
Knoocks - A Visualization Approach for OWL Lite Ontologies 

Simone Kriglstein 
University of Vienna 

Department of Knowledge and Business Engineering 
Vienna, Austria 

simone.kriglstein@univie.ac.at 

Günter Wallner 
University of Applied Arts Vienna 

Department of Geometry 
Vienna, Austria 

wallner.guenter@uni-ak.ac.at
 

 
Abstract—With increasing popularity of ontologies in various 
communities, visualizations of their content and structure 
became more and more important. In the past few years a 
number of visualization approaches were developed with the 
focus either on the representation of the relationships between 
classes or on the hierarchical structure and instances. However 
for several applications, a visualization which combines 
information about instances, classes and hierarchical as well as 
non-hierarchical relationships is from interest. In this paper 
we present Knoocks (Knowledge Blocks), which is a 
visualization approach with focus on both the interconnections 
within the ontology and the instances in conjunction with their 
hierarchical structure. 

Keywords-Ontology visualization; OWL; Knoocks; 

I.  INTRODUCTION 
Ontologies define concepts and the interconnectedness of 

a domain and can therefore be used as a skeletal foundation 
for a knowledge base [1]. Because such conceptualizations 
can contain a large number of classes, instances and 
properties, it can be very difficult to comprehend the 
ontology and its dependencies at first glance without any 
graphical representation. Visualizations allow to explore and 
browse the structure of ontologies.  Therefore, users can 
build valuable knowledge during their usage of a 
visualization, which supports them in their decisions, makes 
things visible or presents things in a new light of which users 
were not aware of before [2].  

A number of visualization tools for ontologies were 
developed in the past few years. An extensive survey of 
different approaches and tools is given by Lanzenberger et 
al. [3] and Katifori et al. [4]. The approaches adapt well-
known information visualization techniques, which are used 
e.g., to represent hierarchical and non-hierarchical structures. 
For example node-link approaches are most frequently 
applied to represent subclass-of relationships and object 
properties between the concepts (e.g. TGVizTab [5]). The 
relationships between two nodes are represented as edges 
and the layout orientation is mainly top-to-bottom or left-to-
right. Node-link representations are an intuitive way to show 
relationships between nodes and provide a good overview 
about the structure [4]. Especially for larger graphs, 
however, it can happen that the graph is overcrowded and 
links can be too long, which makes it difficult to follow them 
or to distinguish between the different connections. In 
addition to the representation of relationships, the assignment 
of instances to classes is also from interest. Furthermore, 

Wang and Parsia [6] point out that users are more likely 
interested in hierarchical information about classes to see if 
ontologies are suitable for their tasks, especially if they are 
not familiar with the ontology. For this purpose, container 
approaches have been developed (e.g. CropCircles [6] or 
Cluster Maps [7]) which represent instances or subclasses 
nested inside their parent class. Therefore, users can rapidly 
jump between classes or instances. However, if the ontology 
contains many subclasses or instances, it can have a negative 
effect on the overview, as it is the case with node-link 
approaches. Furthermore, ontologies are something more 
than only a hierarchy of concepts with their instances. They 
may also contain object properties and datatype properties, 
which are of interest for several applications. 

Therefore, it is not a simple task to create a visualization 
approach that will effectively display all this kind of 
information. Existing visualizations focus either primarily on 
the representation of relationships and properties between 
classes or on the hierarchy structure in combination with 
instances. Jambalaya [8] is a possible solution, which 
combines the different strengths of node-link visualizations 
and container approaches. It provides a collection of 
different kinds of visualization techniques and thereby users 
have the possibility to select between different views.  

In this paper, we present Knoocks (Knowledge Blocks), 
an ontology visualization approach which should support 
ontology experts (e.g. developers) and non-experts (e.g. 
students and lecturers in case of curricula ontologies). In 
contrast to Jambalaya, Knoocks combines different 
visualization techniques, which are simultaneously visible. 
Knoocks was designed to improve accessibility of instances 
and to allow users to explore and grasp the structure and 
interconnections of OWL Lite ontologies. The focus 
therefore lies primarily on the representation of the 
hierarchical structure of classes and their instances in 
combination with object properties and datatype properties. 
The combination of a container approach for the hierarchical 
structure and a node-link approach for object properties 
allows users to clearly differentiate between hierarchical and 
non-hierarchical relationships.  Additionally, the 
representation of instances within their classes gives user a 
better clarity about their distribution.  

This paper is structured as follows. In Section 2 several 
visualization approaches related to Knoocks will be 
discussed in more detail and previous versions of Knoocks 
are presented in Section 3. Based on user feedbacks of the 
previous versions, the modified version of Knoocks is 

The final publication is available at ieeexplore.ieee.org published at: Kriglstein, S.; Wallner, G., "Knoocks 
- A Visualization Approach for OWL Lite Ontologies," Complex, Intelligent and Software Intensive 
Systems (CISIS), 2010 International Conference on , vol., no., pp.950,955, 15-18 Feb. 2010



described in Section 4. Additionally, user feedback to the 
new version is presented in Section 5. Finally, results and 
future work will be discussed. 

II. RELATED WORK 
A number of visualization approaches with focus on 

OWL ontologies have been described over the years. This 
section presents a short overview of different visualization 
approaches and their techniques, which were selected based 
on their similarity to the design of Knoocks. Therefore, the 
focus lies primarily on approaches, which show the children 
nodes within their parents. Such layouts are greatly 
influenced by Euler diagrams. 

Jambalaya, which is a plug-in for Protégé [9], provides 
different views to visualize ontologies and one of these 
views represents the ontology as nested graph. A nested 
graph, according to Storey et al. [10], is defined as a graph, 
which includes composite nodes that contain other nodes to 
represent a hierarchical structure. In case of ontologies, the 
nodes are classes or instances and different colors are used to 
clearly differentiate between class and instance. Classes can 
contain instances on the one hand or subclass-of 
relationships between classes on the other hand [11].  Similar 
to Knoocks, object properties between nodes are displayed as 
directed edges [12]. To distinguish the different object 
properties, every object property has its own color. 

Another plug-in for Protégé is PromptViz. PromptViz 
adapted the Treemap layout [13] to show changes of two 
merged version of ontologies [14]. A Treemap represents 
nodes as rectangles and every rectangle is subdivided into 
further rectangles in regard to the nodes’ children. 
PromptViz represents classes as nodes and different colors 
for the nodes define how the node has changed between the 
two versions. Furthermore, arcs are used to visualize the 
movements of classes.  

CropCircles [15] is implemented in Java and is available 
for the ontology editor SWOOP [16]. The layout of 
CropCircles presents only the class hierarchy of the ontology 
without instances. Classes are represented as circles and 
subclasses are nested in their parent class. Four layout 
strategies exist for the arrangement of the circles within their 
parent circles depending on the size distribution of the 
subclasses [6].  

Cluster Map [17] is developed by the software company 
Aduna and is used in several applications (e.g. DOPE [18] or 
AutoFocus [17]). It visualizes lightweight ontologies and 
represents classes, their instances and their hierarchical 
structure. The subclass-of relationships between classes are 
connected by a directed edge [7]. Instances are visualized as 
spheres and instances of the same class are grouped in 
clusters. If classes share instances, the overlapping of these 
instances is represented as own cluster and is similar to Venn 
diagrams. 

III. PREVIOUS VERSIONS  
The first version of Knoocks, which was described in 

detail in [19], was rather limited in its functionality. One of 
the main limitations was that only subclass-of relations were 
visualized. This was a direct consequence of visualizing only 

one hierarchy block1. This was confirmed by the results of a 
conducted user study along with the desire to allow filtering 
and searching for specific elements of the ontology. 
However, participants endorsed the basic concept of 
presenting subclass-of hierarchies. These issues have been 
addressed in the development of a new version which was 
evaluated in a usability test with 22 participants. The next 
section describes the current version which already includes 
the improvements, suggested by the participants. 

IV. DESIGN  

This section describes the design of our visualization 
approach. In contrast to the first version described in [19] 
the new prototype is implemented in C# instead of Java. For 
parsing OWL Lite Ontologies the publicly available 
OwlDotNetApi [20] is used whereas OpenGL is utilized for 
displaying purposes. This allows us to easily use certain 
features like alpha-blending or texturing. Knoocks provides 
two views to the user: a detail view and an overview. These 
two views can be switched between a larger window 
(intended for interaction with the visualization) and a small 
preview window at any time. We have opted for this 
solution, because most existing ontology visualization tools 
either focus on the details or concentrate on providing a 
large scale view of the ontology. However, the results of a 
user study [21] conducted earlier, show that experts and 
semi-experts expect a good overview about the  structure 
and interconnections along with an easy navigation from the 
overview to individual instances. Beside the two views a 
history, bookmarks as well as search and filter functions are 
available to the user. The main components are depicted in 
Fig. 1. The detail view can be seen e.g. in Fig. 2 and the 
overview is shown in Fig. 4. 

 

                                                           
1 The concept of a block will be described in Section IV. 

Figure 1.  The three main components of Knoocks: main window (A), 
preview window (B) and toolbox (C). The detail view and overview can be 
switched between the two windows. The toolbox has functions for searching 
and filtering, a history and a list of bookmarks. 



 

A. Detail View 
The main entity of Knoocks is a block (a group of 

classes). For each class, which is directly connected to 
OWL:Thing, a block is constructed. Subclass-of 
relationships are denoted by placing subclasses to the right 
side of their predecessor. This structure resembles an Icicle 
Plot [22], which makes clustering of objects easily 
noticeable. Furthermore the orientation of Icicle Plots (top-
to-bottom or left-to-right) is familiar to users, because it is 
also used in common node-link approaches, as stated in the 
work of Barlow and Neville [23]. 

A class is represented as a rectangle with a header and a 
body. The header shows the name of the class and the 
number of instances contained in this class is given in 
parenthesis behind the class name. The body itself contains a 
list of the class’s instances. This avoids overlapping of 
names as common with node-link approaches and therefore 
allows to quickly scan the list of instances. In cases where 
classes share instances, the instance is shown in each class. If 
the number of instances in a class exceeds a given threshold 
nmax then paging inside the class is enabled to avoid 
vertically stretched rectangles in such a case. The height of 
the rectangle is therefore either given by the total height of 
all subclasses or by the height needed to enclose nmax 
instances.  

The width is defined by the longest name contained in a 
rectangle, whereas names longer than 15 characters are 
truncated with "..." in the current version (tooltips will show 
the complete name of the entity if the mouse is placed over a 
truncated text) to avoid misshaped rectangles which may 
otherwise occupy unnecessary space.  An arrow to the right 
side of each rectangle allows closing and opening of all 
underlying classes. This gives the user the possibility to 
suppress elements which are not relevant to him.  A closed 
class is only represented with its header. All underlying 
subclasses are also closed and intended to occupy less 
display space. Fig. 2 shows the difference between a 
completely open and a partially closed block. Because the 
size of  a  block  may  exceed  the  space  of a  single  screen,  

 

navigation is possible via a thumbnail in the lower right 
corner. 

OWL Lite defines three types of non-hierarchical 
relationships: datatype, object and annotation properties. 
Knoocks – in its current version – supports the former two. 
Annotation properties were classified as not very important 
in a user study which was conducted earlier [21]. Datatype 
properties are represented in a two-column table. The first 
column contains the names of the properties and the second 
column lists the corresponding values. The table pops up if 
the user clicks onto an instance. If an instance is connected 
with other instances via object properties, then these 
relations are shown in a collection of lists. Fig. 3 depicts the 
datatype property table and the object property lists. 
Instances are grouped according to common class paths. In 
particular, all instances which can be reached along the same 
path are shown within a single rectangle. This grouping has 
the advantage that users can easily notice which instances 
have the same subclass hierarchy in common. The path 
begins with the root node of the corresponding block so that 
the user can quickly infer this block. If classes along this 
path do not contain any linked instances, then these classes 
are abbreviated with "[...]" and tooltips show the complete 
omitted path. This way non-relevant classes do not occupy 
much space and the path can nonetheless be obtained. All 
entries in the collection are links, in a way that they allow to 
quickly jump to the respective entry on which the detail view 
is automatically focused. Users can move the collection as a 
whole or each rectangle individually. This gives the users 
complete freedom to place the elements wherever they like. 
Tables and collections have a slightly transparent 
background, so that they do not cover the background 
completely and therefore the user has still a faint impression 
of what is obstructed. 

B. Overview 
Blocks in the overview are laid out in a radial pattern as 

can be seen in Fig. 4. The placement of blocks is calculated   
by    a    simple   genetic  algorithm  which   minimizes  edge  

Figure 2. Left: A block showing the complete hierarchy of the class 
Destination. The number of instances of the class City exceeds the limit of 
instances which are shown at once (five in this case) and therefore buttons 
for paging are available. Right: Subclasses can be closed by clicking on the 
arrows located to the right of each class which contains subclasses. In this 
case the class Country has been closed. 

Figure 3. The table of datatype properties (left) and the list of connections 
for a specific instance (right). Instances in the list are displayed under their 
respective class. Arrows left to each instance show the direction of the 
connection and their color reflects the object property (placing the mouse 
over such an arrow shows directly the name of the object property). 



crossings. The size of blocks is chosen in such a way that no 
overlapping occurs. However, individual instances are not 
shown in the overview because due to space restrictions they 
would not be readable and therefore only clutter the 
visualization. Instead, the background color of a rectangle 
reflects the number of instances. 

Connections via object properties are displayed as cubic 
Bezier curves and each object property has an individual 
color assigned to make differentiation easy. The colors were 
chosen in such a way that they are harmonious and the 
contrast is high.  We decided to use curved lines, because if 
more than two nodes lie on the same straight line, connecting 
these with straight line segments can lead to ambiguities 

since the segments will fully coincide in such a case. In 
connection with the radial layout and because these lines are 
attracted towards the center the probability that lines cross 
over other blocks is reduced. 

To avoid visual clutter, we use an edge bundling 
technique similar to the one described by Holton [24]. 
However, Holton bundled the edges visually be drawing 
edges connected to the same two nodes close together. In our 
case it is primarily a bundling of edges into one meta-edge. 
All edges between instances of the same two classes with the 
same object property are therefore merged into one such 
meta-edge whereas the thickness of the curve depends on the 
number of these edges. Since multiple meta-edges can 
connect to the same two nodes the middle control point of 
the cubic curve is altered to slightly offset them from each 
other. 

The curves are drawn with alpha-blending to avoid 
obscuration of other curves and blocks. Moving the mouse 
over such a curve highlights it and shows a table with all 
contained edges. This connection table can also be pinned 
down in which case the curve remains highlighted. The 
connection table shows the type of the object property, the 
two linked classes and the individual instances which are 
connected. Arrows between two instances show the direction 
of the relation (see Fig. 4). The color of the table header and 
of the arrows resembles the object property. All entries in the 
connection table are clickable, meaning that one can 
immediately focus the detail view on the respective entry. 
This automatically brings the detail view into the large 
window, because users noted in a previous evaluation that 
doing it manually each time is bothersome. 

Users can also move individual blocks if they are not 
satisfied with the automatic alignment to arrange/group them 
in any manner they like. Edges and pinned down connection 
tables are moved accordingly, meaning that the relative 
position of a connection table along the Bezier curve is 
preserved. The overview window also allows the user to 
select a specific block by simply clicking on its enclosing 
box. In contrast, clicking somewhere on the background will 
deselect all blocks. If a block is selected, only edges which 
are connected to this block are shown. Furthermore single 
classes can be selected or deselected respectively by clicking 
on the respective rectangle. If a class is selected then only 
edges which are connected to it are shown in full saturation. 
All other edges linked to the block in which the class resides 
are drawn with higher translucency. This way, currently 
important curves stick out from the environment and are 
therefore easily noticeable (see Fig. 5 for an example). Data 
properties are not shown in the overview window. 

C. Filtering and Searching 
One of the main drawbacks of the previous versions were 

missing filter and search function, which are implemented in 
the current version.  

Filtering allows the user to hide and highlight certain 
elements of the ontology. Blocks can be highlighted or 
hidden completely in which case all relations connected with 
this block are also hidden. Individual classes of a block can 
also be highlighted, whereas such classes have a higher 

Figure 4. Overview with all blocks and their interconnections. Color and 
width of the curves (meta-edges) reflect the object property and the number 
of contained edges. If the mouse moves over a particular curve, this curve 
is highlighted with a black outline and a table shows all of the contained 
connections. Tooltips at both ends of the curve depict the names of the two 
connected classes. The color of the individual rectangles reflects the 
number of contained instances. 

Figure 5. If a specific class is selected than this class is highlighted 
(yellow) and only curves connected with this class are shown in full 
saturation, the others are faded out. 



priority over highlighted blocks. Furthermore edges with 
certain object properties can be hidden in the overview. 

 Searching on the other hand allows the user to find 
specific instances or classes of the ontology. A quick search 
function permits searching by name whereas an advanced 
search function gives the possibility to search by data 
properties. The logical functions, which can be applied to the 
value of the property, depend on its datatype. Multiple 
queries can be combined with logical AND and OR 
operations. In either case the results are displayed in a listbox 
where the user can click on the individual results to focus the 
detail view on the respective class or instance.  

D. Bookmarks and History 
A checkbox left to each instance allows users to 

bookmark instances which are of interest to them. All of 
these bookmarks are shown, alphabetically ordered, in a 
listbox. Clicking on an entry in this list enables users to focus 
the detail view on the respective instance. Furthermore, a 
history is available which records every jump from one 
instance/class to another instance/class. This way, users can 
track their progression through the ontology and – if 
necessary – go back to a previous entry in the list. 

V. USER FEEDBACK 
The presented version was evaluated by three ontology 

developers in regard to usability and functionality. Although 
this is a rather small number of participants and therefore no 
significant quantitative measurements can be derived, we 
received valuable qualitative feedback. Testing sessions for 
each participant took about 180 minutes and consisted of: 
task scenarios, observations in combination with thinking 
aloud protocols, semi-structured interviews and comparisons 
with Jambalaya as well as TGVizTab. One set of tasks 
focused on the identification of specific instances, datatype 
properties or classes. Another set of tasks concentrated 
mainly on the dependencies between instances and between 
blocks. To obtain comparable results we used the same 
curriculum ontology as in previous evaluations. This 
ontology consists of 86 classes, 122 instances, 2 object 
properties and 8 datatype properties. 

A. Results 
Responding to questions about users’ experiences with 

ontologies and their expectations of ontology visualizations, 
the participants stated that their ontologies usually contain 
less than 50 classes and include more instances than classes. 
This confirms our approach to improve the accessibility of 
instances and to provide a clear representation of the 
connection with their respective classes. As current used 
visualization tools, they use Jambalaya and Gruff. From a 
visualization they expect: a clear representation of classes 
and their relationships, simple access to instances, the ability 
to represent a large number of instances and filtering. 

In general, Knoocks got predominantly positive reactions 
and the following strengths were named: visibility of siblings 
of parent, flexibility (e.g. moving tables and blocks), clear 
differentiation between non-hierarchical and hierarchical 
relationships, and representation of all datatype properties at 

first glance as well as visualization of instances in 
connection with their classes. All test persons realized that 
the width of curves reflects the number of edges and one 
expert described it as a useful feature. Furthermore, the 
layout of blocks and closing and opening of classes (which 
helped them to understand the structure of blocks) were 
clear. In the overview window, double click to zoom in a 
block was intuitive and for all three experts it was clear that 
orange tables show the datatype properties and that lists 
show the connections. Arrow symbols and colors of object 
properties were also understandable. For tasks, which 
required identification of instances or classes, all experts 
used the search function. Highlighting of instances or classes 
helped them to easily locate search results in the detail view. 
We observed that highlighting was also very useful to focus 
the users’ attention after jumping to other instances or 
classes. Furthermore, navigation via the thumbnail was clear, 
although they stated that it was a bit unusual at the 
beginning. The responses to questions about the design of 
the graphical representation showed that they found colors 
and design attractive and well balanced. 

However, two participants noted that they missed 
information about the types (e.g. integer, string) of datatype 
properties in tables. Two experts would also like to get 
general information about a class, in particular information 
about contained datatype and object properties. They 
suggested to show this information after clicking on the class 
header. Closing of tables and connection lists in the detail 
view was not clear enough, because they initially overlap 
their associated instances. Therefore, they stated that it 
would be helpful to have a button to close all tables in the 
detail view at once and another one for closing all connection 
tables in the overview window. Furthermore, the meaning of 
bookmarks in connection with instances was not clear in the 
beginning. After explanation, however, they saw the benefit 
of them. One expert noted that it was sometimes annoying 
that texts were truncated. Because in the test ontology, 
several instance names start with the same letters and 
therefore 15 characters were often not enough. Therefore, 
using multiple rows in case of datatype properties was 
proposed as possible solution. Furthermore, it was named as 
useful to have the possibility to export the current 
visualization, which is represented in the main window, as an 
image. Further suggestions for possible improvements were: 
user definable colors for object properties, hidden blocks 
should be marked in search results and connection tables in 
the overview window should also close after clicking on the 
corresponding highlighted edge. 

All participants confirmed that the graphical 
representation met their expectations, although one expert 
noted as possible weakness that Knoocks is not a plug-in for 
Protégé.  

In comparison with Jambalaya and TGVizTab, 
participants stated that TGVizTab makes it difficult to 
distinguish between hierarchical and non-hierarchical 
relationships because of missing visual differentiation.  In 
contrast to TGVizTab, they liked the design of Jambalaya 
and stated that Knoocks and Jambalaya are similar in regard 
to functions and handling. However in contrast to Knoocks, 



they found that Jambalaya quickly overcrowds with 
increasing number of represented relationships. Furthermore, 
they noted that the layout of Knoocks is better for getting a 
fast overview of the general structure of an ontology, which 
they find rather difficult in case of a nested graph layout. 

VI. CONCLUSION 
This paper described the design concepts behind the 

ontology visualization approach Knoocks. Contrary to most 
of the existing approaches which either focus on the 
hierarchical structure with instances or on interconnections 
within the ontology, Knoocks aims to merge both approaches 
by providing two views: an overview and a detail view. 
These two views are visible at the same time and are linked 
with each other, allowing the user to seamlessly go from 
detail view to overview and vice versa. First reactions of 
ontology developers were favorable and confirmed the basic 
concept. For the next version we will try to resolve the 
usability issues which were revealed during the evaluation. 
Furthermore we will verify how missing features (e.g. 
display of types and general class information) addressed by 
the experts can be included into the current concept. Further 
usability evaluations will be carried out in the near future to 
confirm the underlying concepts of our approach. 

 REFERENCES 
[1] B. Swartout, R. Patil, K. Knight, and T. Russ, "Toward Distributed 

Use of Large-Scale Ontologies," Proc. AAAI97 Spring Symposium 
Series, Workshop on Ontological Engineering, 1997, pp. 138 - 148. 

[2] J. J. v. Wijk, "The Value of Visualization," Proc. IEEE Visualization, 
2005, pp. 79 - 86. 

[3] M. Lanzenberger, J. Sampson, and M. Rester, "Visualization in 
Ontology Tools," Proc. International Conference on Complex, 
Intelligent and Software Intensive Systems. 2nd International 
Workshop on Ontology Alignment and Visualization, Fukuoka, 
Japan, 2009 

[4] A. Katifori, G. Halatsis, G. Lepouras, C. Vassilakis, and E. 
Giannopoulou, "Ontology visualization methods—a survey," ACM 
Computing Surveys, vol. 39, 2007. 

[5] H. Alani, "TGVizTab: An Ontology Visualisation Extension for 
Protégé," Proc. Knowledge Capture (K-Cap'03). Workshop on 
Visualization Information in Knowledge Engineering, Sanibel Island, 
Florida, USA, 2003 

[6] T. D. Wang and B. Parsia, "CropCircles: Topology Sensitive 
Visualization of OWL Class Hierarchies," Proc. 5th International 
Semantic Web Conference (ISWC '06), Athens, USA, 2006 

[7] C. Fluit, M. Sabou, and F. v. Harmelen, "Supporting user tasks 
through visualization of light-weight ontologies," in Handbook on 
Ontologies, S. Staab and R. Studer, Eds.: Springer, 2004, pp. 415 - 
434. 

[8] R. Lintern and M.-A. Storey, "Jambalaya express: on demand 
knowledge visualization," in 8th Protégé Conference. Madrid, Spain, 
2005. 

[9] Stanford Center for Biomedical Informatics Research, "Protégé 
project," online: http://protege.stanford.edu Last seen:29.09.2009. 

[10] M. A. D. Storey, K. Wong, F. D. Fracchia, and H. A. Mueller, "On 
Integrating Visualization Techniques for Effective Software 
Exploration," in Proceedings of the IEEE Symposium on Information 
Visualization (InfoVis '97): IEEE Computer Society Press, 1997. 

[11] M.-A. Storey, M. Musen, J. Silva, C. Best, N. Ernst, R. Fergerson, 
and N. Noy, "Jambalaya: Interactive visualization to enhance 
ontology authoring and knowledge acquisition in Protege," Proc. Intl. 
Workshop on Interactive Tools for Knowledge Capture, Victoria, 
B.C. Canada, 2001 

[12] M. A. Storey, R. Lintern, N. Ernst, and D. Perrin, "Visualization and 
Protégé," in the 7th International Protégé Conference. Bethesda, 
Maryland, 2004. 

[13] B. Shneiderman, "Tree visualization with tree-maps: 2-d space-filling 
approach," ACM Transactions on Graphics, vol. 11, 1992, pp. 92-99. 

[14] D. Perrin, "Prompt-viz: Ontology version comparison visualizations 
with treemaps," in Department of Computer Science,. Victoria, 
Canada: University of Victoria, 2004. 

[15] B. Parsia, T. Wang, and J. Golbeck, "Visualizing Web ontologies 
with CropCircles," Proc. 4th International Semantic Web Conference 
(ISWC '05). Workshop End User Semantic Web Interaction, Galway, 
Ireland, 2005 

[16] A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca-Grau, and J. Hendler, 
"Swoop: A 'Web' Ontology Editing Browser," Journal of Web 
Semantics, vol. 4, 2005. 

[17] C. Fluit, M. Sabou, and F. v. Harmelen, "Ontology-based information 
visualisation: Towards semantic web applications," in Visualising the 
Semantic Web (2nd edition), V. Geroimenko, Ed.: Springer, 2005. 

[18] H. Stuckenschmidt, A. d. Waard, R. Bhogal, C. Fluit, A. Kampman, 
J. v. Buel, E. v. Mulligen, J. Broekstra, I. Crowlesmith, F. v. 
Harmelen, and T. Scerri, "A Topic-Based Browser for Large online 
Resources," Proc. International Conference on Knowledge 
Acquisition, Modelling and Management (EKAW’04), Milton 
Keynes, England, 2004 

[19] S. Kriglstein and R. Motschnig-Pitrik, "Knoocks: New Visualization 
Approach for Ontologies," Proc. Information Visualization (IV '08), 
London, UK, 2008, pp. 163 - 168. 

[20] B. Pellens, "OwlDotNetApi," online:http://users.skynet.be/ 
bpellens/OwlDotNetApi/index.html Last seen:26.09.2009. 

[21] S. Kriglstein, "User Requirements Analysis on Ontology 
Visualization," Proc. International Conference on Complex, 
Intelligent and Software Intensive Systems. 2nd International 
Workshop on Ontology Alignment and Visualization, Fukuoka, 
Japan, 2009 

[22] J. B. Kruskal and J. M. Landwehr, "Icicle Plots: Better Displays for 
Hierarchical Clustering," The American Statistician, vol. 37, 1983, 
pp. 162 - 168. 

[23] T. Barlow and P. Neville, "A Comparison of 2-D Visualizations of 
Hierarchies," Proc. IEEE Symposium on Information Visualization 
2001 (INFOVIS'01), 2001 

[24] D. Holten, "Hierarchical Edge Bundles: Visualization of Adjacency 
Relations in Hierarchical Data," IEEE Transactions on Visualization 
and Computer Graphics, vol. 12, 2006, pp. 741 - 748. 

 


