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Digital Twins have gained attention in various industries by creating virtual replicas of real-world systems through 
data collection and machine learning. These replicas are used to run simulations, monitor processes, and support 
decision-making, extracting valuable information to benefit users. Reinforcement learning is a promising machine 
learning technique to use in Digital Twins, as it relies on a virtual representation of an environment or system to 
learn an optimal policy for a given task, which is exactly what a Digital Twin provides. Through its self-learning 
nature, reinforcement learning can not only optimize given tasks but might also find ways to achieve goals that 
were previously unexplored and, therefore, open up new avenues to tackle tasks like pest and disease detection, 
crop growth or crop rotation planning. However, while reinforcement learning can benefit many agricultural 
practices, the explainability of the employed models is frequently disregarded, diminishing its benefits as users 
fail to build trust in the suggested decisions. Consequently, there is a notable absence of focus on explainable 
reinforcement learning techniques, indicating a significant area for future development as an industry as vital to 
many people as the agri-food sector needs to rely on resilient methods and understandable decisions. Explainable 
AI models contribute to achieving both of these requirements. Therefore, the use of reinforcement learning in 
agriculture has the potential to open up a variety of reinforcement learning-based Digital Twin applications in 
agricultural domains. To explore these domains, This review categorises existing research works that employ 
reinforcement learning techniques in agricultural settings. On the one hand, we examine the application domain 
and put them into categories accordingly. On the other hand, we group the works by the reinforcement learning 
method involved to gain an overview of the currently employed models. Through this analysis, the review seeks to 
provide insights into the state-of-the-art reinforcement learning applications in agriculture. Additionally, we aim 
to identify gaps and opportunities for future research focusing on potential synergies of reinforcement learning 
and Digital Twins to tackle agricultural challenges and optimise farming processes, paving the way for more 
efficient and sustainable farming methodologies.

1. Introduction

Growing concerns about food security driven by population growth 
and increasing climate variability have raised the pressure for more 
productive, efficient, and sustainable farming [1–5]. A recent research 
approach to optimising farming operations has been the introduction 
of Digital Twins in agricultural applications. Digital Twins replicate a 
real entity in a virtual representation and allow for simulating and op-

timising tasks and events supported by machine learning models [6]. 
Simulation is especially useful for scenarios where change would other-

* Corresponding author at: TU Wien, Karlsplatz 13, Vienna, 1040, Vienna, Austria.

E-mail address: ggoldenits@sba-research.org (G. Goldenits).

wise only be observed over a long period of time, such as crop growth 
[7,8], or where the risk of taking incorrect actions is high, for exam-

ple, in incorrect irrigation management that could lead to losses in crop 
yield. This practice can also support sustainability in agriculture and 
help maintain or increase crop yields. Even though there already exist 
Digital Twins for automated harvesting using unmanned vehicles and ir-
rigation management tasks, potential other areas of application remain 
unexplored [9,10].

As current Digital Twins rely on machine learning, a potential way to 
identify additional use cases for them is to look at tasks already solved by 

https://doi.org/10.1016/j.atech.2024.100512

Received 30 April 2024; Received in revised form 22 July 2024; Accepted 22 July 2024

http://www.ScienceDirect.com/
http://www.journals.elsevier.com/smart-agricultural-technology
mailto:ggoldenits@sba-research.org
https://doi.org/10.1016/j.atech.2024.100512
https://doi.org/10.1016/j.atech.2024.100512
http://crossmark.crossref.org/dialog/?doi=10.1016/j.atech.2024.100512&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Smart Agricultural Technology 8 (2024) 100512

2

G. Goldenits, K. Mallinger, S. Raubitzek et al.

machine learning, but so far, Digital Twins have not been implemented. 
One machine learning technique that lends itself well to simulation is 
reinforcement learning. It can be used model-free and self-learn how 
to handle a situation based on predefined parameter and environment 
settings. These properties also allow reinforcement learning to adapt 
to unseen situations while trying to achieve the initially defined goal 
[11]. Therefore, there are already existing reinforcement learning imple-

mentations in agriculture, such as suggesting using resources like water 
and fertiliser more efficiently [12,13], increasing crop yields by detect-

ing pests and diseases using unmanned aerial vehicles [14,15], planting 
crops in a suitable order [16–18] or reduce the energy consumption of 
greenhouses [19,20].

A significant factor for the applicability of results achieved by a rein-

forcement learning agent is how well the environment it interacts with 
has been modelled after the real environment [21]. Therefore, research 
on Digital Twins and how to best replicate the real world aligns with the 
needs of a well-trained reinforcement learning agent and could pave the 
way for reinforcement learning-based Digital Twins in agriculture. The 
term reinforcement learning-based Digital Twin is used in this review 
to define Digital Twins that rely on reinforcement learning as their ma-

chine learning model.

To identify promising reinforcement learning-based Digital Twin ap-

plications in agriculture, this review aims to categorise recent appli-

cations of reinforcement learning in agriculture and seeks to provide 
a structured overview of them. For each category, the strengths and 
weaknesses of reinforcement learning compared to other possible so-

lutions are discussed, and an assessment is made if and how it could 
be implemented in a Digital Twin. The obtained factual insights can 
inform future research directions and contribute to developing and im-

plementing advanced agricultural management systems. The goals are 
summarised in the following research questions:

• RQ1 What are the existing applications of reinforcement learning 
in agriculture?

• RQ2 Which application domains are suitable for reinforcement 
learning-based Digital Twins?

The work will be structured as follows: Section 2 will introduce Digi-

tal Twins and reinforcement learning by defining them. Section 3 de-

scribes the methodology of this work. Section 4 summarises related 
literature reviews on Digital Twins in agriculture and machine learn-

ing in agriculture. Section 5 attempts to categorise the application areas 
for reinforcement learning in agriculture. The potential for reinforce-

ment learning-based Digital Twins is assessed based on the strengths 
and weaknesses of reinforcement learning for applications in each cate-

gory. Also, an outlook on potential future applications is given. Section 6

provides the conclusion of the manuscript.

2. Definitions

Michael Grieves first introduced Digital Twins in 2003 [22] with the 
goal of optimising a factory process. The general idea of Digital Twins is 
to replicate a real-world object, entity or system, such as a train, a crop 
or an agricultural supply chain in a virtual environment. Sensor data is 
commonly used in an Internet of Things (IoT) setting to create a digital 
image because it allows continuous measuring of a system or specific 
properties. The data gets processed, and frequently, a machine learning 
model is used to draw inferences from the collected data and use it for 
predicting actions and conditions of the environment.

Once a Digital Twin is in place, simulations are commonly used to 
explore how an environment would behave in different circumstances. 
This allows the user or an automated system to be better prepared for 
various scenarios and react appropriately in the real world should a 
situation arise that was previously only simulated. Of course, it may be 
difficult to replicate real-world applications based on the task perfectly. 
Therefore, model outputs and simulation results might deviate from the 

corresponding real-world situation. However, in a functioning Digital 
Twin system, real-world experiences get fed back into the Digital Twin, 
leading to updates in models and simulations [6].

As an example of Digital Twin in critical infrastructure, [23] de-

scribed in detail how a Digital Twin of a rail track turnout was im-

plemented. The Digital Twin encompasses all phases, from planning 
and design to manufacturing, delivering, installing, maintaining, de-

molition, and recycling the track. Therefore, first, a model of the track 
turnout is created using measurement data. This model is extended by 
adding a time component that always serves the stakeholders involved 
in knowing the status of the turnout. The model then gets enriched by 
computing financial and environmental costs throughout its lifecycle. 
While this particular example of a Digital Twin does not rely on machine 
learning to simulate scenarios or aid in decision-making, the authors 
demonstrate that even with this basic type of monitoring, Digital Twin 
cost and planning efficiency can greatly be improved when accurately 
simulating a real-world object in a virtual environment.

According to Sutton & Barto [11], reinforcement learning is learning 
what to do. Within the machine learning world, reinforcement learning 
is a concept that does not fit in the classical categories of supervised or 
unsupervised learning but instead represents its own learning category.

In general, reinforcement learning tries to optimise a sequence of 
actions that may be previously unknown within a given environment 
by collecting rewards it obtains by interacting with the environment. 
The goal is to maximise the reward signal and, in doing so, arrive at 
an optimal course of action. In the classical approach to reinforcement 
learning, a table for each state-action pair is maintained, and the quality 
of each pair is incrementally updated using the Bellman Equation [24]. 
More recent developments combine reinforcement learning with artifi-

cial neural networks (ANN) to approximate the quality of a state-action 
pair by minimising the error between the predicted value and the tar-

get value. Since the ANNs used to support reinforcement learning may 
vary in structure and complexity, those models are summarised as deep 
reinforcement learning (DRL).

Compared to tabular reinforcement learning, DRL can handle much 
larger state spaces as the function approximation is computationally 
more efficient, and no table of all possible combinations of states and 
actions needs to be maintained. While DRL, in most cases, approximated 
the optimal solution well, tabular reinforcement learning achieves the 
optimal solution given enough time and, due to its maintained table, 
allows for easier explainability of its decision-making process.

3. Methodology

The objective of this systematic literature review is to examine exist-

ing applications of reinforcement learning in agriculture. Based on these 
applications, the goal is to identify domains within agriculture that are 
promising for future implementations of reinforcement learning-based 
Digital Twins.

First, related review work on these topics will be summarised to 
give a broad picture of the current state of the art regarding the com-

bination of Digital Twins, machine learning, and agriculture. In the 
next step, the focus will lie explicitly on reinforcement learning appli-

cations in agriculture, as this machine learning technique is deemed 
especially promising when combined with Digital Twins. The applica-

tion areas of reinforcement learning in agriculture are summarised into 
five categories to identify the most promising domains. For each of the 
five categories, potential Digital Twin implementations are presented, 
thus highlighting the potential synergies of reinforcement learning and 
Digital Twins. Furthermore, to gain insights into the technical reinforce-

ment learning implementations, the techniques used across all relevant 
publications are summarised and discussed, especially regarding the ex-

plainability of the models. The scope of this work can be summarised in 
Fig. 1.

Search Strategy and Data Sources: The exact search queries that were 
used to find published work on Google Scholar (https://scholar .google .

https://scholar.google.com/
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Fig. 1. Research scope of this work.

Table 1

Search Queries used and corresponding section in the 
text where the results can be found.

Search queries

“Digital Twin” AND “Agriculture”: Related Work

“Machine Learning” AND “Agriculture”: Related Work

“Reinforcement Learning” AND “Agriculture”: Main Part

com/) can be found in Table 1. As of the last access date (Feb 7th 2024), 
searching for publications yielded more than 17,000 results. Therefore, 
only the first 200 publications listed are used as a sample for the cate-

gorisation, as mentioned earlier, resulting in a corpus of 71 publications 
that can be found in the Appendix section of this manuscript.

Inclusion and Exclusion Criteria:

The exclusion criteria for publications are:

• Only papers where the full text is accessible and written in English 
are considered.

• Review papers, aside from those in the related work section, are 
excluded.

• As this work aims to capture the state-of-the-art, only papers pub-

lished from 2020 onward are considered.

• Publications that do not contribute novel ideas to reinforcement 
learning but instead only cite it as related work in similar research 
areas are excluded.

• Only peer-reviewed publications are considered.

Data Extraction and Analysis: The information present in the papers 
was obtained by reading them in full and manually categorising them 
with respect to the domain they belong to and the machine learning 
model used. The collected data about the categorisation was then sum-

marised in bar charts using the programming language R [25] with 
version 3.6.1.

4. Related work

To gain a broad overview of the current state-of-the-art for Digital 
Twins in agriculture, existing areas of application and current challenges 
identified in related review literature are summarised. With a similar 
goal in mind, machine learning solutions for problems in agriculture are 
determined based on existing review literature in that area. Aside from 
gaining an overview, the summary provides a foundation to assess the 
strengths and weaknesses of reinforcement learning implementations 
compared to other machine learning solutions.

Table 2

Corpus of papers reviewed in Section 4.1.

Paper Content

Purcell - 2023 [26] Agricultural applications

Nie - 2022 [9] AI in crop development processes

Attaran - 2023 [27] Industry applications

Nasirahmadi - 2022 [28] Digitization and Sensor Data

Pelardinos - 2023 [29] Technical status-quo

Khebbache - 2023 [10] Irrigation Management

Holzinger - 2022 [30] Human-Centered AI in Agriculture

4.1. Digital Twins in agriculture

Digital Twins in agriculture are becoming a popular topic as the po-

tential of representing crops, automated robots or entire farming systems 
virtually with the goal of optimising processes is realised. The increasing 
popularity is exemplified by seven review papers that were published in 
2022 and 2023 and can be found in Table 2. These papers summarise 
recent advances and present current challenges and opportunities.

Purcell & Neubauer [26] conduct a review on Digital Twins in agri-

culture and conclude that current applications benefit from the start-of-

the-art technologies such as IoT, Machine Learning and Cyber-Physical 
Systems. However, current research is limited and focused on proving 
feasibility and novel methods must be adopted to apply the concept to 
all agricultural use cases.

Nie et al. [9] propose dividing the crop growing process into prepro-

duction, mid-production, and postproduction stages, emphasising the 
use of artificial intelligence (AI) in each phase. Despite the current use 
of AI, the authors highlight the need for further testing of methods, 
analysis of existing approaches in theory and practice, and addressing 
issues related to data acquisition, storage, safety, and cost in future de-

velopments. In the context of Digital Twins, the authors note that most 
applications focus on a single entity, such as a plant or an animal, and 
advocate for standardisations across different applications as well as 
larger-scale implementations of Digital Twins.

Attaran & Celik [27] review a broader range of applications for Digi-

tal Twins and discuss agricultural use cases as one application area. The 
publication attests that agricultural Digital Twins are in the early de-

velopment stages. However, applications in efficiency and productivity 
optimisation, as well as weather modelling, soil management, supply 
chain management, and livestock monitoring, exist and are being fur-

ther developed.

Nasirahmadi & Hensel [28] concentrate their review on soil and ir-
rigation management, along with Digital Twin applications for farming 
machinery and post-harvest processes. Despite limited research in this 
domain, the findings suggest promising research avenues include opti-

mising processes, predicting optimal management decisions, and moni-

toring and maintaining machinery.

Pelardinos et al. [29] point out the low number of agricultural appli-

cations in Digital Twin research. Most Digital Twins predominantly rely 
on simulation, while many other initiatives remain conceptual, necessi-

tating further research. The significance of sensors in (IoT)-based Digital 
Twins is emphasised, and cloud-based services are identified to handle 
the increasing volume of sensor data best. Visual model-based Digital 
Twins leverage game engines for 3D representations of real-world en-

tities. The authors stress the need for enhanced focus on developing 
reference models and case studies in future research. They identify the 
current state of IoT technologies as a constraint for accurate Digital 
Twin models, advocating for broader applications integrating 3D visu-

alisation, augmented reality (AR), virtual reality (VR), and geographic 
information systems (GIS). In agriculture, the potential extends beyond 
plant representations, urging a holistic focus on entire farms.

Khebbache et al. [10] argue that the amount of literature on smart 
irrigation has increased in recent years due to the increased use of IoT. 
While machine learning and deep learning are currently the primary 
methods for solving irrigation system tasks, Digital Twins play a mi-

https://scholar.google.com/
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Table 3

Corpus of papers reviewed in Section 4.2.

Paper Content

Gautron - 2022 [31] RL for crop management

Benos - 2021 [32] Management of agricultural systems

Sharma - 2020 [33] Prediction of agricultural systems

Abioye - 2023 [34] ML in irrigation Management

nor role in representing irrigation systems but could potentially be used 
for sensor monitoring, presenting live readings of sensor data and pre-

dicting sensor failures. Future developments related to Digital Twins 
should extend beyond water management and encompass the entire soil 
by mapping and modelling it comprehensively.

Holzinger et al. [30] highlight the importance of explainable and ro-

bust AI in agriculture and forestry, as they are crucial to human life. AI 
applications are classified as autonomous, automated, assisted, or aug-

menting and examples in agriculture and forestry are given. In general, 
trust in AI decisions can be increased by incorporating human/expert 
knowledge. Various challenges related to technical implementations, au-

tomated systems, and robotics, as well as improving farmers’ access to 
AI, are discussed, with the goal of Digital Twins being to represent entire 
farm systems virtually and include expert knowledge.

4.2. Machine Learning in agriculture

Machine Learning has become a topic of interest in many research 
areas, and agriculture is no exception, as is exemplified by the four re-

view papers in Table 3. With Machine Learning being a wide-ranging 
topic, the models used in agriculture start at simple regression and clas-

sification tasks but also include various neural network structures that 
are used, for example, in task automation. The diverse agricultural use 
cases are summarised in this section.

According to Gautron et al. [31], reinforcement learning shows 
promise as a technique for decision support in crop management tasks 
as it learns from real-world experiments. However, its applications have 
been limited due to varying user goals for different tasks, limited data 
availability, and the high risks associated with taking wrong actions, 
particularly concerning food security. Theoretical challenges in this field 
include efficient learning, modelling decision problems, creating ex-

plainable policies, and handling multiple objectives under resource con-

straints. One possible solution for these challenges is the multi-armed 
bandit framework.

Benos et al. [32] conducted a comprehensive review of machine 
learning applications in crop, water, soil, and livestock management, 
focusing on crop management. Remote sensing image data is commonly 
utilised, and ANNs and ensemble learning are deemed the most efficient 
models. The integration of machine learning with Information and Com-

munication Technology is seen as a solution to future agricultural chal-

lenges. Decision Support Systems tailored to specific cultivation systems 
utilise collected data, promoting sustainable and productive farming. 
Nevertheless, the upfront costs for farmers must be acknowledged and 
mitigated when implementing these systems, particularly in developing 
economies.

Sharma et al. [33] concluded that regression tasks are most common 
for predicting soil properties, weather, and crop yield, while deep learn-

ing is more frequently used in classification tasks such as pest detection. 
Automating harvesting or fertilisation tasks by AI-empowered robots or 
drones can help complete work more efficiently. To successfully de-

ploy smart systems for every farmer, addressing challenges related to 
improving model performance, educating and motivating farmers, and 
addressing connectivity issues in rural areas is essential.

Abioye et al. [34] used various techniques, from simpler models such 
as k-means to advanced methods such as RNNs, CNNs and reinforce-

ment learning for autonomous irrigation. Challenges included limited 
data set availability, limited access to cloud services, and the high cost 

of digitising farms and infrastructure. Proposed future research empha-

sises reinforcement learning’s adaptability and self-learning, federated 
learning for enhanced data security, deploying technologies in less de-

veloped countries, and exploring Digital Twins for smart irrigation. The 
role of fertigation in generating training data is recognised.

5. Current applications and future directions

As is evident from the publications in the related work section, while 
theoretical interest in Digital Twins in agriculture is substantial, prac-

tical implementation remains limited. Current research focuses on fea-

sibility rather than broad adoption across diverse agricultural sectors. 
Conversely, various machine learning methodologies to solve problems 
in agriculture are used, showcasing a broad range of applications. De-

spite this, Digital Twins are underutilised, indicating untapped poten-

tial. Thus, exploring existing reinforcement learning applications is cru-

cial to expanding the utility of Digital Twins in agriculture. Leveraging 
reinforcement learning’s adaptability and autonomous learning capa-

bilities alongside other machine learning techniques offers avenues for 
comprehensive agricultural automation. The simulation aspect inherent 
in both Digital Twins and reinforcement learning further emphasises 
their compatibility and potential synergy in agricultural applications.

To get a more accessible overview of possible topics for reinforce-

ment learning-based Digital Twins, the potential application areas are 
categorised according to already existing reinforcement learning appli-

cations in agriculture. Furthermore, the specific reinforcement learning 
techniques used in these applications are categorised separately to de-

termine the most promising technical implementations.

In total, 71 publications of the 200 sampled were deemed appro-

priate according to the criteria mentioned in the methodology section. 
The resulting corpus is categorised according to the area of application, 
which is summarised in Fig. 2. In Fig. 3 potential reinforcement learning-

based Digital Twin applications, which are described in the following 
sections, for each domain are summarised. A structured overview of the 
reviewed literature can be found in Table 4 that is attached in the Ap-

pendix section. In this table, the papers are ordered according to the 
category they belong to. Furthermore, the paper’s topic is summarised 
briefly, and the reinforcement learning technique, as well as whether an 
actor-critic method was used or not, is listed.

5.1. Robotics

The first, and by far the most prevalent area of research in recent 
years, is robotics. In the context of this review, robotics encompasses 
research on unmanned vehicles and automated machines that replicate 
human actions like robotic arms.

Within this category, unmanned aerial vehicles (UAVs), usually 
drones, are mentioned in most publications. Automated drones play an 
increasingly important role in agriculture because they offer a cheap, 
easy and fast way to monitor larger land areas and optimise the effi-

ciency of farming operations. In many cases, drones are used for moni-

toring purposes like pest, disease, fire detection [35], plant growth mon-

itoring, fly trap inspection [36], or localisation of autonomous vehicles 
in unknown terrain to ensure their connectivity to a central controlling 
point [37]. To accurately execute the monitoring tasks, drone usage in 
agriculture is often closely linked to image processing [15,38]. Aside 
from monitoring, in one case, a reinforcement learning agent learned to 
control the drone’s velocity and height and spray an appropriate amount 
of pesticide on plants [39]. The learning goals for these tasks are to col-

lect and send enough data to cover the entire area of interest, avoid 
obstacles and, in the spraying case, spray the correct parts of the plants.

While drones have significantly improved the efficiency of monitor-

ing tasks in agriculture, they are not without limitations. For instance, 
their battery life and data storage and submission capabilities are re-

stricted. Therefore, agents controlling drones need to find paths effi-

ciently, avoid obstacles and coordinate with other agents to ensure the 
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Fig. 2. Publications per category.

Fig. 3. Reinforcement learning-based Digital Twin applications for each category.

longevity and optimal usage of the UAVs, especially in the case where 
more than one drone gets used at the same time [40–44]. Managing 
battery and securing data quality levels from the technical side includes 
task offloading, where the agent decides whether a task should be per-

formed by the drone or in a central data collection point, and buffer 
overflow and channel fading reduction. These challenges can be miti-

gated by controlling the speed of drones and managing their connection 
[45,46].

In an attempt to standardise reinforcement learning for UAV oper-

ations, [47] present the OmniDrones environment, in which different 
agents and implementations can be tested virtually.

Regarding reinforcement learning methods, deep Q-learning or deep 
Q-networks (DQN) are the most common techniques, still [35,37] and 
[41] use classical tabular Q-learning models. In some cases, the learn-

ing methods are extended to a multi-agent (MARL) setting or actor-critic 
setting like Deep Deterministic Policy Gradient (DDPG) to ensure better 
learning results [37,40,42,46]. Even though Q-learning is at the core of 
most learning strategies, the approaches differ in their environment ex-

ploration strategies and overall goals, critical components for efficiently 
learning optimal policies. [15] use the k-nearest neighbour (KNN) al-

gorithm to cluster similar states and use the difference between the 
clustering results and a convolutional neural network (CNN) based crop 
health prediction to determine the flight direction. [38] tackle a task 
scheduling and a crop monitoring problem. In the task scheduling case, 
the agent must decide whether to solve a task on edge, cloud, or FoG 
devices. Due to time constraints, computing an optimal solution is in-

feasible, and therefore, the agent relies on the ant colony optimisation 
heuristic (ACO) to schedule the tasks appropriately. A classical DQN 
performs the task of prediction and monitoring in the cloud or fog. To 
help their DQN implementation learn optimal strategies faster [36] use 
rapidly exploring random trees (RRT) for quicker environment explo-

ration.

Robots hold the potential to revolutionise the agriculture industry 
by taking over labour-intensive tasks such as harvesting and fruit pick-

ing, which are currently costly and time-consuming. Current research 
focuses on automating robotic arms to perform these tasks. The ultimate 
goal for these fruit-picking robots is to identify the fruit accurately, chart 
the optimal path to it while avoiding obstacles, and harvest it without 
causing any damage to the fruit or the plant [48–50]. The agent control-

ling the arm should also be able to plan the order of picking the fruits, 
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which can be achieved by exploring the environment and selecting the 
next best target [51]. Case studies have demonstrated the successful ap-

plication of these robots in apple detection and picking, cherry tomato 
picking, and automated harvesting in greenhouses [52–54]. Due to their 
linear layout, vineyards are the testing ground for moving robots that, 
in the first step, learn how to reach the end of the line. In the future, 
these robots will also learn to monitor, spray and harvest grapes [55]. 
Like harvesting, crop pruning is considered a labour-intensive task nec-

essary to ensure crop health and maintain crop yields. One publication 
presented a reinforcement learning agent that learns to prune vine crops 
[56].

For harvesting tasks of larger fruits like bananas or fruits that are 
more challenging to reach, heavier machinery than a robot arm is 
needed [57,58]. Current research for these unmanned ground vehicles 
(UGVs) is at a similar stage to that of UAVs. Pathfinding for harvesting 
machines or tractors on fields is necessary to cover the entire area and 
efficiently fulfil a given task. Furthermore, obstacles and avoiding them 
present the same problems on the ground and in the air. Approaches to 
pathfinding include presenting the UGV with a topographical map of the 
land in advance, planning a path according to it, or using sensors and 
cameras to monitor the area close to the vehicle and decide, given on 
the sensory input, where to drive [59–62]. An additional challenge for 
ground-based vehicles is moving in difficult terrain, as the soil in fields 
is uneven or the fields are located in undulated terrain. Therefore, the 
agent must learn how much power to use and which wheels to power 
so as not to damage the vehicle or the soil [63].

The technical reinforcement learning implementations for robotic 
arms and UGVs are very similar to those used for UAVs, with DQN be-

ing used most frequently. Critic-based methods are also as prevalent and 
range from soft actor-critic (SAC) methods [53,55,59,62] to custom im-

plementations of student-teacher relations. In the last case, the teacher 
network acts as a target network with additional information not present 
in the student network and, at the same time, acts as a critic to the 
student [50]. Interstingly, experience replay for faster and more stable 
learning is more prevalent for UGVs and robotic arms [51,53,58]. Re-

garding reward signals, [57] model their banana harvesting problem in a 
sparse reward setting, meaning that the agent rarely observers positive 
rewards. Therefore, the authors implement an automatic goal gener-

ation, randomly sampling targets along the way to the overall goal to 
facilitate efficient learning. To solve the pathfinding problem, [61] grad-

ually increase the reward in circular areas around the target.

As is evident from the abundance of literature assigned to this cat-

egory, reinforcement learning delivers promising results regarding the 
automatisation of UAVs or UGVs. The clearly defined goals, such as mon-

itoring a predefined area, picking a fruit or reaching a targeted area by 
driving there, help define action spaces and rewards, making it easy to 
define a reinforcement learning problem for these tasks. More challeng-

ing is the accurate representation of the environment to achieve satis-

fying learning results and, therefore, the definition of the state space. 
Three-dimensional environments often require lots of computing power 
in their creation, and it takes lots of effort to represent the robot and the 
target accurately.

Especially compared to crop management tasks, predefined environ-

ments to quickly implement and test an agent are scarce, leaving lots of 
possible development paths in that regard.

In robotic automation, reinforcement learning seems to be the most 
promising machine learning approach compared to other techniques, as 
it is self-learning and does not require a predefined dataset. For pathfind-

ing problems where obstacle avoidance is the primary goal, heuristic 
approaches such as ant colony optimisation might be a competitor to 
reinforcement learning techniques that deliver similar results where, in 
addition, the decision-making process can be explained.

Concerning reinforcement learning-based Digital Twins, UGV appli-

cations are particularly promising domains because of the clearly de-

fined real-world entity to model and goals. Therefore, monitoring the 
vehicle’s condition and the surrounding area can be connected to learn-

ing policies for automated task completion. Furthermore, the agent’s 
behaviour under changing conditions, for example, if different crops are 
planted or the terrain changes, can be simulated and allows the assess-

ment of potential scenarios before actually employing the vehicle in the 
real world.

Implementing Digital Twins for automated vehicles is, given the 
necessary technical infrastructure regarding data storage and compu-

tational power, easier compared to applications discussed in this work. 
The reason is that many vehicles already come with sensors like cam-

eras, position trackers, or sensors that monitor the vehicle’s condition. 
Thus, these vehicles have already collected a lot of data. Images and 
position trackers can be used to create an abstraction of the real en-

vironment while the sensors monitoring the vehicle describe it well. 
Therefore, the vehicle can be placed in the virtual environment. To use 
reinforcement learning for some task optimisation goals like fruit pick-

ing, pathfinding or monitoring rewards for achieving the goal or missing 
a target need to be defined and then the learning process can start.

5.2. Crop management

The second largest category contains publications that present de-

velopments in crop management practices. For this paper, crop man-

agement encompasses research in crop yield prediction, nutrition man-

agement, crop growth estimation and crop planning. Due to the com-

paratively large number of publications, irrigation management and 
greenhouse applications will form separate categories.

In current research on reinforcement learning for crop management, 
the overarching goal is to maintain, increase and predict crop yields. 
Short and long-term weather patterns, soil conditions and plant con-

ditions directly influence crop yields, so the main challenge is to find 
how and to what extent each factor influences crop yields. As no linear 
or non-linear relationship could be modelled, [14] used reinforcement 
learning to solve the crop yield prediction problem. Due to the predictor 
variables’ time dependence, a recurrent neural network (RNN) is used to 
predict crop yields and initialise the weights of the reinforcement learn-

ing agents DQN. The agent uses the RNN prediction as a target and tries 
to achieve the goal by selecting parameter values for each variable to 
attain the predicted value. Another approach to handle the non-linear 
relationship is to use a reinforcement forest that was developed by [64]. 
In random forests, much focus lies on the splitting criterion of a node. In 
a reinforcement forest, a reinforcement learning model determines the 
variables’ importance in each node and then splits based on the com-

puted importance value.

Crop growth and, therefore, crop yields are highly dependent on 
soil nutrient levels, and it is of great interest to measure the effects of 
different nutrition levels on crop development and influence them ac-

cordingly. Reinforcement learning agents can learn to manage nitrogen 
levels aiming at increasing crop yields [65] or rely on the classification 
output of a CNN to detect malnourished rice and suggest fertilising it 
with nitrogen, phosphorus or potassium [66].

Other publications in crop management focus on IoT-based sensor 
detection for optimising crop yields. [67] use temperature, humidity, 
fertiliser usage and rainfall as an input to a DQN-based agent to ensure 
optimal crop growth and yield, whereas [68] focus solely on beetroot by 
training a DDPG-based agent to model crop development based on light 
intensity, temperature, CO2 levels, humidity and soil nutrient levels.

A novel approach to reinforcement learning is taken by [69], who 
try to predict crop evaporation based on minimal and maximal temper-

ature and sunshine for each day. The employed reinforcement learning 
model learns to pick the best baseline model for each prediction timestep 
among CNN with long short-term memory (CNN-LSTM), Convolutional-

LSTM (Conv-LSTM), CNN with eXtreme gradient boosting (CNN-XGB) 
and CNN with support vector regression (CNN-SVR). According to the 
authors, this ensemble approach is necessary because each model alone 
cannot predict the evaporation as well as the ensemble due to different 
baseline accuracies.
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Crop planning and crop rotations can positively impact crop yields, 
which leads [70] to develop a DQN-based agent that recommends crops 
based on soil conditions.

In contrast to all other categories presented in this paper, crop man-

agement sees much attention in reinforcement learning environment 
development. The environment is a crucial part of any reinforcement 
learning implementation, as the agent learns the effects of actions by 
interacting with the environment and observing states that the envi-

ronment presents. Due to its simple usability, in general, reinforcement 
learning applications like simple games, the Gymnasium environment 
(Gym) is used to train agents and evaluate their performance [71]. Ef-

forts in agriculture have been undertaken to create environments that 
emulate the Gym structure but make it usable for agricultural simu-

lations. Available Gym-based environments are CropGym [72,21] that 
incorporates multiple process-based plant growth models and allows 
agents to study the effects of different nitrogen fertilisation schemes and 
CyclesGym [73] where agents can learn crop rotation policies based on 
soil nitrogen levels and simulate plant growth among factors like soil 
nitrogen, carbon levels water balance and external perturbations. An-

other environment for a simple plant simulation model that also has a 
Gym-based interface was implemented by [70].

An approach outside the Gym-based environment realm is realised 
by [74], who developed an environment around the soil and water as-

sessment tool (SWAT). Reinforcement learning agents trained within 
this environment learn to optimise crop yields while reducing water and 
fertiliser usage and, therefore, saving resources but keeping track of ex-

ternal factors like temperature, soil moisture levels and precipitation.

Many crop management tasks involve predicting future outcomes, 
like crop yields, crop evaporation or crop growth. Frequently, many fac-

tors that cannot be modelled in a linear or non-linear fashion influence 
these prediction targets. Through its exploration property, reinforce-

ment learning learns how the prediction target reacts if external factors 
are changed and can find suitable predictions. Another advantage of us-

ing reinforcement learning for crop management is that much effort has 
already been made towards standardising environments, allowing faster 
development of new agents.

Usually, for prediction tasks, there are historical data and data on 
influencing factors available. Especially if the assumption of a linear 
relationship is reasonable, the available data enables using simpler pre-

diction models that are even more accessible to deploy than new agents 
in predefined environments.

Crop modelling on a field or plant level is a potential application 
for reinforcement learning-based Digital Twins. These Digital Twins can 
help optimise crop yields for entire fields by determining optimal crop 
orders, considering external weather factors, and managing water and 
fertiliser usage. Smaller-scale plant-level Digital Twins could be used to 
examine how these factors influence a particular plant and how it would 
react to changes in these conditions.

Regarding the implementation of the Digital Twin, not all tasks men-

tioned in this domain, like evaporation prediction or crop yield predic-

tion, would be suitable as they do not rely on transferring a real object 
into a virtual space but are regression problems that are simpler in na-

ture. Crop growth management, however, can be a potential avenue for 
Digital Twins, as growth can easily be monitored visually or by measur-

ing it. Again, this type of data can be used to create a virtual model of a 
crop, and the reinforcement learning agent could be in control of water, 
nutrient and light management to obtain optimal crop growth. Rewards 
need to be assigned to resource management and crop health to find an 
optimal strategy. Doing this on a small scale in an easily controllable 
environment seems plausible as the simulated crop growth of the Dig-

ital Twin can easily be compared to a real crop. However, rolling out 
a system like this on a larger scale would come at a significant cost, as 
many crops would need to be monitored and replicated. Furthermore, 
conditions on a plot of land can vary a lot, making it difficult to decide 
which suggestions of the Digital Twin to follow when multiple crops are 
replicated.

5.3. Irrigation management

An essential point of every agricultural operation is irrigation man-

agement, as plant growth and crop yields are heavily influenced by the 
amount of water they get. Furthermore, water usage in agriculture is a 
topic that sees lots of interest in the context of climate change and more 
frequent occurrences of water shortages worldwide. Because it is such 
an important topic, there are many attempts at reinforcement learning 
controlled irrigation management in agriculture. Compared to the top-

ics in the other sections, the goals for publications within this category 
are similar: keep crops healthy by controlling soil moisture levels while 
using as little water as possible. Aside from the crop’s regular water 
usage that it needs for growth, weather patterns and evaporation are 
factors that influence soil moisture levels. [12,75]. Specific crops that 
were used for testing irrigation schemes are tomatoes, rice and maise 
[76–79]. Greenhouses lend themselves well to research as they present 
a controlled environment, which will be discussed more closely in the 
next section. However, [80] specifically focus on greenhouses’ irrigation 
management. [81] train multiple DQN-based agents for various plots of 
land and observe the effects of water usage in the Colorado River Basin 
according to the Colorado River Simulation System.

Similarly to crop management in general, environments to train re-

inforcement learning agents are also developed for irrigation manage-

ment. Both the Aquacrop-gym and the gym-DSSAT environments are 
Gym-based environments that can be used to develop irrigation policies 
[13,82]. The gym-DSSAT implementation transfers the frequently used 
DSSAT model into a Python environment.

Every reinforcement learning agent developed for use-cases in this 
category relies on DQN, except for the one used by [12], who use a 
tabular Q-learning approach and [75], who implement Proximal Pol-

icy Optimization (PPO). [76,77] and [79] employ actor-critic methods 
with [76] using an LSTM network and CNN for yield predictions in their 
tomato case study.

Especially in the context of environmental sustainability, water man-

agement requires lots of precision in order not to waste unnecessary 
resources. As the required water for optimal crop growth can be moni-

tored through soil moisture, crop evaporation and natural precipitation, 
reinforcement learning agents can quickly assess the situation and de-

cide when to water the plants dynamically. Using the available sensor 
data also allows to virtually replicate the entire water management sys-

tem, which can be integrated into the field-level reinforcement learning-

based Digital Twins discussed in the previous section. A concrete im-

plementation would require knowing the dimensions of the field, the 
position of the watering system, and the crops, which, combined, serve 
as the foundation for the virtual environment. The reinforcement learn-

ing agent would then use the various ways to measure water levels, to 
start watering the crops when and where required.

The required data to assess the current moisture levels can also be 
used for other heuristic or non-heuristic decision support algorithms that 
suggest when and how much water to use. Given the importance of 
saving water amidst climate change, wasting as little water as possible 
should be the primary goal in irrigation management. Quick adaptions 
to changing conditions, for example, when short but heavy rainfalls are 
detected, are required. Therefore, if accurate predictions on external 
factors that affect the crop’s water requirements are available, which 
have also been used to train the agent, irrigation management should 
be a prime use case for reinforcement learning, as it can adapt quickly 
and plan optimally within these parameters.

5.4. Greenhouses

Compared to regular farms, greenhouses allow control of environ-

mental parameters like temperature, light, precipitation, and humid-

ity. The ability to control for external factors in plant growth makes 
greenhouses an interesting testing ground for researchers and makes it 
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possible to grow plants all year round. However, due to the constant en-

vironmental control, greenhouses use lots of energy, making them less 
sustainable compared to farming outside greenhouses.

Since automated controlling is one of the strengths of reinforce-

ment learning, it is no surprise that agents are being developed to con-

trol the environment efficiently in greenhouses with the push towards 
more sustainable farming practices. Different from the applications in 
the other categories, there are more common models for greenhouse 
reinforcement learning agents than DQN alone. In most cases, actor-

critic approaches like DDPG [19] and SAC [20] are used. For [20] and 
[83], avoiding worst-case scenarios is essential, and they achieve this by 
masking specific actions that lead to critical conditions in advance. [84]

use a MARL approach to simulate climate control by splitting the action 
space into subactions, building a reinforcement learning model for each 
subaction and maintaining correlations between the different actions. 
These submodels are embedded into a hierarchical structure, where one 
overarching model controls the submodels. The framework is called: 
structured cooperative reinforcement learning algorithm (SCORE). An-

other multi-agent reinforcement learning model is implemented by [85], 
who aim to stabilise the power usage of their greenhouse to reduce stress 
on the power network while also trying to reduce the total power con-

sumption. The agents are connected by a shared attention mechanism to 
facilitate faster learning and better cooperation between the agents. To 
avoid online learning methods, [86] rely on historical data and climate 
trajectories of their greenhouse DQN. In addition to the agent, a mixed 
integer linear program is defined after each learning phase that helps 
the agent avoid overfitting to the historical data.

In contrast, [87] use their greenhouse’s available climate and plant-

specific sensor data to control the artificial lighting using a DQN agent 
dynamically. Controlling artificial lighting influences not only energy 
consumption but also plant growth, which [88] use to increase the dry 
mass of Spirulina Sp. An LSTM network was used to predict the next 
day’s light intensity by relying on data from the past days, and based on 
the prediction, a tabular Q-learning model was trained to choose among 
four options how much light should be artificially added to maximise 
the dry mass of Spirulina Sp.

Most greenhouse applications presented so far rely on sensor data at 
some point in their automatisation process. That means the quality of 
their models depends on the quality of the collected data, which is why 
it is crucial to determine optimal sensor locations within a greenhouse. 
[89] try to find an optimal solution to the sensor placement problem by 
implementing a Bayesian reinforcement learning approach that relies 
on Thompson sampling for exploration and exploitation. In addition to 
climate control, crop yield predictions, for example for strawberries, of-

ten grown in greenhouses due to their permanent demand, can be made 
using the available climate data. The available data is fed into an in-

former that predicts strawberry growth. The predicted values are then 
presented as a target to a Q-learning model that learns to regulate cli-

mate conditions by aiming to achieve the target [90].

As energy efficiency for greenhouses is one of the most pressing 
goals for research in this category, reinforcement learning shows its 
strength in simultaneously handling multiple variables such as temper-

ature, humidity, and light intensity to control the greenhouse climate 
accurately. With respect to reinforcement learning-based Digital Twins, 
greenhouses behave similarly to UGVs in that there is a clearly defined 
entity to replicate and the optimisation goals for reinforcement learning 
can also be defined in a straightforward way. Concerning the costs in-

volved in implementing the Digital Twin, sensors need to be installed to 
measure the parameters that should be controlled. Due to greenhouses 
usually being much smaller than open fields, monitoring can be done on 
the ground level and flight-based devices for monitoring are not needed, 
thus making them cheaper compared to open fields. Again, the simula-

tion aspect of Digital Twins allows to gain knowledge of how certain 
actions and conditions would affect the greenhouse in advance and, 
therefore, help identify potential improvements for their energy con-

sumption.

Besides energy reduction, the goal is maintaining an environment 
that secures stable crop yields or even increases them. However, de-

pending on the available data, the problem might also be solved using 
a linear program if constraints to variables and their relation to crop 
development are known. Other techniques that can also handle non-

numeric variables and are able to suggest actions are decision tree-based 
methods. Both linear programs and decision tree methods are more 
straightforward to implement, and the performed actions are easier to 
understand. However, reinforcement learning agents might react faster 
to changing conditions and, therefore, handle the climate more accu-

rately.

5.5. Other applications

The publications in this category do not fit into any of the previous 
groups. However, this does not imply that the works’ contribution can 
be considered entirely independent of the previously discussed topics. 
Many applications rely on collected sensor data, and [91], [92] and [93]

illustrate how reinforcement learning manages data transmission. The 
publications focus on the technical solution to the transmission problem, 
which has potential applications in agriculture and beyond. According 
to [91], sensors are small, light, and inexpensive but have a relatively 
short battery life. Therefore, the DDPG algorithm is used to learn a policy 
that aims to send information regularly to keep it up to date while trying 
to conserve energy simultaneously. The agent collects rewards only if 
the information is accurate and the time between two transmissions is 
long.

[92] also aim to extend the battery life of sensors like UAVs, but 
they focus less on the accuracy of data transfer than on solving the 
tasks efficiently. To achieve this, the authors have implemented a Q-

learning agent trained to maximise the drone’s battery life while si-
multaneously finishing given tasks before a deadline. The reinforcement 
learning model for each drone can determine whether it completes the 
task, passes it on to another drone, or sends it to a shared data collection 
point for it to be finished there.

Efficient data transmission is crucial for sustainable smart farming. 
Smart farms typically use multiple sensors distributed over a large area 
and consume significant amounts of energy. To optimise data transmis-

sion between sensors and a central data collection point, [93] developed 
a tabular Q-learning model to identify the optimal transmission path. 
The agent aims to achieve complete and energy-efficient transmissions 
and transmit data without delay, even in areas without signal. The au-

thors claim that the approach can also be applied to more extensive 
sensor networks.

[94] focus on the quality of experience of video data, which can 
be used for general surveillance purposes and specifically for livestock 
monitoring in agriculture. An average advantage actor-critic (A3C) re-

inforcement learning agent is trained to handle dynamic network con-

ditions by adapting the bitrates to ensure a high-quality video stream.

While efficient data collection and transmission are essential in opti-

mising farming operations, it is necessary to have the means to store and 
process the available data securely. The most common practice in data 
analysis is to collect all available information in one dataset or database 
and access it when needed, which may require lots of data transmissions 
and, therefore, potential security risks. One way to mitigate this risk is 
to develop a federated learning network, where data analysis is done lo-

cally at the data collection point, and only model parameters are shared 
between different analysis entities. Deciding which user’s model param-

eters to incorporate into the overall model is necessary to ensure model 
quality and accuracy. [95] propose to perform a spectral clustering on 
all users in a federated learning network and have a DQN-based agent 
decide which clusters to use for the overarching model.

Reinforcement learning in agriculture is not only used to increase 
crop yields, reduce labour or make tasks more efficient, instead [96]

show that both tabular Q-learning and DQN can be used to optimise the 
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Fig. 4. Reinforcement learning techniques.

agri-food supply chain by modelling it as a blockchain environment. The 
main goal for their agents is to increase product profits for the farmers.

Another DQN application in agriculture is frost forecasting. A Fuzzy-

based DQN uses historical data to predict frosts to ensure agricultural 
productivity and maintain stable crop prices [97].

In a very different application to frost prediction, DQNs’ flexible use 
cases are highlighted as they can also be used for genomic selection for 
plant breeding parent selection. The agents’ goal is to allocate resources 
for each plant generation and, in doing so, decide which parents are best 
suitable for the desired breeding goal [98].

The reinforcement learning applications in this category show that 
using machine learning, data transmission accuracy, quality and se-

curity, as well as task offloading, can be improved. Reinforcement 
learning-based Digital Twins’ primary use case might be to monitor and 
control network traffic and optimise it by more efficient task scheduling 
or sensor placement. With respect to an avenue for direct implementa-

tion, the sensor data can directly be used as a foundation for the virtual 
replica of the network, thus serving as a cost-efficient source for im-

plementing a Digital Twin. Similar to the situation described for the 
robotics applications, the sensors themselves feed back new data into 
the Digital Twin, which means the effects of certain actions, such as 
placing a sensor in a different location, can be observed almost imme-

diately, and through the new data adjustments to the decision-making 
process or potential simulations within the Digital Twin can be made 
quickly.

As discussed for the previous categories, the reinforcement learning 
agents might be replaced by similarly performing pathfinding heuris-

tics or task scheduling techniques. However, technical improvements 
in longer-lasting batteries, more stable networks, and increased sensor 
transmission capabilities might outpace the quality of machine-learning 
implementations. Therefore, these novelties will alleviate some pressure 
for optimisation, as fewer sensors that last longer and transmit with a 
higher degree of certainty might be introduced.

5.6. Reinforcement learning techniques

In the previous sections, different reinforcement learning methods 
have been presented for varying use cases. Still, a compact summary 
of the different models allows to assess the most prevalent techniques 

in current agricultural research. The reinforcement learning methods 
are summarised in Fig. 4. DQN is by far the most common approach 
to solving reinforcement learning tasks. As described in the previous 
sections, DQN is suitable for many tasks, such as energy control in 
greenhouses, controlling a robotic arm or recommending crop planting 
orders and irrigation schemes. Frequently, though, DQNs are combined 
with other techniques to facilitate faster learning by efficiently explor-

ing the state space or collecting higher rewards, yielding better policies. 
In time series-dependent situations, RNNs are commonly connected to 
DQN agents as they allow the retention of a memory of past events. For 
image processing tasks, CNNs have proven reliable in, for example, out-

lier detection, where the agent decides how to best act given an outlier. 
Actor-critic methods such as SAC are used to optimise the learned poli-

cies. Fig. 5 summarises in how many publications actor-critic methods 
were used in total. Missing values signify that a learning environment 
was created that allows the implementation of various reinforcement 
learning methods, both actor-critic and non-actor-critic. In addition, for 
specific tasks, DQNs were combined with a Fuzzy learning approach, ant 
colony optimisation, and a multi-integer linear program, or they were 
embedded in a hierarchical structure like a tree or used multi-agent set-

tings.

Multi-agent (MARL) settings are standard for cases where multiple 
entities like a swarm of drones or different water users need to be con-

trolled simultaneously or if an agent handles the subdivisions of state or 
action spaces.

Even though deep reinforcement learning methods are the most com-

mon, there are cases where tabular methods like tabular Q-learning 
are used, especially if the action space is small enough. Tabular meth-

ods usually require more memory space as tables for state-action pairs 
must be maintained. However, their easy implementation and traceable 
decision-making processes still make them an attractive alternative to 
more involved deep learning methods.

Even though there are methods that allow for interpretations of 
learned decisions, the explainability of reinforcement learning algo-

rithms for agricultural use cases is a topic that is widely disregarded. 
However, explainable decisions are a crucial part of gaining trust in 
learned policies and, therefore, help decrease the reluctance of farmers 
to use machine learning-powered decision support.
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Fig. 5. Reinforcement learning techniques.

6. Conclusion

In conclusion, this review highlights the early developmental stage 
of Digital Twins in agriculture but also the widespread utilisation of 
various machine learning techniques within the agricultural sector. 
Among these machine learning techniques, reinforcement learning is 
a frequently used approach, particularly in the defined categories of 
robotics, crop management, irrigation management, and greenhouses. 
The most common method to solve reinforcement learning problems is 
to use Deep Q-Networks (DQN). It was also shown that reinforcement 
learning is often combined with Recurrent Neural Networks (RNNs), 
Convolutional Neural Networks (CNNs), and other optimisation tech-

niques. However, there is a notable absence of focus on explainable re-

inforcement learning techniques, indicating a significant area for future 
development, especially considering the importance of trustworthiness 
in AI.

Moreover, this review highlights already existing applications for 
reinforcement learning-based Digital Twins, particularly in robotics, 
greenhouses, and crop models. The scope of implementation for these 
domains is manageable due to the clearly defined and replicable na-

ture of the corresponding real-world entities. Even though some of the 
Digital Twins are more advanced, the lack of standardised learning en-

vironments and applications only in small-scale use cases indicates that 
there is a need to optimise these applications further to implement more 
efficient Digital Twins faster. Exploring the integration of reinforcement 
learning-based Digital Twins in these areas presents promising opportu-

nities to advance agricultural automation and enhance productivity.
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Appendix A

Table 4

Corpus of the reviewed publications.

Authors Topic Category RL Method Actor-Critic

Zhang - 2020 [15] UAV Crop Monitoring Robotics DQN FALSE

Ganesh - 2023 [38] UAV Crop Monitoring Robotics DQN + ANT_Colony FALSE

Boubin - 2022 [40] UAV Swarm Management Robotics MARL FALSE

Castro - 2023 [36] UAV Path Planning and Monitoring Robotics DQN + RRT FALSE

Pamuklu - 2023 [35] UAV Crop Monitoring Robotics Q-learning FALSE

Yang - 2022 [59] UGV Path Planning Robotics SAC TRUE

Martini - 2022 [55] UGV for Vineyard Monitoring Robotics DQN + SAC TRUE

Hao - 2022 [39] UAV Spraying Automation Robotics DQN + AC TRUE

Pourroostaei Ardakani - 2021 [41] UAV Route Planning and Monitoring Robotics Q-learning FALSE

Testi - 2020 [37] UAVs for UGV Monitoring and Connection Robotics MARL FALSE

Guichao - 2021 [42] UAV Route Planning Robotics DQN + RNN + DDPG TRUE

Petrenko - 2020 [54] Automated Harvesting Robot in Greenhouse Robotics DQN + RNN FALSE

Faryadi - 2021 [60] UGVs in map field Topography Robotics Q-learning FALSE

Yinchu - 2023 [58] UGVs for Kiwifruit Picking Robotics DQN FALSE

Zeng - 2022 [51] UGV Automated Environment Detection Robotics DDQN FALSE

Yajun - 2024 [53] Cherry Tomato Picking Robotics DQN + SAC TRUE

Tian - 2023 [48] Arm Path Planning for Fruit Picking Robotics Environment

Yandun - 2021 [56] Vineyard Pruning Robotics DQN + CNN FALSE

Andriyanov - 2023 [52] Apple Detection and Picking Robotics Q-learning FALSE

Wiberg - 2022 [63] Heavy UGV Path Finding in Difficult Terrain Robotics PPO + Bayesian AC TRUE

Josef - 2020 [61] UGV for Close Range Sensing and Path Finding Robotics DQN FALSE

Nguyen - 2022 [45] UAV Task Offloading in Area Surveillance Robotics DQN FALSE

Nethala - 2023 [49] Arm Path Planning for Fruit Touching Robotics DDPG + PPO + Hierarchy TRUE

Yang - 2020 [50] Vision-based Arm Learning Robotics Cross Modal DQN FALSE

Lin - 2022 [57] Large UGV for Banana Harvesting Robotics TD3 TRUE

Kurunatahn - 2021 [46] UAV Cruise Control to reduce Buffer Overflows and Channel Fading Robotics DDPG TRUE

Alon - 2020 [43] UAV Swarm Coordination and Cooperation Robotics Multi-Agent PGO TRUE

Xu - 2024 [47] OmniDrones - Environment for RL Drone Implementations Robotics Environment

Roghair - 2022 [44] UAV Obstacle detection Robotics DQN FALSE

Din - 2022 [62] Land Area Coverage Control Robotics DDQN FALSE

Elavarasan - 2020 [14] Crop Yield Prediction Crop Management DQN + RNN FALSE

Wu - 2022 [65] Nitrogen Management Crop Management DQN + SAC TRUE

Yassine - 2022 [67] Crop Growth and Yield Management Crop Management DQN + RNN FALSE

Madondo - 2023 [74] Yield Maximization and Resource Reduction Crop Management Environment

Zheng - 2021 [68] Sensor-based Crop Yield Increase Crop Management DDPG + AC TRUE

Sharma - 2022 [69] Crop Evaporation Estimation Crop Management DQN FALSE

Elavarasan - 2021 [64] Crop Yield Prediction Crop Management Reinforcement Forest FALSE

Overweg - 2021 [72] CropGym - Crop Growth Simulation Crop Management Environment

Wang - 2021 [66] Malnutrition Detection in Rice Crop Management Q-learning FALSE

Kallenberg - 2023 [21] CropGym - Crop Growth Simulation Crop Management Environment

Turchetta - 2022 [73] CyclesGym - Crop Rotation Planning and Plant Growth Crop Management Environment

Ashcraft - 2021 [70] Crop Yield Optimisation based on Plant Growth model Crop Management PPO FALSE

Bouni - 2022 [16] Crop Planting Recommendations Crop Management DQN FALSE

Tropea - 2022 [12] Irrigation Management Irrigation Control Q-learning FALSE

Zhou - 2020 [80] Irrigation Management in Greenhouse Irrigation Control DQN FALSE

Alibabaei - 2022 [76] Irrigation Management on Tomato Field Irrigation Control DQN + CNN FALSE

Alibabaei - 2022 [77] Irrigation Management Irrigation Control A2C TRUE

Chen - 2021 [78] Irrigation Management for Rice Irrigation Control DQN FALSE

Kelly - 2024 [13] Irrigation Management Irrigation Control Environment

Gautron - 2022 [82] gym-DSSAT for Python Irrigation Control Environment

Hung - 2021 [81] Water User Coordination Irrigation Control DQN FALSE

Ding - 2022 [75] Irrigation Management Irrigation Control PPO FALSE

Tao - 2022 [79] Irrigation and Fertilization Management Irrigation Control DQN + SAC TRUE

Wang - 2020 [19] Climate Control Greenhouse DDPG TRUE

Zhang - 2021 [20] Climate Control Greenhouse SAC TRUE

Uyeh - 2021 [89] Sensor Placement Greenhouse Bayesian RL FALSE

Li - 2022 [84] Simulated Control Greenhouse MARL FALSE

Lu - 2023 [90] Strawberry Yield Prediction Greenhouse Q-learning FALSE

Ajagekar - 2024 [85] Power Usage Optimization Greenhouse MARL + AC TRUE

Ajagekar - 2023 [86] Energy Efficient Climate Control Greenhouse DQN + MILP FALSE

Chen - 2023 [83] Energy Saving through Light Control Greenhouse PPO FALSE

Decardi-Nelson - 2023 [87] Resource Optimization in Plant Factories through Light Control Greenhouse DQN FALSE

Doan - 2021 [88] Light Controlled Spirulina Sp. Farming Greenhouse Q-learning FALSE

Herabad - 2022 [97] Frost Forecasting Other Fuzzy DQN FALSE

Ahmadi - 2022 [95] Federated Learning user Selection Other DDQN FALSE

Naresh - 2022 [94] Video Stream Quality Improvement Other FFE + A3C TRUE

Hribar - 2022 [91] Sensor Battery Life Improvement Other DDPG TRUE

Nguyen - 2022 [92] UAV Task Offloading Other Q-learning FALSE

Moeinizade - 2022 [98] Genomic Selection in Plant Breeding Other DQN FALSE

Ali - 2023 [93] Sensor Battery Life Improvement Other Q-learning FALSE

Chen - 2021 [96] Agri-Food Supply Chain Optimization Other Q-learning + DQN FALSE
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