
Near-Optimal (1 + ϵ)-Approximate Fully-Dynamic
All-Pairs Shortest Paths in Planar Graphs

Arnold Filtser
Computer Science Department

Bar Ilan University
Ramat Gan, Israel

arnold.filtser@biu.ac.il

Gramoz Goranci
Faculty of Computer Science

University of Vienna
Vienna, Austria

gramoz.goranci@univie.ac.at

Neel Patel
Department of Computer Science
University of Southern California

Los Angeles, USA
neelbpat@usc.edu

Maximilian Probst Gutenberg
Department of Computer Science

ETH Zurich
Zurich, Switzerland

maximilian.probst@inf.ethz.ch

Abstract—We study the fully-dynamic all-pair shortest paths
(APSP) problem on planar graphs: given an n-vertex planar
graph G = (V,E) undergoing edge insertions and deletions, the
goal is to efficiently process these updates and support distance
and shortest path queries. We give a (1+ϵ)-approximate dynamic
algorithm that supports edge updates and distance queries in
no(1) time, for any 1/poly(logn) < ϵ < 1. Our result is a
significant improvement over the best previously known bound of
Õ(

√
n) on update and query time due to [Abraham, Chechik, and

Gavoille, STOC ’12], and bypasses a Ω(
√
n) conditional lower-

bound on update and query time for exact fully dynamic planar
APSP [Abboud and Dahlgaard, FOCS ’16]. The main technical
contribution behind our result is to dynamize the planar emulator
construction due to [Chang, Krauthgamer, Tan, STOC ’22].

Index Terms—Planar Graph, Distance Oracles, Dynamic Data
Structure, Distance Emulator.

I. INTRODUCTION

Computing shortest paths is a fundamental problem in
network analysis that has been at the core of algorithmic
research on graphs for over 60 years. Particular attention
has been given to solving this problem on planar graphs,
as they naturally appear in many real-world applications,
e.g., route planning [24] or image segmentation [21], [34].
Shortest paths are also often utilized as subroutines for solving
other important problems on planar graphs such as finding
edge separators [1], computing maximum flows [37], [43],
[44], [58] and minimum weight cuts [12], [55], or computing
distance oracles [17], [20], [32], [56], [57], [61] and planar
emulators [15].

We study the fully dynamic all-pair shortest path (APSP)
problem on planar graphs. Here, the goal is to efficiently main-
tain a planar graph undergoing edge insertions or deletions
(referred to as edge updates) and to support distance queries

Arnold Filtser was supported by the Israel Science Foundation (grant no.
1042/22) and Maximilian Probst Gutenberg was supported by the Swiss
National Science Foundation (grant no. 200021 204787).

about the shortest path between any source-target vertex pair
as quickly as possible. While near-optimal static algorithms
for computing shortest paths on planar graphs are known [17],
[32], [57], the problem appears to be more challenging in the
dynamic setting.

A naive dynamic algorithm simply updates the underlying
graph when updates arrive and then runs a static O(n) time
SSSP algorithm for answering queries (see [41]). The other
extreme would be to process each update by rebuilding a
distance oracle on the current graph that then can be queried.
This yields update time n1+o(1) and query time Õ(1) (see
[17], [32], [57]). The first sublinear bound on update and query
time was obtained in the seminal work by Fakcharoenphol and
Rao [27], who showed that non-negative edge weight updates
and distance queries can be supported in O(n2/3 log7/3 n)
time. After a series of follow-up works [44], [45], [49],
Gawrychowski and Karczmarz [33] improved the running time
to O(n2/3 log5/3 n

log4/3 logn
), even when allowing negative weights.

On the lower bound front, Abboud and Dahlgaard [4] proved
there is no algorithm for exact dynamic planar APSP that
achieves O(n1/2−ϵ) time for both updates and queries unless
the APSP conjecture (on static general graphs) is false.

Moving to approximate distance queries paves the way for
circumventing the conditional hardness results, thus obtaining
faster algorithms. The first (1+ϵ)-approximation algorithm for
fully dynamic planar APSP dates back to the work of Klein
and Subramanian [51], who achieved Õ(n2/3) update and
query time. Their running time was subsequently improved
to Õ(

√
n) in a breakthrough work by Abraham, Chechik and

Gavoille [7] by a reduction to forbidden-set labeling schemes.
However, their algorithm cannot break the Õ(

√
n) barrier on

the running time, leaving the following key question open:

Is there a (1 + ϵ)-approximate fully dynamic planar APSP
algorithm that achieves subpolynomial update time?

In this work, we answer this question in the affirmative
by developing such an algorithm for the approximate fully
dynamic planar APSP problem. Our main result is summarized
in the theorem below.

Theorem I.1. Given an n-vertex undirected planar graph G =
(V,E,w) with weights in [1,W] undergoing edge insertions
and deletions that preserve the embedding, and a precision
parameter 1/ polylog(n) < ϵ < 1, there is a deterministic
data structure that supports edge updates and queries for the
(1+ ϵ)-approximate distance between any pair s, t of vertices
in the current graph G. The data structure can be initialized in
Õ(n logW) time and achieves no(1) logW amortized update
and query time.

Remark I.2. We can extend the data structure to also support
queries for an (1+ϵ)-approximate shortest path from a vertex
s and t upon which it returns such a path π̃st in time no(1) +
O(|π̃st|).

One striking aspect of our result is that it works in the
(1 + ϵ)-approximate regime, i.e., we can report distances that
approximate the shortest path distances within a factor of
(1 + ϵ). On general graphs, such results are ruled out since
the fully dynamic APSP problem admits strong conditional
lower bounds [5], [39] in the low-approximation regime: under
plausible complexity assumptions, there is no fully dynamic
APSP algorithm with a (3 − δ) approximation ratio that
achieves small polynomial update and query times, for any
δ > 0. Additionally, for constant ϵ, our running time is faster
than the conditional lower bound for exact fully dynamic
planar APSP, as discussed above.

A. Related Works
Partially and Offline Dynamic APSP on Planar Graphs.:

Dynamic planar APSP has been studied both in incremental
and decremental settings. Karczmarz [46] showed a decremen-
tal (1+ ϵ)-approximate APSP algorithm with Õ(n3/2/ϵ) total
update time and Õ(n) query time, even when the underlying
planar graph is directed. In the incremental setting, Das, Probst
Gutenberg, and Wulff-Nilsen [22] designed an exact planar
APSP algorithm with Õ(

√
n) worst-case update and query

time. In fact, their algorithm extends to the offline setting,
where all edge updates and queries are revealed upfront,
and achieves the same runtime guarantees, thus matching
the conditional lower bound of Abboud and Dahlgaard [4].
Recently, Chang, Krauthgamer, and Tan [15] considered de-
signing (1 + ϵ)-approximate algorithms in the offline setting
and showed that a running time of O(poly log n) can be
achieved for any constant ϵ.

Algorithm Engineering.: Due to the importance of un-
derstanding the robustness of road networks in route planning
applications, fully dynamic APSP has also been extensively
studied in the algorithm engineering community [23]–[25],
[35], [60]. While these algorithms typically don’t offer any
theoretical guarantees, they exploit the special structure of road
networks, beyond planarity, and are extremely efficient on real-
world instances, processing updates in milliseconds for graphs

with tens of millions of nodes. In an effort to theoretically
explain the impressive performance of such algorithms in
practice, Abraham et al. [6] studied a different dynamic model
in the (1 + ϵ)-approximate setting, allowing arbitrary edge
weight updates as long as the shortest path metric of the
updated graph is within a factor of M of the shortest path
metric of the initial graph. When M is poly-logarithmic and ϵ
is a constant, their algorithm achieves poly-logarithmic update
and query time.

Fully Dynamic APSP on General Graphs.: Dynamic
algorithms for solving APSP on general graphs have received
significant attention in the approximate setting [8]–[11], [19],
[30], [31], [36], [38], [47], [54], [59], [62]. These results
require a very large constant approximation for a small polyno-
mial update time, whereas our result for planar graphs achieves
(1 + ϵ)-approximation in sub-polynomial time. Moreover, the
recent conditional lower bound due to Abboud et al. [3] (and
the later refinement by in [2]) shows that on general graphs,
there is no fully dynamic algorithm that can simultaneously
achieve constant approximation and subpolynomial update and
query time. For more trade-offs between the approximation
ratio and running times for dynamic APSP on general graphs,
we refer the reader to [31], [36], [54] and the references
therein.

II. TECHNICAL OVERVIEW

A. A Dynamic Distance Oracle via Dynamic Emulators for
Planar Graphs

The starting point of our story is the recent ε-emulator of
Chang, Krauthgamer, and Tan [14]. Given a planar graph G =
(V,E,w) and a subset of terminals T ⊆ V , we define an
instance as a tuple (G,T). We say that an instance (H,T) is
an ε-emulator of (G,T) if H = (VH , EH , wH) is a planar
graph over a set of vertices VH containing the terminals T ⊆
VH , that preserves distances between terminals up to a small
multiplicative factor:

∀u, v ∈ T : dG(u, v) ≤ dH(u, v) ≤ (1 + ε) · dG(u, v).

The sequence of amazing work [13], [16], [18], [28], [29],
[52] developed algorithms to construct an ε-emulator of any
given instance (G,T) denoted as (H,T) of size |V (H)| ≤
O
(
|T |, 1

ε

)
which is independent of the size of the underlying

planar graph G. Following a line of previous work, in a recent
breakthrough by Chang et. al. [14] proposed an algorithm
to construct ε-emulator (H,T) of any instance (G,T) in
Õ(n

εO(1)) time with |V (H)| = Õ(|T |
εO(1)). The main contri-

bution of this work is to show that the emulator of [14] can
be maintained dynamically when the underlying planar graph
G = (V,E) does through edge updates. This technical result
is summarized in the following informal theorem.

Informal Theorem II.1. Given a dynamic instance (G,T)
that is an instance that at each time step either has an edge
update to G or a vertex update to T , a size parameter n that
upper bounds the number of vertices in G and the guarantee

that T is of size at most 2 at any time, a target parameter
1 ≤ τ ≤ n

log(n) , and a precision parameter 0 < ϵ < 1.
Then, there is a deterministic algorithm that maintains

explicitly an ε-emulator (H,T) of (G,T) such that
• Emulator Size: |H| = Õ(

√
nτ/ϵ2), and

• Emulator Recourse: each update to (G,T) can be pro-
cessed such that the amortized number of changes to H
is Õ(1/ϵ2), and

• Update Time: each update to (G,T) can be processed in
amortized time Õ

(
n
ϵ2τ

)
.

The algorithm takes initialization time Õ(n/ϵ2).

In our dynamic distance oracle data structure, we aim to
use the above theorem to maintain a small emulator of (G,T)
where we let T be the empty set. Then, whenever the adversary
issues a query for vertices s, t ∈ V , we simply update the set
T by adding s, t to the formerly empty set. We then compute
the distance from s to t in the updated small emulator (using
a single-source shortest paths algorithm), return the distance
as an estimate for the st-distance in G, and finally delete s, t
again from set T .

However, note that Informal Theorem II.1 only achieves
subpolynomial update bounds for target parameter τ being
subpolynomially close to n. Fortunately, since the emulator
has extremely low recourse (only polylogarithmic), we can
resolve this problem by building a hierarchy. We simply
invoke Informal Theorem II.1 again on the emulator to obtain
a slightly smaller emulator, and so on until we obtain an
emulator of subpolynomial size as desired. Due to the small
recourse bounds, we are able to control the amortized update
time spent on updating each emulator by only a slightly larger
sub polynomial factor. This yields our dynamic distance oracle
algorithm given in Theorem I.1.

The remainder of this overview sketches the algorithm and
proof ideas to obtain Informal Theorem II.1.

B. A Brief Review of [14]

Since our algorithm crucially builds on the work of Chang
et. al. [14], let us briefly discuss their strategy to computing
an ε-emulator (H,T) for an instance (G,T). For the rest of
the section, we fix 1 ≤ τ ≤ n

logD(n)
for large enough constant

D > 1.
The emulator construction by Chang et. al. [14] follows a

divide-and-conquer framework. To keep track of the divide-
and-conquer step, they use a decomposition tree T . Initially,
the tree T only contains a single root node that is associated
with the input instance (G,T). Henceforth, since each node
in T is associated with an instance, we use nodes and their
associated instances interchangeably.

The algorithm then recursively initializes an instance (R,S)
in T as follows:

• If the instance (R,S) is of the size |V (R)| ≤ O(n/τ), S
of the size polylog(n), and all terminals in S on a single
face of R, then it labels (R,S) a leaf node.

• Otherwise, it breaks the graph R into subgraphs
R1, R2, . . . , Rk finds a portal set PORTALS(R,S) (whose

role will be clarified in a moment), and adds for every
0 ≤ i ≤ k, the instance (Ri, Si) where Si = (S ∪
PORTALS(R,S))∩V (Ri)) as a child of (R,S) to T . Note
here in particular, that the portals of an instance become
terminals to the child instances. In addition, the algorithm
ensures that the vertices PORTALS(R,S))∩V (Ri)) lies on
the boundary of the planar graph Ri w.r.t. R; i.e. vertices
with the incident edges in R that lies in the edge set of
Rj for j ̸= i.

When constructing the emulator (H,T) for (G,T), [14]
follows a bottom-up approach: for every leaf (R,S) in T ,
they can construct a 0-emulator (HR, S) (that is preserving
distances in R exactly) with HR of size at most O(|S|4) ≤
polylog(n) [52].

For any internal node (R,S) in T , they obtain the emulator
(HR, S) by “glueing” the emulators of its children, i.e. the em-
ulators (HR1

, S1), (HR2
, S2), . . . , (HRk

, Sk), in the vertices
in S and PORTALS(R,S).

The game, and the source of tension in this algorithm is
the following: one has to break the instance (R,S) into sub-
instances (R1, S1), (R2, S2), . . . , (Rk, Sk), including choos-
ing portals PORTALS(R,S) along the boundaries of these sub-
instances such that simultaneously it satisfies the following
properties:

• The number of new portals should not blow up since the
size of the emulator is at least as large as the total number
of terminal vertices in the leaves of T ,

• The resulting emulator of (HR, S) from gluing the
emulators of (HR1 , S1), (HR2 , S2), . . . , (HRk

, Sk) along
the portals have small stretch in the distances between
terminals since the overall stretch can accumulate as built
emulator of (G,T) in bottom-up fashion, and

• Each child instance (Ri, Si) has either
– Ri of significantly smaller size than R,
– Si of significantly smaller size than S, or
– Si being incident to fewer faces in Ri than S in R.

The last property then ensures that the depth of the decom-
position tree T is bounded logarithmically in the size of the
graph G.

This game is successfully resolved in [14] by decomposing
carefully by case distinction. We delve into more detail on
their construction in the next section.

C. Initialization of our Emulator Data Structure
In this section, we describe the initialization procedure of

our algorithm to obtain the initial decomposition tree T . Our
construction closely follows the emulator construction in [14].

Before we delve into the algorithm, the astute reader might
note that initially, the input instance (G,T) has T = ∅. Thus,
the resulting emulator does not need to preserve any distances
(as there are no terminals). However, here we compute the tree
decomposition and the emulator since we can show that when
we update T by two vertices, we only need a few updates to
the emulator to preserve the distances between vertices in T .

We point out that in our construction of T , we have that
for each instance (R,S) ∈ T , we have that all terminals S are

on the holes of R with respect to G. Here we define a hole to
be a face of R that is not a face of G. We henceforth call an
instance (R,S) an h-hole instance if R has at most h holes.

Recall that the goal when constructing decomposition tree T
is to break the graph into one-hole instances of size at most
O(nτ) with at most polylog(n) terminals. We call such an
instance Type-1 instance. Type-1 instances will be the leaves
of our hierarchical decomposition tree T . For Type-1 instances
we will simply construct a 0-emulator of size polylog(n) in
O(nτ) time [52].

In order to get to Type-1 instances we will gradually break
the graph, where there will be 4 types of instances. The
instances will respect the hierarchy of the tree. That is a parent
instance will always be of equal or higher Type-than a child
instance. We now elaborate on the different types:

• Type-4: An instance (R,S) is Type-4 if it has more than
n
τ vertices and at most a constant number of holes. Note
that the initial instance (G, ∅) is of Type-4. A vertex
v ∈ R is a boundary vertex w.r.t. the instance (R,S)
if it is incident to an edge e /∈ R. Type-4 instances have
the special property that the terminal set S will simply
be the boundary vertices. To break a Type-4 instance
we will use the planar separator of Klein et. al. [50]
(see Theorem III.7). Specifically, [50] receives an ℓ-hole
instance (R,S), where S is the set of boundary vertices.
The algorithm then partitions the instance (R,S) into
sub-instances (R0, S0), . . . , (Rq, Sq), where each edge
belongs to a single subgraph (a vertex might belong to
several), each instance has size at most |Ri| ≤ 3

4 · |R|,
the total number of boundary vertices is bounded by∑q

i=0 |Si| = O(
√
|R|), and each instance has at most

3
4ℓ+ 4 holes (in our case, an absolute constant). Finally,
we let PORTALS(R,S) = ∪iSi \ S.

• Type-3: An instance (R,S) is Type-3 if it has at most
O(nτ) vertices and a constant number of holes.1 Here
our goal is to reduce the number of holes. The way we
reduce the number of holes is fairly standard. We find a
shortest path πuv between vertices u, v laying on different
holes h, h′. We then duplicate the path πuv (including all
vertices and edges), and “slice” a new face including the
holes h, h′ and the two copies of πuv (see Figure 1). As
a result, the number of holes is reduced by 1. Denote the
resulting graph by R′. We then turn some of the vertices
along πuv into portals. Specifically, for every terminal
x ∈ S, using [48], [61] (see Lemma III.12) one can pick
a set Px of O(1ε) vertices along πuv such that for every
vertex z ∈ πuv on the path, there is a nearby vertex y ∈
Px: dR[πuv](y, z) ≤ ε · dR(x, z). The vertices in Px can
be used to re-route every path starting at x that crosses
πuv while introducing only a small 1+O(ε)-stretch. We
thus set PORTALS(R,S) =

⋃
x∈S Px. The instance (R,S)

will have a single child
(
R′, S ∪

⋃
x∈S Px

)
. The fact that

1It is possible that a child of a Type-3 instance will have more vertices
that its parent. We therefore allow slack in the upper bound on the number
of vertices for Type-3 instances.

enables this reduction to work is that given a planar δ-
emulator R̃′ for

(
R′, S ∪ PORTALS(R,S)

)
, we can iden-

tify the two copies of each portal in PORTALS(R,S) along
πuv to obtain an O(ε+ δ)-emulator R̃ for (R,S).

• Type-2: An instance (R,S) is Type-2 if it is one-hole and
has at most O(nτ) vertices. The purpose of Type-4 and
Type-3 was to reduce to Type-2 instances. Here we break
the instance into two Type-2 instances (R1, S1), (R2, S2)
such that each of S1, S2 is smaller than S by a constant
factor. We proceed by finding a shortest path πuv where
u, v are pair of vertices laying on the hole of R, such
that πuv partitions R into two subgraphs R1, R2, each
containing at most 11

12 ·|S| terminals (see Theorem III.10).
We will duplicate the path πuv for each of the two
child instances. Surprisingly, as was shown by [14],2

it is possible to pick a set Pπ of O(1ε · log n) portals
along πuv such that for every vertex x on the hole (not
necessarily a terminal), and z ∈ πuv on the separator
path, there is a nearby portal y ∈ Pπ: dR[πuv](y, z) ≤
ε · dR(x, z). The vertices in Pπ can be used in order
to re-route every path starting on the hole and cross-
ing πuv while introducing only a small (1 + O(ε))-
stretch [15][Small Spread Case].Thus again, we take
PORTALS(R,S) = Pπ . We then recursively execute the
two one-hole instances

(
R1, (S ∩R1) ∪ PORTALS(R,S)

)
,(

R2, (S ∩R2) ∪ PORTALS(R,S)

)
.

a) Depth of T .: Let us now more formally bound the
depth of the hierarchical decomposition tree T . Consider a
root (G, ∅) to leaf path P in T . For each Type-4 instance
(R,S) it is guaranteed that each child instance (Ri, Si) has
size at most |Ri| ≤ 3

4 · |R|. Therefore there will be at most
O(log n) Type-4 instances along P . A Type-3 instance has a
constant number of holes, and the number of holes is reduced
by 1 in each iteration. Therefore there will be only a constant
number of Type-3 instances along P . For a Type-2 instance
(R,S) it is guaranteed that each child instance (Ri, Si) has at
most |Si| ≤ 11

12 · |S| terminals. Therefore there will be at most
O(log n) Type-2 instances along P . Type-1 instances have no
children. Overall, the depth of T is bounded by O(log n).

b) Number of Copies.: While there is no bound on the
number of instances (R,S) ∈ T a vertex might belong to, an
edge e can belong to at most O(log2 n) instances. Indeed, in
our treatment of Type-4 instances, no edge is ever duplicated.
In a Type-3 instance, we duplicate a single shortest path (which
contains no edges lying on a hole). Note that if an edge e is
duplicated, then both its copies will now be laying on a hole
and will be duplicated no more (in Type-3 instances). Type-2
instances are the most tricky. Here we pick a separator path
πuv and duplicate all the edges along it. Note that once an
edge e is duplicated in such a way, the edge will be laying
on the single hole of each instance it belongs to. Consider a
Type-2 instance (R,S) and an edge e on its hole. Let πuv

be the separator path, and (R1, S1), (R2, S2) be the two child

2For this statement to hold we will assume that all the edge weights are in
[1, n4].

Fig. 1: Illustration of our procedure for a Type-3 instance. On the left, we have the initial instance (R,S) which is incident to
two holes (the faces with white background). The algorithm then chooses a shortest path πuv between these two holes (drawn
in red). The child instance is obtained by slicing along the entire path. This results in a one-hole instance (R1, S1) (on the
right) as the slicing connects the two holes.

u

v

R̂
(t)
2

R̂
(t)
1

R̂(t) H
(t)
R

H
(t)
R1

H
(t)
R2

Fig. 2: On the left (R(t), S(t)) is a Type-2 instance. The red vertices represent terminals. The blue path π is a balanced
separator in R. The orange vertices along π are the original portals Pπ . At some point the edge {u, v} is deleted. As a result,
the green portals are added to π. On the right are emulators Ht

R1
and Ht

R2
that been constructed for the instances

(R
(t)
1 , Ŝ

(t)
1) and (R

(t)
2 , Ŝ

(t)
2) respectively. We construct an emulator Ht

R for (R(t), Ŝ(t)) by “gluing” the two emulators using
the portals along π.

instances of (R,S). πuv is allowed to include edges laying
on the hole, and in particular e. The key observation is that if
such an edge e belongs to πuv , then necessarily e will be a
bridge edge in either (R1, S1) or (R2, S2). A bridge edge is
an edge whose removal disconnects the graph. Theorem III.10
guarantees that the separator path πuv is either a single bridge
edge, or does not contain any bridge edges. If πuv is a bridge
edge e′, we simply delete e′ and the child instances are the
connected components: (R1, S ∩ (R1 ∪ e′)), (R2, S ∩ (R2 ∪
e′)). In particular, e′ will belong to no strict descendent of
(R,S) in T . It follows that a bridge edge is never duplicated.
Accordingly, if an edge e belonging to the hole is duplicated
and belongs to both (R1, S1), (R2, S2), then in one of them e
has to be a bridge edge and will be duplicated no more (See
Figure 3). For the other children, the edge stays on its hole.
So inductively applying the same argument, the edge can be
duplicated at most O(log n) times. In addition, all the Type-2
nodes that contain a particular duplicate of the edge lie on a
single root-to-leaf path in T . It follows that overall each edge

can belong to at most O(log2 n) different instances (counting
all its different copies).

D. Maintaining the Decomposition Tree

In our dynamic algorithm, we let T consist of static
instances, that is, we add instances (R,S) to T and then do not
update them in any form until we delete them again from T .
When we delete a node, we delete the entire subgraph rooted
at the node from T .

Instead, we define for each such instance (R,S) ∈ T the
graph R̂ which captures how R evolves when applying the
updates to (G,T) to (R,S). Let us now formally define R̂.

We define R̂ recursively. Letting tR denote the time that
(R,S) was added to T , we have that R̂(tR) = R (we use
superscripts to indicate the value of a variable at the time
specified by the superscript). For any time t > tR, we define
R̂(t) by considering the t-th edge update to (G,T) (if there is
one). We say the edge update e = {u, v} is valid (see Figure 4)
if both u, v ∈ R̂(t−1) and either:

(R, S) (R1, S1)

(R2, S2)
u

v

πu,v

e

e1

e2

Fig. 3: On the left illustrated a Type-2 instance (R,S) with a balanced separator path πuv colored in red. The edge e ∈ πuv

lays on the hole of R. e its duplicated to both R1, R2, and became a bridge edge in R1.

• This is an edge deletion and e is in R̂(t−1).
• This is an edge insertion, and the edge e lies inside a face

of R̂(t−1) which is not a hole. We stress that the validity
of an edge update is defined w.r.t. R̂(t−1) and not R. Note
that the set of faces of R̂(t−1) can undergo considerable
changes compared to R. Consider for example a Type-2
instance (R,S). A deletion of an edge e laying on the
hole of R will incorporate another face f to be part of
the hole. Consider now an insertion update of an edge e′

which is internal to the face f . If the insertion update of e′

happened before the deletion of e, then e′ is a valid edge
update w.r.t. (R,S). Otherwise, if first e was deleted, and
only then e′ inserted, then e′ is part of the hole and is
not a valid edge update any longer (see Figure 4).

If an edge update is valid, we apply it to R̂(t−1) to obtain
R̂(t). Otherwise, we simply let R̂(t) be equal to R̂(t−1).

Note that every edge update is a valid edge update to the
root instance (G, ∅) of T (as G(t) has no holes with respect to
itself). Note also that being a valid edge update is “hereditary”:
if e is a valid edge update in R̂(t), then e is also a valid
edge update in all the ancestors of R̂(t) in T . We say that
an instance (R,S) is a minimal valid instance w.r.t an edge
update e, if e is a valid edge update w.r.t. (R,S), but not a
valid edge update w.r.t. any of its children (in particular if
(R,S) is Type-1). Note that a deletion of an edge e is a valid
w.r.t. all instances including e. On the other hand, consider an
edge update of inserting the edge e into a face f . As faces are
never duplicated in our framework, such an edge update can
have at most a single minimal instance.

Finally, for each instance (R,S), we also define Ŝ to be the
set obtained as the union of S and the portal sets of all strict
ancestor instances of (R,S) in T .

Given this definition of R̂ and Ŝ for every instance (R,S),
we can first give our update procedure to update the sets
PORTALS(R,S). This procedure is given in Algorithm 3 and
adds portals upon an edge update e to (G,T) as follows:

• For every minimal valid instance (R,S), we add the
endpoints of e as new portals to PORTALS(R,S).

• For every valid instance (R,S) of Type-2 or 3 (not
necessarily minimal), we will add some new portals to
ensure the stretch guarantee of the resulting emulators (as
distances might change). Consider the relevant path πuv

for the instance (the separator path for Type-2 instances,
and the shortest path between two holes for Type-3
instances). For each vertex z ∈ e = {a, b}, using
[48], [61] (see Lemma III.12) we will pick a set Pz of
O(1ε) new portals along πuv such that for every vertex
x ∈ π on the path, there is a nearby portal y ∈ Pz:
dR̂[π](y, x) ≤ ε · dR̂(x, z). Importantly, the set Pz is
computed w.r.t. the original instance R = RtR at the
initialization time (and not w.r.t. the current instance
R̂(t−1)). This is crucial as [48], [61] assumes π to be
a shortest path. The sets Pu ∪ Pv will be added as new
portals to PORTALS(R,S). The surprising part is that even
though we pick the portals w.r.t. a path π which might be
severely damaged, and no longer be a shortest path, this is
still good enough for the stretch guarantee. The reason, as
we will see later, is that if there has been another change
preventing us from using the new dedicated portals, then
this change, in turn, introduced new portals to take care
of this issue.

Finally, we monitor for every instance (R,S) ∈ T whether
R is close to R̂ and S is close to Ŝ. If the difference in
either set is too large, we delete (R,S) from T (along with
the subtree rooted at it) and then add in the same place,
the instance (R̂, Ŝ) which we then initialize using our static
procedure.

Before we move to the next section, we mention a subtle
but crucial point: we already sketched a proof that every edge
is only contained in O(log2 n) instances in T at any point in
time, which means that the above update procedure can be
implemented in Õ(1) time. But, equally crucial, we can also

e7

e1

e2

e3
e4

e5

e6

e8
e9 e10

e11

e12
e13

e14e15

Fig. 4: There are three holes encircled by green edges. The edges e1, e2, e3 are valid edge updates (insertion or deletion). The
edges e4, e5, e6 are invalid edges updates as they lay inside a hole. e7 is a valid edge update (deletion). The edge update of
inserting e8 here is somewhat tricky. If we first insert e8 and then delete e7, both updates are valid. From the other hand, if we
first delete e7, then the edges e9 to e15 become part of the hole. In particular, inserting e8 is no longer a valid edge update.

update within the same asymptotic time bounds all graphs R̂
and sets Ŝ. This uses that every vertex only occurs as a non-
terminal vertex in at most O(log2 n) instances, and thus only
has to be added to at most O(log2 n) sets Ŝ when added to
a portal set (recall that Ŝ is grown only by adding vertices to
one of its ancestors portal sets).

E. Emulator Construction and Maintenance: Size, Update
time, and Recourse

In this section, we discuss the construction and maintenance
procedure of the emulator (H,T) for (G,T). As previously
mentioned, the emulator is constructed in a bottom-up manner.
Here, we focus in particular on bounding the recourse caused
by each update to (G,T) as this is key to obtaining an efficient
emulator hierarchy which then allows us to glean off distances
efficiently.

a) Type-1 Emulators.: For a Type-1 instance (R,S), we
simply compute a 0-emulator (HR̂, Ŝ) on the graph R̂ with
terminals Ŝ. Using the algorithm from [52], we can obtain such
a 0-emulator with size O(|Ŝ|4) = O(|S|4) = polylog(n) in
O(|V (R)|·|Ŝ|) = O(|V (R)|·|S|) = Õ(|V (R)|) = Õ(nτ) time.
Whenever R̂ or Ŝ change, the emulator (HR, Ŝ) is computed
from scratch. The update (and computation) time is Õ(nτ),
while the recourse is polylog(n).

b) Type-2 Emulators.: Next, consider a Type-2 instance
(R,S) with children (R1, S1), (R2, S2) and a separator path
πuv duplicated in both child instances.3

We then build the emulator as the union of (HR̂1
, Ŝ1) and

(HR̂2
, Ŝ2) glued in the vertices Ŝ and additionally add all

edges added to R̂ since initialization time for which (R,S)

3At construction time, Type-2 instances will always have two children,
while Type-3 instances will have a single child. However, at re-computation
time, it might be that the instance became disconnected (due to edge
deletions), and as a result, might have more children. We will ignore these
cases in this overview.

was the minimal valid instance. This yields (HR̂, Ŝ). Figure 2
illustrates the high-level idea of the gluing procedure.

We show that the size of HR̂ at initialization time is |S| ·
polylog(n).4 By forcing a rebuild of (R,S) (i.e. removing
(R,S) from T and replacing it by (R̂, Ŝ)) once |Ŝ| = (1 +
Θ(1/ log2(n)))|S|, we can ensure that the size of HR̂ does not
increase beyond O(|S| · polylog |S|). The recourse is at most
polylogarithmic per update as can be established by induction
and the fact that Ŝ increases by at most O(log2 n/ϵ) vertices
per time step and since we can amortize the recourse when
rebuilding (R,S) over the many changes to Ŝ that it took in
the meantime.

Finally, we also point out that we rebuild (R,S) whenever R̂
underwent Θ̃(|S|) changes. Again, recourse can be amortized
for by updates, and this is in fact necessary as it upper bounds
the number of edges for which (R,S) is a minimal instance
by Õ(|S|) which in turn is necessary to bound the size of the
emulator.

c) Type-3 Emulators.: Next, consider a Type-3 instance
(R,S) with a single child3 (R′, S′) and a path πuv in R which
is duplicated in R′. In a similar fashion to Type-2 instances,
the emulator (HR̂, Ŝ) for (R̂, Ŝ) is obtained from the emulator
(H

R̂′ , Ŝ
′). Again, we rebuild only after many changes to Ŝ.

This yields an analogous analysis as for Type-2 emulators.
d) Type-4 Emulators.: Finally, we update the emu-

lator for Type-4 instances trivially: given a Type-4 in-
stance (R,S) with children (R1, S1), (R2, S2), . . . , (Rk, Sk),
we simply take (HR̂, Ŝ) to be the union of emulators

4The subtree of T rooted at (R,S) is a full binary tree of depth
ℓ = O(log |S|), where the leaves are Type-1 instances, each with at most
k = log10 n terminals. We can give each terminal (1 + O(logn

k·ε))ℓ ·
k3 = polylog(n) coins. At height i in T , each terminal should have
(1+O(logn

k·ε))i ·k3 coins, then we create O(logn
ε

) new portals along the path
π and there are enough coins to give the new terminals and the remaining
ones. Eventually in the leaves each terminal will have k3 coins which are
enough to pay for the |S|4 size emulator.

(HR̂1
, Ŝ1), (HR̂2

, Ŝ2), . . . , (HR̂k
, Ŝk) and the set of edges that

were inserted and for which R was the minimal valid instance.
Again, we rebuild (R,S) when R̂ underwent many changes.

The analysis is similar to Type-2 instances and therefore
omitted.

F. Stretch analysis

Consider an instance (R,S) ∈ T at time t ≥ tR. R̂(t)

denotes the graph at time t, which is R when we taking
into account also all the valid edge updates. Ŝ(t) denotes the
set of terminals in R̂(t), these are portals inherited from the
parent (original and new). Denote by U

(t)
R the subset of R̂(t)

vertices that been incident to any edge update since tR, or to
vertices that became new terminals (that is Ŝ(t) \ S ⊆ U

(t)
R).

Initially U
(tR)
R = ∅. Let H

(t)
R denote the emulator of R̂(t).

Suppose that (R,S) is at height ℓ in T . We will argue
that H(t)

R has stretch (1 + O(ε))ℓ w.r.t. Ŝ(t) ∪ U (t). That is:
∀u, v ∈ Ŝ(t) ∪U (t), dR̂(t)(u, v) ≤ d

H
(t)
R

(u, v) ≤ (1+O(ε))ℓ ·
dR̂(t)(u, v). In particular, the emulator H

(t)
G of G will have

stretch (1 + ε)O(logn). Later we will reduce the stretch by
scaling ε appropriately.

The proof is by induction on the height in T . The base case
is Type-1 instances, where the stretch is indeed 1, as we use
0-emulators (and all the vertices in Ŝ(t) ∪ U (t) are portals).
The proof for Type-4 instances is quite straightforward and we
will discuss it briefly at the end. Type-2-3 instances are more
challenging and lay in the heart of our analysis. We will focus
on Type-2 instances in our discussion here. Consider a Type-2
instance (R̂(t), Ŝ(t)) at height ℓ in T . At initialization time
tR, we chose a separator path π, and used it to create child
instances (R1, S1), (R2, S2), where π been part of their hole.
In addition, we chose a set Pπ of portals along π that became
terminals in R1, R2. As the algorithm progressed, R added
more portals along π. We denote by P

(t)
π the set of portals

on π added by R up to time t. Note that P (t)
π ∩ (V (R̂

(t)
1) ∩

V (R̂
(t)
2)) ⊆ Ŝ

(t)
1 ∩Ŝ

(t)
1 . The following invariant is always kept:

Invariant. For every vertex x ∈ S ∪ U
(t)
R and y ∈ π

on the separator, there is a portal y′ ∈ P
(t)
π such that

dR̂(t)[π](y, y
′) ≤ ε · dR̂(t)(x, y).

In words, the invariant ensures us that there is always a
portal y′ ∈ P

(t)
π such that the induced shortest path from y to

y′, that is the shortest path using only original π edges, is of
length at most ε · dR̂(t)(x, y). Note that the invariant holds for
all the vertices in Ŝ(t), as Ŝ(t)\S ⊆ U

(t)
R . At initialization time

tR, Pπ is chosen exactly so that the invariant will hold (w.r.t.
S, as U

(tR)
R = ∅). The fact that such a set Pπ of O(logn

ε)
portals even exist is one of the key contributions of [14]. We
argue that the invariant is maintained after each edge update by
induction on the time steps. Suppose that the invariant holds
in R̂(t−1), and consider the edge update e = {u, v} received
at time t. Consider x ∈ S ∪ U

(t)
R and y ∈ π.

We first assume that x is not an endpoint of e, and that e is
valid w.r.t. R̂(t−1) (in particular x ∈ (S ∪U (t−1)

R). Denote by

y′ ∈ P
(t−1)
π the portal fulfilling the invariant in R̂(t−1), that

is dR̂(t−1)[π](y, y
′) ≤ ε · dR̂(t−1)(x, y). There are several cases

to consider:

• Suppose that e is an edge deletion, and that e does not
lay on π. The path from y to y′ along π is still a part of
R̂(t), while the distance from x to y could only grow as
a result of the deletion. Thus the invariant still holds.

• Suppose that e is an edge deletion, and that e lays on π.
If e does not lay on the π-path from y to y′, then clearly,
as in the first case, the invariant still holds. Otherwise, e
lays on the π-path from y to y′. Let u ∈ e be the closer
vertex to y on this path. Then clearly, as u joins P (t)

π , the
invariant still holds: dR̂(t)[π](y, u) ≤ dR̂(t−1)[π](y, y

′) ≤
ε · dR̂(t−1)(x, y) ≤ ε · dR̂(t)(x, y) (the distance from x to
y might only increased).

• Suppose that e is an edge insertion, and the shortest x−y
path in R̂(t) remain unchanged. Clearly, the distance still
holds.

• Suppose that e = {u, v} is an edge insertion, and the
shortest x − y path in R̂(t) changed. Denote by Qx,y

the new x − y shortest path in R̂(t). Necessarily Qx,y

goes though e. Suppose w.l.o.g. that Qx,y goes from x
to u, then to v and from there to y. As a result of this
edge update, we added to P

(t)
π a new set of portals Qv .

This set of portals is added w.r.t. the original instance
(R,S) and insures that for every vertex z ∈ π, there is
a portal z′ ∈ Pv such that dR[π](z, z

′) ≤ ε · dR(v, z).
In particular, for our y ∈ π there is yv ∈ Pv such that
dR[π](y, yv) ≤ ε · dR(v, y). If the path along π from y to
yv remain unchanged, and the length of the shortest path
from v to y remain unchanged (or only increased) in R̂(t)

(compared with R), then it holds that dR̂(t)[π](y, yv) ≤
ε · dR(v, y) ≤ ε · dR̂(t)(v, y) ≤ ε · dR̂(t)(x, y). Otherwise,
there are two cases to consider:

– dR̂(t)(v, y) < dR(v, y): The length of the shortest
path from v to y decreased in R̂(t) (compared with
R). Then this path must go through a vertex v′ which
been incident to some edge update. In particular v′ ∈
U

(t−1)
R . By induction there is a portal yv′ ∈ P

(t−1)
π ⊆

P
(t)
π such that dR̂(t)[π](y, yv′) = dR̂(t−1)[π](y, yv′) ≤

ε · dR̂(t−1)(v′, y) = ε · dR̂(t)(v′, y) ≤ ε · dR̂(t)(x, y).
– dR̂(t)(v, y) ≥ dR(v, y) and some edges along the

sub-path of π from y to yv have been deleted. Let u
be the closest endpoint to y of a deleted edge on the
sub-path of π from y to yv . As necessarily u ∈ P

(t)
π ,

it follows that dR̂(t)[π](y, u) ≤ dR[π](y, yv) ≤ ε ·
dR(v, y) = ε · dR̂(t)(v, y) ≤ ε · dR̂(t)(x, y).

Finally, there are the cases where x ∈ U
(t)
R is incident to

the new updated edge, or when e is an invalid edge update
w.r.t. R̂(t−1) (but still might introduce new terminals). These
cases are treated in a similar fashion to the cases we discussed
above, and we will skip them in this overview.

Next we consider the emulator H
(t)
R . H(t)

R contains all the
edges (and vertices) of both H

(t)
R1

, H
(t)
R2

. Further, the vertices

Ŝ(t), P
(t)
π , Ŝ

(t)
1 , Ŝ

(t)
2 , U

(t)
R are all in H

(t)
R (of course, some of

them are identified with each other). This includes vertices in
U

(t)
R which are not portals in either of R̂(t), R̂

(t)
1 , R̂

(t)
2 . This

follows as such vertices will eventually be a terminals in some
decedent of (R,S) in T , and thus by induction will be part
of H(t)

R .

Induction Hypothesis. Consider an instance (R, T) at height
ℓ in T , then at any time t ≥ tR. Then for every u, v ∈ Ŝ

(t)
i ∪

U
(t)
Ri

, dR̂(t)(u, v) ≤ d
H

(t)
R

(u, v) ≤ (1 +O(ε))ℓ−1 · dR̂(t)(u, v).

We will assume that the hypothesis holds in H
(t)
Ri

(for i ∈
{1, 2}) w.r.t. set Ŝ(t)

i ∪U
(t)
Ri

= Ŝ
(t)
i ∪ (U

(t)
R ∩ R̂

(t)
i), and stretch

(1+O(ε))ℓ−1, and prove it for H(t)
R . Consider a pair of vertices

u, v ∈ Ŝ(t) ∪ U
(t)
R , and let Qu,v be a shortest u − v path in

R̂(t). We can assume that Qu,v does not contain any vertices
from Ŝ(t)∪U (t)

R (other than u, v). Otherwise, if Qu,v contains
another vertex z ∈ Ŝ(t)∪U (t)

R , then by induction on the number
of hops in Qu,v (that is number of edges), it holds that

d
H

(t)
R

(u, v) ≤ d
H

(t)
R

(u, z) + d
H

(t)
R

(z, v)

≤ (1 +O(ε))ℓ ·
(
dR̂(t)(u, z) + dR̂(t)(z, v)

)
= (1 +O(ε))ℓ · dR̂(t)(u, v).

Suppose first that Qu,v contains an edge e that been added to
R̂(t) such that R was a minimal valid instance. The endpoints
of e belong to U

(t)
R . As we assumed that u, v are the only

vertices on Qu,v that can belong to U
(t)
R , it follows that Qu,v

is simply the edge e = {u, v}. Note that in this case e ∈ H
(t)
R ,

and thus d
H

(t)
R

(u, v) = dR̂(t)(u, v), and we are done. We thus
can assume that Qu,v does not contain any edges not in R =
R̂(tR).

If the path Qu,v is fully contained in either R̂
(t)
i (for

i ∈ {1, 2}), then using the induction hypothesis d
H

(t)
R

(u, v) ≤
d
H

(t)
Ri

(u, v) = (1 + O(ε))ℓ−1 · d
R

(t)
i
(u, v) = (1 + O(ε))ℓ−1 ·

dR̂(t)(u, v). We thus can assume that Qu,v is not fully con-
tained in either R̂(t)

1 , R̂
(t)
2 .

The path Qu,v can be broken into consecutive sub-paths
Q1, Q2, . . . , Qm, where Qj is a path from xj−1 to xj , and is
a maximal internal path in R̂

(t)
ij

(for ij ∈ {1, 2}). The path is
maximal in the sense that the next edge along Qu,v after xj

does not belong to R̂
(t)
ij

. See Figure 5 for illustration. Note
that the values of {ij}mj=1 are alternating between odd and
even indices. As we assume that Qu,v is fully contained in
R = R̂(tR), it must be the case that all of x1, x2, . . . , xm−1

lay on π. There are two cases to consider:

• Sub-path Qj for j ∈ {1,m}. Consider Q1, which is a
path from x0 ∈ Ŝ(t) ∪U (t)

R to x1 which lays on π. Q1 is
internal to R̂

(t)
i1

. In this case, according to the invariant,
there is a portal y1 ∈ P

(t)
π such that dR̂(t)[π](y1, x1) ≤

ε · dR̂(t)(x0, x1) = ε · d
R̂

(t)
i1

(x0, x1). Using the induction

hypothesis,

d
H

(t)
R

(x0, y1) ≤ d
H

(t)
Ri1

(x0, y1)

≤ (1 +O(ε))ℓ−1 · d
R

(t)
i1

(x0, y1)

≤ (1 +O(ε))ℓ−1 ·
(
dR̂(t)(x0, x1) + dR[π](x1, y1)

)
.

Similarly, we can find a portal ỹm−1 ∈ P
(t)
π such

that dR̂(t)[π](ỹm−1, xm−1) ≤ ε · d
R̂

(t)
im

(xm−1, xm)

and d
H

(t)
R

(ỹm−1, xm) ≤ (1 + O(ε))ℓ−1 ·(
dR̂(t)(xm−1, xm) + dR̂(t)[π](ỹm−1, xm−1)

)
.

• Sub-path Qj for j ∈ {2, . . . ,m− 1} (if any). Here both
endpoints xj−1, xj lay on π. As we assumed that Qu,v

is fully contained in R = R̂(tR), it cannot be the case
that Qj is simply the consecutive path from xj−1 to xj

along π. This is, as otherwise Qj−1 would not have been
a maximal internal path (as Qj−1 ◦ Qj would‘ve been
longer internal path). As π is a shortest path in R, and Qj

is fully contained in R, it must be the case that wR(Qj) ≥
dR[π](xj−1, xj). As Qj is a shortest path in R̂(t), some
edges along the sub-path of π from xj−1 to xj have been
deleted in R̂(t). Let ej = {zj , z′j} be the closest (to xj

w.r.t. π) deleted edge on the sub-path of π from xj to
xj−1. Let zj be the closer (w.r.t. π) endpoint to xj . Note
that zj ∈ U

(t)
R , and that the sub-path of π from zj to xj is

fully contained in R̂(t). By the invariant, there is a portal
yj ∈ P

(t)
π such that

dR̂(t)[π](xj , yj) ≤ ε · dR̂(t)(xj , zj) ≤ ε · dR̂(t)[π](xj , zj)

leε · dR[π](xj−1, xj) ≤ ε · dR̂(t)(xj−1, xj)

Similarly, we can argue that there is a portal ỹj−1 ∈
P

(t)
π such that dR̂(t)[π](xj−1, ỹj−1) ≤ ε · dR̂(t)(xj−1, xj).

Using the induction hypothesis it holds that

d
H

(t)
R

(ỹj−1, yj) ≤ d
H

(t)
Rij

(ỹj−1, yj)

≤ (1 +O(ε))ℓ−1 · d
R̂

(t)
ij

(ỹj−1, yj)

≤ (1 +O(ε))ℓ−1 ·
(
dR̂(t)[π](ỹj−1, xj−1) + d

R̂
(t)
ij

(xj−1, xj)

+ dR̂(t)[π](xj , yj)
)
.

Concatenating all the obtain paths in the emulator we conclude

d
H

(t)
R

(u, v) ≤ d
H

(t)
R

(x0, y1)

+

m−1∑
j=2

(
d
H

(t)
R

(yj−1, ỹj−1) + dR̂(t)[π](ỹj−1, yj)
)

+ dR̂(t)[π](ỹm−1, ym−1) + d
H

(t)
R

(ym−1, xm)

≤ (1 +O(ε))ℓ−1

(
m∑
j=2

dR̂(t)(xj−1, xj)

+O(ε) ·
m∑
j=2

dR̂(t)(xj−1, xj)

)

x0 x1

x2

x3

x4x5

Fig. 5: Illustration of the stretch argument. The red x denote deleted edges. The path Qu,v , which is illustrated by a dashed
orange line, is the shortest path in R̂(t) from u = x0 to v = x5. Here x0 ∈ Ŝ

(t)
i is a portal, while x5 ∈ U

(t)
Ri

is incident to an
updated edge. We assume that no other vertex along Qu,v belong to this union Ŝ

(t)
i ∪ U

(t)
Ri

. We partition Qu,v into maximal
sub-paths such that Q1, Q3, Q5 are contained in R̂

(t)
1 , and Q2, Q4 are contained in R̂

(t)
1 . We first use the invariant to show

that we can route through portals on the separator path π, and then use the induction hypothesis to show that the stretch of
the emulator between consecutive portals is small.

= (1 +O(ε))ℓ ·
m∑
j=2

dR̂(t)(xj−1, xj)

= (1 +O(ε))ℓ · dR̂(t)(x0, xm) .

where the second inequality holds as dR̂(t)[π](yj , ỹj) ≤
dR̂(t)[π](yj , xj) + dR̂(t)[π](xj , ỹj) ≤ ε ·(
dR̂(t)(xj−1, xj) + dR̂(t)(xj , xj+1)

)
.

This finishes the stretch argument for Type-2 instances.
The analysis of Type-3 instances is somewhat similar and we
will skip it. The proof for a Type-4 instance (R̂(t), Ŝ(t)) is
straightforward and much easier. Here (R̂(t), Ŝ(t)) is parti-
tioned into instances (R̂

(t)
1 , , Ŝ

(t)
1), . . . , (R̂

(t)
q , , Ŝ

(t)
q) where all

the boundary vertices of the children are portals in (R̂(t), Ŝ(t)),
and terminals in the respective children. This property also
holds after arbitrary updates. Consider a pair of terminals
u, v ∈ S, with shortest path Qu,v . If Qu,v is internal to
some (R̂

(t)
i , Ŝ

(t)
i), then the stretch of u, v is guaranteed by

induction. Otherwise, the path Qu,v can be broken into sub-
paths Q1, Q2, . . . , Qm where each Qj is internal to some
instance (R̂

(t)
i , Ŝ

(t)
i). Note that the endpoints of each such sub-

path Qj are in Ŝ
(t)
i , and thus the stretch between the endpoints

of Qj is guaranteed by induction. Overall, we can concatenate
all the obtained sub-paths and bound the stretch. Note that
actually the stretch does not increased here.

III. PRELIMINARIES

We omit technical proofs of the theorems, lemmas and
claims from the conference version of the paper. Interested
readers can find the detailed analysis in the full version of
this paper.

a) Graphs.: For any graph H , we denote by E(H) the
edge set of H , let V (H) be the vertex set of H which we

always take to consist of the endpoints of the edges, and let
wH be the weight function of H , that maps each edge in H
to a positive real.

In this paper, we work with multigraphs, where each edge
is identified by its two endpoints and a unique identifier.
However, we sometimes abuse notation and write e = {u, v}
for an edge e, where u, v are the endpoints of e omitting the
identifier. We also sometimes write e ∈ H to imply e ∈ E(H)
and v ∈ H to imply v ∈ V (H) when the context is clear.

We assume all (multi-)graphs in the rest of this paper to
be planar and assume all weights to be reals in [1, n4] (via a
standard reduction which multiplies the runtime by O(logW),
we can handle arbitrary weights in [1,W]). We let H ′ ⊆ H
be a subgraph of H meaning that E(H ′) ⊆ E(H). For graph
H and E′ ⊆ E(H) and V ′ ⊆ V , we denote by H[E′] the
edge-induced graph and by H[V ′] the vertex-induced graph,
both with the obvious underlying embedding obtained from
the embedding of H .

b) Distances And Shortest Paths.: For any graph H ,
we denote the distance between vertices u, v ∈ V (H) by
distH(u, v). From [26], it is well-known that one can com-
pute/maintain a set of extended weights over paths in H such
that taking the lexicographically shortest path πuv from u to v
in H with respect to the real weight of the path and then the
extended weight ensures uniqueness of πuv and preserves the
subpath property, i.e. for every vertices x, y ∈ πuv , we have
that πuv[x, y] is the lexicographically shortest path from x to
y.

c) Embeddings.: Throughout the paper, we assume that
each planar graph is given with a fixed embedding into
the plane. More precisely, our algorithm implicitly maintains
a combinatorial embedding (also referred to as a rotation
system).

To define a combinatorial embedding of a graph H , we
introduce the notion of darts E(H)×{±1}. Assign the vertices
arbitrary distinct labels from the positive integers. We use e+

and e− as short-hands for (e,+1) and (e,−1) for edge e =
{u, v} ∈ E(H), define rev(e+) = e− and rev(e−) = e+ and
define the tail tail(e+) to be the vertex among u, v with smaller
label and by head head(e+) the vertex with a larger label. We
define tail(e−) = head(e+) and head(e−) = tail(e+). We say
u and v are the endpoints of e, e+ and e−. We sometimes
write uv to denote the dart d ∈ {e+, e−} that is oriented from
vertex u to v, i.e. u = tail(d) and v = head(d) (this again
abuses notation slightly since we allow for multi-edges).

A combinatorial embedding EH is a permutation of the set
of darts whose orbits have a one-to-one mapping with V .
More precisely, for each orbit associated with v ∈ V (H), the
restriction of EH to that orbit, denoted EH |v, is a permutation
cycle. The permutation cycle for v specifies how the darts
with head v are arranged around v in the embedding (in, say,
counter-clockwise order).

d) Holes.: Given a graph H
and a connected subgraph H ′ ⊆
H . We call a face f in the em-
bedding of H ′ a hole with respect
to H if f is not a face in H . We
denote by h(H ′, H) the collection
of holes of H ′ with respect to H .
Note that we only talk about holes
when considering connected sub-
graphs of H ′ of H , so that each
hole is a cycle. We say that H ′

is an h-hole graph w.r.t. H if H ′

has at most h holes w.r.t H . We often write one-hole graph
in lieu of 1-hole graph. See the illustration on the right of a
4-hole graph H ′. The edges of H ′ that are incident to a hole
are colored blue while the edges of H ′ that are not are colored
black. Edges in H but not in H ′ are colored grey.

For h ∈ h(H ′, H), we denote by H \ h the graph
H after removing all edges and vertices that are in (the
image of) h. This generalizes straightforwardly to define
H \{h1, h2, . . . , hk} = ((((H \h1)\h2) . . .)\hk). We define
the image of a graph H ′ w.r.t H to be the region H\h(H ′, H).

e) Paths and Cycles.: A path P is an
ordered alternating collection of vertices and darts
⟨v0, d0, v1, d1, . . . , vk, dk, vk+1⟩ where for each 0 ≤ i ≤ k,
we have vi = tail(di), vi+1 = head(di). We say that
P = ⟨v0, d0, v1, d1, . . . , vk, dk, vk+1⟩ is a cycle if v0 = vk+1.
We define rev(P) = ⟨vk+1, rev(dk), vk, . . . , v1, rev(d0), v0⟩,
tail(P) = v0 and head(P) = vk+1. For P, P ′ with
head(P) = tail(P ′), we let P ◦ P ′ be the concatenation of
P and P ′. If P is a path with k darts, we let P [i, j] for
0 ≤ i ≤ j ≤ k denote the segment of P from the i-th vertex
to its j-th vertex. We say a segment P [i, j] is internal to P if
0 < i ≤ j < k. For a cycle C, we also allow for j ≤ i, with
the obvious meaning of segment C[i, j] in this case.

While our notation for paths is non-standard, it is necessary
to formally distinguish multi-edges and to allow for trivial

segments consisting only of a single vertex. We assume in this
article that all paths, however, are non-trivial, only segments
might not be. We often abuse notation and write either P =
⟨d0, d1, . . . , dk⟩ or P = ⟨v0, v1, . . . , vk+1⟩ when the context
is clear. We say that a path P is simple if no vertex appears
twice on the path, and say that a cycle P is simple if all but
the first/last vertex appear only once and the first/last vertex
appears exactly twice.

vu

x

w

f) Left and Right Order.:
Consider a vertex v ∈ V (H) with
dart uv, and darts vw and vx. We
say that vx is to the left of vw
w.r.t. uv if xv occurs strictly between wv and uv in the
counter-clockwise order of elements in the orbit E|v. See the
illustration to the right. Similarly, vx is to the right of vw w.r.t.
uv if xv occurs strictly between uv and wv in the counter
clockwise order.

d1 d2 d3

e1 e2 e3 e4

e5e6e7e8

P
For any simple path P =
⟨d0, d1, . . . , dk⟩ in H , and a dart
d in H with tail(d) = tail(di) for
some 0 ≤ i ≤ k, then we say
that d emanates left (right) of P
if i = 0 or if d is to the left (right) of the dart di with respect
to the dart di−1. For example, in the figure on the right, e3
and e4 emanate to the left of P , e5 and e6 emanate to the
right of P , while e1, e2, e7, e8 emanate both to the right and
to the left of P . If P = ⟨d1, d2, . . . , dk⟩ is a simple cycle, we
say dart d in H , with tail(d) = tail(di) for some 1 ≤ i ≤ k,
emanates left (right) of P if d is to the left (right) of the dart
di with respect to the dart d(i−1) mod (k+1).

vi vi+1 vi+2 vi+3 P ′

Again
for
simple
path P = ⟨v0, d0, v1, d1, . . . , vk, dk, vk+1⟩, consider a path/
cycle P ′ such that P [i, j] is a segment of P that also appears
on P ′. We say that P [i, j] is left (right) of P ′ if either

• i = j and therefore P [i, j] is the empty path containing
only a single vertex, or

• the i-th vertex is the tail of P or the tail of P ′ and P ′ is
not a cycle, and the (j − 1)-th dart d is left (right) of P ′

(like the purple path on the right), or
• for both the (i−2)-th dart d′ and the (j−1)-th dart d, we

have rev(d′) and d are left (right) of P ′ (like the green
path on the right).

Note that we treat the special case where the segment is trivial
separately and can therefore use our definitions for non-trivial
paths.

Definition III.1 (Crossing Paths). We say for any simple paths
P, P ′ that P is crossing P ′ if one of the following occurs:

• There is a segment of P [i, j] of P with P [i, j] ⊆ P ′ that
is neither left nor right to P ′.

• if there is a segment of P [i, j] of P with P [i, j] ⊆ rev(P ′)
that is neither left nor right to rev(P ′).

• if the endpoints of P appear as internal vertices on P ′

or vice versa.

Since the relation is symmetric, we also say that P, P ′ are
crossing; otherwise, say that they are non-crossing.

g) Path-Collections with Planarity-Preserving Properties
under Contraction.: It is not difficult to verify the following
fact.

Fact III.2 (Slicing Along Path). Given the graph H and a path
P . Let H ′ be the graph obtained by slicing along the path P
by duplicating each edge (associated with a dart) and internal
vertex on P , and let P ′ be this copy of P . We then can find a
planar embedding of H ′ where the first dart of P ′ appears just
after the first dart of P in the orbit of E around the first vertex
of P and P ′, and each edge with a dart appearing to the left
of P in H has its endpoint re-mapped to the corresponding
copied vertex on P ′. Thus P ◦ rev(P ′) forms a face in this
new embedding. See Figure 6 for illustration. This embedding
of H ′ can be computed in time O(|P |).

Given a collection of simple paths P in H , we let MH [P]
be the graph over the endpoints of all paths in P , de-
noted V(P), where the edge set consists of an edge e =
{tail(P), head(P)} for each path P ∈ P of weight wH(P).
Next, we prove the following crucial fact.

Fact III.3. Consider a planar graph H , and let P be a
collection of simple, pairwise non-crossing paths in H . Then
MH [P] is a planar graph.

h) Instances.: A planar, undirected graph H and a subset
of vertices T ⊆ V (H) also referred to as terminals form an
instance (H,T) to our algorithm. Given a graph H and an
instance (H ′, T) with H ′ ⊆ H , we say that (H ′, T) is an h-
hole instance w.r.t. H if H ′ is an h-hole graph w.r.t. H and
every terminal in T is incident to a hole.

i) Dynamic Graphs.: The focus of this paper is on
dynamic graphs, that is a graph H that undergoes a sequence
of (batches of) edge insertions/ deletions. We also implicitly
allow for vertex insertions/ deletions by removing a vertex
from a graph if it is isolated and by allowing insertions of
edges with endpoints not yet in the graph. We assume that
an edge that is deleted at some point is not added again
to the graph at a later point (since we allow for multi-
edges this still allows for inserting an edge between the
same endpoints, however, the edge has to have a different
identifier). We denote by H(t) the graph H after the first t
update batches have been applied to H and similarly, we let
E(t) denote the corresponding rotation system after t update
batches. In particular, H(0) is the initial graph and E(0) the
initial embedding. More generally, we let x(t) be the value of
any variable x just after the algorithm completes processing
the t-th update batch to H .

In this paper, we only allow for updates that ensure that
the resulting graph is still connected, respect the current
embedding of H and require each update to encode not only
the changes to the current H but also the changes to the
rotation system E . Here, we enforce that the graph is connected
in order to keep the embedding unambiguous.

More precisely, initially, H(0) has an embedding in the
plane represented by the rotation system E(0). Consider now
the t-th update batch, assuming inductively that H(t−1) has
an embedding in the plane represented by the rotation system
E(t−1) are valid graph and embedding. Consider first that the
t-th update batch consists of exactly one update. Then, if the
update is a deletion of an edge e, the encoding of the update
consists of {e, E(t−1)(e,−1), E(t−1)(e,+1)} which allows to
quickly delete the edge e from H(t−1) and to remove the
darts (e,−1) and (e,+1) from their orbits. Inserting an edge
e can be encoded by {e, d−, d+} where d− is the dart such
that (e,−1) is to the right of d− in the new embedding, and
(e,+1) is to the right of d+ (if the vertex did not exist before
and is therefore incident only to e then it is straight-forward
to add the darts).

We note that from our description of the update (batch)
encodings, the encoding of each update takes O(1) words of
space, and we can additionally maintain the graph H and its
rotation system with worst-case update and query time O(1)
(and initialization time O(n)).

j) Emulators.: In this paper, we define emulators as
follows.

Definition III.4. Given an instance (G,T). We say that a
collection of (pairwise) non-crossing paths P in G induces an
ϵ-emulator (MH [P], T) of (G,T) if T ⊆ V (P) and for any
u, v ∈ T

distG(u, v) ≤ distMH [P](u, v) ≤ (1 + ε) · distG(u, v).

We use the following crucial theorem that appears in [53].

Theorem III.5 ([40], [53]). Given an instance (G,T),
there is a deterministic algorithm QUARTICEMULATOR(G,T)
that runs in time O(|T |n) and returns a collection of
O(|T |4) internally-disjoint paths P that induce an 0-emulator
(MH [P], T).

k) Dynamic Instance.: Given a tuple (H,T) where H
is a dynamic graph and T is a set of vertices that undergoes
batches of insertions/ deletions of vertices such that at any time
T ⊆ V (H), then we say that (H,T) is a dynamic instance.
We define (H,T)(t) = (H(t), T (t)). Again, we let x(t) be
the value of any variable x just after the algorithm completed
processing the t-th update batch to (H,T).

Theorem III.6 (see [42]). Given a graph G, there is a
procedure FINDBRIDGES(G) that returns the set of all bridges
in G in time O(n+m).

l) Divisions and Separators.: For any set X ⊆ V (H), we
denote by ∂HX the set of vertices in X that have a neighbor in
V (H)\X in H . We often write ∂X in place of ∂HX when the
context is clear, and refer to it as the boundary of X . Using a
classic result by Lipton, we can recursively partition our input
graph while balancing different parameters. Here, we state a
result implicitly obtained by [50].

Theorem III.7 (see [50]). Given a simple planar graph G
and a subgraph H ⊆ G with holes h0, h1, . . . , hℓ with respect

H H ′

P P

P ′

Fig. 6: Illustration of the slicing operation.

to G. Then, there is an algorithm PARTITION(G,H) that
returns O(1) edge induced subgraphs H0 = H[E0], H1 =
H[E1], . . . ,Hk = H[Ek] where E1, E2, . . . , Ek partition the
edge set E(H) such that for each 0 ≤ i ≤ k, we have

• |V (Hi)| ≤ 3
4 |V (H)|+ CBoundary ·

√
|V (H)|, and

• |∂GHi| ≤ 3
4 |∂GH| + CBoundary ·

√
|V (H)| for some

small constant CBoundary , and
• Hi is incident to at most 3

4ℓ+4 holes with respect to G.

Additionally, it guarantees that
∑

i |∂GHi| ≤ |∂GH| +
CBoundary ·

√
|V (H)|. The algorithm runs in time O(|V (H)|).

Additionally, we also use shortest-path separators. Here, we
generalize a notion introduced in [15].

Definition III.8. Given a graph G, we say an edge e ∈ E(G)
is a bridge if the number of connected components in G \ e is
strictly larger than the number of connected components G.

Definition III.9. Given an instance (G,T) where G is con-
nected. Then, we say that a pair u, v ∈ V (f∞(G)) is c-
balanced for 1

2 ≤ c < 1, if each connected component of
f∞(G)\{u, v} contains at most a c-fraction of the vertices in
T . We also say that the (lexicographically) shortest uv-path
πuv is a c-balanced shortest path separator.

Theorem III.10. Given an instance (G,T) where G is an
n-vertex graph, there is an O(n) time algorithm that finds a
11
12 -balanced pair u, v ∈ V (f∞(G)) such that at least one of
the following holds:

1) the lexicographically shortest uv-path πuv does not
contain a bridge edge of G.

2) there is an edge e = (u, v) ∈ E(G) such that e is a
bridge.

m) Covers.: In this paper, we use multiplicative ε-Path-
Covers.

Definition III.11 (Multiplicative ε-Cover.). Given an instance
(G,T) and a shortest uv-path πuv for vertices u, v ∈ V .
We say that a set of vertices C ⊆ V (πuv) is an ε-cover for
T if for any vertices t ∈ T, p ∈ πuv \ {t}, we have that
minc∈C distπuv

(c, p) ≤ ε · distG(t, p).

In other words, an ε cover of T is a set of vertices C, such
that for every vertices t ∈ T, p ∈ πuv \ {t}, there is a portal
C ∈ C on πu,v at distance ε · distG(t, c) from p. Note that

the shortest path from T to p that goes through c has weight
at most distG(p, t)+2 ·distG(p, c) ≤ (1+2ε) ·distG(t, p).

Lemma III.12 (see Section 3.1, [48]). Given an instance
(G,T) and a (lexicographically) shortest uv-path πuv for
vertices u, v ∈ V , and some parameter ϵ > 0. Then, there is an
algorithm SOURCEPATHPORTALS(G, πuv, T, ϵ) that returns
an ε-cover for T of size at most O(|T |/ϵ). The algorithm
runs in time O(n|T |).

Given a one-hole instance (R,S), we define
PORTALSALONGPATH(R, πuv, δ, L) procedure of computing
portal set along the shortest path between c-balanced pair of
vertices u, v ∈ V (f∞) with parameters δ, L from [15] which
can be described as follows: for each i = 1, 2, . . . , L

1) Add argminw∈πuv
distπuv

(x,w) ≤ exp(−i · δ) to the
portal set, for x ∈ {u, v},

2) Add argmaxw∈πuv
distπuv

(x,w) ≥ exp(−i · δ) to the
portal set, for x ∈ {u, v}.

The total number of portals in the path separator πuv is
bounded by C · log n/δ for some constant C > 0 since the
length of any path is bounded by O(n5) because all the edge
weights belong to [1, n4].

Due to [15], let T = PORTALSALONGPATH(R, πuv, S ∪
{u, v}, ϵ) for graph R such that S lies on the outer face of R
and πuv c-balanced separator of R w.r.t. S then T induces an
ϵ cover for S on path πuv such that |T | = C

ϵ · log n.

IV. AN EMULATOR HIERARCHY

The main technical result of this article is the following
theorem that allows us to maintain a much smaller emulator
of an instance with very small recourse.

Theorem IV.1. Given a dynamic instance (G,T), a size
parameter n that upper bounds the number of vertices in G
at any time and with G having all its weights at all times in
[1, n4], the guarantee that T is of size at most 2 at any time, a
target parameter 1 ≤ τ ≤ n

log(n) , and a precision parameter
0 < ϵ < 1.

Then, there is a deterministic algorithm that maintains
explicitly a collection of paths P in G such that P induces an
ϵ-emulator (MG[P], T) of (G,T) such that

• Emulator Size: at any time, |P| = Õ(
√
nτ/ϵ2), and

• Emulator Recourse: each update batch B to (G,T) can
be processed such that the amortized number of paths
deleted and added to P is at most Õ(|B|/ϵ2), and

• Update Time: each update batch B to (G,T) can be
processed in amortized time Õ

(
|B| n

ϵ2τ

)
.

The algorithm takes initialization time Õ(n/ϵ2).

To obtain Theorem I.1, we will only require the terminal set
T to consist of two vertices {s, t} at any given time in order
to run queries for the distance from s to t on the much smaller
graph MG[P]. While we could set τ to be very small, even
near-constant, which makes this graph very small as well, this
would result in an enormous update time of Ω(n) per update.
We, therefore, set τ much larger and run multiple instances of
Theorem IV.1 recursively on each other to reduce the size of
the emulator.

We defer the proof sketch of Theorem IV.1 to Section V and
complete this section by sketching the proof of Theorem I.1
precise.

Henceforth, we let csize denote the hidden polylogarithmic
factor in the emulator size bound stated by Theorem IV.1,
i.e. we have at all times that the path collection P that is
maintained is of size at most csize ·

√
nτ/ϵ2. We analogously

define crec to be the hidden polylogarithmic factor in the
emulator recourse stated by Theorem IV.1, i.e. we have that
processing any batch B of updates to the current instance
results in at most crec · |B|/ϵ2 recourse in the number of paths
P and thus emulator MG[P].

a) An Emulator Hierarchy.: Let us now describe our
emulator hierarchy. We let k = log2/3 n (where we assume
w.l.o.g. that k is integer), and define δ = 2log

2/3 n. In our
algorithm, we denote by (G,T), where T is initially empty,
the instance obtained from interleaving the update sequence
of G such that whenever the adversary issues a query for the
approximate distance between two vertices s, t ∈ V (G), the
instance (G,T) simulates this query by adding s and t to the
set T , then extracts the distance estimate and finally removes
s and t from T again.

Given this encoding of the updates, we let (H1 =
G,T), (H2, T), . . . , (Hk, T) be a hierarchy of emulators that
are maintained by our algorithm such that for each 1 ≤ i < k,
we let the instance (Hi+1 = MHi [Pi], T) be the emulator
produced by running the algorithm from Theorem IV.1 on the

instance (Hi, T) with size parameter nHi = n ·
(

2csize
ϵ2

√
δ

)i−1

,
target parameter τi = nHi

/δ and precision parameter ϵ.

Now, whenever the adversary issues a query for the approx-
imate distance between two vertices s, t, we take the graph
Hk at the time where (G,T) has G being equal to the current
graph and T = {s, t}. We then run Dijkstra’s algorithm from
s to find the exact distance from s to t on Hk. We return this
distance as the estimate for the distance from s to t in the
current graph G.

Given the set of parameters, we complete the proof The-
orem I.1 using standard induction argument due to Theo-
rem IV.1. We omit the details of the full analysis here and
refer interested readers to the full version of the paper.

V. EMULATOR MAINTENANCE

In this section, we give the key technical components and
algorithms which leads to the proof of Theorem IV.1 which is
our main technical contribution.

Here, we focus on the case where each update batch consists
of a single update. It is not hard to see that this is without
loss of generality. In this section, we focus on the algorithm
to maintain the emulator and omit the technical details of the
proofs the main theorem due to space constraints. We refer the
interested readers to the full version of the paper for detailed
technical analysis.

A. High-Level Overview

The key to our algorithm is a decomposition of the input
graph G into small pieces. Here, we decompose the graph
G recursively into smaller and smaller pieces until every
piece is sufficiently small. To keep track of the recursive
decomposition, we maintain a decomposition tree T where
each node is associated with a static instance (R,S). As all
nodes correspond to instances, we use the words interchange-
ably. Here by static, we mean that the instance (R,S) is not
dynamic but instead refers to the graph R and the vertex set
S as it was when the node was added to T . The root node of
T consists of the instance (G, ∅) where G is the initial input
graph and each internal node (R,S) ∈ T has its children being
instances whose graphs (roughly) partition R.

Given a decomposition tree T , we then suggest an emulator
that is built in a bottom-up fashion from the tree T . We show in
fact, that the changes that we make to T as the graph G evolves
over time only cause very few changes to the emulator induced
by T . Further, we can efficiently compute all of these changes.
This yields an algorithm with polylogarithmic recourse in the
emulator and subpolynomial update time.

We next describe how to initialize the decomposition tree
T on the input graph G, or rather the instance (G, ∅). We
then discuss an update algorithm to maintain T , essentially
by cleverly rebuilding subtrees of T . Finally, we define how
this decomposition tree induces an emulator.

We then analyze these algorithms in the full version of this
paper which turn out to be highly non-trivial.

B. Initialization of the Decomposition Tree

a) Creating the Decomposition Tree.: We initialize our
decomposition tree by running Algorithm 1. It creates the
rooted decomposition tree T with a single root node corre-
sponding to the initial input instance (although we remove the
terminal set T for the technical reason that the terminals do
not appear on holes of the instance since G has not holes w.r.t.
itself).

To conclude our initialization procedure, we finally invoke
the procedure INITIALIZEINSTANCE(·) on the root node. This
procedure recursively constructs the decomposition tree.

b) Initializing Instances (Recursively).: The procedure
INITIALIZEINSTANCE(·) implemented by Algorithm 2 is the
workhorse behind our algorithm. It takes an instance (R,S)
and a time t where R is a subgraph of G at time t. We first

Algorithm 1: INITIALIZE()

1: Create a rooted decomposition tree T with root node
(G, ∅).

2: INITIALIZEINSTANCE((G, ∅), 0).

give a high-level description of the algorithm and then discuss
implementation details.

At a high level, the procedure initializes each instance
(R,S) by creating a portal set PORTALS(R,S) (see Line 9).
These portal sets will later help us to gather the necessary
information for creating the emulator from T as they describe
for each instance (R,S) the change to S since the creation
of the instance (R,S). It then verifies whether (R,S) is an
instance such that R and S are very small in which case it
determines that (R,S) should become a leaf node in T and
returns (see Line 10). Otherwise, it decomposes (R,S) into
smaller instances, adds each of these instances as children of
(R,S) to T , and then recursively initializes each of these child
instances (see Line 43).

Here we glossed over two major points: firstly, if (R,S) is
such that R is not connected, we are in a degenerate case.
In this case, we simply find the connected components of
R and then remove (R,S) in T and add instances induced
on the connected components as children to (R,S)’s former
parent (see the if-statement starting in Algorithm 1). Finally,
we initialize each of the newly created instances.

Otherwise, we have that (R,S) has R being a connected
graph and thus it is non-degenerate. Thus, we initialize its
portal set PORTALS(R,S) (see Line 9) and set it to be equal
to S, the set of terminal vertices on the instance. So far, we
have only discussed in detail the case where R and S are both
small in which case we decide that (R,S) should become a
leaf in T and thus return (see Line 10). We also say that
(R,S) is of Type-1. If (R,S) is not of Type-1, however,
we decompose (R,S) further by adding children instances to
(R,S) in T . Here, we need to carefully decompose (R,S)
to make our algorithm efficient. Therefore, we label instance
(R,S) as Type-2,3, or 4; based on this labeling, we then chose
a decomposition strategy that produces new instances that are
taken to be the children of (R,S) and on which we then again
recurse.

In our algorithm, we enforce that along any root-to-leaf path
in T , the Type-on the instances is monotonically decreasing.
That is the instances higher up in the tree are mostly of Type-
4, then we have some instances that are of Type-3, some of
Type-2, and finally, all leaves are of Type-1.

c) Decomposing Instances by Type.: Here, we define
the Type-4 nodes (see Line 36) such that the decomposition
formed by the subtree of T consisting only of Type-4 nodes
roughly corresponds to an r-division for r = n

τ . Recall that
an r-division is an edge partition such that each graph in this
partition has size at most r, the sum of boundary nodes is at
most O(n/

√
r) and each graph in the partition set has at most

O(1) holes w.r.t. G.
Once each graph is sufficiently small, i.e. of size O(n/τ),

we label it Type-3 (see Line 27) if it is incident to multiple
holes. Type-3 instances (R,S) are then decomposed by finding
a shortest path πuv between two vertices on different holes and
slicing the graph open along this path by copying the vertices
on it to obtain a new graph R′ that has at least one hole
less than the instance (R,S). Note that we also need to apply
the slicing operation to the graph that we compare to when
defining holes. Formally, let us make the following definition.

Now, when talking about holes, we always refer to holes
w.r.t. graph G. It is not hard to verify that R′ has exactly one
hole less w.r.t. G(R′,S′) than R w.r.t. G. Note that G might
now contain multiple copies of a single edge in G. However,
since we enforce that Type-4 nodes only have O(1) holes, we
can establish that this results in at most O(1) copies of each
edge in G in any graph G.

Once an instance (R,S) has R of small size, i.e. O(n/τ),
and R is only incident to a single hole, but we still have
that S of size larger cCutOff , we label (R,S) as Type-2 (see
Line 13). Here our decomposition strategy uses a balanced
shortest path separator w.r.t. S. The separator ensures that the
two child instances created to (R,S) are one-face instances,
and the number of terminal vertices in these instances is at
most a constant fraction of |S| while also the total number
of all terminal vertices in child instances is not much larger
than |S|. For technical reasons, we cannot allow for the child
instances to contain multiple copies of an edge that is a
bridge edge in R. However, we can either find a shortest path
separator πuv that does not contain a single bridge edge, or
we can identify a single bridge edge whose removal yields a
good separator.

As previously mentioned, as soon as additionally the size
of set S in instance (R,S) drops below cCutOff , we label it
Type-1 (see Line 10) and keep it as a leaf.

We note that the above discussion is slightly vague with the
exact threshold for the size of R, labeling it Type-4 or below.
This is for a technical issue: we want to enforce monotonicity
of instance types along root-to-leaf paths in T , i.e. walking
along such a path, one might find an instance (R,S) that has
size smaller n/τ and be labeled Type-2 or 3 depending on
the number of holes. But when such a node (R,S) is further
decomposed, its children do not properly partition the graph
R but instead, vertices on the shortest path separator might
appear twice. This might cause the child instance(s) of (R,S)
to have graph size slightly larger than n/τ again. However, as
we show later, none of these nodes can ever have size larger
than O(n/τ).

C. Updating Information in the Decomposition Tree

Next, we discuss how to update the decomposition tree T
after every adversarial update to G. Before we can describe
our algorithm, we require some basic definitions that formalize
how instances (R,S) evolve dynamically (we keep instances
(R,S) in T to be static but we need to maintain a graph R̂(t)

that simulates edge updates to G up until time on R if they
apply).

Algorithm 2: INITIALIZEINSTANCE((R,S), t)

1: if R is not a connected graph then
2: Remove (R,S) from the tree T .
3: for connected component C in R do
4: Add instance (R[C], S ∩ C) as a child of (R′, S′)

(patent of (R,S)) to T .
5: INITIALIZEINSTANCE((R[C], S ∩ C), t).
6: end for
7: return
8: end if
9: PORTALS(R,S) ← S.

10: if |R| < n
τ and |S| ≤ cCutOff

def

:= log10(n) then
11: return ,
12: end if
13: if parent instance is of Type-2-3 and (R,S) is a one-hole

instance or |R| < n
τ and (R,S) is a one-hole instance

w.r.t. G(R,S) then
14: Let u, v ∈ f∞(R) be 11

12 -balanced w.r.t. S (Theo-
rem III.10)

15: if πuv does not contain a bridge edge then
16: Let R1, R2 be the (non-empty) regions of R formed

by πuv and the hole f∞(R).
17: P ← PORTALSALONGPATH(R, πuv, S ∪ {u, v}, ϵ′).
18: PORTALS(R,S) ← PORTALS(R,S) ∪ P.
19: end if
20: if πuv is a bridge edge e then
21: PORTALS(R,S) ← PORTALS(R,S) ∪ {u, v}.
22: Let C and C ′ be the connected components of R\{e}
23: Let R1 ← R[C] ∪ {e} and R2 ← R[C ′].
24: end if
25: Add instances (Ri, PORTALS(R,S) ∩Ri) for i = 1, 2 as

a child of (R,S) to T .
26: end if
27: if parent instance is of Type-3 or |R| < n

τ then
28: Let h0, h1, . . . , hℓ consist of the holes of R w.r.t.

G(R,S).
29: Let πuv be the shortest path between the closest holes

h, h′with v ∈ V (h) and u ∈ V (h′).
30: PORTALS(R,S) ← PORTALS(R,S) ∪

SOURCEPATHPORTALS(R, πuv, S,
ϵ′

h).
31: Let eu be the first edge when walking from u in clock-

wise order along h;
32: Let ev be the first edge when walking from v in anti-

clock-wise order along h′.
33: Let R′ be the graph obtained by slicing up R along

eu ⊕ πuv ⊕ ev .
34: Let S′ be the PORTALS(R,S) and all its copies.
35: end if
36: if Otherwise then
37: Invoke Theorem III.7 on R to obtain the subgraphs

R0, R1, . . . , Rk.
38: for i ∈ [0, k] do
39: Add the node (Ri, (S ∪ ∂GRi) ∩ V (Ri)) to T as a

child of (R,S).
40: end for
41: end if
42: for child (R′, S′) of (R,S) in T do
43: INITIALIZEINSTANCE((R′, S′), t).
44: end for

Definition V.1 (Evolving (Sub-)graphs). Given a static graph
R and a dynamic graph H such that at some time tR, we have
R ⊆ G(t). Then, we recursively define for each t ≥ tR, the
graph R̂(t) as follows:

• we let R̂(tR) = R, and
• for t > tR, we define R̂(t) to be the graph obtained from

applying the t-th update to G(t−1) to the graph R̂(t−1)

if either
– the t-th update to G(t−1) is an edge deletion of an

edge in R̂(t−1) then we remove the edge and all its
copies from R̂(t−1), or

– the t-th update to G(t) is an edge insertion of an
edge e and there exists a connected component C in
R̂(t−1) and a non-hole face f in R̂(t−1)[C], i.e. a
face f that is not in h(R̂(t−1)[C], G(t−1)), such that
the image of e is contained in the image of f and at
least one of the endpoints of e is in C.

Otherwise, we let R̂(t) = R̂(t−1). If R̂(t) ̸= R̂(t−1), we
say that the edge e that is updated in the t-th update is
a valid edge update to R̂(t−1). When the time t is clear,
we also use R̂ to denote R̂(t).

a) Updating Information in the Decomposition Tree.:
We next describe the algorithm to update all information
pertaining to T that we need to detect which parts of T
to rebuild and that are useful when constructing the induced
emulator. We give our algorithm in Algorithm 3.

Algorithm 3: UPDATEINFORMATION(t)

1: Let e = (x, y) be the edge updated at time t in G.
2: for (R,S) ∈ T where e ∈ E(R̂) and e /∈ E(R̂i) for all

(Ri, Si) ∈ Ch(R,S) do
3: PORTALS(R,S) ← PORTALS(R,S) ∪ {x, y}.
4: end for
5: for (R,S) ∈ T of Type-2-3 where e is a valid edge update

to R̂(t−1) do
6: Let π be the shortest path in R that was

computed when the children of (R,S)
were instantiated in Line 16 or Line 29 of
Algorithm 2. PORTALS(R,S) ← PORTALS(R,S) ∪(

SOURCEPATHPORTALS(R, π, {x, y}, ϵ′) ∩ R̂
)

.
7: end for

The algorithm updates the portal sets of affected instances.
In particular, there are two types of being affected for an
instance: if (R,S) (or rather R̂(t−1)) undergoes an edge
insertion but none of its children do, then (R,S) is responsible
for the new edge e in our algorithm. We therefore need to
add the endpoints x, y of the inserted edge e to the portal
set of (R,S). The second Type-of being affected is when
(R,S) is of Type-2 or 3 and the updated edge is a valid edge
update to R̂(t−1). While in this case, child instances still might
contain the edge, we need to compute additional portals on
the shortest-path separator that we used to decompose (R,S)
further, which ensures that portals close to the endpoints of e
are added to these separators.

D. Updating the Decomposition Tree

Finally, we show how to use the updated information to
adjust the decomposition tree T . We have already discussed
that for instance (R,S) ∈ T that we denote by R̂ the graph
obtained from simulating relevant updates to G on R (see
Definition V.1). In this section, we also have to look at how
the set of terminals S evolves. We denote by Ŝ the dynamic
set of vertices that are terminals for R̂. Thus, (R̂, Ŝ) denotes
the instance that is evolving from (R,S) ∈ T .

Let us now define Ŝ formally. This is rather straight-
forward: we want the original vertices of S in Ŝ as long as
they still appear in R̂. And additionally, if a strict ancestor
(R′, S′) of (R,S) in the decomposition tree T places a new
portal into PORTALS(R′,S′) and this portal appears in R̂, then
it should be added to the terminal set Ŝ. We give the following
formal definition.

Definition V.2. At any time, for any instance (R,S) ∈ T , we
define

Ŝ = (S ∩ V (R̂))∪ ⋃
(R′,S′) is a strict ancestor of (R,S)

PORTALS(R′,S′) ∩ V (R̂)

The goal of our procedure to update the decomposition

tree is to ensure that for any instance (R,S) in T , we have
that R and R̂ do not differ in too many edges, and that
Ŝ \S remains much smaller than S. This will ensure that our
recursion depth remains bounded by O(log n) which is crucial
for our algorithm. If either of these assumptions is violated,
we remove the subtree of T rooted at (R,S), denoted by
T [(R,S)], and then add (R̂, Ŝ) as a child to (R,S)’s former
parent and run the initialization procedure (see Algorithm 1)
on this instance.

For convenience, we also define sets ANCPORTALS(R,S)

and STRICTANCPORTALS(R,S) where the latter one is just
Ŝ \ S, while the former one also contains the portal set of
(R,S) itself. For technical reasons, we have to work with the
former set, however, in the algorithm’s analysis, we use both
of these definitions heavily.

Definition V.3. At any time, for any instance (R,S) ∈ T , we
define

ANCPORTALS(R,S) := (Ŝ ∪ (PORTALS(R,S) ∩ V (R̂))) \ S
STRICTANCPORTALS(R,S) := Ŝ \ S.

It is easy to make the following observation which we
exploit later in the analysis.

Observation V.4. At any time, for any instance (R,S) ∈ T
with parent (R′, S′), we have (ANCPORTALS(R′,S′)∩V (R̂))\
S = STRICTANCPORTALS(R,S).

Algorithm 4: UPDATEDECOMPOSITIONTREE(t)

for (R,S) ∈ T where |E(R̂) ∆ E(R)| ≥ |V (R)| ·
√

τ
n do

Replace the sub-tree T [(R,S)] by (R̂, Ŝ) (if it is the root,
then it stays the root).
INITIALIZEINSTANCE((R̂, Ŝ), t).

end for
for (R,S) ∈ T where (R,S) is of Type-2-3 and
|ANCPORTALS(R,S)| + |P trivial

(R,S)| >
1

12 log2 n
|S| or (R,S)

is of Type-4 and |ANCPORTALS(R,S)| + |P trivial
(R,S)| >

√
τ
n ·

|V (R)| do
Replace the sub-tree T [(R,S)] by (R̂, Ŝ) (if it is the root,
then it stays the root).
INITIALIZEINSTANCE((R̂, Ŝ), t).

end for

Finally, we can give the pseudo-code for our update pro-
cedure of the decomposition tree (see Algorithm 4). Again,
it either replaces an instance (R,S) by (R̂, Ŝ) due to R̂
diverging too much from R (see the foreach-statement starting
in Line 1), or if the set of ancestor portals ANCPORTALS(R,S)

grows too large which intuitively implies that Ŝ diverges
heavily from S (see the foreach-statement starting in Line 1).

E. Initializing the Induced Planar Emulator

Recall that the main goal of our algorithm is to maintain a
set of paths P that are non-crossing in a graph G̃ obtained from
recursively performing slicing operations in G (see Fact III.2).
We first describe how we define the set of paths P . We then
define the graph G̃ which naturally arises in the process.

In our algorithm, we obtain the collection of paths P
bottom-up from the decomposition tree T . We therefore asso-
ciate with each instance (R,S) ∈ T an associated set of paths
P(R,S). We then define P = P(G,∅).

We define these collections as follows.
a) Type-1 Path Collection.: For every instance (R,S) ∈

T of Type-1, we let P(R,S) be the set of non-crossing paths
obtained via the algorithm from Theorem III.5 w.r.t Ŝ on graph
R̂.

b) Type-2 Path Collection.: For every instance (R,S) ∈
T of Type-2, let (R1, S1), (R2, S2), . . . , (Rk, Sk) be the chil-
dren of (R,S) in T . As we prove in the full version, we main-
tain that R̂ is a one-hole instance and that f∞(R̂) ⊇ f∞(R),
i.e. the hole of the evolved graph R̂ contains the hole of the
original graph R of the instance. We further have for children
(R̂i, Ŝi) that

• R̂i ⊆ R̂,
• (R̂i, Ŝi) is a one-hole instance and in every graph R̂j for

j ̸= i, we have that the interior of R̂j is contained in the
hole f∞(R̂i) (here the interior of R̂j is defined to be the
interior of the complement of the closed region f∞(R̂j)),

• all paths in P(Ri,Si) are in the complement of f∞(R̂i)
(Induction and Theorem III.5),

• MG[P(Ri,Si)] preserves the distances between vertices in
Ŝi approximately.

Fig. 7: Illustration of Slicing Procedure of a Type-2 instance (R,S) with child (Ri, Si). All figures show in light grey the
graph R̂ and in dark grey the graph R̂i[C] for some connected component C in R̂i. Vertices of Ŝi are red, and all other vertices
are black. In a) we show the graph R̂ before the slicing procedure, we have the cycle enclosing the hole of R̂i[C] in blue. In
b) we show the graph obtained from performing the slicing procedure for R̂i[C] and have in lilac all edges that were added
during the slicing procedure. In c) we give a path P from P(Ri,Si) that is contained in R̂i[C]. In d), we show how the path
P is re-mapped into the graph after the slicing procedure and we have that this new path is added to P(R,S).

Then, we obtain P(R,S) by the following procedure (see also
Figure 7): for every 1 ≤ i ≤ k, and connected component C
of R̂i where C ∩ Ŝi is of size at least two, we partition the
cycle that encloses the hole f∞(R̂i[C]) into maximal paths
P1, P2, . . . , Pk that contain no internal vertex in Ŝi (note that
we prove that all vertices in Ŝi∩C are on f∞(R̂i[C]) in the full
version). Then, we slice along these paths P1, P2, . . . , Pk, such
that the newly added paths are all added to be in the interior
R̂i. Finally, for every path P ∈ P(Ri,Si) that is contained in
R̂i[C], we add to P(R,S) the path obtained from mapping P
into the new graph where every edge on P that appears on
some path Pj is mapped to the corresponding copy on the path
P ′
j that is in the interior of R̂i[C]. We point out that all slicing

procedures can be performed independently, i.e. they do not
affect each other and the outcome is not altered by applying
them in different order.

Finally, we add for each edge e ∈ E(R̂)\(E(R̂1)∪E(R̂2)∪
. . . E(R̂k)), a trivial path consisting just of the edge e to
P(R,S). We denote these trivial paths as P trivial

(R,S).
Note that the above slicing procedure ensures that the paths

in P(R,S) are non-crossing. That is because each R̂i[C] with at
least two vertices in Ŝi on f∞(R̂i) has that P(Ri,Si) contains
for every vertex s ∈ Ŝi at least one path that starts or
ends in s, otherwise distances between these vertices could

not be approximately preserved since R̂i[C] is connected by
definition. But note that by the definition of non-crossing
shortest paths, we have that this implies that no vertex in
Ŝi ∩ C being internal to any path in P(Ri,Si). It remains to
observe that the process of re-mapping paths from P(Ri,Si)

into the graph obtained from slicing retains the property that
these paths are pairwise non-crossing in P(R,S). And no vertex
on the hole f∞(R̂i[C]) for any connected component C in R̂i

contains any vertex that is internal to any path in P(R,S) that
is obtained from re-mapping a path from P(Ri,Si). Thus, any
two paths in P(R,S) that are from different graphs R̂i[C] and
R̂j [C

′] where i, j not necessarily distinct if C and C ′ aren’t,
intersect at most in their endpoints. Thus, P(R,S) is again a
collection of non-crossing paths.

c) Type-3 Path Collection.: For every instance (R,S) ∈
T of Type-3, let (R1, S1), . . . , (Rk, Sk) be the children of
(R,S) in T .

Recall that when (R,S) is initialized, due to being of Type-
3, it adds to T only a single child (R′, S′) that is obtained
from slicing R along a shortest path πuv between two holes
of R (see the statement starting in Line 27 of Algorithm 1 and
also Figure 1 for an illustration).

Since the update algorithm (see Algorithm 3) only replaces
children (R′, S′) by themselves before calling the procedure

INITIALIZEINSTANCE(·) (see Algorithm 1), we have that for
all children of (R,S), we have that the graphs of its children
instances, i.e. R1, R2, . . . , Rk, are edge-disjoint except for
the edges on the shortest path that was used to slice R to
obtain R′ which appear at most twice across all such graphs.
And since S1, S2, . . . , Sk are supersets of the set S induced
on R1, R2, . . . , Rk respectively, we have for every instance
(Ri, Si), and every connected component C in R̂i with at least
two vertices in Ŝi ∩C, that no paths P in collection P(Ri,Si)

that is in R̂[C] has any of the vertices in Ŝ ∪ PORTALS(R,S)

as an internal vertex.
Thus, we take P(R,S) to consist of all paths from any

collection P(Ri,Si) that is contained in a connected component
with at least two vertices in Ŝ. And finally, we add for each
edge e ∈ E(R̂) \ (E(R̂1)∪E(R̂2)∪ . . . E(R̂k)), a trivial path
consisting just of the edge e to P(R,S). We denote these trivial
paths as P trivial

(R,S).
By our former reasoning, we have that P(R,S) is a collection

of non-crossing paths.
d) Type-4 Path Collection.: Finally, for

any instance (R,S) of Type-4 with children
(R1, S1), (R2, S2), . . . , (Rk, Sk), we take P(R,S) to consist
of all paths in P(Ri,Si) for all i where Ŝi is of size at least
2, and again the collection of trivial paths that contains for
every e ∈ E(R̂) \ (E(R̂1) ∪ E(R̂2) ∪ . . . E(R̂k)), a trivial
path consisting just of the edge e to P(R,S). We denote these
trivial paths as P trivial

(R,S).
This is again a collection of non-crossing paths as the

graphs R̂1, R̂2, . . . , R̂k and the collection of edges not in
any of these paths are all edge-disjoint. Further, all boundary
vertices between these graphs are shown to be in Ŝi for every
i, and thus all paths in P(Ri,Si) cannot have any vertex in
Ŝ ∪ PORTALS(R,S) as an internal vertex.

e) The graph G̃.: Finally, we also need to maintain the
graph G̃ that contains all paths in our final path collection
P(G,∅). But note that we can simply take G̃ as the union of
all edges on any such path. Here, the role of G̃ is to clarify
the embedding of the edges on paths, however, the embedding
is already clear from the above definitions.

F. Maintaining Induced Planar Emulators Efficiently

Both initialization and maintenance of our planar emulator
induced by collection P(G,∅) is rather straightforward: we run
a bottom-up algorithm over the nodes of T and construct each
path collection as described above. After every update, we
identify the nodes in T that were changed at the current time
or where information was changed at the current time. We then
re-compute the path collection in a bottom-up fashion over the
affected nodes and their parents.

As we show in the analysis, the above algorithm is efficient
as every update can only change a few instances, and the
information maintained of few instances in every tree. Further,
Type-1, Type-2, and Type-3 nodes have instance graphs of
small size, and therefore re-computation is not too expensive.
For Type-4 nodes, we essentially take the union of path

collections of children which can be done efficiently as only
a few of these rather small collections change overall.

G. Adding the Terminal Set T to the Emulator

Note that the collection of paths P(G,∅) technically does not
preserve distances between any pair of vertices. However, after
initialization and processing every update, we run an additional
step that adds the vertices in T to the emulator to ensure that
the distances between vertices in T are preserved.

Therefore, we invoke Algorithm 5. This algorithm updates
the information at nodes in T similarly to how information is
updated by Algorithm 3. Our algorithm adds every terminal
t ∈ T to every portal set of an instance graph that contains t.
Finally, we update the induced planar emulator and the path
collection P(G,∅) based on this new information (note that we
do not rebuild any parts of T).

Algorithm 5: ADDTERMINALS()

1: for t ∈ T do
2: for (R,S) ∈ T where t ∈ V (R̂) but t /∈ S do
3: PORTALS(R,S) ← PORTALS(R,S) ∪ {t}.
4: end for
5: for (R,S) ∈ T of Type-2-3 where t ∈ V (R̂) do
6: Let π be the shortest path in R computed during

Line 16 or Line 29 of Algorithm 2.
7: PORTALS(R,S) ← PORTALS(R,S) ∪(

SOURCEPATHPORTALS(R, π, {t}, ϵ′) ∩ R̂
)

.
8: end for
9: end for

Finally, when the next update to G arrives, we first revert
the effect of the last invocation of ADDTERMINALS() also
on the emulator. Then, we process the update as discussed
above and finally again invoke ADDTERMINALS() to update
the emulator to preserve distances between terminals in T .
Clearly, the run-time and recourse of adding a terminal are
identical to that of the information update algorithm.

REFERENCES

[1] Faster algorithms for finding small edge cuts in planar graphs (extended
abstract). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and
John A. Ellis, editors, Proceedings of the 24th Annual ACM Symposium
on Theory of Computing, May 4-6, 1992, Victoria, British Columbia,
Canada, pages 229–240. ACM, 1992.

[2] Amir Abboud, Karl Bringmann, and Nick Fischer. Stronger 3-sum lower
bounds for approximate distance oracles via additive combinatorics. In
Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th
Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando,
FL, USA, June 20-23, 2023, pages 391–404. ACM, 2023.

[3] Amir Abboud, Karl Bringmann, Seri Khoury, and Or Zamir. Hardness
of approximation in p via short cycle removal: cycle detection, distance
oracles, and beyond. In Stefano Leonardi and Anupam Gupta, editors,
STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Com-
puting, Rome, Italy, June 20 - 24, 2022, pages 1487–1500. ACM, 2022.

[4] Amir Abboud and Søren Dahlgaard. Popular conjectures as a barrier
for dynamic planar graph algorithms. In IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,
Hyatt Regency, New Brunswick, New Jersey, USA, pages 477–486, 2016.

[5] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures
imply strong lower bounds for dynamic problems. In 55th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2014,
Philadelphia, PA, USA, October 18-21, 2014, pages 434–443, 2014.

[6] Ittai Abraham, Shiri Chechik, Daniel Delling, Andrew V. Goldberg,
and Renato F. Werneck. On dynamic approximate shortest paths for
planar graphs with worst-case costs. In Robert Krauthgamer, editor,
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016, pages 740–753. SIAM, 2016.

[7] Ittai Abraham, Shiri Chechik, and Cyril Gavoille. Fully dynamic
approximate distance oracles for planar graphs via forbidden-set distance
labels. In Howard J. Karloff and Toniann Pitassi, editors, Proceedings of
the 44th Symposium on Theory of Computing Conference, STOC 2012,
New York, NY, USA, May 19 - 22, 2012, pages 1199–1218. ACM, 2012.

[8] Ittai Abraham, Shiri Chechik, and Kunal Talwar. Fully dynamic all-
pairs shortest paths: Breaking the o(n) barrier. In APPROX-RANDOM,
volume 28 of LIPIcs, pages 1–16. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2014.

[9] Aaron Bernstein. Fully dynamic (2 + epsilon) approximate all-pairs
shortest paths with fast query and close to linear update time. In FOCS,
pages 693–702. IEEE Computer Society, 2009.

[10] Aaron Bernstein. Maintaining shortest paths under deletions in weighted
directed graphs. SIAM J. Comput., 45(2):548–574, 2016.

[11] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Sara-
nurak. Deterministic decremental sssp and approximate min-cost flow
in almost-linear time. arXiv preprint arXiv:2101.07149, 2021.

[12] Parinya Chalermsook, Jittat Fakcharoenphol, and Danupon Nanongkai.
A deterministic near-linear time algorithm for finding minimum cuts in
planar graphs. In J. Ian Munro, editor, Proceedings of the Fifteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004,
New Orleans, Louisiana, USA, January 11-14, 2004, pages 828–829.
SIAM, 2004.

[13] Hsien-Chih Chang, Jonathan Conroy, Hung Le, Lazar Milenkovic, Shay
Solomon, and Cuong Than. Resolving the steiner point removal problem
in planar graphs via shortcut partitions. CoRR, abs/2306.06235, 2023.

[14] Hsien-Chih Chang, Robert Krauthgamer, and Zihan Tan. Almost-linear
ε-emulators for planar graphs. In Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing, pages 1311–1324, 2022.

[15] Hsien-Chih Chang, Robert Krauthgamer, and Zihan Tan. Near-linear
ϵ-emulators for planar graphs. arXiv preprint arXiv:2206.10681, 2022.

[16] Hsien-Chih Chang and Tim Ophelders. Planar emulators for monge
matrices. In J. Mark Keil and Debajyoti Mondal, editors, Proceed-
ings of the 32nd Canadian Conference on Computational Geometry,
CCCG 2020, August 5-7, 2020, University of Saskatchewan, Saskatoon,
Saskatchewan, Canada, pages 141–147, 2020.

[17] Panagiotis Charalampopoulos, Paweł Gawrychowski, Shay Mozes, and
Oren Weimann. Almost optimal distance oracles for planar graphs. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, pages 138–151, 2019.

[18] Yun Kuen Cheung, Gramoz Goranci, and Monika Henzinger. Graph
minors for preserving terminal distances approximately - lower and
upper bounds. In ICALP, volume 55 of LIPIcs, pages 131:1–131:14.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[19] Julia Chuzhoy and Ruimin Zhang. A new deterministic algorithm for
fully dynamic all-pairs shortest paths. In Barna Saha and Rocco A.
Servedio, editors, Proceedings of the 55th Annual ACM Symposium on
Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023,
pages 1159–1172. ACM, 2023.

[20] Vincent Cohen-Addad, Søren Dahlgaard, and Christian Wulff-Nilsen.
Fast and compact exact distance oracle for planar graphs. In 2017 IEEE
58th Annual Symposium on Foundations of Computer Science (FOCS),
pages 962–973. IEEE, 2017.

[21] Ingemar J. Cox, Satish Rao, and Yu Zhong. ”ratio regions”: a technique
for image segmentation. In 13th International Conference on Pattern
Recognition, ICPR 1996, Vienna, Austria, 25-19 August, 1996, pages
557–564. IEEE Computer Society, 1996.

[22] Debarati Das, Maximilian Probst Gutenberg, and Christian Wulff-Nilsen.
A near-optimal offline algorithm for dynamic all-pairs shortest paths in
planar digraphs. In Joseph (Seffi) Naor and Niv Buchbinder, editors,
Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12,
2022, pages 3482–3495. SIAM, 2022.

[23] Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato Fon-
seca F. Werneck. Customizable route planning. In Panos M. Pardalos
and Steffen Rebennack, editors, Experimental Algorithms - 10th Interna-
tional Symposium, SEA 2011, Kolimpari, Chania, Crete, Greece, May

5-7, 2011. Proceedings, volume 6630 of Lecture Notes in Computer
Science, pages 376–387. Springer, 2011.

[24] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner.
Engineering route planning algorithms. In Jürgen Lerner, Dorothea
Wagner, and Katharina Anna Zweig, editors, Algorithmics of Large and
Complex Networks - Design, Analysis, and Simulation [DFG priority
program 1126], volume 5515 of Lecture Notes in Computer Science,
pages 117–139. Springer, 2009.

[25] Daniel Delling and Dorothea Wagner. Landmark-based routing in
dynamic graphs. In Camil Demetrescu, editor, Experimental Algorithms,
6th International Workshop, WEA 2007, Rome, Italy, June 6-8, 2007,
Proceedings, volume 4525 of Lecture Notes in Computer Science, pages
52–65. Springer, 2007.

[26] Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic
all pairs shortest paths. J. ACM, 51(6):968–992, 2004.

[27] Jittat Fakcharoenphol and Satish Rao. Planar graphs, negative weight
edges, shortest paths, and near linear time. J. Comput. Syst. Sci.,
72(5):868–889, 2006.

[28] Arnold Filtser. Steiner point removal with distortion o(log k) using the
relaxed-voronoi algorithm. SIAM J. Comput., 48(2):249–278, 2019.

[29] Arnold Filtser. Scattering and sparse partitions, and their applications.
In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th
International Colloquium on Automata, Languages, and Programming,
ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual Confer-
ence), volume 168 of LIPIcs, pages 47:1–47:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020.

[30] Sebastian Forster, Gramoz Goranci, and Monika Henzinger. Dynamic
maintenance of low-stretch probabilistic tree embeddings with applica-
tions. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1226–1245. SIAM, 2021.

[31] Sebastian Forster, Gramoz Goranci, Yasamin Nazari, and Antonis Skar-
latos. Bootstrapping dynamic distance oracles. In Inge Li Gørtz, Martin
Farach-Colton, Simon J. Puglisi, and Grzegorz Herman, editors, 31st
Annual European Symposium on Algorithms, ESA 2023, September 4-
6, 2023, Amsterdam, The Netherlands, volume 274 of LIPIcs, pages
50:1–50:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023.

[32] Viktor Fredslund-Hansen, Shay Mozes, and Christian Wulff-Nilsen.
Truly subquadratic exact distance oracles with constant query time
for planar graphs. In 32nd International Symposium on Algorithms
and Computation (ISAAC 2021). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2021.

[33] Pawel Gawrychowski and Adam Karczmarz. Improved bounds for
shortest paths in dense distance graphs. In Ioannis Chatzigiannakis,
Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors, 45th
International Colloquium on Automata, Languages, and Programming,
ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume 107
of LIPIcs, pages 61:1–61:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018.

[34] Davi Geiger, Alok Gupta, Luiz A. Costa, and John A. Vlontzos.
Dynamic programming for detecting, tracking, and matching deformable
contours. IEEE Trans. Pattern Anal. Mach. Intell., 17(3):294–302.

[35] Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vet-
ter. Exact routing in large road networks using contraction hierarchies.
Transportation Science, 46(3):388–404, 2012.

[36] Bernhard Haeupler, Yaowei Long, and Thatchaphol Saranurak. Dynamic
deterministic constant-approximate distance oracles with nϵ worst-case
update time. CoRR, abs/2402.18541, 2024.

[37] Refael Hassin and Donald B. Johnson. An o(n log2 n) algorithm
for maximum flow in undirected planar networks. SIAM J. Comput.,
14(3):612–624, 1985.

[38] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Dy-
namic approximate all-pairs shortest paths: Breaking the o(mn) barrier
and derandomization. SIAM J. Comput., 45(3):947–1006, 2016.

[39] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and
Thatchaphol Saranurak. Unifying and strengthening hardness for dy-
namic problems via the online matrix-vector multiplication conjecture.
In STOC, pages 21–30. ACM, 2015.

[40] Monika R Henzinger, Philip Klein, Satish Rao, and Sairam Subramanian.
Faster shortest-path algorithms for planar graphs. journal of computer
and system sciences, 55(1):3–23, 1997.

[41] Monika Rauch Henzinger, Philip N. Klein, Satish Rao, and Sairam
Subramanian. Faster shortest-path algorithms for planar graphs. J.
Comput. Syst. Sci., 55(1):3–23, 1997.

[42] John Hopcroft and Robert Tarjan. Algorithm 447: efficient algorithms
for graph manipulation. Communications of the ACM, 16(6):372–378,
1973.

[43] Alon Itai and Yossi Shiloach. Maximum flow in planar networks. SIAM
Journal on Computing, 8(2):135–150, 1979.

[44] Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian
Wulff-Nilsen. Improved algorithms for min cut and max flow in
undirected planar graphs. In Lance Fortnow and Salil P. Vadhan, editors,
Proceedings of the 43rd ACM Symposium on Theory of Computing,
STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 313–322. ACM,
2011.

[45] Haim Kaplan, Shay Mozes, Yahav Nussbaum, and Micha Sharir. Sub-
matrix maximum queries in monge matrices and partial monge matrices,
and their applications. ACM Trans. Algorithms, 13(2):26:1–26:42, 2017.

[46] Adam Karczmarz. Decrementai transitive closure and shortest paths for
planar digraphs and beyond. In Artur Czumaj, editor, Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 73–92.
SIAM, 2018.

[47] Valerie King. Fully dynamic algorithms for maintaining all-pairs shortest
paths and transitive closure in digraphs. In 40th Annual Symposium on
Foundations of Computer Science, FOCS ’99, 17-18 October, 1999, New
York, NY, USA, pages 81–91. IEEE Computer Society, 1999.

[48] Philip Klein. Preprocessing an undirected planar network to enable fast
approximate distance queries. In Proceedings of the thirteenth annual
ACM-SIAM Symposium on Discrete Algorithms, pages 820–827, 2002.

[49] Philip N. Klein. Multiple-source shortest paths in planar graphs. In
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2005, Vancouver, British Columbia, Canada, January
23-25, 2005, pages 146–155. SIAM, 2005.

[50] Philip N Klein, Shay Mozes, and Christian Sommer. Structured
recursive separator decompositions for planar graphs in linear time.
In Proceedings of the forty-fifth annual ACM symposium on Theory of
computing, pages 505–514, 2013.

[51] Philip N. Klein and Sairam Subramanian. A fully dynamic approx-
imation scheme for shortest paths in planar graphs. Algorithmica,
22(3):235–249, 1998.

[52] Robert Krauthgamer, Huy L. Nguyen, and Tamar Zondiner. Preserving
terminal distances using minors. SIAM J. Discrete Math., 28(1):127–
141, 2014.

[53] Robert Krauthgamer, Huy L Nguyen, and Tamar Zondiner. Preserving
terminal distances using minors. SIAM Journal on Discrete Mathematics,
28(1):127–141, 2014.

[54] Rasmus Kyng, Simon Meierhans, and Maximilian Probst Gutenberg. A
dynamic shortest paths toolbox: Low-congestion vertex sparsifiers and
their applications. CoRR, abs/2311.06402, 2023.

[55] Jakub Lacki and Piotr Sankowski. Min-cuts and shortest cycles in planar
graphs in o(n loglogn) time. In Camil Demetrescu and Magnús M.
Halldórsson, editors, Algorithms - ESA 2011 - 19th Annual European
Symposium, Saarbrücken, Germany, September 5-9, 2011. Proceedings,
volume 6942 of Lecture Notes in Computer Science, pages 155–166.
Springer, 2011.

[56] Hung Le and Christian Wulff-Nilsen. Optimal approximate distance
oracle for planar graphs. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 363–374. IEEE, 2022.

[57] Yaowei Long and Seth Pettie. Planar distance oracles with better time-
space tradeoffs. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2517–2537. SIAM, 2021.

[58] Gary L. Miller and Joseph Naor. Flow in planar graphs with multiple
sources and sinks. SIAM J. Comput., 24(5):1002–1017, 1995.

[59] Liam Roditty and Uri Zwick. Dynamic approximate all-pairs shortest
paths in undirected graphs. SIAM J. Comput., 41(3):670–683, 2012.

[60] Dominik Schultes and Peter Sanders. Dynamic highway-node routing.
In Camil Demetrescu, editor, Experimental Algorithms, 6th International
Workshop, WEA 2007, Rome, Italy, June 6-8, 2007, Proceedings, volume
4525 of Lecture Notes in Computer Science, pages 66–79. Springer,
2007.

[61] Mikkel Thorup. Compact oracles for reachability and approximate
distances in planar digraphs. J. ACM, 51(6):993–1024, 2004.

[62] Jan van den Brand, Sebastian Forster, and Yasamin Nazari. Fast
deterministic fully dynamic distance approximation. In 63rd IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2022,
Denver, CO, USA, October 31 - November 3, 2022, pages 1011–1022.
IEEE, 2022.

