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Abstract—The Conversational Brain-Artificial Intelligence In-
terface (BAI) is a novel brain-computer interface (BCI) that uses
artificial intelligence (AI) to help individuals with severe language
impairments communicate. It translates users’ broad intentions
into coherent, context-specific responses through an advanced AI
conversational agent. A critical aspect of intention translation in
BAI is the decoding of code-modulated visual evoked potentials
(c-VEP) signals. This study evaluates five different artificial
neural network (ANN) architectures for decoding c-VEP-based
EEG signals in the BAI system, highlighting the efficacy of
lightweight, shallow ANN models and pre-training strategies
using data from other participants to enhance classification
performance. These results provide valuable insights for the
application of ANN models in decoding c-VEP-based EEG signals
and may benefit other c-VEP-based BCI systems.

Index Terms—Brain-Artificial Intelligence Interface (BAI), c-
VEP, EEG, chatgpt, artificial neural network (ANN).

I. INTRODUCTION

The Conversational Brain-Artificial Intelligence Interface
(BAI), a new type of brain-computer interface (BCI), leverages
AI to enable users with severe language impairments to
communicate effectively [1]. It operates by translating users’
high-level intentions into articulate, contextually appropriate
responses using a sophisticated AI-driven conversational agent.
The operation of BAIs begins with the acquisition of contex-
tual data tailored to the user’s immediate environment, fol-
lowed by probing for user intentions, often facilitated through
conversational agents. These intentions are decoded from the
brain’s signals and converted into actionable commands by the
AI, enabling interaction with external environments. The BAI
system consists of critical components like contextual input,
cognitive probing, intention decoding, and action generation.

The workflow of the BAI system is shown in Figure 1,
which incorporates several key technologies, such as speech-
to-text, keyword and sentence generation via ChatGPT [2],
and c-VEP-based EEG decoding. Among these, the decoding
accuracy of c-VEP is crucial for the BAI system to accurately
capture the user’s intentions, manifested as the user’s ability
to select the keywords on the screen according to their own

will (as shown in Figure 1). The decoding of c-VEP is not
only a key component of the BAI system but also the core
of c-VEP-based BCI spellers. Canonical Correlation Analysis
(CCA) is a commonly used method to generate class-specific
spatial filters [3]. Some studies [4], [5] also employ task-
discriminant component analysis (TDCA) to derive class-
generic spatial filters for all calibration data. Recent research
has shown that artificial neural network (ANN) models have
achieved better decoding accuracy when decoding EEG signals
in paradigms such as motor imagery (MI) based EEG [6],
[7], P300-EEG [8], [9], and emotion recognition based EEG
[10], [11]. However, research related to ANNs in decoding
c-VEP based EEG is still relatively scarce [3]. One main
reason is that c-VEP based EEG often can only collect a small
number of training samples for system calibration, which poses
challenges for training decoding models based on ANNs.

EEG2Code [12] is a convolutional neural network (CNN)
that is currently influential in decoding c-VEP signals. It
innovatively uses sliding window approaches to continuously
predict stimulation patterns. To address the issue of insufficient
sample size, EEG2Code predicts the visual stimulation pattern
represented as binary sequences from the EEG signals. In
the BAI system, EEG2Code was also utilized to decode
the c-VEP-based EEG. However, the network architecture
of EEG2Code is significantly different from classic ANN
architectures for EEG decoding like ConvNet [6]. While both
use CNNs for feature extraction and fully connected networks
for classification, ConvNet [6] and EEGNet [9] first employ
temporal convolution followed by spatial convolution, whereas
EEG2Code, to reduce the number of parameters, first uses
spatial convolution and then temporal convolution. In the
design of the classifier, ConvNet and EEGNet both use a
single fully connected layer, while EEG2Code, drawing from
traditional image recognition CNNs, uses a two-layer fully
connected network. It is worth noting that the approach of
applying temporal convolution followed by spatial convolution
in ConvNet has had a profound impact on subsequent EEG
decoding work based on ANNs [8], [9], [13], [14]. Therefore, a
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Fig. 1. The workflow of the BAI system

question worth exploring is: compared to EEG2Code, how do
classic EEG decoding networks like ConvNet [6] perform in
classifying c-VEP? This study builds on the EEG2Code model,
which predicts each 2-bit frame, by exploring the performance
of five different ANN architectures in c-VEP decoding. It aims
to enhance classification performance in the BAI system and
lay the groundwork for future ANN-based c-VEP decoding.

II. METHODS AND MATERIALS

A. Methods

This study investigates the decoding performance of five dis-
tinct ANN architectures as outlined in Table I. Among them,
EEG2Code [12] is an artificial neural network architecture
specifically designed for c-VEP-based EEG and serves as a
baseline network in this study. DeepConvNet [6] and Shallow-
ConvNet [6], initially designed for MI-based EEG decoding,
have been adapted in recent works for decoding emotion-based
EEG. Both EEGNet [9] and ShallowNet [8] are lightweight
ANN models and have demonstrated robust performance in
decoding MI and event-related potentials (ERP).

Compared with traditional ANN architectures related to
natural image and natural language processing, ANN ar-
chitectures used for EEG decoding have significantly fewer
layers. Among the network architectures mentioned above,
DeepConvNet contains six layers and is the ANN architecture
with the most layers in Table I. EEG2Code is the ANN

architecture with the most parameters in Table I. This is
because EEG2Code uses a two-layer fully connected network
for classification, while other ANNs use only one layer. More
parameters imply that more training data may be needed to
train the model, and there is a higher risk of overfitting.
Floating Point Operations (FLOPs) represent the number of
floating-point operations required during the execution of the
model. A smaller FLOPs value indicates lower computational
cost under the same software and hardware conditions, which
is advantageous in real-time online systems. As shown in Table
I, the FLOPs of ShallowNet and EEGNet are both smaller than
that of EEG2Code, indicating that ShallowNet and EEGNet
are more efficient than EEG2Code in real-time online systems.

B. Datasets

The experimental data utilized in this study were collected
from six healthy participants, labeled S01 to S06. EEG data
were recorded with six channels: POz, PO3, PO4, Oz, O9,
and O10, at a sampling rate of 1,000 Hz using a Brain
Products EasyCap and Bittium NeurOne Tesla amplifiers. The
study protocol was evaluated and approved by the Ethics
Committee of the University of Vienna. In the experiment,
each participant underwent three different stages of EEG
data collection: system calibration stage, scenario simulation
dialogue stage, and evaluation stage. In the system calibration
stage, participants labeled the collected EEG data in each trial
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TABLE I
FEATURES OF MODELS UTILIZED IN THIS STUDY

Features EEGNet [9] DeepConvNet [6] ShallowConvNet [6] ShallowNet [8] EEG2Code [12]
Parameters 1,506 141,427 12,722 1,146 144,138
FLOPs(M) 1.65 11.14 6.17 1.35 2.48
Layers 4 6 3 3 5

“Layers” includes only feature extraction layers and classification layers.

TABLE II
NUMBER OF TRIALS COLLECTED FROM PARTICIPANTS

Participant ID S01 S02 S03 S04 S05 S06
# of training trials 7 9 7 7 8 20
# of test trials 11 20 20 20 20 20

by clicking the mouse; that is, during this stage, the EEG
data of each participant contained labels. This part of the data
was also used as training data, as shown in the number of
training trials in Table II. In this experiment, a trial recorded a
complete flashing process of visual stimulation. By decoding
the EEG corresponding to the entire trial, the user’s choice in
the current context can be determined. In this study, the EEG
data collected during the scenario simulation dialogue were
not analyzed because this part of the data did not have real
labels.

To accurately and objectively reflect each participant’s per-
formance in the BAI system, each participant was required
to answer 20 simple, predetermined questions with obvious
answers, such as “What color is an elephant?” In this study,
the EEG data collected in the evaluation stage were used
as test data, as shown in Table II.1 Participants S01 to S05
used the GPT-3.5 model to generate keywords during the
experiment, while S06, a newly added participant, utilized the
GPT-4 model. Using different ChatGPT models may affect the
position of the labels in the calibration stage but does not have
a substantial impact on the decoding model. It is important to
note that during training, each trial’s EEG data corresponding
to the m-sequence stimuli was flashed seven times. However,
during the evaluation stage, an early-stopping strategy based
on EEG2Code was employed, resulting in variable test data
lengths across participants and a potential bias in favor of
the EEG2Code model during testing. For more experimental
settings, interested readers can refer to [1].

C. Experimental Environment

This study employs offline analysis, but the purpose of
the offline analysis is to provide a basis for improving the
decoding performance of the online BAI system. Therefore, in
the offline analysis, we completely simulated the data flow in
the online BAI system. Although the ANN models used in this
study employ sliding window methods to predict each flashing
bit, in the online BAI system, the decoding model aims to
determine the user’s real intention; that is, the basic unit of
analysis is the accuracy of each trial. Therefore, in this study,

1Due to technical reasons, S01 only answered 11 questions in the evaluation
stage.

we did not discuss the decoding accuracy of each bit in detail.
The results predicted by the ANN are a 2-bit output sequence
of the same length as the m-sequence of visual stimulation.
By calculating the correlation coefficient between this output
and the m-sequence corresponding to each keyword, the real
keyword selected by the user can be determined. From the
interface layout in Figure 1, it can be seen that each trial’s EEG
label corresponds to one of 10 keywords; therefore, this study
addresses a 10-class classification problem, with a chance level
of 10%.

III. EXPERIMENTS

A. From Zero Training to Full Calibration of Different Models
This subsection explores the decoding performance of var-

ious models during the calibration phase of the BAI system,
ranging from zero training to using half of the calibration
trials for a specific participant. As shown in Table III, the
“zerotraining” scenario utilizes transfer learning with EEG
data from other participants. For example, when using S01’s
test data as the test dataset, the training data from S02 to
S05 are used to train the model. The “finetune half” scenario
builds upon “zerotraining” by further collecting half of S01’s
training data to fine-tune the model. Since both “zerotraining”
and “finetune half” use training data from non-target users,
they can significantly expand the number of training samples
and can be considered methods of transfer learning. However,
due to differences in EEG data among different participants,
using data from non-target users may also introduce negative
transfer issues.

The method corresponding to “finetune half” is “on-
line half,” which simulates the data collection method of
the online BAI system by using only half of the target
participant’s training data for training. Taking S01 as an
example, “online half” means using only the first 3 (7 //
2) trials of EEG data collected for training. Compared with
“finetune half,” the amount of the target user’s training data
used is the same, but since “finetune half” also includes
training data from other participants, it can be used to examine
whether EEG data among different subjects are transferable,
the robustness of different models in coping with such transfer
learning scenarios, and the performance of different ANN
models when using EEG data from different participants for
data augmentation.

It should be noted that, to simulate the online BAI system,
this part of the experiment did not divide an additional
validation set from the training set. We trained all ANN models
for 30 epochs and then recorded the classification performance
on the test set. The specific results are shown in Table III.
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TABLE III
CLASSIFICATION ACCURACIES (%) OF DIFFERENT MODELS UNDER VARIOUS TRAINING SCENARIOS

Methods S01 S02 S03 S04 S05 S06 Mean±Std
EEG2Code zerotraining 82 55 65 20 55 20 49.5 ± 24.9
EEG2Code finetune half 91 90 75 95 60 90 83.5 ± 13.4
EEG2Code online half 100 90 90 65 50 95 81.7 ± 19.7
EEG2Code online full 100 90 95 95 60 100 90.0 ± 15.2
ShallowConvNet zerotraining 55 30 40 50 40 15 38.3 ± 14.4
ShallowConvNet finetune half 82 100 90 60 60 85 79.5 ± 16.3
ShallowConvNet online half 82 60 70 20 35 85 58.7 ± 26.2
ShallowConvNet online full 100 75 70 45 50 100 73.3 ± 23.6
DeepConvNet zerotraining 64 45 55 60 60 25 51.5 ± 14.5
DeepConvNet finetune half 91 95 95 85 60 95 86.8 ± 13.7
DeepConvNet online half 82 75 60 65 60 90 72.0 ± 12.4
DeepConvNet online full 100 80 90 65 60 95 81.7 ± 16.3
ShallowNet zerotraining 64 55 55 65 60 15 52.3 ± 18.8
ShallowNet finetune half 91 100 90 90 60 95 87.7 ± 14.1
ShallowNet online half 100 90 90 85 60 100 87.5 ± 14.7
ShallowNet online full 100 100 95 95 60 100 91.7 ± 15.7
EEGNet zerotraining 82 25 60 55 55 15 48.7 ± 24.6
EEGNet finetune half 100 100 90 100 60 90 90.0 ± 15.5
EEGNet online half 100 95 90 90 60 100 89.2 ± 15.0
EEGNet online full 100 100 95 100 60 100 92.5 ± 16.0

“Mean±Std” represents the mean and standard deviation across all participants.
“zerotraining” indicates that the model was only pre-trained using training data from other
participants. “finetune half” refers to pre-training the model with other participants’ data,
then fine-tuning it using half of this participant’s training data. “online half” denotes that
only half of the training data was collected during the online training phase. “online full”
means that all the training data was used to train the model during the online training phase
(as shown in Table II).

Compared to a 10% chance level, although there are dif-
ferences in average accuracies among different ANN models
under the “zerotraining” scenario, ShallowConvNet has the
lowest average accuracy among all participants at 38.3%,
while ShallowNet achieves the highest at 52.3%. In this
scenario, S01 achieves a test accuracy of 82% using both
EEG2Code and EEGNet models, but the highest test accuracy
for S06 is only 25%. This indicates that for S06, training using
only other participants’ data is insufficient.

Comparing the performances under the “finetune half” and
“online half” scenarios, we can observe that the average accu-
racies of the five different ANN architectures are all higher in
the “finetune half” scenario than in the “online half” scenario.
This conclusion is more pronounced for ShallowConvNet and
DeepConvNet, which have a larger number of parameters.
Moreover, the average accuracies of ShallowConvNet and
DeepConvNet in the “finetune half” scenario exceed those
in the “online full” scenario, indicating that these two ANN
architectures require more training data.

Compared to EEG2Code, ShallowNet and EEGNet achieve
higher average test accuracies in almost all scenarios, sug-
gesting that lightweight and shallow ANNs have advantages
in decoding c-VEP-based EEG. Additionally, ShallowNet and
EEGNet exhibit smaller performance differences across the
“finetune half,” “online half,” and “online full” scenarios,
indicating that lightweight and shallow ANNs require less
training data. In the “online full” scenario, we find that the
differences among different ANN models in S01, S02, S05,
and S06 are not significant, suggesting that improvements
in ANN decoding models have limited effect on enhanc-

ing decoding accuracy for some participants. Comparing the
decoding accuracies of S05 with other participants, we can
see that S05’s test accuracies are lower than those of other
participants across all decoding architectures, which may be
due to the nature of the EEG signals themselves.

Considering the classification performance across different
scenarios and ANN models, lightweight and shallow network
architectures like ShallowNet and EEGNet may have advan-
tages in decoding within the online BAI system.

B. Volatility of Different Models

In deploying the online BAI system, the robustness of ANN
models during training is crucial, as it is challenging to rea-
sonably partition a validation set from the training set that can
represent the training data distribution. Without a validation
set, the number of training epochs becomes a hyperparameter
for ANN models. However, in a multi-user BAI system, it is
difficult to optimize this parameter for different users. An ideal
ANN model should have stable classification performance
after a certain number of training epochs, so that the model’s
performance does not significantly differ if trained for one
more or one fewer epoch.

Figure 2 illustrates that volatility varies across different
ANN models. As can be seen from the figure, ANN models
do not require hundreds or thousands of training epochs;
most ANN models can achieve relatively stable classification
performance on the test set after training for no more than 15
epochs on the training set. ShallowConvNet, DeepConvNet,
and EEG2Code exhibit greater fluctuations, especially after ten
training epochs, compared to ShallowNet and EEGNet. This
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Fig. 2. Classification accuracy on the test dataset of different ANN models across 1 to 30 training epochs using all training data, illustrated with S03.

indicates that lightweight and shallow ANN models have better
performance in handling volatility during training, possibly
due to the small amount of training data.

C. Dilemma of online c-VEP decoding via ANNs
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Fig. 3. Variations in validation accuracy and loss in bit-prediction with
increasing training data during the online calibration of the BAI system
(illustrated with S03 and EEG2Code, similar performances are also observed
in other participants and models).

One significant challenge faced by ANN models in online
deployment within the BAI system is determining when the
model has been adequately calibrated. This is also the reason
why, in Section III-B, a validation set was not used to monitor

the training process of the ANN model; a detailed explanation
is provided below.

In machine learning, model selection is traditionally based
on the loss or accuracy of a validation dataset. However, in
the online BAI system, raw EEG data is collected continuously
as a data stream. The question then arises: how many trials
of EEG data need to be collected from each participant to
meet the system’s calibration requirements? Paper [1] follows
the method from EEG2Code [12] , which employs a sliding
window prediction approach. Specifically, it associates the
EEG data within the sliding window with the visual stimuli’s
black (binary 0) and white (binary 1) flickers. The accuracy
of predicting the 2-bit frames indirectly reflects the ANN
model’s ability to decode c-VEPs, that is, whether the EEG
signal collected in each trial can accurately reflect the user’s
intended selection. Given the abundance of training data, it is
plausible to divide the data into a training set and a validation
set to assess whether the BAI system has been calibrated by
observing the validation set’s accuracy or loss. An intuitive
approach involves using a new trial of EEG data collected
during the training phase as the validation set, with the EEG
data collected prior to that trial serving as the training set.
This ensures that both the training and validation sets have
labels and aligns with the real usage scenario of an online BAI
system. The results corresponding to this method are shown
in Figure 3.

Ideally, an increase in training data should lead to higher
validation accuracy, and when the validation accuracy no
longer improves or reaches a certain threshold, it indicates
that the ANN model is well-trained and the BAI system is
adequately calibrated. However, as Figure 3 reveals, validation
accuracy does not consistently increase with more training data
but instead depends on the selection of trials for validation. In
some cases, using just four trials for training can cause the
validation accuracy of the ANN model to jump from 60% to
approximately 80% when the fourth trial is used for validation.
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This spike does not necessarily indicate adequate training,
as adding more training samples can subsequently decrease
validation accuracy. This phenomenon complicates the assess-
ment of ANN training levels by monitoring validation loss or
accuracy, as is commonly done in computer vision. Therefore,
collecting extensive training data and selecting robust ANN
models, as demonstrated in Figure 2, is critical for the stable
operation of the BAI system.

IV. CONCLUSIONS

Calibration is a critical preparatory step in the BAI system,
primarily involving the decoding of c-VEP based EEG sig-
nals. This study examined five different ANN architectures,
providing valuable insights for BAI systems and other c-VEP
based BCI applications. Generally, lightweight ANN models
like EEGNet and ShallowNet outperformed more parameter-
heavy models such as ShallowConvNet, DeepConvNet, and
EEG2Code, particularly when calibration data was reduced
by half. Leveraging data from other participants for auxiliary
training proved effective, with some achieving as high as
82% classification accuracy under zero training conditions.
This indicates the efficacy of pre-training ANNs with other
participants’ data, especially for parameter-heavy models.
Additionally, the volatility of different ANN models during
training was observed to vary, with lightweight models like
ShallowNet and EEGNet showing more stable performance
across various training epochs. Results from Table III and
Figure 3 suggest that ShallowNet and EEGNet are more
suitable for decoding in BAI systems, a finding that may also
be relevant to other c-VEP based BCI systems. Finally, this
research highlighted the challenges of online calibration using
frame prediction c-VEP decoding methods, where it is difficult
to gauge model training adequately by monitoring validation
metrics due to the high variability in performance across trials.
A potential solution is to use auxiliary training with data from
other participants while collecting as many calibration samples
as possible.
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