
Python to Kubernetes: A Programming and
Resource Management Framework for Compute-

and Data-intensive Applications
Andrey Nagiyev

Faculty of Computer Science
University of Vienna

Vienna, Austria
andrey.nagiyev@univie.ac.at

Enes Bajrovic
Faculty of Computer Science

University of Vienna
Vienna, Austria

enes.bajrovic@univie.ac.at

Siegfried Benkner
Faculty of Computer Science

University of Vienna
Vienna, Austria

siegfried.benkner@univie.ac.at

Abstract—In this paper, we introduce the Python to Kuber-
netes (PTK) framework, a high-level Python-based program-
ming framework for deploying Python applications on top of
Kubernetes clusters. PTK supports a task-based programming
approach with extensions for specifying resource requirements
and performance constraints. A major goal of PTK is to provide
users with high-level control for deploying compute- and data-
intensive applications on different types and configurations of
heterogeneous clusters, while ensuring performance and/or cost
constraints.

Index Terms—compute-intensive applications, data-intensive
applications, task-based programming, resource management,
clustering, containerization

I. INTRODUCTION

Over the past decades, we have seen a sharp increase in
the complexity of computer architectures, mainly caused by
parallelism and heterogeneity. Moreover, we have observed
an ever-growing complexity of applications due to the need of
combining compute- and data-intensive tasks. As a result of
physical limits in the design of processor architectures, faster
computing systems can now only be achieved by increasing
the degree of parallelism and utilizing heterogeneous systems
with specialized processing units, such as GPUs or tensor
processing units, which can accelerate certain types of compu-
tations. In addition, we witness the emergence of a computing
continuum that encompasses systems at vastly different scales,
ranging from mobile devices to servers, supercomputers, and
cloud data centers [1], [2].

Alongside the dramatic developments in the performance of
computing systems, we observe a convergence of compute-
intensive and data-intensive applications. Examples include
scientific simulations tightly coupled with data analytics [3]–
[5], or machine learning (ML) pipelines that process massive
amounts of data to train large-scale neural networks.

The development of compute- and data-intensive applica-
tions for heterogeneous parallel systems is associated with
many challenges. Besides the challenge of parallel program-
ming, users also need to deal with intricate resource manage-
ment tasks, performance optimization, and portability issues.
Given the large spectrum of computer architectures, portability

of applications is a key issue, since ideally, an application
should be able to run (efficiently) across a range of different
architectures and systems. Users want to be able to develop
their applications on a small local system, while being able
to deploy the final application on large clusters or in the
cloud. When running an application in the cloud, users would
like to control the trade-off between performance/execution
time and cost. Additionally, users would like to seamlessly
utilize special hardware, e.g., GPUs, when they are available
in a system to accelerate certain performance-critical tasks in
their applications. Finally, users want to get rid of low-level
infrastructure management tasks as far as possible, which are,
however, often required when running applications on cloud-
provisioned or virtualized resources.

In this paper, we address the challenges associated with
the development of complex applications, and their execu-
tion across a diverse landscape of architectures by propos-
ing the Python-to-Kubernetes (PTK) framework. PTK is a
high-level programming framework that alleviates resource
management and the deployment of complex applications on
heterogeneous compute clusters. The PTK framework supports
the development of task-based applications with Python and
provides annotations that enable programmers to influence
resource management, and specify performance requirements
directly at the programming language level. It also facilitates
the integration of these annotations into existing codebases.
Behind the scenes, PTK relies on the widely-used Kubernetes
container orchestration framework to deploy Python appli-
cations on clusters, either on-premises or in the cloud. The
use of Kubernetes is transparent to the user, and all artifacts
(e.g., manifest files) required for Kubernetes are automatically
generated by PTK.

PTK facilitates the preparation of various deployment con-
figurations on either single or multiple nodes, whether in
cloud-based or on-premises infrastructures, while controlling
the use of specific hardware for specific program tasks. The
PTK framework provides users with high-level means required
for improving the portability, performance, and scalability of
compute- and data-intensive applications.



This paper provides the following contributions: (1) we pro-
pose the PTK framework, which automates the deployment of
Python programs on on-premises or cloud infrastructures using
the Kubernetes container orchestration framework; (2) we
propose a set of annotations for Python to enable programmers
to control how program tasks are mapped to containers and
Kubernetes Pods, allowing users to quickly experiment with
different deployment configurations; (3) we propose another
set of Python extensions for specifying resource constraints
and performance requirements, e.g., the number of CPUs or
GPUs to be used for a certain programming task, or the
maximum runtime of a task; (4) we develop a prototype
implementation of the PTK framework and perform initial
experiments on single cluster nodes with a real-world ML
application to demonstrate some of its capabilities.

The remainder of this paper is structured as follows. Section
II discusses related work. Section III introduces the PTK
programming framework from an end-user’s perspective, fo-
cusing on the programming support and Python annotations.
Section IV outlines the implementation of the PTK framework
and describes the generation of Kubernetes artifacts and the
deployment of applications. Section V reports on initial exper-
iments with an ML application for leaf classification. Finally,
Section VI concludes the paper and provides an outlook on
future work.

II. RELATED WORK

Challenges in efficiently utilizing resources, achieving scal-
ability, and reducing the costs of compute- and data-intensive
applications have led to the development of numerous tools
and frameworks. One of them is Kubernetes, an open-source,
widely used orchestrator that facilitates the deployment, main-
tenance, scaling, and portability of applications for various
cluster environments, e.g., cloud-based and on-premises [6]–
[8]. PTK uses Kubernetes’ smallest deployable unit — a Pod.
Pods allow for the use of different physical nodes and serve as
the encapsulating entity for a collection of containers, which
are packages with everything needed to run the code [9]–[11].

Using Kubernetes requires a lot of low-level infrastructure-
as-code (IaC) work, including defining storage solutions, cre-
ating images, managing resources, and configuring pod and
container communication. This low-level code is automatically
generated by PTK, which is one of its main benefits.

There are other tools based on Kubernetes, e.g., Kubeflow,
which is an open-source project that aims to simplify the
deployment of ML workflows on Kubernetes [12], [13]. It is
based on Python, like the PTK framework, and allows the
deployment of ML pipelines to the cloud. With a broader
spectrum of tools, it is a comprehensive solution for generating
ML models.

Martı́n et al. (2022) [14] proposed Kafka-ML, which allows
the deployment of ML models represented as workflows using
a combination of event-driven architecture and containeriza-
tion, closely related to the PTK framework. However, we
aim to work with cluster solutions using Python, whereas the

authors focus on a single-node solution with a user interface
representation for deployment.

An article presented by Balla et al. (2020) [15] deepened
our understanding of the processes involved in scaling con-
tainerized applications using Kubernetes. In their paper, the
authors introduced an adaptive technique and an application
that enables the system to automatically scale resources both
horizontally and vertically. Similarly, Shan et al. (2023) [16]
introduced an adaptive resource allocation scheme for con-
tainerized workflows aimed at improving resource utilization.

Another example tool is Faasm [17], a serverless platform
for running high-performance and portable serverless appli-
cations, allowing functions to share regions of memory with
low-latency concurrent access to data. This platform can be
deployed on Kubernetes, using its orchestration capabilities
for operating serverless functions.

III. PTK PROGRAMMING FRAMEWORK

In this section, we provide an overview of the PTK frame-
work, outline the concept of tasks and the proposed task-based
programming style, and introduce different Python annota-
tions for influencing the deployment configuration, including
resource and performance requirements and constraints.

A. Overview

Figure 1 provides a high-level overview of the PTK frame-
work. PTK takes as input a Python application with annota-
tions and generates all the artifacts required for deploying the
application on an existing Kubernetes cluster. The generated
artifacts include manifest files with various Kubernetes objects,
as well as Docker container images for the independent
execution environment of the tasks within the program. The
Kubernetes objects supported by PTK include Deployments
(the main block for deploying any application to the clus-
ter) and Volumes/Persistent Volume Claims (PVC) (storage
abstractions for retaining data).

Fig. 1. Overview of the Deployment Schema with the PTK Framework



A major aspect of PTK is its explicit support for the config-
uration of the generated Kubernetes deployment, allowing the
programmer to influence how the tasks of a program should
be packed in containers and how these containers should be
organized into Kubernetes Pods.

By leveraging PTK as an abstraction layer over container-
ization mechanisms, we can deploy applications to either cloud
environments, such as a single cluster on Google Cloud Plat-
form (GCP), or on-premises. PTK has the capability to work
with Pods and the containers within them, generating finely-
tuned Kubernetes manifest files tailored to these environments.

B. Task-based Programming

The PTK framework requires applications to be written
using a task-based programming approach [18]–[21]. The user
has to designate the most important functions in their Python
code as tasks using PTK annotations. Internally, task-based
applications are represented as a directed acyclic graph (DAG),
where nodes represent tasks and edges usually represent data
dependencies between tasks, i.e., one task generates data that
is consumed by another task [22]. Such representations are
particularly well-suited for applications whose tasks can be
organized as a pipeline [23].

For a task, different implementation variants may be pro-
vided by the programmer (or taken from libraries) to efficiently
utilize different target architectures. For example, a task may
have a multi-threaded implementation variant that can make
use of multi-core CPUs or an implementation variant written
in CUDA for targeting GPUs. While such implementation
variants are managed by the PTK framework, the user can
influence which variant should be used on a specific target
architecture by means of annotations. By designating informa-
tion about resource requirements directly in Python code, users
can manage configurations for each implementation variant.
This information is then converted by PTK to prepare tasks
for deployment.

C. Leaf Classification ML Pipeline

To demonstrate the capabilities of the PTK framework,
we selected a Python-based visual categorization pipeline
designed to generate ML models for identifying foliar disease
categories in tomato leaves from images [24]. We transformed
this application into a task-based DAG comprising five nodes:
Download, Prepare, Preprocess, Train, and Evaluate. Each
node corresponds to a PTK task (see Fig. 2).

The dataset comprises 10 classes of images, with 9 classes
representing specific types of diseases and the 10th class
indicating a healthy state. The following code excerpt shows
the corresponding Python code of the application:

def download_data():
...
return download_results

...
def preprocess_data(prepare_results):

...
return preprocess_results

Fig. 2. Visual Categorization ML Pipeline

def train_data(preprocess_results):
...
return train_results

def eval_data(train_results):
...
return eval_results

def main():
download_r = download_data()
prepare_r = prepare_data(download_r)
...

We observe distinct Python functions or tasks, where
each task returns data as a result, which eventually will
be used as arguments for the next task. For exam-
ple, preprocess_data returns preprocess_results,
which contains data for generating the ML model in
train_data. The ML pipeline contains both compute-
intensive parts, such as train_data, which requires a
large amount of computational resources for generating ML
models, and data-intensive parts, such as prepare_data.
The data transmitted between different blocks also varies in
terms of size and content. For instance, the dataset transmitted
between prepare_data and train_data for training is
bigger than the dataset transmitted between train_data and
eval_data, which contains the created ML model and the
small dataset for evaluating the model.

D. Deployment Configuration Annotations

Using PTK annotations, users can influence the deployment
configuration of an application, i.e., how the tasks of an
application should be organized into containers and Pods. The
following annotations are provided:

1) Task Annotation: The task annotation
@task(name=’task1’) is used to designate that a
Python function will become a PTK task managed by the
PTK framework. By default, each PTK task is put into a
separate container and deployed in a separate Pod. Note, if a
Python function has the pod and/or container annotation (see
below), it will become a PTK task by default.

2) Container Annotation: The container annotation
@container(name=’cont1’) is used to designate that a
task will be put into a container named ’cont1’. The container



annotation can be used to place multiple functions into the
same container.

3) Pod Annotation: The pod annotation
@pod(name=’pod1’) is used to designate that a PTK task
will be put into a pod named ’pod1’. By adding @pod with
the same name to different functions, multiple functions will
be grouped into the same Pod, with each function running in
a distinct container.

This approach can reduce resource and network overhead,
simplify deployment, and facilitate horizontal scaling since
the entire Pod, including all its containers, can be replicated
across nodes. If only @container is specified and no @pod
is provided, each function will be placed in its own Pod by
default, with each Pod containing only one container.

Pods versus Containers: Containers are executable pack-
ages that include all required libraries, environments, and
settings to run the code. They are isolated from each other
within one operating system (OS). Kubernetes Pods, on the
other hand, are a higher level of abstraction over containers,
representing an additional virtualization level. They are the
smallest independently deployable units, allowing the use of
networking for communication across different nodes of a
cluster. Deploying an application with multiple Pods allows
the use of different cluster nodes and thus opens opportunities
for horizontal scaling. In contrast, containers are restricted to
within a single pod, serving as the encapsulating entity for a
collection of tasks. Additionally, each Pod can have its own
separate storage system within Kubernetes. Containers within
a Pod share the storage defined for that Pod [10], [11].

For Kubernetes clusters, there are several approaches for
configuring deployments, which are covered by PTK:

1) Pod with Many Containers (Each Container with One
Task): Sharing the same OS by deploying tasks in different
containers inside one Pod offers the opportunity for high-speed
data transmission. Implementing two tasks as containers inside
one Pod offers a more lightweight solution than implementing
tasks as separate Pods, because the deployment has only one
additional level of abstraction instead of two. This approach
still allows vertical scaling for each container separately;
however, it presents challenges for horizontal scaling, as
Kubernetes replicates the Pod with all containers inside it.

2) Pod with One Container and One Task: Pursuing a
high level of horizontal scalability, where each task can be
scaled separately, users need to implement each task in a
separate container and place these containers in separate Pods.
In Kubernetes, each Pod, along with a task, can be replicated
across different cluster machines, performing simultaneously.

3) Pod with One Container and Many Tasks: Alternatively,
users can place all tasks inside one container to achieve
better performance, representing the application as a monolith.
However, this approach does not allow for the ability to scale
individual tasks of a pipeline horizontally by using multiple
nodes, or vertically by allocating more resources.

PTK eases the process of creating different deployment
configurations of applications through annotations.

E. Data Management and Task Communication

Tasks in the considered applications communicate with
each other by transmitting data. Upon completing one task,
the results are retrieved by the subsequent task for further
processing. With PTK, users do not need to change functions
to implement data transmission mechanisms between them. By
implementing annotations, it is possible to use mechanisms al-
ready created by PTK, which transform the input and output of
each function internally to perform data transmission between
tasks after deployment. PTK supports the following options
for communication:

1) Volumes/PersistentVolumeClaim (PVC): This approach
generates storage for communication between @pod,
@container, or @task. PTK supports the following
mechanisms: (1) Volumes, where each volume is tied to a
specific Pod, and its lifespan equals the Pod’s lifespan. When
a Pod is terminated, its volume is also deleted; (2) PVCs,
which are not tied to specific Pods and have independent
lifecycles, allowing multiple Pods to share the same storage.

from ptk import task

@task(name=’download’,
output={’type’:’PVC’,’size’=20Gb’})

def download_data():
...
return download_result

@task(name=’prepare’,input={’download’})
def prepare_data(download_result):

...

In this code, two tasks, download_data and
prepare_data, are deployed in separate Pods. For
data transmission between these tasks, we use a PVC with
a size of 20GB, which is declared with download_data.
prepare_data receives access to this PVC by adding the
input for the task as the name of the download_data task
(’download’), and adding arguments to the prepare_data
function with the same name as the return value for
download_data.

The PTK framework handles retrieving the data by connect-
ing to the PVC, and waits until the data is fully uploaded to the
location before proceeding to the next step. The download
Pod is connected to a PVC, where the download_data
task uploads all downloaded data to the PVC as a result. The
prepare_data Pod waits for the completion of all data
uploads from the download_data task.

2) Inter-process communication (IPC): IPC is used for
communication between containers in one Pod.

@pod(name=’main-dag’,output={’type’:’IPC’})
def download_data():

...
return result

@pod(name=’main-dag’,input={’download_data’})
def prepare_data(download_result):

...



In this case, download_data and prepare_data are
deployed in the same Pod main-dag, but in different con-
tainers with names matching the function names, which allows
the use of IPC. Users do not need to change the code in this
case, only the output type.

3) Direct function calls: This method is used for data
transmission between functions inside one container, where
one function is called by another function.

F. Resource Management

PTK allows users to specify resource requirements for tasks,
containers, and Pods in the form of ’limits’ and ’requests’
for virtual CPUs (vCPU), GPUs, and RAM. Requests specify
the minimum resources required for deployment, while limits
contain the maximum allocatable resources. They are used
for vertical scaling, allocating more or less resources for
containers within one Pod. At the same time, Pods are used
for horizontal scaling of applications. Kubernetes provides
mechanisms for deploying several replicas of the same Pod
to different nodes.

1) Task Annotation: As the PTK framework works with
tasks organized into containers and Pods, it allows users to
tune resource management and replication for each task:

@task(cpu_requests=6,cpu_limits=8,
memory_requests=’8Gi’,memory_limit=’16Gi’,
gpu_requests=’1’,gpu_limits=’4’,num_replicas=2)
prepare_data(...):

The num_replicas argument defines the number of
replicas used for horizontal scaling across Kubernetes clusters.
For example, num_replicas can be used for ensemble ML,
when users can create multiple small models on different
nodes using different subsets of the training data. As a result,
it combines the predictions of multiple models to produce a
single final prediction [25]. Each replica requires 6 vCPUs, 8
GiB of RAM, and 1 GPU, with the maximum resources that
might be allocated being 8 vCPUs, 16 GiB of RAM, and 4
GPUs.

2) Container Annotation: This annotation allows to
use only ’limits’ and ’requests’, i.e. cpu_requests,
cpu_limits, memory_requests, memory_limits,
gpu_requests, and gpu_limits arguments.

3) Pod Annotation: Whereas @task covers all opportu-
nities for resource management, represented as a step above
Kubernetes logic, @pod allows to use only num_replicas.

IV. TRANSFORMATION TO KUBERNETES

In this chapter, we outline how the PTK framework auto-
mates the process of transforming Python programs with PTK
annotations, so that they can be executed on a Kubernetes
cluster. This process includes the generation of container
images, Kubernetes objects, and manifest files, as well as
scripts for deploying and running a PTK application.

A. Generation of Container Images

One of the required operations for deployment is the con-
tainerization of annotated tasks before their deployment. The

PTK framework automatically containerizes tasks, generates
images, and deploys them.

This operation occurs during the main process of generating
Kubernetes manifest files, where the created image is added
to the manifest. If we need to create an image of the task
during the generation of Kubernetes manifest files, the PTK
framework can generate a simple Dockerfile, add the path to
the task, and name the image based on the concatenation of the
file name and the task name. The framework then generates the
Docker image and deploys it to Docker Hub [26]. However,
this option is currently restricted to bare Python applications
with default libraries and TensorFlow-based applications.

B. Generation of Containers and Pods

With the current version of PTK, we assume that the target
cluster for deployment is already created. From the cluster, we
need to obtain data on how many resources are available for
allocation to the application, based on which we can add non-
functional requirements for tasks [27], [28]. Additionally, we
need to decide on the configurations of Pods and containers for
applications. For example, should we use only one container
and one Pod to host all tasks, or do we need to use a separate
Pod and container for each task?

The PTK framework processes the source code annotations
as follows:

(i) For each @pod annotation of a task, the framework either
inserts a new Pod or updates an existing one. Moreover, PTK
adds a declared @container for this task or automatically
creates one.

(ii) When @container is created and used along with
@pod for a function, PTK adds the container to the specified
Pod and includes this Pod into the internal PTK structure. If
no @pod annotation is provided, PTK automatically creates a
new Pod for the @container.

(iii) The @task annotation behaves like a combination of
both a @pod and a @container, automatically adding the
corresponding Pod and container to the PTK internal structure.

These annotations highlight the simplicity of adding a few
lines of code compared to manually crafting the structure of
Kubernetes manifest files for deployment. The manifest files
are automatically generated based on the provided data.

C. Data Transmission

PTK works with three types of communication: Vol-
umes/PVC, IPC, and Direct function calls. Using our frame-
work, users do not need to change the code of tasks or
implement data transmission between them by themselves.

1) Volumes/PVC: According to the example in Sec-
tion III-E, the producing data task contains an output
argument. During image generation, this argument al-
lows the framework to find and substitute the return
download_result of the function with an internal method
that preserves data into a PVC. For the generation of the
manifest file, it creates a Volume, a PVC, and attaches this
PVC to the Pod. The consuming data task contains the
input=’download’ argument, which includes the name



of the producing task, as well as the download_result
argument with the same name as the return value in the
download_data function. This enables PTK to automat-
ically get this data from the PVC.

2) IPC: This option follows the same logic. By adding
output and input for two functions, PTK internally sub-
stitutes the return value of the producing functions and the
arguments of the consuming function with IPC data commu-
nication.

3) Direct function calls: Users need to place the functions
in one file and add the call of one function into the other. PTK
generates the image and Kubernetes manifest by combining all
these functions, treating them as one. For this purpose, it scans
the task to find other function calls located in the same file.

D. Deployment and Execution of PTK Applications
After creating the Kubernetes cluster, implementing the

desired Pod-container configuration using annotations, adding
non-functional requirements, and resolving issues in the cre-
ation of container images, the PTK framework can generate
Kubernetes manifest files.

PTK uses preprocessing mechanisms for the generation of
Kubernetes manifest files. Users need to call the annotated
task within their Python code, and the PTK framework will
generate the manifest files before running the main Python
code of the task. If you have multiple annotated tasks to be run
in one session, the framework gathers and analyzes the data
from all annotations during this preprocessing phase before
running these tasks. Additionally, to prevent the local running
of pipelines, PTK has an option to stop the execution of the
main Python code after analyzing all annotations, and creating
all Kubernetes manifest files before running the main code.

Internally, the framework transforms annotations into its
own structure. The main PTK structure is represented as a
list of Pods, which contains the main information from the
@pod annotations, the file where the @pod is located, and
the task where it is added. Each Pod in the list also has con-
tainers and volumes/IPC with their information, including the
tasks for which they are declared. This information simplifies
distinguishing between Pods when multiple Pods are created
during the same session.

Each Pod is then transformed into a Kubernetes Deployment
object, and all Pods are saved in their own files, with names
based on the concatenation of the Pod name and the names
of the tasks for which the Pod’s containers are created. Once
the manifest file exists, its regeneration is triggered.

The created manifest files are dependent on the target
machine, considering available resources. Users need to en-
sure that the machine’s resources are sufficient and meet or
exceed the specifications in the non-functional requirements
of their application. After creating the cluster and obtaining
the Kubernetes manifest files, users can deploy these files to
the cluster and run their pipeline on the target infrastructure.

V. EVALUATION

For the initial experimental evaluation of the PTK frame-
work, we decided to use the Python-based ML pipeline from

Section III-C. All experiments were conducted on GCP using
the us-west1-c zone. One of the main benefits of Kubernetes
is the ability to use multiple nodes within a cluster. However,
there are cases when the data size and calculation complexity
of the pipeline allow it to be deployed on a single node, which
increases the application’s speed by eliminating the need to
transmit data between nodes. Therefore, all our experiments
were conducted using a single node.

For the first experiment, we used the PTK framework to
generate Kubernetes manifest files and deploy three different
Pod-container configurations of this application. Our goal was
to determine the impact of each configuration on the execution
time for generating the ML model and the associated costs.
For the second experiment, we deployed the best configuration
identified in the first experiment to different nodes, in order
to show the influence of different machines on the time for
generating the ML model and the cost.

A. ML Application and Different Pod-Container Configura-
tions

One of the major challenges for the application was to
determine a good configuration in terms of how tasks are
organized into containers and Pods. Using @task annotations,
we implemented Configuration 1 of Pod-container packaging,
which we consider the default, i.e., each task goes into a
separate container and a separate Pod. We chose to represent
the pipeline as four Pods, each containing one container. PTK
internally generated separate Kubernetes manifest files, one
for each Pod. In turn, each container holds one task of the
ML pipeline (see Fig. 3). We assume that the data has already
been downloaded using the Download task.

Fig. 3. Main Pod-container Configuration for the ML Pipeline

PTK creates images for each task. For communication
between different steps, we use PVCs, where one step uploads
the data to the PVC and the next step downloads this data for
further calculations, as described in Section III-E.

In addition to Configuration 1, for the same pipeline,
we developed two other configurations using @pod and



@container annotations (see Fig. 4). Configuration 2 uses
one Pod with multiple containers, where each container
contains one task. Configuration 3 uses one Pod with one
container for all tasks. Communication between tasks is also
accomplished with PVCs, as in Configuration 1.

Fig. 4. Configurations 2 and 3 with Different Pod-Container Groupings for
the ML Pipeline

For the experiments, we deployed these configurations on
single-node clusters and compared the execution time and cost
for each configuration (see Table I).

TABLE I
EXECUTION RESULTS OF DIFFERENT CONFIGURATIONS WITH EQUAL

RESOURCE CHARACTERISTICS

Configurations #1 #2 #3
execution time, secs 70.432 68.734 64.234
execution time, % 109.6 107 100
node price hr, $ 0.047
gpu price hr, $ 0.355
zone price hr, $ 0.101
total cost, $ 0.0099 0.0096 0.009

We used an n1-standard-1 node with 1 CPU and 3.75
GB of RAM. Additionally, we added an NVIDIA Tesla T4
GPU with 16 GB of memory. We defined resource requests
using the PTK framework. For Configurations 1 and 2, each
task required 0.25 vCPU and 1 GB of RAM, except for
the Evaluation task, which required 0.75 GB of RAM, and
the Train task, which used the GPU. For Configuration 3,
we allocated all the resources of the node to one container.
The corresponding cost for generating the ML model was
calculated based on GCP pricing resources [29], [30].

Changing from Configuration 1 to Configuration 3 by
decreasing the number of Pods and containers reduced both the
execution time and cost by roughly 10%. This reduction is due
to the fewer number of containers and Pods that Kubernetes

needs to maintain, which allocates resources away from the
execution of the pipeline itself (see Fig. 5).

Fig. 5. ML Pipeline Execution Time and Cost Across Different Configurations

B. ML Applications and Different Resource Characteristics

Selecting Configuration 3 as the fastest and cheapest, we
compared its deployment on three types of nodes, measuring
the time required to create the ML model, and calculating the
costs based on the resources used.

We performed three experiments, one for each node (see
Table II). Scenario 1 reflects the results of Configuration 3
from Table I. For Scenario 2, we used the same node but
without the GPU. For Scenario 3, we used an n1-standard-2
machine with 2 CPUs and 7.5 GB of RAM. We utilized all
the resources of the nodes for each scenario.

TABLE II
EXECUTION RESULTS OF CONFIGURATION 3 WITH DIFFERENT RESOURCE

CHARACTERISTICS

Scenarios #1 #2 #3
node type n1-standard-1 n1-standard-2
execution time, secs 64.234 1725.286 957.408
node price hr, $ 0.047 0.095
gpu price hr, $ 0.355 - -
zone price hr, $ 0.101
total cost, $ 0.009 0.071 0.052

It is evident that the use of GPUs significantly improves
performance. When the GPU was not used for the Train task,
the time for generating the ML model increased by almost 27
times, from 64 to 1,725 seconds (see Fig. 6). Additionally,
using two CPUs in an n1-standard-2 node decreased the time
by 1.8 times, as the Train task could utilize both CPUs to
speed up the creation of the ML model.

The cost is correlated with the execution time; however,
for such experiments, the overall cost increase was less than
the increase in execution time because Scenarios 2 and 3
used less expensive nodes. As you can observe, deploying the
application using only the CPU in Scenario 2 is almost 8 times
more expensive than using the GPU in Scenario 1, even though
the price of the node in Scenario 1 is 3.38 times higher than in
Scenario 2. The same situation is observed between Scenario
2 and Scenario 3, where the price of the node in Scenario 3
per hour is 1.32 times higher, but the total execution cost is
1.37 times lower.



Fig. 6. ML Pipeline Execution Time and Cost Across Different Scenarios

VI. CONCLUSION

In this article, we proposed PTK, a high-level Python-
based programming and resource management framework. It
automates the deployment of applications on both on-premises
and cloud infrastructures using Kubernetes. We proposed
annotations for Python, allowing users to specify how the main
tasks of an application should be configured into containers
and Pods. In addition, PTK offers annotations for specifying
resource requirements. We developed a prototype of PTK and
demonstrated the framework’s utility through initial experi-
ments, involving the implementation and deployment of a real-
world ML application with various resource configurations.

For future steps, the development of the PTK framework
will include work on the automatic provisioning of Kubernetes
clusters based on the user-specified resource requirements.
Moreover, we plan to introduce annotations for enabling users
to specify performance requirements and expectations for
tasks, e.g., limits for the execution time or the price, and to use
this information in order to select appropriate resources. Future
work will also focus on more extensive evaluations, including
multi-node deployments, to further validate and refine the
framework.

REFERENCES

[1] P. Beckman, J. Dongarra, N. Ferrier, G. Fox, T. Moore, D. Reed, and
M. Beck, ”Harnessing the computing continuum for programming our
world,” Fog Computing: Theory and Practice, ch.7, Wiley, 2020.

[2] R. Miceli, G. Civario, A. Sikora, E. Cesar, M. Gerndt, H. Haitof,
C. Navarrete, S. Benkner, M. Sandrieser, L. Morin, and F. Bodin,
”AutoTune: A Plugin-Driven Approach to the Automatic Tuning of
Parallel Applications,” Proceedings of the 11th International Workshop
on the State-of-the-Art in Scientific and Parallel Computing (PARA
2012). Helsinki, Finland, June 2012.

[3] M. Kleppmann, Designing data-intensive applications: The big ideas
behind reliable, scalable, and maintainable systems, ”O’Reilly Media,
Inc.”, 2017.

[4] V. Amaral, B. Norberto, M. Goulao, M. Aldinucci, S. Benkner, A.
Bracciali, P. Carreira, E. Celms, L. Correia, C. Grelck, H. Karatza, C.
Kessler, P. Kilpatrick, H. Martiniano, I. Mavridis, S. Pllana, A. Respicio,
J. Simaon, L. Veiga, and A. Visa, ”Programming Languages for Data-
Intensive HPC Applications: a Systematic Mapping Study,” Parallel
Computing, Volume 91, March 2020, Elsevier.

[5] S. Benkner, A. Arbona, G. Berti, A. Chiarini, R. Dunlop, G. Engelbrecht,
A. F. Frangi, C. M. Friedrich, S. Hanser, P. Hasselmeyer, R. D.
Hose, J. Iavindrasana, M. Koehler, L. Lo Iacono, G. Lonsdale, R.
Meyer, B. Moore, H. Rajasekaran, P. E. Summers, A. Wöhrer, and S.
Wood, ”@neurIST - Infrastructure for Advanced Disease Management
through Integration of Heterogeneous Data, Computing, and Complex
Processing Services,” IEEE Transactions on Information Technology in
Biomedicine; 14(6):1365-77, 2010.

[6] V. Medel, R. Tolosana-Calasanz, J.Á. Bañares, U. Arronategui, and
O.F. Rana, ”Characterising resource management performance in Kuber-
netes,” Computers & Electrical Engineering, vol.68, pp.286-297, 2018.

[7] J. Rosso, R. Lander, A. Brand, and J. Harris, Production Kubernetes,
”O’Reilly Media, Inc.”, 2021.

[8] B. Burns, J. Beda, K. Hightower, and L. Evenson, Kubernetes: up and
running, ”O’Reilly Media, Inc.”, 2022.

[9] C. Anderson, ”Docker [software engineering],” IEEE Software, vol.32,
no.3, pp.102-c3, 2015.

[10] K.T. Seo, H.S. Hwang, I.Y. Moon, O.Y. Kwon, and B.J. Kim, ”Per-
formance comparison analysis of linux container and virtual machine
for building cloud,” Advanced Science and Technology Letters, vol.66,
pp.105-111, 2014.

[11] J. Dobies, and J. Wood, Kubernetes operators: Automating the container
orchestration platform, ”O’Reilly Media, Inc.”, 2020.

[12] E. Bisong, Building machine learning and deep learning models on
Google cloud platform, Berkeley, CA: Apress, 2019.

[13] C. Xu, G. Lv, J. Du, L. Chen, Y. Huang, and W. Zhou, ”Kubeflow-
based automatic data processing service for data center of state
grid scenario,” 2021 IEEE Intl Conf on Parallel & Distributed Pro-
cessing with Applications, Big Data & Cloud Computing, Sustain-
able Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom), pp. 924-930. IEEE, 2021.

[14] C. Martı́n, P. Langendoerfer, P.S. Zarrin, M. Dı́az, and B. Rubio, ”Kafka-
ML: Connecting the data stream with ML/AI frameworks,” Future
Generation Computer Systems, vol.126, pp.15-33, 2022.

[15] D. Balla, C. Simon, and M. Maliosz, ”Adaptive scaling of Kubernetes
pods,” NOMS 2020-2020 IEEE/IFIP Network Operations and Manage-
ment Symposium, pp.1-5. IEEE, 2020.

[16] C. Shan, C. Wu, Y. Xia, Z. Guo, D. Liu, and J. Zhang, ”Adaptive re-
source allocation for workflow containerization on Kubernetes,” Journal
of Systems Engineering and Electronics, vol.34, n.3, pp.723–743, 2023.

[17] ”Faasm,” GitHub, accessed May 20, 2024,
https://github.com/faasm/faasm

[18] M. Niu, B. Cheng, Y. Feng, and J. Chen, ”Gmta: A geoaware multi-
agent task allocation approach for scientific workflows in container-
based cloud,” IEEE Transactions on Network and Service Management,
vol.17, no.3, pp.1568-1581, 2020.

[19] E. Agullo, O. Aumage, M. Faverge, N. Furmento, F. Pruvost, M. Sergent,
and S. Thibault, ”Achieving high performance on supercomputers with
a sequential task-based programming model,” IEEE Transactions on
Parallel and Distributed Systems, pp.1-14, 2017.

[20] S. Benkner, S. Pllana, J. L. Traeff, P. Tsigas, U. Dolinsky, C. Augonnet,
B. Bachmayer, C. Kessler, D. Moloney, and V. Osipov, ”PEPPHER: Ef-
ficient and Productive Usage of Hybrid Computing Systems,” IEEE Mi-
cro, vol. 31, no. 5, pp. 28-41, Sep./Oct. 2011, doi:10.1109/MM.2011.67.

[21] O. Aumage, P. Carpenter, and S. Benkner, ”Task-based
performance portability in HPC,” accessed May 21, 2024,
https://www.etp4hpc.eu/news/273-task-based-performance-portability-
in-hpc.html

[22] R.A. Sahner, and K.S. Trivedi, ”Performance and reliability analysis
using directed acyclic graphs,” IEEE Transactions on Software Engi-
neering, vol.SE-13, n.10, pp.1105–1114, 1987.

[23] S. Benkner, E. Bajrovic, E. Marth, M. Sandrieser, R. Namyst, and
S. Thibault, ”High-Level Support for Pipeline Parallelism on Many-
Core Architectures,” Proc. European Conference on Parallel Computing,
Euro-Par 2012, Rhodos, Greece, Aug. 27-31, 2012, LNCS 7484, pp.
614-625, Springer Verlag.

[24] H. Hapke, and C. Nelson, Building machine learning pipelines,
”O’Reilly Media, Inc.”, 2020.

[25] T.G. Dietterich, ”The handbook of brain theory and neural networks,”
MIT Press: Cambridge, MA, 2002.

[26] ”Docker Hub,” accessed June 4, 2024, https://hub.docker.com/.
[27] L. Chung, and J.C.S. do Prado Leite, ”On non-functional requirements

in software engineering,” Conceptual modeling: Foundations and appli-
cations: Essays in honor of John Mylopoulos, vol.5600, 2009.

[28] M. Glinz, ”On non-functional requirements,” 15th IEEE international
requirements engineering conference (RE 2007), pp.21–26. IEEE, 2007.

[29] ”VM instance pricing,” Google Cloud, accessed May 20, 2024,
https://cloud.google.com/compute/vm-instance-pricing.

[30] ”Google Cloud’s pricing calculator,” Google Cloud, accessed May 20,
2024, https://cloud.google.com/products/calculator?hl=en.


