects of different complexities, exemplified by sequences such as
“ABCDEF’‘. It examines how the presence of autocatalysis in the construction of these
objects influences the construction process by affecting the probability of different construc-
tions or reaction/event chains leading to a certain object. We further assess the differences
in individual construction schemata by using the depth of a given construction. The mini-
mal depth of these reaction chains serves as a proxy for the assembly index, a key concept
of Assembly Theory. After creating and analyzing a multitude of different objects and their
constructions, i.e., a sampled assembly space, we observe that the presence of autocatalysis
in these constructions introduces a bias toward a more sequential construction of complex
objects. This finding aligns with Jaeger’s work [11], which highlights that Assembly The-
ory is particularly well suited for detecting bias in well-defined, rule-based systems/worlds.

This bias is somewhat evident because a more sequential construction naturally aligns
with the concept of autocatalysis, where the elements necessary for building a certain object,
along with the object itself, have an increased probability of catalyzing their own formation.
In a sequential construction, each step in the chain directly builds upon the previous one,
making it easier for a subset to be autocatalytic as the sequence progresses. Conversely, in a
parallel construction, multiple strands of reactions may proceed simultaneously, with each
strand potentially catalyzing others rather than catalyzing within its own sequence. This
can result in fewer autocatalytic subsets within each individual strand, as the focus shifts
away from auto/self-catalysis toward mutual catalysis between parallel strands. However,
this bias vanishes for increasing probabilities of catalysis, indicating that while sequential
constructions of complex objects are favored by autocatalysis in environments with scarce
catalysis, this is not the case in environments with higher catalysis probabilities. We ulti-
mately derive from our results that while sequential constructions of complex objects are
favorable for initiating formation in simple environments, in more complex environments
with abundant catalysis, this bias is less prominent, allowing for a more parallel assembly
of complex objects.

In conclusion, our study demonstrates that the presence of autocatalysis in reaction
networks can favor longer consecutive reaction chains over parallel chains, particularly in
low-catalysis environments. This finding is crucial for understanding how the complexity
of objects can be influenced by the probability of catalysis in their environment. This
suggests that the pathway probability of forming complex objects is closely tied to its envi-
ronment, and analyzing a complex object without considering its environmental conditions
might provide a distorted view of the pathway’s probability and ultimately obscure the
associated assembly index. We propose that analyzing the statistics of sampled assembly
spaces could add information to the representation of the pathways forming complex
objects, emphasizing the significance of autocatalytic reactions/connections/events within
the environment.
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Appendix A. Additional Plots

This Appendix collects the missing line plots from Section 5.2 for probabilities pcat ∈
{0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9}.
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Figure A1. Line plots showing the average depth in the sampled assembly space for various settings,
including weighted and non-weighted, and with or without autocatalytic amplification, across
different probabilities of catalysis.

https://github.com/Raubkatz/Autocatalytic-Sets-and-Assembly-Theory
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(c) pcat = 0.9

Figure A2. Line plots showing the average depth in the sampled assembly space for various settings,
including weighted and non-weighted, and with or without autocatalytic amplification, across
different probabilities of catalysis.
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