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 Introduction 

he desire and need to protect software from analysis, reverse engineering, and tampering have
lways existed. Benign software vendors want to keep the exact implementation of their product
nd its embedded data, such as cryptographic keys, secret. They want to prevent the removal of
opy protections, cheating in multi-player games, and so on. Malware authors also often employ
oftware protection (SP) mechanisms to prevent detection and analysis of the malicious nature
f their code. 
Over the past three decades, a vast number of obfuscation, tamperproofing, and anti-analysis

echniques for both goodware and malware have been introduced in the literature [ 73 , 98 , 148 ] and
n industry to meet the described needs. The deployment of such protections has in turn triggered
n arms race in which many new deobfuscation, tampering, and analysis techniques have been
roposed. These are collectively called man-at-the-end (MATE) attacks, because the human at-

ackers using the deobfuscation, tampering, and analysis techniques have full control over the end
ystem on which they run, analyze, and alter the software and malware under attack. Their tools
nclude emulators, debuggers, disassemblers, custom operating systems, fuzzers, symbolic exe-
ution, sandboxes, and instrumentation among a wide range of static and dynamic analysis and
ampering tools. These give them white-box access to the software and malware internals, includ-
ng their internal execution state. To a considerable degree, but not completely, benign software
nd malware analysis techniques overlap, and hence so do the deployed protections. 

In the MATE attack model, and with the current state of the art in practical SPs, complete pre-
ention of attacks on software and malware protections is impossible [ 133 ]. With enough resources
nd time to exploit their white-box access, attackers will always succeed. The goal of benign MATE
P is hence to make potential attackers’ return on investment negative. The already mentioned SPs
an help to achieve this by delaying the successful identification and engineering of attacks, and by
imiting the exploitability of identified attacks. Software diversity also plays an important goal, as
t can limit the attacker’s use of a priori knowledge to identify an attack and hinder its wide-scale
xploitation. The goal of malware protection is of course the inverse, namely to make the malware
uthors’ return on investment positive by delaying analysis and detection to the point where the
alware has generated enough money or caused enough damage. 
These goals are much fuzzier than the goals in some other security domains such as cryptog-

aphy, which builds on precisely defined mathematical foundations to protect against man-in-
he-middle attacks. While cryptographic techniques and well-defined, cryptographically-sound
oncepts have also been developed in the domain of obfuscation, the results (be it negative [ 25 ] or
ositive [ 120 ]) are far from ready for widespread, general use in practice. Because of the mentioned
uzziness, and because MATE attackers have so many alternative attack strategies and techniques
t their disposal, it is difficult to measure the strength of SPs and to make founded statements about
hem. As attackers can reach their goal in so many ways, there is not even a universally applicable
nd accepted evaluation methodology. For example, while there is a common understanding that
he relevant aspects to evaluate include potency, resilience, stealth, and cost [ 57 , 58 ], there is no
niversally agreed and applicable method to define, qualify, or quantify the former three. 
Such issues were discussed extensively at the 2019 Dagstuhl Seminar on Software Protection

ecision Support and Evaluation Methodologies [ 68 ]. Most participants felt that there is a lack of
ood benchmarks for evaluating SP, and that the significance and validity of evaluations of pro-
osed methods remain unclear. The fact that this gut feeling and (collective) subjective concern
ased on anecdotal experience was not backed up with systematic research motivated us to per-
orm this survey. Our overall goals are to validate whether the mentioned concerns really exist, to
raw a clear picture of the currently used methods to evaluate SPs, and to identify challenges and
utline directions for better comparability and reproducibility of publications in the field of SP. 
CM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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To that extent, we systematically analyze the content of publications on SP and code analysis
hat target software confidentiality, i.e., that focus on the topics of obfuscation and deobfuscation
nd techniques to perform and prevent analysis of goodware and malware. With an initial set of
,491 publications and an in-depth analysis of 571 papers, this survey is by far the largest litera-
ure study in this field to date. It is organized as follows: Section 2 presents the methodology we
dopted to include, exclude, and categorize papers, and for extracting data from them. Section 3
nalyzes the sample sets used for evaluating the papers’ contributions, including the sample set
izes and the nature of the used samples. Section 4 discusses the treatment that the samples under-
ent as discussed in the papers, i.e., how the protected (and unprotected) samples were generated.

ection 5 studies how measurements were performed on the samples. Section 6 reports our findings
bout experiments involving human subjects. Section 7 presents our recommendations for future
esearch. In Section 8 , we list related literature surveys and reviews. Finally, Section 9 concludes
his work. 

 Scope and Methodology 

his survey comprises peer-reviewed papers on practical general-purpose SP techniques that aim to
rotect the confidentiality of assets embedded in software (goodware or malware) by preventing
r hindering software analysis and reverse engineering in the attack model. 
The SPs in scope target software formats ranging from source code over bytecode/ intermediate

epresentations (IRs) to compiled software (binary code). Such SPs include various obfuscation
echniques (e.g., opaque predicates) and preventive protections (i.e., that prevent or hinder the use
f reverse engineering tools and analysis tools, such as anti-debugging techniques). Our SP scope
lso includes methods that use hardware to protect software (e.g., relying on physically unclon-
ble functions). However, schemes that protect hardware (i.e., integrated circuits) are excluded.
urthermore, out-of-scope are SPs that prevent the exploitation of vulnerabilities (e.g., ASLR), as
ell as anti-tampering schemes that exclusively focus on protecting the integrity of embedded as-

ets, such as code guards and remote attestation. In addition, methods for obfuscating data that is
rocessed by, but not included in the distributed software are out of scope (e.g., network traffic and

ocation data obfuscations), as well as software-based steganography (i.e., techniques to inject ex-
ernal data into a program in a hidden manner). Because our focus is on practical general-purpose
P techniques, we exclude papers focusing on special-purpose obfuscation (e.g., white-box cryp-
ography [ 81 ] and obfuscations of point-functions, pseudo-random functions, and finite automata)
s well as cryptographic obfuscation (e.g., indistinguishability obfuscation, virtual black box ob-
uscation, fully homomorphic encryption) [ 96 ] that we deem not ready for use in practice yet. 

This survey includes papers that present (i) novel SPs in scope; (ii) reverse engineering tools and
echniques with which those SPs in scope are attacked, identified, detected, located, circumvented,
eobfuscated, analyzed, undone, bypassed, worked-around, and so on; (iii) practical or theoretical
ethods or models to reason about, evaluate, and deploy those SPs and attacks; (iv) as well as

urveys on them. Pure position papers, non-peer-reviewed papers, blog posts, books, and posters
re out of scope. Table 1 lists all our exclusion criteria. 

.1 Paper Retrieval and Selection Process 

he starting point of our study are papers on the topic of obfuscation gathered from three online
ibraries. In the ACM Digital Library, IEEE Xplore, and SpringerLink we searched for paper titles
ncluding “obfuscation”, “obfuscate”, “obfuscating”, and other variants thereof, including variants
f “deobfuscation”, from 2016 to 2022. From those years, we also added papers based on their title
rom the USENIX Security and Network and Distributed System Security (NDSS) symposia,
wo top security conferences that are not included in the aforementioned libraries. For papers older
ACM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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Table 1. Inclusion and Exclusion Criteria 

Inclusion 1 Obfusc* 
�
� deobfusc* in paper title published between 2016–2022 and listed in ACM Digital 

Library, IEEE Xplore, SpringerLink or published at the USENIX Security or NDSS symposia 

Inclusion 2 Paper is cited in [ 73 , 98 , 148 ] 

Inclusion 3 Offensive or defensive paper on SP or malware analysis published before 2023 by any of a 
self-curated list of authors 1 

Exclusion 1 Not peer-reviewed 

Exclusion 2 Posters, books, pure position papers 

Exclusion 3 Targets obfuscation of something else than software, such as location or energy meter data 

Exclusion 4 Topic is a form of cryptographic obfuscation 

Exclusion 5 Main focus is special-purpose obfuscation such as white-box cryptography 

Exclusion 6 Protection aims for mitigating vulnerability exploits, not on confidentiality of software 

Exclusion 7 Focus of paper is software integrity protection rather than confidentiality 

Exclusion 8 Focus is on steganography instead of software confidentiality 

Exclusion 9 Evaluated or analyzed techniques do not include protections in scope 

Fig. 1. Evolution of included goodware and malware papers, as well as excluded papers. 
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han 2016, we limited the selection to papers referenced in three well-known surveys related to this
urvey [ 73 , 98 , 148 ]. In addition, a self-curated list 1 of researchers working in the area of SP was
sed to manually identify additional papers. Table 1 lists these inclusion criteria. The preliminary

ist obtained with the described, rather mechanistic retrieval process totaled 1,491 papers. Many
f those were false positives, however, so after the initial selection we manually filtered out papers
hat are out of scope as determined by the listed exclusion criteria. Eventually, 571 (38%) remained
or in-depth analysis. This is hence by far the largest literature study on SP to date. By comparison,
he aforementioned surveys only contain 203, 367, and 98 cited works. 

Figure 1 depicts the publications included and excluded per publication year. About
0% ˆ = 343/571 of the papers are from the 2016–2022 period. This is in line with our ambition
o shed a light on currently used evaluation methods in the domain of SP. We deem the inclusion
 C. Basile, A. Pretschner, A. Lakhotia, A. Francillon, B. Wyseur, C. Henderson, C. Collberg, C. Thomborson, C. Maurice, C. 
ulliner, D. Boneh, J. Davidson, L. Goubin, M. Videau, M. Bailey, M. Franz, M. Dalla Preda, M. Ahmadvand, N. Stakhanova, 
. Provos, N. Eyrolles, R. Giacobazzi, S. Debray, S. Banescu, S. Bardin, S. Katzenbeisser, T. McDonald, and Y. Gu. 

CM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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Table 2. Categorization of the 571 Surveyed Papers 

Perspective 

Obfuscation 360 ˆ = 63% novel SPs, deployment and evaluation methods, insights into SP practices 

Deobfuscation 102 ˆ = 18% novel tools/methods for obtaining deobfuscated software representations 

Analysis 166 ˆ = 29% other analysis and (malware) classification techniques, evaluation thereof 

Application 

Diversification 33 ˆ = 5.8% diversification of SPs or as an SP 

Tamperproofing 42 ˆ = 7.4% use of SPs to strengthen tamperproofing of code, or attacks on them 

Watermarking 12 ˆ = 2.1% use of SPs for building watermarks, or attacks on them 

Target 

Malware 183 ˆ = 32% paper focuses on malware and/or includes malware evaluation samples 

Goodware 388 ˆ = 68% all papers not categorized as malware according to above criterion 

Malware only 99 ˆ = 17% malware paper focusing on techniques that are only useful for malware 

Mobile 88 ˆ = 15% paper targets Android or iOS apps 

Nature 

Survey 38 ˆ = 4.4% literature studies, surveys, meta-analysis papers 

Theoretical 29 ˆ = 5.1% theoretical approaches, e.g., abstract interpretation for strength evaluation 

Data science 77 ˆ = 13 % presented approaches rely on machine learning or artificial intelligence 

Human Experiment 20 ˆ = 3.5% paper presents experiments with humans performing tasks 

Categories are non-exclusive. 

o  

p

2

F  

f  

u  

u  

u  

a  

o  

c  

o  

t  

w  

r
 

a

2

W  

i  

P  

a  

c  

t

f the other 40% ˆ = 230/571 of older papers important, however, because it enables us to identify
otential historic trends and evolutions in how SPs are being evaluated. 

.2 Information Collection 

or each paper, we collected 113 aspects ranging from the contribution area (obfuscation, deob-
uscation, analysis, etc.), over types of targeted software, types of performed measurements, and
sed sample sets, to the discussed and deployed protection and analysis methods and tools. We
se our own terms and definitions for all categories, which sometimes diverge from how authors
sed the same terms in their papers. Our definitions are listed in the supplemental material. Over-
ll, 64,523 individual data points were gathered. We partitioned the papers among all authors
f this survey. Care was taken not to finalize any paper’s data collection before discussing any
orner cases or doubts that surfaced and before obtaining consensus, i.e., agreeing unanimously
n how to classify them. All classifications and information were collected in a spreadsheet. At
imes, additional categories or evaluation aspects were added and definitions of existing categories
ere updated or refined. At those occasions, potentially impacted, already reviewed papers were

evisited. 
We further conducted multiple rounds of double checking in the spreadsheet for consistency

nd performed various plausibility checks on the data to further improve its quality. 

.3 Top-level Paper Categorization 

e categorized all papers non-exclusively using the top-level categories listed in Table 2 . In do-
ng so, we consider malware detection and malware classification papers to be analysis papers.
apers labeled as analysis papers are in addition labeled as deobfuscation papers if the presented
nalysis reveals the information necessary to deobfuscate protected code fragments. Examples are
ontrol flow analyses that identify opaque predicate-based bogus control flow as unrealizable, or
echniques that reveal which library APIs are called at obfuscated call sites. 
ACM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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Fig. 2. Targeted languages: M anaged, N atively compiled, and S cripts, plus language-agnostic papers (-). 
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If a paper’s contribution is some analysis or framework to assess the strength of an obfuscation,
e consider this an obfuscation contribution, as it advances our knowledge about obfuscations and

valuation methods thereof. We only consider it an analysis contribution if it also advances knowl-
dge about analysis techniques. Detection algorithms, such as for library code and cryptographic
rimitive detection, are framed by some authors as analysis research, and by others as deobfusca-
ion research. We consider them analysis papers because they classify software components sim-
larly to what malware classification does. We also label them as deobfuscation papers, however,
ecause in the eyes of an attacker they summarize complex, obfuscated low-level code instances
nto abstract concepts that are void of any obfuscation. 

All papers not categorized as malware using the criterion in Table 2 are categorized as goodware

apers. Hence, those include papers that do not specifically target malware and that do not use
alware samples, but of which the content can still apply to both benign and malicious software.
� Our survey includes many more defensive papers than offensive ones . In the context of malware,

efensive papers focus on analysis, detection, and deobfuscation techniques to safeguard systems
rom malware. In the context of goodware, by contrast, defensive papers focus on obfuscation to
rotect the confidentiality of software assets against reverse engineering. A Venn diagram cate-
orizing all papers is included in the supplemental material. 
� Our survey includes few multi-perspective papers, and even fewer papers (1.2% ˆ = 7/571) that con-

ribute novel techniques and at once evaluate the impact of countermeasures that adversaries might

dopt . Table 3 lists the various ways in which multi-perspective papers contribute. This lack of
ulti-perspectivism is important because SP is an arms race between defenders and attackers,

.k.a. a cat and mouse game. In case evaluating a countermeasure against one’s own contribution
equires a considerable research or engineering effort, it is acceptable to publish the initial contri-
ution and the countermeasure separately. However, we think it occurs much more often that one
an evaluate the impact of (small) adaptations by adversaries with relatively little effort. In such
ases, it is warranted for reviewers and readers to expect and demand such an evaluation in the
apers. This is all the more important because a crucial aspect of MATE attackers’ modus operandi
s to find and exploit the attack-path-of-least-resistance. Whenever some novel SP is proposed and
valuated that impacts some path-of-least-resistance, it is important to evaluate whether there are
o trivially similar, alternative paths-of-least-resistance remain unimpacted. A best practice for SP
esearchers that make a cat or mouse move is therefore to look ahead and evaluate at least the
mallest next moves that can be anticipated. This best practice expectation was explicitly raised
n Dagstuhl. 
� The literature is lacking with respect to multi-perspectivism and direct countermeasure

valuation. 

We also categorized the papers according to the categories of programming languages they
arget, i.e., the languages on which the paper authors demonstrate or evaluate their contributions.
igure 2 shows the results. In line with existing work [ 97 ], we considered four categories: 

—Native languages such as C/C++ are compiled to and distributed as native code binaries. 
—Managed languages such as Java or C# are typically compiled to and distributed as bytecode

to be executed in a managed environment, for which enough symbolic information needs to
be included, e.g., to support garbage collection, type correctness verification, and reflection.
CM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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Table 3. Multiperspective Papers and How They Combine Contributions in (De)Obfuscation and Analysis 

Obfuscation, Deobfuscation, and Analysis: 0.4% ˆ = 2/571 papers 

[ 88 ] survey 

[ 121 ] presents interactive tool for all three tasks 

Obfuscation and Deobfuscation: 1.8% ˆ = 10/571 papers 

[ 24 , 72 ] theorize about both kinds of tasks 

[ 9 , 135 , 144 ] survey and/or evaluate both kinds of transformations 

[ 1 , 170 ] present a novel deobfuscation technique to study the prevalence of obfuscation techniques in 
real-world samples 

[ 52 , 128 ] * present a deobfuscation technique to defeat existing obfuscations and novel obfuscations as 
countermeasures 

[ 147 ] * presents new obfuscation techniques as well as novel deobfuscation techniques, with the 
latter outperforming the existing state-of-the-art while not succeeding (entirely) on the 
newly obfuscated samples 

Obfuscation and Analysis: 3.7% ˆ = 21/571 papers 

[ 61 , 62 ] present the use of abstract interpretation to assess obfuscations 

[ 35 , 42 , 63 , 92 , 148 , 
157 , 182 ] 

survey, present, and evaluate malware detection and software analysis techniques as well as 
obfuscations as a counter-measure 

[ 4 , 17 , 182 ] discuss the use of analyses tools and techniques to evaluate the strength of obfuscations 

[ 159 ] * presents novel obfuscations and new models of attacks thereon 

[ 171 ] * presents novel obfuscations and improvements to existing analyses to counter those 
obfuscations 

[ 70 , 132 , 146 , 156 , 
176 ] 

present novel detection techniques to study the prevalence of obfuscations in real-world 
software 

[ 174 ] presents empirical studies of the effort needed to attack software protected with specific 
obfuscations 

[ 15 , 19 ] * evaluate state-of-the-art analyses on obfuscated code and present novel mitigating 
obfuscations 

Deobfuscation and Analysis: 3.9% ˆ = 22/571 papers 

[ 12 , 23 , 41 , 80 , 83 , 
160 , 167 , 180 , 186 , 
194 ] 

present or build on third-party (library) code (similarity) and cryptographic primitive 
detection algorithms 

[ 50 , 51 , 54 , 183 ] present pre-pass deobfuscation for improving malware detection 

[ 60 , 86 , 87 ] present analysis tools that are demonstrated in manual deobfuscation uses cases 

[ 7 , 192 ] present analyses and transformations that deobfuscate software as a side-effect 

[ 27 , 67 ] present techniques to deobfuscate code as well as to detect code reuse from libraries and from 

earlier version 

[ 189 ] presents analyses of which the results are equivalent to deobfuscation but without actually 
deobfuscating any code, such as a data flow analysis that reconstructs the original data 
dependencies hidden with data flow obfuscation 

Papers marked with an ∗ contribute novel techniques and at once evaluate the impact of countermeasures. 

 

 

d  

t
 

a  
—Scripts , e.g., in JavaScript or PHP, are distributed as source code mostly for web applications.
—No domain specific languages are in scope as we exclude special-purpose obfuscation. 

� A significant number of papers (44 goodware + 1 malware papers) are language-agnostic. They
o not target any particular type of programming language, either because they are surveys or
heoretical papers, or because they present practical techniques in a language-independent way. 
� For goodware, by far the most targeted languages are native languages at 54% ˆ = 210/388. Man-

ged languages are considerably less popular at 27% ˆ = 103/388. The latter mostly target Java and
ACM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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#. Their lower popularity is no surprise. The run-time management of these programs requires
hat the distributed bytecode adheres to stricter rules than required in native code, and that it is
ccompanied by quite some symbolic information. Protection tools for managed software have
ence much less freedom to operate and to generate unconventional code than native language
rotection tools. The semantic gap between the managed language source code and the corre-
ponding (protected) bytecode is hence also smaller than the semantic gap between native lan-
uage source code and its corresponding (protected) assembly code. For these reasons (protected)
anaged bytecode is typically an easier target for reverse engineers than (protected) native code.

oftware developers caring for their assets and considering SP are hence incentivized to opt for a
atively compiled language rather than for a managed language, and when they have the freedom
o make that choice (given their other industrial requirements), they often do so in practice. It then
lso follows that programs written in native languages are more interesting targets for SP. 
� Only 2.3% ˆ = 9/388 of the papers study the combination of managed and natively compiled

oftware. Given the market importance of the Android platform, we find this surprisingly few: only
.3% ˆ = 5/388 of the papers explicitly target Android applications that contain both Java bytecode
nd native code [ 26 , 67 , 111 , 131 , 164 ]. We find this case important, because the aforementioned
hoice to embed the security-sensitive assets in the native libraries in Android applications does
ot fully void the need to also protect the Java part, in particular its interfaces to the native parts.
f those are not protected, they can provide trivially exploitable attack vectors. 
� Scripting languages are clearly the least popular targets of goodware SP papers . The reason

s of course that they are in general even easier to reverse engineer than bytecode of managed
anguages. Only 3.9% ˆ = 15/388 of the goodware papers specifically target them; 13 papers tar-
et JavaScript, two target PHP. JavaScript is hence clearly the most popular script language for
bfuscation research. 
Of the 1.3% ˆ = 5/388 goodware papers that target all three types of programming languages,

our are surveys that cover obfuscations for all types [ 18 , 98 , 148 , 188 ], while one presents an
bfuscation tool for all three types of languages [ 107 ]. 
Finally, one goodware paper discusses not closely related techniques applicable to script code

nd techniques applicable to native code [ 90 ] and one paper focuses (mostly) on identifier renam-
ng which is mostly applicable to both script and managed languages [ 11 ]. 

Overall, the prevalence of the three types of languages in our survey is similar to that reported
n a previous survey [ 98 ]. For each type, the fractions we report are within 5% of theirs. 
� Of the malware papers, 51% ˆ = 94/183 target native malware. This is typically Windows mal-

are. Next, 26% ˆ = 47/183 of the malware papers focus on code written in managed languages, mostly

Android) Java. Two papers target pure Java malware [ 49 , 109 ], and 45 papers target the Java part
f Android apps. In addition, 8.2% ˆ = 15/183 consider both the Java and the native part in Android
pps. The 13% ˆ = 24/183 of the papers targeting script malware focus on JavaScript (11), Power-
hell (5), PHP (3), Visual Basic (3), PDF scripts (1), and shell scripts (1). Finally, two papers discuss
alware analyses for both script and native malware [ 74 , 102 ]. 
� Finally, script languages are much more popular in malware papers than in goodware papers,

ith 14% ˆ = 26/183 of the malware papers targeting script languages , while only 5.7% ˆ = 22/388 of the
oodware papers do so. Scripts language papers are then also the only type of language for which
alware papers dominate the goodware papers, with a ratio of 26:22. For native and managed

anguages, the ratios are 111:226 and 61:118, respectively. This is in line with what we discussed
bove for goodware defenders being incentivized not to use managed and script languages if they
are about their assets. In the case of malware, by contrast, the omnipresence of scripts in on-
ine applications and their exploitation in the real-world have effectively raised the attention of
esearchers, resulting in more focus on them in literature as well. 
CM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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.4 Quality of Venues 

e assessed the quality of the 571 papers’ publication venues using the Australian CORE con-
erences and journal rankings [ 59 ]. The results are as follows: A* 10.0% ˆ = 57/571, A 11% ˆ = 60/571,
 13% ˆ = 74/571, C 13% ˆ = 45/571, unranked 42% ˆ = 237/571, and workshop 14% ˆ = 81/571. In addition,
.6% ˆ = 15/571 of the surveyed papers were published at national-only venues, and 0.4% ˆ = 2/571 at
ew venues not (yet) ranked by CORE. Importantly, these rankings are based on the latest avail-
ble CORE databases (2020 for journals and 2021 for conferences) but venue rankings might change
ver time. The ranking of a venue may hence have been different at the time of publication. 

A detailed study of the numbers revealed that while the distribution of papers over differently
anked venues varies from one year to another, we observed no major trends over the years. In par-
icular, the distributions for the years 2016–2022 did not differ substantially from the distribution
n the years up to 2015. In other words, the different methods we used for selecting papers up
o 2015 (based on existing surveys and authors) and from 2016 onwards (additionally based on
itle keywords in online databases) did not have a noticeable impact on the quality of the papers
ncluded from those years as judged by the ranking of their publication venue. 
� The most important finding from our data is that papers published at top-tier venues (A*) are

redominantly from the malware categor y. Although only 32% of all sur veyed papers fall into the
alware category, about 58% of all A* papers are from this category. Goodware obfuscation papers

re instead mostly published at specialized workshops. 
� Overall, the number of goodware SP papers at top-tier security venues is low: USENIX Security:

, ACM CCS: 4, IEEE S&P: 1, NDSS: 1. The cause of this can only be speculated. It coincides with
he subjective feeling among many goodware SP researchers, including many participants of the
agstuhl seminar, that it is hard to get goodware SP papers published at top-tier venues. Part
f the reason could be that the evaluations and validations of the proposed techniques are less
onvincing to reviewers, e.g., because the used methodologies are ad hoc rather than standardized,
nd because the goals and provided security guarantees are much fuzzier than in other domains
uch as cryptography. With this survey, we shed more light on the used evaluations, such that the
P community can progress from a subjective feeling towards more objective observations. 

 Sample Sets 

n the SP community, no consensus on the use of particular samples for the evaluation of SPs and
ode analysis methods exists [ 68 ]. Instead, used samples vary widely both in complexity of indi-
idual samples and overall sample set size. This results in a strikingly large number of distinct
amples used in the SP literature, in stark contrast to other fields in computer science, such as
n machine learning and computer vision with the omni-present data sets MNIST, CIFAR10, CI-
AR100, ImageNet; in compilers with the SPEC, parsec, and DaCapo benchmark suites; in circuit
esign with ITC’99, MCNC’91, ISCAS’89 and ISCAS’85; and even in hardware obfuscation, where
rust Hub offers a set of labeled hardware obfuscation benchmarks [ 8 ]. 
This section presents the results of a fine-grained analysis of samples used in SP research.
ethodologically, we included only samples used for evaluating solutions presented in a paper.

hort demo programs or fragments of programs explaining an approach were omitted from the
nalysis. Overall, 84% ˆ = 481/571 of all papers have specified a sample set for evaluation. Among
he other papers that have no sample set, there are 8.4% ˆ = 48/571 of which this is to be expected,
ecause they are surveys, theoretic papers, and papers focusing specifically on SP tool features that
o not need to be evaluated on samples, such as tool transparency for maintainers and users [ 40 ].
� In the remaining 7.0% ˆ = 40/571 papers, which are all goodware papers and of which the vast ma-

ority present novel obfuscation techniques claimed to be practical, no samples are used for evaluating
ACM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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Fig. 3. Number of papers per category of sample set. The categories are non-exclusive. 
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he contributions. This lack of evaluation obviously is a major shortcoming of a significant number of

apers. However, our data (as detailed in the supplemental material) indicates a downward trend. 

.1 Sample Categories 

irst, we analyzed which types of samples were used in the papers, including whether samples
ere reused, and we classified samples into distinct categories: benchmarks , malware , toy programs ,

omplex programs , OS programs , mobile apps , other , and unknown . Figure 3 shows the distribution of
ample set categories in the surveyed papers for each of four paper types: goodware and malware
apers that experiment with either one category of samples or multiple categories. Notice that
ome malware papers rely exclusively on non-malware samples. The (valid) reason is that these
apers focus on techniques aimed at malware, but which are only evaluated on benign samples.
his happens, e.g., for papers presenting repackaging detection techniques. 

Toy programs . Toy programs are used in a strikingly high number of evaluations. Goodware
apers stand out in this regard, with 52% ˆ = 159/305 of their sample sets containing toy programs,
nd 57% ˆ = 90/159 of them only using toy programs for evaluation. Of all papers with samples,
8% ˆ = 182/481 include at least one toy program. 

We define toy programs as small, mostly single-function programs that are not standardized,
.e., not from a known benchmark suite. They are often written for the sole purpose of performing
valuations. They include well-known algorithms for sorting and searching (14% ˆ = 26/182); en-
oding, encrypting, and hashing (35% ˆ = 64/182); and math functions such as Fibonacci and prime
umber generators and basic string operations (28% ˆ = 51/182). Toy programs also include synthe-
ized programs generated by tools such as Tigress and csmith (8.2% ˆ = 15/182), and simple programs
ith a special structure such as nested loops or a certain way of branching (15% ˆ = 71/182). 
The use of toy programs does not always imply a threat to validity. Local protections such as
ixed Boolean-arithmetic (MBA) can be evaluated locally within their function, isolated from

he rest of a program. Thus, even simple samples can be the foundation for meaningful evalua-
ions. However, we observe a more ambivalent picture, in which complex, non-local protections
re also often evaluated with toy programs only. For example, 26% ˆ = 24/91 of all toy-program-only
CM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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apers deal with virtualization-based protection, which is not a local protection in real-world us-
ge. Furthermore, 9 out of 10 goodware papers that introduce techniques based on symbolic exe-
ution include toy programs in their sample set. Five even do so exclusively (the remaining paper
ses a single unknown sample). It is known that symbolic execution becomes impractical as pro-
ram sizes increase due to the challenge of path explosion, so when evaluations are done with
mall programs only, no statement about the applicability to real programs can be made. 
� The observed reliance on toy programs, in particular in goodware papers, threatens the external

alidity of much research, showing it remains at the lowest technology readiness levels (TRLs) .

he reliance on non-standardized toy programs of which the implementations are rarely published,

lso hinders the reproducibility and interpretation of presented research results. For many categories
f toy programs, there exist myriads of different implementations that differ significantly in terms
f complexity and structure, such as when algorithms can be implemented with or without recur-
ion. It should be a strict requirement that evaluation toy programs are made available as artifacts.

OS programs . Around 8.7% ˆ = 42/481 of all sample sets include OS programs, i.e., programs that
an be attributed to an operating system. For Windows systems, these are bundled tools such as
he calculator or notepad. For Linux, we included tools that are an integral part of a typical Linux
istributions, such as the GNU core utilities. Almost all identified samples in this category have in
ommon their comparatively low complexity and small binary size. 

Samples of the GNU core utilities occur in 33% ˆ = 14/42 papers that rely on OS programs. Fol-
owing the UNIX philosophy of small single-task utilities, the median lines of code (LoC) of the
26 utilities is 339, with the biggest program ( ls ) being 5626 LoC. Most real-world software that
equires SP is magnitudes bigger. Core utilities hence are not representative. 
� Lacking representativeness, the use of Linux OS programs is as doubtful as that of toy programs.

The situation is different for the 43% ˆ = 18/42 papers with Windows samples, which are typically
ore complex. For example, a Windows 7 calc.exe binary is almost a megabyte large. Another ma-

or difference between Linux and Windows OS samples is the code format on which obfuscations
an be applied. Since their source code is not publicly available, Windows samples only have SPs
pplied on binary code, while Linux OS programs can be obfuscated at various build stages. 

Benchmarks . Of all sample sets, 14% ˆ = 69/481 contain samples from benchmark suites. Almost all
f them are originally intended for performance evaluations. The SPEC suites [ 158 ] are by far the
ost often used, at 52% ˆ = 36/69. They include real programs with realistic inputs. SPEC CPU 2017,

.g., includes the GCC compiler, a weather forecasting program, a perl interpreter, and an x264
ideo compressor. The surveyed papers use samples from only two out of SPEC’s current offering
f 25 suites: the SPEC CPU suite (including SPECint to measure integer arithmetic performance)
or binary code and the SPECjvm suite for Java bytecode evaluations. The second most used suite
s MiBench, at 12% ˆ = 8/69. This embedded benchmark suite’s programs vary from single-function
uicksort implementations to complex programs such as Ghostscript [ 89 ]. All other suites, such
s DaCapo, SciMark, and the CompCert benchmarks are used by less than five papers. 

We identified only one benchmark suite specifically compiled for SP research, from the Technical
niversity of Munich [ 14 ]. It includes basic algorithms, other small toy programs, and programs
utomatically created by Tigress. Despite this benchmark suite being presented at an A-ranked
onference in December 2016, only 8.7% ˆ = 6/69 papers from the surveyed corpus use it [ 15 , 16 ,
1 , 100 , 104 , 200 ], including four papers originating from other research institutions (with dis-
oint authors). This is surprisingly low, in particular considering that 64 papers published in the
eriod 2018–2022, when everyone had long had the opportunity to learn about this obfuscation
enchmark suite, still rely on other, non-standardized toy programs. 
ACM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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The widespread use of samples from performance benchmark suites is unsurprising, as they
erve well for measuring the performance cost of SPs. However, the fact that 45 goodware papers
ely solely on sample programs from performance-oriented benchmarks and from a benchmark
uite consisting only of toy programs, clearly constitutes a benchmark representativeness problem.
� In conclusion, the community is missing opportunities to standardize their evaluation method-

logies, and there is the lack of standardized, representative benchmarks for goodware SP research. 

Malware . Of all sample sets, 35% ˆ = 166/481 include malware samples. Sample sets containing
alware samples are hence on average the largest sets. The reason is straightforward: 
� Access to malware samples is easy with several publicly available malware repositories.

he Drebin [ 165 ] dataset with 5,560 samples from the years 2010–2012 is used most often in
.8% ˆ = 13/166 of the papers, followed by MalGenome [ 190 ] (1,200 samples from the years 2010–
011) with 4.2% ˆ = 7/166 and Contagio [ 129 ] with 1.8% ˆ = 3/166. Other used repositories are
irusShare.com [ 173 ], in which almost 50M malware samples are freely available, at 5.4% ˆ = 9/166;
nd AndroZoo [ 6 ] with 20M samples of goodware and malware Android APKs, at 3.0% ˆ = 5/166. 

Mobile apps . 19% ˆ = 91/481 sample sets include mobile app samples. Similar to malware, mo-
ile app samples also contribute to significantly larger sample sets than those from other sample
ategories. 
� There is a vast difference in the use of Android samples and iOS apps. The easy, direct

vailability of Android mobile apps enables their use as evaluation samples. These apps can be
atch-downloaded from various app stores in the form of APK files [ 79 ]. This is done for goodware
esearch, but also for malware detection/classification research, in which sample sets need to
ontain malicious as well as benign samples. By contrast, access to iOS app samples is much more
estricted: there exists only one official app store for iOS from which apps can be obtained, and apps
rom the store are DRM protected and encrypted. Sharing sample sets with iOS apps is therefore
oth technically and legally challenging. Only two SP papers include iOS samples [ 176 , 178 ]. 

Complex programs . Complex programs are included in 27% ˆ = 129/481 samples set. In this cate-
ory, we collect all samples which are more complex than toy programs and do not fall into any of
he other categories. These programs include well-known programs from various domains: com-
ression or archiving programs (22% ˆ = 28/129 papers), games (22% ˆ = 29/129), chat and instant
essaging applications (8.5% ˆ = 11/129), media processing software (11% ˆ = 14/129), webservers

5.4% ˆ = 7/129), browsers, (4.7% ˆ = 6/129), and databases (7.0% ˆ = 9/129). Some papers also used less
nown programs from public repositories (e.g., GitHub) in their sample set (7.8% ˆ = 10/129). 
� We found no evidence of considerable re-use of a complex sample. Moreover, the vast majority of

apers do not mention the samples’ specific version. Hence reproducibility is severely limited. 

A notable exception is observed in the 4.9% ˆ = 19/388 goodware papers that present human
xperiments. Six of those do use the same two samples: a simple race car game and a chat client
 44 –46 , 91 , 93 , 202 ]. These papers span 12 years, with the latter three cited papers being from
ifferent authors than the first three. 

Other . This category unites samples that are not executable programs, which are used in
.0% ˆ = 19/481 of all samples sets. It includes office documents, obfuscated expressions such as
BA expressions, malicious URLs, and the like. 
� In this category of samples, we do observe more reuse: MBA expression sample sets are shared

nd reused frequently [ 34 , 66 , 101 , 114 , 128 , 143 , 185 ]. 

Unknown . Finally, we included a category unknown, which are included in 1.9% ˆ = 9/481 sam-
les sets. We use this category for papers that clearly evaluate their contributions on executable
CM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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Fig. 4. Cumulative graph of ratio between total and original sample set sizes. 
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oftware, but that lack specificity to enable us to categorize that software. For example, some pa-
ers only state they use Windows applications, or applications downloaded from GitHub. 

.2 Sample Set Sizes 

or each paper, we also counted two sample set sizes. The first is the total sample set size , which
s the total number of different samples used in the paper’s evaluation, including variations of the
ame program, document, expression, and so on. The second is the original sample set size . This is
he number of original programs/documents/expressions from which variations were generated
nd evaluated. In goodware research, for example, the original samples are typically the vanilla,
nprotected programs. The total sample set then contains those originals, plus a number of pro-
ected versions of each of them. When authors downloaded samples from app stores or malware
epositories, we counted each downloaded sample as an original sample, even if they belong to
he same malware family or if they happen to be repackaged versions. 
� The total sample set sizes range from a single sample to over two million. Large sample sets

ver 4,000 samples consist predominantly of the categories malware and mobile apps. In addition,
here exist a few large sample sets from samples of the other category, such as large sets of MBA
xpressions. Few papers use large sample sets from the remaining categories. For instance, Salem
nd Banescu [ 145 ] have automatically generated a large number of toy samples with the help of
he Tigress obfuscator to create a sample set of over 11,000 samples. 
� By contrast, one third of all evaluations (36%) feature small total sample sets of at most 20 samples.

leven evaluations are based on only a single sample, which originated from one of four sample
ategories: complex programs (4), toy programs (3), malware (3), and unknown (1). 

We further analyzed the ratio between the total sample set size and the original sample set
ize (i.e., how many variations of the original samples were generated). Figure 4 shows the
atios between the two sample set sizes for all four combinations of goodware/malware and
bfuscation/deobfuscation-analysis papers. Unsurprisingly, a majority (51%) of the malware anal-
sis papers has a diversification factor of 1: these papers only evaluate original malware samples
nd original benign apps, but no variations of either of them, to evaluate malware detection rates.
his number is in line with 54 ˆ = 99/183 of the malware papers being malware only papers. Many
alware papers, in particular the ones focusing on techniques that can also be used on goodware,

lso evaluate their techniques on samples they built themselves, and then evaluate more than one
ersion, such as an unprotected one and a protected one. That is why the green line gradually rises
rom 51% to 100%. Noteworthy is the big step on the black curve at two for goodware obfuscation
apers. 9% of the papers feature a diversification factor of less than 2, meaning that they do not
ACM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 



86:14 B. De Sutter et al. 

e  

s  

t  

e
 

a  

u  

s  

h  

h  

p
 

s

3

W  

d  

a  

 

s  

o  

5  

i  

i  

c
 

l  

p

3

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

ven consider perform measurements on two versions (unprotected vs. protected) of all of their
amples. An additional 31% of the goodware obfuscation papers only reaches a diversification fac-
or of 2, which in almost all cases corresponds to one unprotected and one protected version for
ach sample. 
� This means that 40% of the goodware obfuscation papers do not evaluate diversified protection

t all. In other words, they do not evaluate the sensitivity of protection strength or costs to config-
ration parameters or to random seeds used in stochastic approaches, such as the parameters or
eeds that might determine precisely where a particular protection is injected, which might be in a
ot (i.e., frequently executed) part of a program or in a cold part, or the parameters that determine
ow sparsely or densely some transformation is deployed. We find this a major shortcoming, that
lagues too many papers in this research domain. 
� For malware obfuscation research, where authors typically also generate their own samples, the

ituation is even worse, with close to 70% of those papers not evaluating diversified protection. 

.3 Correlation with Publication Venue 

e analyzed the relation between the quality of the evaluations (number of samples, number of
ifferent sample categories, sample complexity and diversification) and the rankings of the venues
t which the works were published. For malware papers, we did not make interesting observations.
� For goodware papers, we did observe clear correlations between publication venue quality and

ample set quality and size. In this category, the total number of samples used in an evaluation
f obfuscations correlates with the ranking of the venue. The median sample set sizes go from
1 for A* down to 21 for C-rated venues. In the supplemental material, we analyze this relation
n more detail. In addition, we observed that the share of toy programs is significantly higher
n evaluations of goodware publications in the C, unranked, and workshop categories (34–48%)
ompared to B-ranked or better (20–25%) venues. 
� The lack of diversification, in particular in papers that present novel obfuscation, is not limited to

ower-rated publication venues. To the contrary: the problem appeared almost as frequently in A*/A

apers as it occurred in other papers. 

.4 Identified Challenges 

n our analysis of sample sets, we identified three relevant challenges. 

—Lack of real programs in the evaluations: Simple toy samples are omnipresent in SP
research. Samples from other categories such as the GNU core utilities are also of low com-
plexity. Such samples seem unsuitable for measuring the strength of a SP or its applicability
in real software, which typically is much more complex. The only exceptions are local pro-
tections such as MBA which can be evaluated independently of the program which they are
intended to protect. However, our data clearly shows that even for non-local protections
and analysis methods, often low-complexity samples are used. In top publication venues,
this issue occurs less frequently, but still frequently enough to be worrisome. 

—Limited sample availability: Depending on the sample set category, reproducibility in
SP research is most often low, including in top publication venues. In contrast to other
research domains such as machine learning, where large datasets are publicly available,
in SP research no commonly-used sample sets exit. This makes it difficult to reproduce
results and to compare different approaches. For toy programs, many different implemen-
tations are used (rather than the ones available in a benchmark suite [ 15 ]), and of complex
programs the used versions are most often not specified, all of which makes it difficult
to compare, interpret, and reproduce results. For OS programs, we observe more reuse,
CM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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primarily due to the easy availability of the GNU core utilities. Another exception is recent
work on MBA, where reuse of expressions exists (e.g., the public sample set of Syntia [ 34 ]).

—Limited diversification: Evaluations by and large neglect diversification of the protection
deployment. This issue plays in particular in goodware papers that present novel obfusca-
tions, including in those published in A*/A venues. 

To tackle these challenges, we advocate for a collaborative compilation of open sample sets
ithin the research community. A publicly available set of samples that takes into account the
ifferent motivations and goals for protections would assist researchers in evaluating new pro-
ections, contribute to the validity of research, and improve the comparability and reproducibility
f research results. It should furthermore be of sufficient size to increase its credibility for A*-
ated conferences. (If necessary, authors can then still pick a small subset of this sample set to
o exploratory research.) Moreover, the standardized sample set should come with guidelines on
ow to diversify the deployment of protections on the samples, e.g., by specifying small, medium,
nd large sets of functions in the samples that are candidates for obfuscation, similar to how the
erformance benchmark suites include testing, training, and references inputs. 

 Sample Treatment 

he protected samples discussed above have been compiled and built using certain compilation
ools. They feature combinations of protections that were deployed by protection tools that trans-
ormed one or more representations of those samples. In addition, the last phase of the samples’
reatment is the application of code analysis, deobfuscation, and classification techniques on them.
his section analyzes the representations of the samples that were used to deploy protections, the

ools that were used to do so, the protections that were deployed with those tools, and the analysis
ethods used to reverse a protection and to reduce its protection potency and/or resilience. 

.1 Protection Code Representation 

or categorizing papers according to the code representation (i.e., format) on which the studied
rotection transformations are applied, we used similar categories as in Section 2.3 for the types
f programming languages. First, Source code can be rewritten to inject protections, e.g., with the
-to-C rewriter Tigress. Secondly, Native code in the form of assembler of binary object code can
e transformed, e.g., with link-time binary rewriters such as Diablo. Finally, protections can be
eployed on Intermediate code formats. These more symbolic formats can be either compiler inter-
ediate representations such as LLVM’s bitcode, or the bytecode distribution formats of managed

anguage, such as Java bytecode or the C Intermediate Language (CIL) . 
For the 79% ˆ = 308/388 goodware and 96% ˆ = 175/183 malware papers that report measurements

n protected samples generated by transforming some code format, the middle bar in Figure 5 dis-
lays how many papers apply protections on the different formats, per the different programming

anguage types. This section discusses only the most striking observations. 
First, 10% ˆ = 40/388 of the goodware papers are not considering any specific language or protec-

ion code representation. These include theoretical papers (e.g., on using abstract interpretation to
odel protection strength), surveys, and a few papers on aspects of SP tools that do not need to

e evaluated on samples, such as making a tool’s transformation transparent for maintainers and
sers [ 40 ]. 
� Another 10% ˆ = 40/388 of the goodware papers lack an evaluation on samples, despite the fact

hat 36 (90%) of them do present novel obfuscation techniques their authors claim to be practical. This
s a rather negative result that clearly shows how the field of goodware software protection often
ails to maintain the highest standards. In malware research, that problem does not occur. The
ACM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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Fig. 5. Sample protection and evaluation languages. Same legend as in Figure 2 , and I = I ntermediate formats, 

? = unknown, + = and more, & = and, / = or. Red underlined data indicate cases we consider problematic. 
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.4% ˆ = 8/183 of malware papers that do not feature an evaluation on protected samples are all
urveys and theoretical papers. 
� 2.6% ˆ = 8/308 of the goodware papers fail to clarify which code format is being transformed for

heir evaluation, and hence lack this critical information for reproducibility. On the malware side,
5% ˆ = 44/175 of the papers similarly do not report a representation used to obfuscate the samples.
his is to be expected and is okay, however, as malware papers typically use real-world malware
amples which can be found online in various datasets for reproducing the research results, even
f their provenance is not documented. 
� Most importantly, goodware papers targeting natively compiled languages understudy the com-

osition and layering of protections applied at different code representations, i.e., at different levels of

bstraction. 2 Transformations on more abstract program representations such as source code early
n in the build process can protect more abstract properties (e.g., invariants) and can be selected
ased on more abstract program features such as type information. Moreover, because the injected
rotections’ code is then compiled together with the application code, it can be integrated more
tealthily. The freedom to transform code is then restricted, however, by the conventions to which
he higher-level representations need to adhere (language or IR specification compliance). Comple-
entary thereto, obfuscating transformations applied on lower-level code formats can completely

reak the conventional mapping between higher-level software engineering constructs and lower-
evel software artifacts to mitigate decompilation and human comprehension and to prevent, e.g.,
hat disassemblers produce correct CFGs. The detailed analysis presented below shows that such
omplementarity has hardly been researched despite its importance [ 110 ]. 

First, only 7.7% ˆ = 15/194 goodware papers targeting natively compiled languages consider both
ource-level and binary-level transformations (S&N). Among them are two papers that only com-
are the strength of their source-level transformation against other binary-rewriting-based al-
ernatives [ 147 , 177 ]. Among the five papers that actually compose source-level and native-level
ransformations, one paper evaluates return-oriented-programming obfuscation through binary
ewriting on programs already obfuscated at source-level by Tigress [ 37 ]. The other four papers
 For this analysis, we consider multiple protections to be composed/layered if they are deployed together in at least one 
ample. Papers never applying multiple protections together on at least a sample are hence not considered to be composing 
r layering protections. 
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riginate from the ASPIRE research project in which both source-level and binary-level transfor-
ations are composed on the same samples [ 2 , 3 , 22 , 141 ]. The remaining eight papers all have a

eobfuscation/analysis perspective and rely on samples that are either protected with source-level
bfuscators such as Tigress or with binary-level tools such as VMProtect or Themida, but never
ith both. We thus identified only two research efforts that layered source-level and native-level
bfuscations on C/C++ goodware. 
All 5.7% ˆ = 11/194 papers that consider both source-to-source rewriting and compile-time trans-

ormations (S & I) for native languages use Tigress and Obfuscator-LLVM to generate samples
 15 , 69 , 85 , 136 , 161 , 162 , 166 , 168 , 169 , 199 , 200 ]. Only 2 of those 11 papers compose protections of
he two tools on the same samples [ 85 , 136 ]. 

Of the 2.6% ˆ = 5/194 papers that consider compiler-level and binary-level obfuscation, only two
ctually compose them: One composes compiler-based control flow obfuscation with assembly-
evel code layout randomization [ 78 ], and one combines a high-level obfuscation based on multi-
hreading implemented in a compiler with packing applied at the binary level [ 152 ]. 
� So overall, only 4.6% ˆ = 9/194 of papers on native goodware from only five projects/teams explicitly

arget tool flows that deploy protections at multiple software abstraction levels. This gap between

ublished research results and best practices in industry [ 110 ] is a major shortcoming of this field. 

.2 Deployed Protections 

or each of the papers, we collected the types of protective transformations and features thereof
uch as relying on aliasing, that were deployed or theorized about beyond merely discussing them
s related work. We classified them in 31 different classes, of which descriptions are provided in
he supplemental material, where we also discuss some subtleties of our information gathering
rocess. Our classification was derived from previous work by Collberg et al. [ 57 ], and from three
urveys [ 73 , 98 , 148 ]. 

For each protection, we distinguish between theoretical considerations as found in surveys or
ualitative security analyses on the one hand and practical implementations that actually get de-
loyed on samples on the other hand. In the remainder of this section, we only consider the prac-
ical implementations. For the interested reader, the supplemental material presents a number of
ables with detailed counts of occurrences of protection combinations. 
� The popularity (i.e., the relative deployment frequency) of the considered obfuscation classes

iffers between malware and goodware and between different types of programming languages. 

Overall, data encoding/encryption (138) is the most frequently used SP technique, followed by
dentifier renaming (126), junk code insertion (117), opaque predicates (116), code diversity (112),
nd packing/encryption (105). Some often-studied SPs such as data encoding/encryption, pack-
ng/encryption, junk code insertion, and also repackaging are more popular for malware than for
oodware. Vice versa, opaque predicates are relatively more frequently researched in goodware
han in malware, as are control flow flattening, class-based transformations, data flow transforma-
ions, aliasing-based techniques, MBA, code mobility, loop transformations, server-side execution
nd hardware-supported obfuscation. This is in line with the distinct goals for which SPs are used:
or preventing reverse engineering, code comprehension, and tampering in goodware; and for
reventing detection and classification of malware. 
Few protections are popular for all types of programming languages: Only data encod-

ng/encryption, junk code insertion, code diversity, packing/encryption, control flow transforma-
ion, and function transformations are all deployed in 10% or more of the papers on each type of
anguage. For the interested reader, the supplemental material presents a more extensive analysis
f which protections are popular for which languages, complementary to the above. 
ACM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 



86:18 B. De Sutter et al. 

 

t

 

t  

i  

g  

t  

a  

o  

f  

d
 

o  

p  

t  

p  

w  

p  

o  

t  

c  

t  

t  

i  

p  

t  

o  

r  

s  

b
 

c  

p  

p  

s  

p  

m  

p  

c  

b  

t  

F  

r  

r
 

r  

c  

f  

A

� Aliasing is rarely exploited (explicitly), even though this SP feature is often cited as increasing

he resilience of SPs due to alias analysis being an intractable problem [ 58 ]. 

Only 4.0% ˆ = 20/495 of papers that deploy protections exploit aliasing to complicate analyses and
o make analysis results less precise. This feature is much more popular in managed languages than
n natively compiled, let alone script languages. The reason is that the computation of precise call
raphs for Java bytecode depends heavily on type inference and points-to set analysis. Various
ransformations have been presented to increase points-to set sizes and to hamper type inference
nd call graph reconstruction. Most script languages are dynamically typed, and no C++-specific
bfuscations exist. Hence, transformations that aim for points-to set increases are not researched
or those types of languages. What remains is the use of conventional pointer aliasing to hamper
ata and control flow analysis, but very few papers target this. 
� For most protections, we identified a balance between papers that present protections from an

bfuscation perspective vs. papers that consider and evaluate them from an analysis/deobfuscation

erspective, meaning that comparable attention is given to those protections from the two perspec-

ives. However, we also found that some protections are much more likely to be studied from the
erspective of protection than deobfuscation or analysis, and vice versa. The biggest imbalance to-
ards a protection perspective can be seen for hardware-assisted protection (10:0). While 10 papers
resent and implement new hardware-assisted protection techniques, none target deobfuscation
r analysis of this type of protection. Other techniques with a big imbalance towards the obfusca-
ion perspective are code mobility (12:2), aliasing (16:5), server-side execution (8:3), data-to-code
onversion (23:11), and class-based transformations (32:15). Large imbalances towards deobfusca-
ion and analysis occur less often. The biggest one is observed for repackaging (12:24). Some of
he imbalances can be explained by taking into account that the number of defensive papers (453)
n our survey is much higher than the number of offensive papers (151), and the fact that certain
rotections are used relatively more frequently for malware than for goodware or vice versa. No-
able exceptions are virtualization, which is included 59 times in defensive studies and 38 times in
ffensive studies, and MBA is included 11 times in defensive research, and 12 times in offensive
esearch. We conjecture that this is due to the fact that these obfuscations were at some point con-
idered among the strongest ones in the past and widely deployed in practice, which made them
oth relevant and challenging cases for (academic) offensive research. 
� Few papers explicitly layer protections on each other. SP research, in particular for goodware, is

learly lacking in this regard. While quite some papers consider and evaluate multiple classes of
rotections, most of them deploy the different protections on different samples, e.g., to compare the
rotections’ strength, rather than evaluating their combined/layered deployment within the same
amples. For both goodware and malware, about one quarter of the papers only deploy a single
rotection. Moreover, about 72% ˆ = 278/388 of all goodware papers and about 61% ˆ = 112/183 of all
alware papers deploy three or fewer protections, and about 85% ˆ = 484/571 deploy five or fewer

rotections, on mostly disjunct sets of samples as discussed. On average, few protections are hence
onsidered in the surveyed papers. Slightly more are considered in papers from A*/A-rated venues,
ut the difference to lower-rated venues is small. This is the case despite the common wisdom
hat strong protection can only be obtained if multiple protections are combined and layered.
or example, commercial tools such as Cloakware [ 99 ] and Dexguard [ 84 ] support and explicitly
ecommend the combination of multiple different protection techniques in so-called protection
ecipes in their user manuals and whitepapers in order to mitigate various attack strategies. 
� Only in a small minority of the papers, contributions get evaluated in protected samples that are

epresentative of real-world SP usage. This lack of mature evaluation is a shortcoming for deobfus-
ation and analysis papers that are evaluated on unrealistically weak protected samples, as well as
or obfuscation papers, many of which apparently do not evaluate the complementarity of their
CM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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ontributions over existing ones. In particular, in goodware research, where the authors create
rotected samples themselves and thus can provide clear descriptions of the deployed protections,
he numbers are appalling. Obviously, not all papers that limit the evaluation to a single or few
rotections are problematic. In particular, for all fundamental research at low technology readi-
ess levels (TRLs), it can be perfectly reasonable to evaluate techniques on unrealistically simple
se cases. Our numbers do indicate, however, that the field of goodware SP is running behind in
emonstrating that the presented techniques are capable of achieving a high TRL. 
Two protections stand out as being deployed in isolation in analysis/deobfuscation papers: vir-

ualization for goodware and packing/encryption for malware. As for the latter, this is mostly due
o the papers not containing all ground-truth / provenance information: Many malware papers
ention that their real-world malware samples are packed, either because they specifically target

acked malware or because an unpacking step is included in their tool flow, but do not mention
ny other techniques that are deployed on those samples because the authors do not know which
nes have been applied and because their analysis is (sufficiently) orthogonal to other SPs. 
As for the high frequency with which virtualization is studied in isolation in goodware analy-

is/deobfuscation papers, there are certainly a number of authors that simply have opted to target
rograms protected with only virtualization. But to some extent, authors also were forced to do
o: on natively compiled code, the early virtualization tools, both academic (e.g., based on Strata)
nd commercial, transformed binary code. For the commercial ones, such as VM protect, it is not
bvious which additional SPs they deploy on top of virtualization, and hence it is hard to report on
hose in papers. Moreover, binary rewriting tools are not easily combined with other obfuscation
ools to layer SPs. Up to 2015, this definitely impacted research. 

From 2015 onwards, this changed. Of the goodware papers on natively compiled code,
0% ˆ = 63/194 deploy virtualization, of which 40% ˆ = ̃ 25/63 use Tigress, the source-rewriting
bfuscator that allows one to compose virtualization with a range of other SPs and became avail-
ble around 2015. Of those 25 papers, only two are virtualization-only papers, one of which is
 Systematization of Knowledge paper on automated virtualization deobfuscation [ 103 ]. In other
ords, once the necessary tool was available to compose virtualization with other SPs, researchers

ffectively started doing so. 
� This example of how tool availability improved the research methodology stresses the need for

eusable tools in SP research , an aspect that will be discussed further in Section 4.4 . 

.3 Employed Analysis Methods 

imilar to how we analyzed the papers’ deployment of protections, we classified their use of code
nalysis methods. These are used by MATE attackers and malware analysts in practice and can
ence be used by researchers to evaluate their obfuscations’ practical strength. In total, we con-
idered 28 different methods and features thereof, which were again derived from previous work
 57 , 73 , 98 , 148 ]. A list of all analysis methods and short descriptions is provided as supplemental
aterial. In the collected data, we again differentiate between theoretical discussions and actual

eployment on samples. Here, we only report on the latter. 
� A major observation is that more than half (54% ˆ = 133/248) of the goodware obfuscation pa-

ers that deploy protections on samples do not evaluate those protections’ strength by assessing how

nalysis methods fare against them. Moreover, 22% ˆ = 54/248 only evaluate one analysis method,
eaving only 25% ˆ = 61/248 that evaluate more than one method. These numbers are inflated by
ower-quality papers of lower-quality publication venues, but the observation is certainly not lim-
ted to such papers: 27% ˆ = 11/41 of the goodware obfuscation papers published in A*/A rated
enues do not deploy any analysis methods. This is strikingly low, given that (layered) SP is all
bout mitigating the attack paths (plural) of least resistance, including attacks on the deployed
ACM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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rotections. While it is perfectly acceptable for authors presenting a new SP to aim to mitigate
nly one existing attack strategy, we do think it deserves a recommendation to evaluate the im-
act of the SP on multiple attacks, in particular attacks on the new SP itself. In other words, beyond
he potency of an obfuscation to hamper one attack strategy, also its resilience against other at-
acks [ 48 ] should be evaluated. This is clearly not done in papers in which no or only one analysis
ethod is evaluated. 
In the obfuscation malware papers, the numbers are better, with 81% ˆ = 38/47 of them reporting

n at least one analysis method, but still 45% ˆ = 21/47 of them consider only one such method. 
In the analysis/deobfuscation papers, there, of course, is no issue of papers not evaluating anal-

ses. The average number of analysis methods per paper (with at least one analysis method) is
lso significantly higher in those papers (3.3) than in obfuscation papers (2.0). 

Overall, control flow analysis (96), pattern matching (96), tracing (79), statistical analysis (72),
nd machine learning (66) are the top five methods, the latter being a feature rather than an
nalysis. 
� Similar to what we noticed for deployed protections, we observe significant differences between

he types of analysis methods used in obfuscation papers and in deobfuscation/analysis papers. For
xample, pattern matching is used in 72 analysis/deobfuscation papers. This clearly indicates that
n some scenarios, this rather generic technique is considered a highly relevant alternative to more
argeted analyses. In stark contrast, only 33 papers that introduce new protections evaluate their
trength against pattern matching. Similar observations can be made for statistical analysis (16:60)
nd machine learning (15:55). To some extent, these effects are driven by some analyses’ pre-
ominance in malware research. When we exclude malware papers from the analysis, the imbal-
nce between obfuscation and deobfuscation/analysis papers is less pronounced. However, these
bservations still add to our concern as to whether protections are sufficiently being evaluated
gainst path-of-least-resistance attack and analysis methods. 

As for pattern matching, in goodware papers the ratio is still 9:22. Schrittwieser et al. [ 148 ] pre-
iously observed that pattern matching is easily mitigated, even with very simple obfuscations.
owever, the scope of their observation is limited to the use of pattern matching to identify arti-

acts/assets in the original programs, excluding its use to identify deployed protections. In other
ords, they observed that even simple obfuscations can be potent against pattern matching but did
ot discuss the resilience of obfuscations against pattern matching-based deobfuscation. Our ob-
ervation that pattern matching is among the more popular techniques in analysis/deobfuscation
oodware papers confirms it is considered a viable technique to attack SPs, which makes it all the
orse that pattern matching is hardly being evaluated in obfuscation goodware papers. 
� This confirms our earlier point on defensive goodware research lacking in evaluations of resilience.

A second observation by Schrittwieser et al. [ 148 ] was that dynamic analyses are significantly
ore effective against dynamic protections than static analyses. They defined static protections as

nes that execute exactly the code present in the static binary, while dynamic protections perform
dditional code transformations at run time (e.g., unpacking). Following up on their observation
nd to verify whether it still applies to our more recent data, we analyzed how virtualization, the
ost popular dynamic protection method in the surveyed papers, is being targeted by analyses.
ur findings indicate that against virtualization, indeed, predominantly dynamic analyses such
s trace-based techniques and symbolic execution are used, sometimes supplemented by human
nalysis. However, our data also reveals that static analysis techniques like lifting, control flow
nalysis, data flow analysis, normalization, and slicing are also frequently utilized in the analysis
nd deobfuscation of virtualization-based protections. A crosstab analysis (for which the data is
vailable in the supplemental material) provides a robust explanation, namely that these static
CM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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Table 4. The 39 Tools used in the Experimental Evaluation in Six or More Papers 

Columns A = A nalysis, B = B uild, and P = P rotection list how many papers use a tool for each purpose. T = T otal 
gives the number of publications using the tool. The $ column indicates whether the tool is = free to use, = has 
a demo version, = paid version only. Column O describes source-code access: = open-source, = upon request, 
= closed-source. The F column describes how flexible/adjustable the tool is: = adaptable/extendable, = plug- 

ins, = configurable, = rigid. Column History = Usage per year since 2012 (left to right). 
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echniques are often used in conjunction with the identified dynamic techniques. For instance,
ymbolic execution is often combined with lifting, normalization, and data flow analysis. 
� We, therefore, conclude that the claim by Schrittwieser et al. [ 148 ] about dynamic analysis tech-

iques in the face of dynamic protections should be refined somewhat. Dynamic analyses, indeed, are

tronger, but they seem to complement static analyses rather than replace them. 

.4 Used Tools 

s already hinted, the existence and availability of tools influence how authors treat their samples.
his section discusses the tool use in papers with sample sets, covering tools used for building,
rotecting, and analyzing samples. Our analysis includes tools that are newly introduced in a
aper, as well as tools that are re-used as is or built upon. For example, when a work deploys
bfuscator-LLVM (OLLVM) on samples, we count this towards OLLVM as well as towards the
LVM framework on which OLLVM builds. A caveat is that not all authors are specific and com-
lete in describing their tool use. For interested readers, the supplemental material provides addi-
ional information on the tools, including recommendations regarding their use for evaluating SPs.
� In general, authors do not share or reuse research artifacts much. At 768, we counted more tools

han papers, and 74% ˆ = 532/768 of them are used in only one paper. Only the 5.7% ˆ = 39/768 listed in
able 4 are used in at least five papers. We discuss several interesting aspects in more detail below.

Tool Popularity . LLVM (71 papers) and GCC (52) are by far the most popular build tools, followed
y Clang (16), Visual Studio (14), and ACTC (7). Beyond those, the only additional compilers being
entioned are CompCert [ 31 , 33 , 149 ], g++ [ 53 , 130 ], and tinycc and TenDRA [ 149 ]. 
� Too few authors mention the compilation tools they use to build their samples. Only 126 pa-

ers provide this information, of which 111 target natively compiled code. So 45% ˆ = 91/202 of the
oodware papers that target at least natively compiled code do not mention which compiler they
sed to generate samples, let alone how their compiler was configured, e.g., with respect to the
ACM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 



86:22 B. De Sutter et al. 

o  

l
 

t  

t  

o  

f
 

T  

f  

r  

w  

r  

c  

a
 

s  

a  

 

c  

D  

f  

K  

o  

o  

i  

a  

a  

p
 

w  

 

n  

o  

b  

w  

o  

t  

t
 

o  

s  

t  

n  

r
 

d  

i  

A

ptimization level. Given how strongly optimized code can differ from non-optimized code, this
ack of information in so many papers is astonishing and an important issue. 

Unlike GCC, which is only used once to deploy protections [ 78 ], LLVM is frequently used for
his purpose (57 papers). Its more modular compilation pipeline design enables obfuscating IR
ransformations at various stages. The popular OLLVM obfuscator builds in this, (35), and so do
ther obfuscators developed on top of LLVM (22). While the Clang compiler typically serves as a
ront-end for LLVM IR, it is also used to inject protections with source-to-source rewriting [ 2 ]. 

In addition, LLVM is used in the popular KLEE dynamic symbolic execution engine (16 papers).
his demonstrates that core software analysis and transformation infrastructure can be re-used

or building, protecting, and analyzing software. Other multi-purpose tools are the Java bytecode
ewriting framework Soot (e.g., in the Dava decompiler (4 papers)), and Visual Studio and Eclipse,
hich are used for building programs as well as for dynamic analysis (debugging). Eclipse’s code

efactoring support is also used to protect programs [ 196 , 197 ]. Finally, beyond being used for
ompilation, GCC is used to diversify software (e.g., by compiling at multiple optimization levels),
nd as an attack tool to undo source-level obfuscations [ 32 , 127 , 128 , 134 ]. 
� LLVM and Tigress are currently the only popular protection tools. The History data in Table 4

hows that other SP tools are declining in popularity: only a few recent papers still use ProGuard
fter an initial peak of activity; a similar fate has befallen Zelix Klassmaster, Sandmark, and Diablo.
� Table 4 hints for two reasons for tool popularity: their origin and their low cost. As for the

ost, the only commercial SP tools used at least five times (VMProtect, Themida, Code Virtualizer,
ashO, Allatori, and Zelix Klassmaster) all offer a demo version. All other SP tools in Table 4 are

reely available. Ten of them come from academia: LLVM, OLLVM, Tigress, Diablo, Soot, Clang,
LEE, Sandmark, Obfuscapk, and DroidChameleon. Relatively absent are the advanced commercial
fferings from, e.g., Irdeto, Digital Ai (formerly known as Arxan), and GuardSquare. The latter
ffers the free but limited-functionality ProGuard and the commercial DexGuard. ProGuard is used
n 19 papers, DexGuard in only 3. Of the other tools commonly used to protect software, VMProtect
nd Code Virtualizer only offer specific obfuscations, namely virtualization. Themida virtualizes
nd encrypts code fragments, and the injected execution engine embeds several techniques to
revent analysis, but it performs no further transformations of the original application code. 
The popularity of academic protection tools raises a question: Is their popularity due to their

idespread adoption across the research community, or are their own authors prolific publishers?
� A detailed analysis found that Tigress and OLLVM have seen widespread take-up in the commu-

ity: only 3 out of 37 Tigress papers have a connection with Tigress’ developers, and only 1 out
f 35 OLLVM papers have a connection with the OLLVM authors. This is in stark contrast to Dia-
lo, the third most popular academic protection tool, for which 18 out of 24 papers originate from
ithin the team that developed Diablo. Another binary rewriter, PLTO, suffers a similar fate: It has
nly four uses in our dataset, of which two originate from its own research group. We conjecture
hat this lack of reuse of (post-)link-time rewriters like Diablo and PLTO is, to a large, degree due
o the difficulty of using and maintaining such binary-rewriting tools. 
� We conclude with the major problem that goodware research involves very little deployment

f commercial-grade protection tools, even in papers in A*/A publication venues. It implies that the
trength of commercial SP software is obscured by a lack of publicly documented evaluations
hereof. The root cause of this problem is, of course, that commercial protection tool vendors do
ot allow independent researchers to evaluate their tools and publish about it, e.g., by means of
estrictions in their end-user license agreements. 

On the analysis tool side, by contrast, the most popular tool is commercial: the interactive binary
isassembler IDA Pro. Being relatively cheap and having a free demo version might contribute to
ts popularity. The competition that has surfaced in recent years with Binary Ninja (released in
CM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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016) and Ghidra (released in 2019) has not yet made much of a dent in IDA Pro’s popularity:
hidra was only used one time in the surveyed papers, Binary Ninja two times. The most popular
cademic binary code analysis tool is angr. In 2016, this tool has been put forward as a unifying
inary analysis framework [ 154 ]. In practice, however, in the period 2018–2022, well after the
ublication of angr, IDA Pro was used in 19 papers, angr in 11, Triton in 7, Pin in 8, and so on. 
� So clearly, many different analysis tools and frameworks keep being used. There is no sign of

verall unification or standardization in their use for evaluating the strength of SPs on native binaries.

When angr is used, it is most often for symbolic execution of native code. KLEE is another tool
or symbolic execution of natively compiled code that has remained almost as popular as angr, with
ine deployments in the years 2018–2022. KLEE operates on LLVM IR code, which is sometimes
btained by lifting binary code [ 36 , 104 ], but almost always by compiling source code. Fortunately,
ost authors seem to understand that one can question how accurately such KLEE results reflect

eal-world attacks on binary code, and at least from 2018 onwards, they all complement their KLEE
esults with experimental data obtained with angr, IDA Pro, or other binary analysis tools. 

Tool Versions and Configurations . Some tools have been in use for a long time. Some did not evolve
ignificantly over that time, such as OLLVM, which saw only one release. Other tools evolved
onsiderably, in which case reproducibility requires that the used versions are reported. 
� We observed that all too many papers lack in the reporting of used versions and configuration.

or example, for IDA Pro, 23% ˆ = 14/63 papers specified the version number; for the source-to-
ource obfuscator Tigress, 23% ˆ = 8/37 did so. For Tigress, the situation is improving over time, as
8% ˆ = 5/18 papers report a version in the period 2020–2022. All papers using Tigress mention at
east which SPs were deployed with it, but in many cases, the authors omit the used configuration
ptions, of which Tigress offers a wide variety. Some mention they used default configurations,
ut as these evolve over time, that is insufficient for reproducing the research and for interpreting
he results. 

The worst tool with respect to version reporting is VirusTotal. Users provide software samples
o this online service, which are then scanned by a set of malware detection engines. Both the
eployed engines and their versions have evolved over the years. In quite some papers, VirusTotal
s used to measure the extent to which concrete obfuscations hinder malware detection. To inter-
ret the result in those papers, it is paramount to know which version of VirusTotal was used, i.e.,
hen the service was accessed. However, only 8.3% ˆ = 2/24 of the papers using VirusTotal do so. 

Tool Flexibility . Some tools offer their users more flexibility than others. This does not imply,
owever, that this flexibility is exploited in research. In fact, we observed quite the contrary. 
� SP researchers mostly use tools as is, even the flexible ones, rather than customizing them the

ay attackers do. Consider the Tigress obfuscator, of which the developers share its source code
ith colleagues in academia on demand. Still, we observed that no outsider papers (i.e., not in-

olving members of Christian Collberg’s team behind Tigress) discuss or evaluate extensions of
mprovements of Tigress’ transformations. At most, other authors combine Tigress protections
ith their own or with other existing tools. Despite OLLVM being open source, we made similar
bservations, albeit to a lesser degree: 7/35 OLLVM papers extend OLLVM. 
As another example, consider IDA Pro. This closed-source tool is extensible through a plug-

n and scripting interface. Like all disassemblers that are by and large developed to reverse en-
ineer non-obfuscated binaries, IDA Pro can easily be thwarted with control flow obfuscations
 112 , 171 ]. It has also been shown, however, that it is fairly easy to improve those tools’ handling
f obfuscated code with custom extensions [ 171 ]. That is also how professional penetration testers
ustomize them [ 44 , 47 , 48 ]. However, of the authors using IDA Pro, only 32% ˆ = 20/63 extended its
ACM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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unctionality with custom plug-ins or reused ones. Of those, 22% ˆ = 14/63 only extend the function-
lity with BinDiff, a special-purpose analysis tool to compare binaries. BinDiff merely builds on
DA Pro’s disassembly to match code across different binaries rather than improve the disassembly
f IDA Pro itself. This leaves only 9.5% ˆ = 6/63 papers extending or customizing IDA Pro in one
ay or another. Notably, of the 24% ˆ = 15/63 papers that use IDA Pro and that specifically target
isassembly and CFG reconstruction, only two papers extend IDA Pro’s functionality with regards
o disassembly [ 21 , 171 ]. Others, such as the seminal static disassemblers thwarting paper [ 112 ],
ake no such attempt. 
� We consider this discrepancy between published SP research and industrial SP practice a major

hortcoming of the research in this field. It is linked to our earlier remark in Section 4.2 about SP
eing a cat and mouse game in which researchers fail all too often in anticipating even the simplest
ustom extensions of the functionality they propose to thwart with a new SP. 

.5 Identified Challenges 

n our analysis of sample sets, we identified six relevant challenges. 

—Gap between analysis methods used in analysis papers and evaluations of newly

proposed protections: The used analysis methods differ significantly between analy-
sis/deobfuscation papers and obfuscation papers. While several simple analysis methods
are frequently used in analysis/deobfuscation papers, they are much less common in ob-
fuscation papers. This is the case even in A*/A papers. This leaves open the question of
whether appropriate analysis methods are chosen for the evaluation of newly presented
protections. 

—Gap between tools used in published research and the commercial, industrial state

of the art: Our analysis of tools used in the surveyed papers across all publication venue
rankings identified a concerning absence of commercial state-of-the-art protection tools.
While in analysis papers, well-known commercial tools (e.g., IDA Pro) are heavily used,
commercial protection tools such as Irdeto, Arxan, and GuardSquare are rarely applied,
even in papers in top publication venues. And even the used analysis tools are most often
not exploited in the way practitioners do so, e.g., by means of plug-ins. These are obvi-
ous threats to the validity of research, as the effectiveness of proposed protections is not
compared against the commercial state-of-the-art and real-world practices. 

—Limited exploration of obfuscation combinations: Our analysis reveals that in the
examined papers, protections are rarely combined; a significant majority investigates pro-
tections in isolation rather than layered or combined with other protections, even in the
papers in A*/A-rated venues. This limited exploration of multi-layered/combined SPs in
research may not fully capture the complexity of protections deployed in real-world appli-
cations, which often utilize a combination of techniques. 

—Evaluations with no analysis method: In the goodware obfuscation category, too many
papers (even in A*/A venues) lack an evaluation with analysis methods from an attacker’s
toolbox, meaning they do not evaluate real-world potency and resilience. 

—Evaluations with just a single analysis method: Still in the goodware obfuscation cate-
gory, but only in B, C, and lower-rated publication venues, even the papers that do evaluate
the SPs with analysis methods still heavily lean towards using a single analysis method.
This sharply contrasts with real-world scenarios, where attackers typically employ a mul-
titude of analysis methods in various combinations to undo, bypass, and work-around pro-
tections. It also implies that either potency or resilience is evaluated, but not both. 
CM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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—Lack of specificity in experimental setups: All too many papers, especially in lower-
rated publication venues, do not specify which versions and configurations of protection
tools, analysis tools, and build tools were used. 

To overcome the latter challenges, we simply invite researchers to provide more details in the
escription of their experimental setups. Regarding the use of commercial protection tools, we
nvite the vendors to offer their tools at reduced prices to academics, with the permission to eval-
ate their tools and to publish their results. With regards to the combination of obfuscations, we

nvite all academic tool developers to open up their tools to enable others to build on them and
xperiment more freely with them, and we invite all researchers to exploit the already available
exibility that tools such as Tigress and OLLVM offer to compose protections. 
As for the insufficient use of appropriate analysis methods, we do not think we can ask re-

earchers to deploy more tools to evaluate their SP contributions. Instead, more work is needed to
ase the reuse of analysis tools. We will come back to that in the next section, which analyzes which
orms of measurements are reported in the papers, including measurements with analysis tools. 

 Measurements 

his section analyzes how papers measure their contributions in the form of new protections
nd/or analysis/deobfuscation methods. We first focus on the evaluation representation, i.e., the
oftware format on which measurements and other evaluations are performed as reported. Next,
e analyze which aspects of strength and cost are measured and what measurements are used

hereto. 

.1 Evaluation Representation 

or all papers performing measurements on software, we recorded the evaluation representa-

ion , i.e., the program format from which the experimental evaluations in the paper start and from
hich measurements are performed. 
� In most papers, most experimental evaluations are performed on software in the format in which

t is being distributed to customers, i.e., the format on which real-world attackers get their hands. 

The bottom bars in Figure 5 show the representations of samples on which the papers report
erformed measurements. Some papers include additional measurements on a second, higher-level
epresentation to obtain ground truth information or to evaluate the applicability of protections.
urthermore, some papers, such as those presenting MBA-deobfuscation techniques [ 75 , 115 ], eval-
ate their tools on MBA expressions in their source code format. 
On top of the 80 goodware papers that do not report any experimental evaluation, 4.9% ˆ = 15/309

oodware papers fail to perform an experimental evaluation on software in the format on which
ttackers get their hands, as shown by the red underlined numbers in the bottom bar of Figure 5 . 

This poses no problem for papers focusing on the obfuscation of source code of natively
ompiled languages (e.g., [ 64 , 175 , 198 ]), for surveys, and for papers that evaluate decision tool
upport rather than protection or analysis strength (e.g., [ 142 ]). For other papers, it does pinpoint
 problem. 
� We observed that for most papers that have an experimental evaluation but lack one on the

ormat on which attackers get their hands, that lack coincides with a lack of layered protection.

his coincidence makes sense: If no additional protection is deployed to widen the semantic
ap between a higher-level representation on which the evaluated protection is deployed and
 lower-level representation on which attackers get their hands, i.e., if there is a one-to-one
nd hence reversible mapping from higher-level obfuscation code constructs to lower-level ones,
trength measurements on the richer, more abstract format can serve as reasonable approxima-
ions of the protection’s real strength against attackers that only get their hands on the lower-level
ACM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 



86:26 B. De Sutter et al. 

r  

o  

s  

e  

h  

t  

c  

p
 

t  

p  

g  

i  

s  

h  

m  

o  

i  

p  

o
 

e  

 

l  

p  

3  

c  

s  

f  

s
 

t

5

W  

a  

e  

W  

a  

a  

a  

a  

3

h
t
a
e
w

A

epresentation. In other words, it is fine for researchers to use ground-truth information available
n the higher-level representations to estimate practical strength when attackers can easily recon-
truct the used information. For example, the practical potency of anti-slicing obfuscations can be
valuated accurately on static slices in C source code [ 122 , 123 , 163 ] if no additional obfuscation
as been applied that prevents the reconstruction of those slices from assembly code. Similarly,
he practical potency of control flow or data flow obfuscations can be measured on Java source
ode instead of on bytecode [ 91 , 155 ] if no anti-decompilation obfuscations have been applied that
revent reconstruction of the obfuscated flows from the bytecode. 
However, we still do consider performing evaluations of protections in isolation a threat to

heir real-world relevance and validity because in practice only layered protections provide real
rotection [ 110 ], and in practically useful compositions one or more layers do exploit the semantic
ap between higher-level and lower-level software formats, such as source code vs. native code,
n order to hamper code understanding and reconstruction of the original code structure. Even if
uch additional obfuscations are deployed, it is often unclear to what extent metrics computed on
igher-level representations are representative of practical protection strength. For example, in the
entioned example of anti-slicing obfuscations it is not clear whether a potency metric computed

n slices that are statically and accurately computed on source code (i.e., using the ground truth
nformation that defenders have access to) provides an upper bound or a lower bound on the
ractical potency in cases where additional obfuscations prevent the accurate static computation
f slices by attackers starting from the binary code. 
� We hence consider protections getting evaluated in isolation a bigger threat to validity than

valuations happening on a higher-level representation than the one attackers can attack in practice.

Unfortunately, that threat to validity is not limited to the relatively few papers that completely
ack any evaluation on the appropriate format. Further analysis revealed that of all goodware
apers performing at least some evaluation on samples written in natively compiled languages,
2% ˆ = 64/(194+7+1) actually only measure overhead (compilation time, run time, memory
onsumption, and power consumption) and applicability (i.e., to what percentage of a program is
ome transformation applicable). They do not measure any potency, resilience, stealth, or other
orm of protection strength on actual binaries. Another 8.9% ˆ = 18/(194+7+1) papers do measure
trength-related features, but they do so on other representations. 
� We consider this lack of adequate strength measurements a major shortcoming and lack of ma-

urity in obfuscation research for natively compiled goodware. 

.2 Measurement Aspects and Categories 

e identified ten protection strength measurement categories that are used to evaluate three strength
spects of SPs, namely potency, 3 resilience 3 , and stealth. We define the potency of an SP as the
xtent to which it can prevent, confuse, or hamper some analysis of the asset the SP protects.

ith this definition, SPs can have different potencies, each of which is specific to the considered
nalysis. Importantly, that can be a manual human analysis such as code comprehension, but also
n automated analysis such as disassembling or malware detection. Our definition of resilience of
n SP then is its capability to resist targeted attacks on the SP itself (instead of on the protected
sset) to undo it or otherwise nullify or reduce its impact. Finally, our definition of stealth concerns
 The original definitions of potency and resilience by Collberg et al. [ 57 , 58 ] unnecessarily aimed to discriminate between 
uman and automated analysis, in an unsatisfactory manner. Collberg’s revised definition of potency fixed this by unifying 
he two aspects under the umbrella of potency 2.0, which he then defined as a protection’s effect of making at least one 
nalysis harder to perform, and no analysis easier [ 133 ]. We find this revised definition insufficiently discriminative, how- 
ver, as it does not discriminate between analyses of the protected assets and analyses of the protections. For this reason, 
e refine Collberg’s potency 2.0, and complement it with a revised definition of resilience. 
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Table 5. Number of Papers that Report Measurements for Different Strength and Cost Criteria of SPs 

Deobf./Ana. Deobf./Ana. Obfuscation Obfuscation 

Goodware Malware Goodware Malware Total 

Papers with protection implementation 87 137 248 47 495 

Aspect of Protection Measured 

Costs 29 20 197 11 245 

Potency 13 63 97 36 199 

Resilience 43 43 40 3 122 

Stealth 14 29 21 3 73 

Cost Measurement Categories 

Static program size 18 17 111 8 149 

Execution time 10 2 137 5 148 

Compilation/protection time 1 2 17 3 22 

Dynamic memory consumption 0 0 18 0 18 

Dynamic power consumption 0 0 4 0 4 

Other costs 2 2 4 0 8 

Strength Measurement Categories 

Papers with 0 strength measurements 13 16 92 9 125 

Other precision, recall, F-score, ... 40 50 31 4 118 

Automated attack/analysis time 35 63 20 4 117 

Malware detection precision 0 49 0 30 76 

Code complexity 10 2 48 2 59 

Deltas / similarity 7 13 16 3 39 

Applicability (Code Coverage) 5 3 16 2 24 

Human analysis (effort, success rate) 5 4 15 2 24 

Opcode distribution 2 4 16 0 21

Entropy 2 3 5 1 10
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he ability of an SP to remain unidentified, unrelated to whether or not the SP helps in hiding the
resence of the asset protected by the SP. Note that there hence exists no one-to-one mapping
etween the measurement categories and the three aspects of protection strength. For example,
recision metrics can be used to evaluate stealth in obfuscation classification papers, to evaluate
otency in malware detection papers, and to evaluate resilience in goodware deobfuscation papers.
In addition to the strength measurement categories, we identified six cost measurement cate-

ories that are used to measure the cost of protections. Table 5 lists all measurement categories,
ith counts of their occurrences in different (non-exclusive) types of papers. A complete list of all

ategories, including descriptions, is provided in the supplemental material. 
� A first observation is that the costs of applying SPs are much more frequently measured than their

trengths. This is particularly the case in obfuscation goodware papers, where cost measurements
79% ˆ = 197/248) are reported twice as often as potency measurements (39% ˆ = 97/248), the most
opular measured aspect of strength. The vast majority of the cost measurements focus on static
rogram size and execution time, which is not unexpected. 
� Still, the other 21% of the obfuscation goodware papers fail to report the costs of the protections

hey discuss. This lack of cost evaluation is unfortunately not limited to lower-rated publication
enues: also in A*/A obfuscation goodware papers, we observed that (20% ˆ = 8/41) of the papers
hat do feature protection implementations lack cost measurements. 

Of the SP strength measurements, stealth is clearly the least frequently evaluated (15% ˆ = 73/495).
ACM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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In the deobfuscation/analysis types of papers, the balance between potency and resilience mea-
urements matches the balance between goodware and malware papers: Analysis papers typically
easure potency, while deobfuscation papers measure resilience. 
� In obfuscation papers, potency is measured much more often than resilience. For obfuscation
alware papers, this is to be expected, as malware obfuscation aims by and large at preventing

etection, not at preventing deobfuscation. For goodware obfuscation papers, the fact that po-
ency measurements (39% ˆ = 97/248) are more than twice as popular than resilience measurements
16% ˆ = 40/248) is in line with our earlier observations (see Sections 2.3 and 4.4 ) that few researchers
tudy how attackers might adapt their strategies to the SPs they propose. Among researchers that
ublish in A*/A venues, this appears not to be the case, however: 37% ˆ = 18/49 A*/A of the goodware
bfuscation papers present potency measurements, while only slightly less (33% ˆ = 16/49) present
esilience measurements. Only 10% ˆ = 5/49 present both. 

In defensive malware papers, analysis time (46% ˆ = 63/137) and malware detection precision
36% ˆ = 49/137) and other precision metrics (36% ˆ = 50/137) are by far the most popular measurement
ategories. Delta/similarity measurements (9.5% ˆ = 13/137) is the only remaining category that is
omewhat popular in those papers. In offensive malware research, malware detection precision
s also by far the most popular measurement category (64% ˆ = 30/47). The dominance of these

easurement categories for malware research is not surprising. 
In goodware papers, many more strength measurement categories have some popularity. In of-

ensive goodware papers, precision (46% ˆ = 40/87) and automated attack/analysis time (40% ˆ = 35/87)
re the dominant measurement categories. In defensive, obfuscation goodware papers, code com-
lexity is the most popular measurement, being reported in 19% ˆ = 48/248 of the papers. The
nly other category measured in more than 10% of the obfuscation goodware papers is precision
13% ˆ = 31/248). 
� Perhaps the most striking result is that 25% ˆ = 125/495 of the papers with protection implemen-

ations report no strength measurements. This is mostly due to 37% ˆ = 92/248 of the obfuscation
oodware papers reporting no strength measurements on the obfuscations they present, an as-
onishingly high number. While there is a correlation between this number and the quality of
he publication venue, this problem is certainly not limited to lower-rated venues: 22% ˆ = 9/41 of
he A*/A obfuscation goodware papers that feature implemented obfuscations report no strength
easurements. This trend of lacking adequate strength measurements in obfuscation goodware

apers also shows in the average number of such measurements per paper: 1.0 overall, and still
nly 1.4 in A*/A papers. 
We do not know for sure what the reason behind this lack of strength measurements is. We

ee two possible reasons. First, authors of goodware obfuscation might not consider such mea-
urements relevant. We doubt that this is the case. Secondly, performing strength measurements
ight be considered too complex and/or too time-consuming to be worthwhile. We can think of

everal reasons why authors might think so. First, for many types of SPs, there is no consensus on
hich metrics to use. Theoretical complexity metrics from the field of software engineering often

uffer from issues when used on obfuscated software, and practical metrics of the performance of
oncrete tools are most often ad hoc. Moreover, using real-world tools such as the IDA Pro dis-
ssembler (and its plug-in capabilities) or symbolic execution engines is rather difficult. Secondly,
he relevant measurements can require experiments mimicking attack strategies involving multi-
le analyses. This is the case, e.g., for “binary” protections that completely prevent certain types of
nalysis tools (such as anti-debuggers, or code mobility preventing static disassembly). Measuring
he impact of such protections requires comparing attack strategies with those tools to alterna-
ive attack strategies without those tools rather than evaluating the performance of individual
nalyses. 
CM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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While tools/frameworks have been proposed in the past to ease the use of reverse engineering
ools in research [ 4 , 17 , 154 , 161 ] and to move into the direction of a commonly accepted set of
riteria [ 9 ], our analysis of the literature in this section and in Section 4.4 on the use of tools reveals
hat further work is needed to convince authors to include more strength measurements and to
acilitate the use of tools to obtain relevant measurements. 

.3 Identified Challenges 

n our analysis of measurements, we identified one major challenge. 

—Focus on cost measurements, lack of strength measurement: In the surveyed pa-
pers, the most often measured aspects of protections are costs. This is unsurprising, as cost
measurements and their interpretation are rather straightforward. By contrast, the lack of
established methods for evaluating the strength of protections is clearly evident in the lim-
ited number of strength measurements in the surveyed papers. This is particularly the case
in obfuscation goodware papers, including those from top venues with A*/A ranking. 

Compared to the challenges related to samples and treatments, which might be solvable by a
ommunity consensus on shared sample sets and by more sharing of analysis tools, the strength
easurement challenges are probably much more difficult to address as the weaknesses of the

valuations arise from both the choice of measurement types and tools used. Clearly, it is not
seful to define a standardized methodology for all evaluations, as different protections have very
ifferent motivations and goals, and thus the choice of appropriate measurements can also differ
ignificantly. Still, we strongly believe these challenges need to be addressed. The development
f a flexible and easily re-usable protected software analysis toolbox, to which researchers can
ontribute their own measurement techniques and scripts, could help to improve the situation. A
arge community effort is needed to advance beyond the fragmental past efforts [ 4 , 17 , 154 , 161 ]. 

 Experiments with Human Subjects 

n the large body of literature studied in this survey, few papers present experiments in which
he performance of human subjects deploying SP or attacks on protected software is evaluated.
able 6 summarizes our findings on these papers. A more complete table can be found in the
upplemental material. Notice that this list excludes papers that merely discuss how a human
erforms some analysis or uses some tool. In the papers listed in Table 6 , the performance of the
umans is analyzed and evaluated to gather knowledge about the strength of SPs. 
The first observation is that few validations of SPs have been performed involving human sub-

ects. Important to know, in [ 48 ] Ceccato et al. report on a superset of the experiments reported
n [ 47 ]. Together with [ 125 ] and [ 137 ], these are the only experiments in which more than two pro-
ections are layered on top of each other. Moreover, only three experiments involved professional
P experts [ 47 , 48 , 91 , 137 ], and only five papers have experiments lasting at least one working
ay [ 47 , 48 , 106 , 193 , 199 ]. While it is understandable that few research groups have the budget
o hire professionals for multiple days, these results do indicate that few experiments have been
erformed that are representative of real-world MATE attacks. For all the other experiments, it is
lso understandable that they are performed on toy programs or small “complex” programs. This
nables the student participants, which can in practice not be required or demanded to partici-
ate to longer running experiments, to finish their assignments in the experiments’ limited time
rames. 
� It is an open question whether results from such short running experiments with non-expert

ubjects and toy program lacking SP layering can be extrapolated to real-world attack scenarios. 
ACM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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Table 6. Papers Reporting Experiments with Human Subjects Performing MATE Protection 

and Attack Tasks 

Paper Year Subjects Samples # Protections Language Format Time 

[ 199 ] 2021 5 Toy 1,1 Native Native 12h 

[ 28 ] 2021 14 Toy Vanilla,2 Managed Intermediate ? 
[ 174 ] 2020 87 Complex Vanilla,1 Native Source 2h 

[ 91 ] 2020 22 Complex Vanilla, ? Managed Source 1h 

[ 48 ] 2019 6 1 *Mobile, Toy 9,8,7,3,2,1,1,1 Native Native 30d 

[ 29 ] 2019 14 Toy Vanilla, 2 Managed Intermediate ? 
[ 193 ] 2019 4 Mobile 1 Managed Intermediate 40h 

[ 93 ] 2018 2 64 Complex Vanilla,1,1 Managed Intermediate 1.5h 

[ 106 ] 2018 2 13 Complex, Toy 2 Native Native 72h 

[ 181 ] 2018 63 Mobile ? Managed Intermediate ? 
[ 117 ] 2017 10 10 Complex ? Script Source ? 
[ 47 ] 2017 6 *Mobile 9,8,7 Native Native 30d 

[ 116 ] 2016 20 Complex ? Script Source ? 
[ 125 ] 2016 1 Complex, Toy 3,2,2 Native Native ? 
[ 175 ] 2016 1 14 Complex Vanilla,1 Native Source 3.5h 

[ 202 ] 2014 12 Complex Vanilla,1,1,2 Managed Source 1h 

[ 44 ] 2014 22 52 Complex Vanilla,1,1 Managed Intermediate 4h 

[ 140 ] 2009 6 Malware 1 Native Native ? 
[ 46 ] 2009 22 10 Complex Vanilla,1 Managed Intermediate 4h 

[ 45 ] 2008 8 Complex Vanilla,1 Managed Intermediate 4h 

[ 137 ] 2007 5 *Complex ?+5 Native Native 80m 

“Subjects” indicates how many subjects participated of various levels of expertise: bachelor and master students, 
PhD and postgraduate students that are not experts in SP or reverse engineering, students and amateurs with 

considerable experience in SP or reverse engineering, professional programmers, and professional security 
experts and pen testers. “Samples” indicates the handled type of samples. Asterisks mark samples that are real-world 
programs rather than just “Complex” programs somewhere between toy and real-world programs. “# Protections”
indicates the number of protections (if any) composed in different samples. Commas separate different samples; 
“Vanilla” means unprotected. “Language” indicates the targeted type of programming language. “Format” indicates 
the format from which the software was reverse engineered. “Time” indicates how long the experiments lasted. 
Question marks indicate the information is not available. 
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 Recommendations for Goodware Obfuscation Research 

revious sections identified a number of evaluation methodology challenges that the field
f software obfuscation is facing. Most of those challenges concern goodware obfusca-
ion/deobfuscation/analysis research. This section follows up on that by formulating a number
f recommendations for improving the evaluations reported in future research papers. 
Importantly, we explicitly do not propose moving in the direction of one universal evaluation
ethodology for SPs and countermeasures. In goodware SP, the different types of obfuscations

re deployed to counter different attack strategies. Hence, the obfuscations should be evaluated
ifferently: with different forms of measurements, and by evaluating their impact on different
nalysis tools from the attacker’s toolbox. In short, different evaluation methodologies can and
hould be used for different SPs. What all evaluations should have in common, such as including
n evaluation of the potency and of the resilience, using concrete attack tools, on code obfuscated
ith state-of-the-art tools and layered protections, is precisely captured in our recommendations.
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Multiperspectivism . When presenting a new obfuscation/analysis contribution that aims to
ounter some existing analysis/obfuscations, do not only evaluate how the contribution fares
gainst those existing analyses/obfuscations as is. Also evaluate how it fares against adversaries
hat adapt their strategy. In other words, try to think as your adversary, at least considering what
heir immediate reactions might be. For example, for a new deobfuscation technique, propose some
otential countermeasure obfuscations [ 128 ], and when evaluating novel obfuscations to defeat the
unction reconstruction heuristics of commercial disassemblers, do so using plug-ins that to some
egree override the default heuristics with ones that aim at defeating your new obfuscations [ 171 ].

Complete strength evaluation . When presenting a new SP, evaluate its potency, i.e., its strength in
erms of protecting the assets it is supposed to protect; its resilience, i.e., its strength for resisting
ttacks on the SP itself rather than on the protected asset; and, if relevant, its stealth, i.e., how
asy it is to detect the presence and configuration of the SP in a program. Ideally, you evaluate
hese aspects with respect to multiple analysis techniques, including static and dynamic ones that
re known, from the scientific literature and other sources, to be deployed by real-world MATE
ttackers. Pattern matching is a prime example of a popular analysis to be considered. Provide
onvincing arguments for your choice of analyses, and why you exclude other popular, capable
nalyses, if any. If you, for some reason, cannot include experimental results with samples for some
elevant analysis, at least present a theoretical security assessment thereof. 

Layered SP deployment . Deploy multiple, layered SPs on your samples, similar to how they are
eployed in the real world. For a novel SP, evaluate its marginal value when combined with existing
popular) SPs, rather than its value when used in isolation. For managed and script languages, at
east identifier renaming and string encryption should be included in the composed protections.
atively compiled software samples should, at the very least, be stripped. 

Concrete attacks evaluation . To evaluate an SP, do not solely rely on complexity metrics com-
uted on ground truth data. Instead, measure the SP’s actual impact on analyses executed with
oncrete analysis tools. For example, evaluate the impact on their run times and on the precision
f their results. If the tools are flexible and support plug-ins, as is the case for many disassemblers,
onsider using plug-ins (available online) rather than only the base tool. If possible, preference
hould be given to tools that attackers might use in the real world. For example, when evaluat-
ng how symbolic execution performs on protected code, tools that operate on binary code such as
INSEC/SE [ 65 ] or angr [ 154 ] are to be preferred over the use of KLEE on IR produced with LLVM.
lternatively, KLEE can, of course, also be deployed on IR lifted from binaries [ 77 ]. The survey by
chrittwieser et al. on obfuscations vs. analysis techniques [ 148 ] and the data presented in the
upplemental work can help researchers to select the most relevant analyses for evaluating a new
bfuscation’s strengths, or to select the best obfuscations to stress-test a novel analysis technique.

State-of-the-art SP tools . The most advanced, commercial SP tools such as the offerings by Ird-
to, Digital Ai, and GuardSquare are unavailable to most if not all researchers. So instead, evaluate
nalyses and deobfuscation techniques on samples generated with what comes closest to state-of-
he-art SP tools. Several tools are available for free or affordable prizes, including Tigress, VMPro-
ect, and Themida. Some older tools such as OLLVM and ProGuard cannot be considered today’s
tate of the art. In addition, configure the tools properly such that your deployment is represen-
ative of real-word deployment. This can require quite some effort, e.g., to decide which SPs are
ombined and layered on which parts of the sample programs. 

Setup specificity . For all tools used to build, protect, and analyze samples, specify the used ver-
ions and configurations. If you use a default configuration, specify what that entails. This is
ACM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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articularly important for tools of which the default settings evolve over time, such as Tigress
here the default configurations of individual SPs evolved with different releases. 

Tool availability . Make your research tools available as artifacts for reuse and reproducibility. 

Sample complexity . Include in your data set a sufficient number of sample programs of sufficient
omplexity to be representative of real-world use cases. Which concrete complexity metrics are
elevant and which levels of complexity should be included depends entirely on the claims for
hich the evaluation is supposed to provide evidence. For example, when claiming that some
eobfuscation technique can fail even on the simplest of samples, experiments with simple samples
uffice [ 153 ]. By contrast, if a technique requires identifying the relevant fragments in program
races, large programs that generate long traces should be included [ 34 ]. In addition, the samples
uild process should be representative of how real-world software is being built. For example, do
ot include native binaries compiled at -O0 , i.e., without any compiler optimizations enabled. 

Sample availability . Make the samples in your dataset available as artifacts for reuse and repro-
uction by others. As for commercial programs, make sure you mention the exact versions. 

Sample diversification . When performing an evaluation on protected samples that you generate
ourself with some configurable obfuscation and/or with an obfuscation of which the behavior
s randomized, include multiple obfuscated versions for varying configurations and random seeds
nd deploy accepted statistical techniques to aggregate the obtained measurements. For measuring
he performance overhead, include multiple obfuscated samples where the protection has been
eployed on a range of program points with varying degrees of execution frequencies. 
These recommendations are concrete and realistic, as evidenced by the fact that there exist

uite a few papers that already implemented them in the past. To help readers find good examples,
able 7 lists the extent to which A* goodware papers in our survey implement our recommenda-
ions. The sample diversification column lists multiple numbers for papers with multiple, distinct
ubsets of samples with varying levels of diversification. Each reported number is the rounded
atio between the total sample set size of such a subset and its original sample set size. In the state-
f-the-art SP tools column, we marked Javascript minifiers such as Google’s Closure compiler that
o not deploy more advanced obfuscations with . Apart from that, it should be clear that our
udgments are subjective: they are our interpretation of our recommendations and of the papers.
till, we hope this table can provide guidance for future research in software obfuscation. 

For inspiration as to how to instantiate some of these generic recommendations for concrete SPs
r analyses, we refer to the report of the Dagstuhl seminar that motivated us for this survey [ 68 ].
he report’s Section 4 lists concrete recommendations for research into anti-disassembly SPs and

nto trace-based analyses. In addition, the supplemental material contains concrete recommen-
ations for the usage of some of the most popular research tools. In addition, the supplemental
aterial presents some potential sources of inspiration for selecting relevant combinations of lay-

red protections. 

 Related Work 

hile ours is the largest survey in the field of SP to date, it is not the first. We identified 25 in-scope
urveys and several non-survey related works, which we classify in this section. A complete list
f these papers including short descriptions is available in the supplemental material. 
We identified several literature surveys [ 10 , 73 , 97 , 98 , 108 , 139 , 148 , 187 , 195 ], which — similar to

ur work — provide a broad overview of SP research from different perspectives. Another category
f publications similar to our work are taxonomies, introductions, tutorials and other theoretical
ublications [ 5 , 18 , 30 , 56 , 94 , 95 , 118 , 126 , 150 , 151 , 188 , 197 ]. These papers do meta descriptions
uch as categorization or classification of SP techniques, attack scenarios, methods for measuring
CM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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Table 7. Goodware Papers Published in A* Venues, Scored for their Implementation of the 
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Year Venue Authors 

[ 147 ] � � 175 2022 Usenix Security Schloegel et al. 

[ 153 ] � n/a n/a 3 2022 NDSS Shijia et al. 

[ 128 ] � � 1; 2; 3 2021 ACM CCS Menguy et al. 

[ 201 ] � 10 2020 IEEE/ACM ACE Zhou et al. 

[ 179 ] � 2; 4 2019 IEEE INFOCOM Wang et al. 

[ 69 ] � n/a n/a 211 2019 IEEE S& P Ding et al. 

[ 156 ] � n/a n/a n/a 1; 12 2019 W W W Conf. Skolka et al. 

[ 176 ] � n/a n/a 2018 ACM/IEE ICSE Wang et al. 

[ 178 ] � 2 2018 ACM/IEE ICSE Wang et al. 

[ 76 ] � 6 2018 IEEE ToC Fyrbiak et al. 

[ 34 ] � n/a n/a 1; 2 2017 Usenix Security Blazytko et al. 

[ 117 ] � 4 n/a 3 2017 ACM/IEE ICSE Liu et al. 

[ 119 ] � n/a n/a 1; 5; 6 2017 ACM FSE Luo et al. 

[ 172 ] � n/a n/a n/a 1 2017 ACM FSE Vasilescu et al. 

[ 16 ] � 6 2017 Usenix Security Banescu et al. 

[ 12 ] � � n/a n/a 1 2016 ACM CCS Backes et al. 

[ 184 ] � n/a 201 2010 ACM CCS Wu et al. 

[ 138 ] � 2 2007 Usenix Security Popov et al. 

[ 105 ] � n/a n/a 1 2004 Usenix Security Kruegel et al. 

[ 112 ] � 6 2003 ACM CCS Linn and Debray 

[ 58 ] � n/a n/a n/a n/a 1998 ACM POPL Collberg et al. 

means well done, not so; n/a means the recommendation is not applicable. 
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S  
he strength of SPs. Some papers survey available tools and techniques for SP. Besides some early
orks, which look at the SP domain in general [ 13 , 56 ] there exist multiple publications which take
 more narrow focus: Different languages, e.g., Java [ 43 ], analysis avoidance [ 39 , 135 , 182 ], mal-
are [ 113 , 144 , 191 ], specific SPs, e.g., control flow obfuscations [ 124 ], call-flow [ 197 ], instruction

ubstitution [ 197 ], self modifying code [ 126 ], and indistinguishability obfuscation [ 20 , 96 ]. Three
ublications survey the opposing side of SP — analysis and deobfuscation of SP [ 63 , 74 , 103 ]. Sev-
ral papers assess uses of SPs in practice for Android apps [ 26 , 70 , 82 , 92 , 181 ], iOS apps [ 176 ], or
alware [ 38 ]. Collberg and Proebsting published a large-scale study [ 55 ] on reproducibility and

epeatability of experiments in computer science. For only 37% of the surveyed publications code
as made available by the authors, which is in line with our findings. 

 Conclusions 

his survey on software obfuscation is based on the largest collection of papers ever studied in the
P domain. While the mix of protection targets is similar to what we observed in other surveys, in
ACM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 
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erms of types of programming languages targeted, our distinct focus on the measurements per-
ormed in the surveyed papers is novel. In the aftermath of the 2019 Dagstuhl Seminar on Software
rotection Decision Support and Evaluation Methodologies, where participants expressed subjec-
ive worries about evaluation methodologies in SP research [ 68 ], we systematically searched for
vidence of these concerns and indeed found a number of issues. 

We see a concerning focus on cost measurements while the strength of SPs is way less often
easured. Evaluation sample sets suffer from major shortcomings regarding availability, diver-

ification, and complexity. Furthermore, we identified a troubling number of papers using no or
ust a single analysis technique for evaluation, and we observed a limited exploration of obfus-
ation combinations. Next, an identified gap between analysis methods used in analysis papers
nd evaluations of newly proposed protections raises the concern whether appropriate analysis
ethods are used for the evaluation of newly proposed protections. We also identified a gap be-

ween tools used in published research and the commercial state of the art. This casts a shadow
n the real-world relevance of the published research, and confirms the continuing reliance on
ecurity-through-obscurity in this domain. Finally, the reproducibility of research results is low as
oo many papers do not specify versions and configurations of used tools. Interestingly, most of
hese issues are prevalent even in A and A* publications, although there they tend to occur less
requently. 

In summary, our work serves as a robust confirmation of the worries expressed in Dagstuhl.
he prevalence of these issues across different tiers of publications underscores the urgent need

or a broad reconsideration of evaluation methodologies in the SP research field. To that end,
e formulated concrete recommendations, with a focus on goodware SP research. Beyond those

ecommendations that individual research teams can implement, we strongly advocate for the
evelopment of a community consensus on shared sample sets, akin to practices in other research
omains. In particular the Trust Hub set of labeled hardware obfuscation benchmarks [ 8 ] can
erve as an example. Furthermore, the creation of a flexible and easily re-usable protected software
nalysis toolbox could benefit both the reproducibility and comparability of results across studies,
hereby driving the field forward and establishing a solid foundation for future explorations. 

cknowledgments 

or the purpose of open access, the authors have applied a CC BY public copyright license to any
uthor Accepted Manuscript version arising from this submission. 
The authors would like to acknowledge the help of Armin Huremagic. 

eferences 

[1] Moataz AbdelKhalek and Ahmed Shosha. 2017. JSDES: An automated de-obfuscation system for malicious
JavaScript. In ARES . 

[2] Bert Abrath, Bart Coppens, Jens Van den Broeck, Brecht Wyseur, Alessandro Cabutto, Paolo Falcarin, and Bjorn De
Sutter. 2020. Code renewability for native software protection. ACM Trans. Priv. Secur. 23, 4 (2020). 

[3] Bert Abrath, Bart Coppens, Stijn Volckaert, Joris Wijnant, and Bjorn De Sutter. 2016. Tightly-coupled self-debugging
software protection. In ACM SSPREW . 7:1–7:10. 

[4] Deepak Adhikari, J. Todd McDonald, Todd R. Andel, and Joseph D. Richardson. 2022. Argon: A toolbase for evalu-
ating software protection techniques against symbolic execution attacks. In SoutheastCon . 743–750. 

[5] Mohsen Ahmadvand, Alexander Pretschner, and Florian Kelbert. 2019. A taxonomy of software integrity protection
techniques. In ADCOM . Vol. 112. 413–486. 

[6] Kevin Allix, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le Traon. 2016. AndroZoo: Collecting millions of
Android apps for the research community. In MSR (MSR’16) . ACM, New York, NY, USA, 468–471. DOI: https://doi.
org/10.1145/2901739.2903508 

[7] Anil Altinay, Joseph Nash, Taddeus Kroes, Prabhu Rajasekaran, Dixin Zhou, Adrian Dabrowski, David Gens, Yeoul
Na, Stijn Volckaert, Cristiano Giuffrida, Herbert Bos, and Michael Franz. 2020. BinRec: Dynamic binary lifting and
recompilation. In EuroSys . 
CM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 

https://doi.org/10.1145/2901739.2903508
https://doi.org/10.1145/2901739.2903508


Evaluation Methodologies in Software Protection Research 86:35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[8] Sarah Amir, Bicky Shakya, Xiaolin Xu, Yier Jin, Swarup Bhunia, Mark Tehranipoor, and Domenic Forte. 2018. De-
velopment and evaluation of hardware obfuscation benchmarks. J. Hardw. Syst. Secur. 2, 2 (2018), 142–161. 

[9] Bertrand Anckaert, Matias Madou, Bjorn De Sutter, Bruno De Bus, Koen De Bosschere, and Bart Preneel. 2007.
Program obfuscation: A quantitative approach. In ACM QoP . 15–20. 

[10] Claudio Agostino Ardagna, Qing Wu, Xueling Zhu, and Bo Liu. 2021. A survey of Android malware static detection
technology based on machine learning. Mobile Information Systems (2021). 

[11] Eran Avidan and Dror G. Feitelson. 2015. From obfuscation to comprehension. In IEEE ICPC . 178–181. 
[12] Michael Backes, Sven Bugiel, and Erik Derr. 2016. Reliable third-party library detection in Android and its security

applications. In ACM CCS . 356–367. 
[13] Arini Balakrishnan and Chloe Schulze. 2005. Code Obfuscation Literature Survey. CS701 Construction of Compilers.
[14] Sebastian Banescu. 2016. GitHub — A Set of Programs used for Benchmarking the Strength of Obfuscation . https:

//github.com/tum- i4/obfuscation- benchmarks 
[15] Sebastian Banescu, Christian Collberg, Vijay Ganesh, Zack Newsham, and Alexander Pretschner. 2016. Code obfus-

cation against symbolic execution attacks. In ACM ACSAC . 189–200. 
[16] Sebastian Banescu, Christian Collberg, and Alexander Pretschner. 2017. Predicting the resilience of obfuscated code

against symbolic execution attacks via machine learning. In USENIX Security . 661–678. 
[17] Sebastian Banescu, Martin Ochoa, and Alexander Pretschner. 2015. A framework for measuring software obfuscation

resilience against automated attacks. In IEEE/ACM SPRO . 45–51. 
[18] Sebastian Banescu and Alexander Pretschner. 2017. A tutorial on software obfuscation. In Advances in Computers .

Vol. 108. 283–353. 
[19] Sebastian Banescu, Samuel Valenzuela, Marius Guggenmos, Mohsen Ahmadvand, and Alexander Pretschner. 2021.

Dynamic taint analysis versus obfuscated self-checking. In ACM ACSAC . 182–193. 
[20] Boaz Barak. 2016. Hopes, fears, and software obfuscation. Commun. ACM 59, 3 (2016), 88–96. 
[21] Sébastien Bardin, Robin David, and Jean-Yves Marion. 2017. Backward-bounded DSE: Targeting infeasibility ques-

tions on obfuscated codes. In IEEE S&P . 633–651. 
[22] Cataldo Basile, Daniele Canavese, Leonardo Regano, Paolo Falcarin, and Bjorn De Sutter. 2019. A meta-model for

software protections and reverse engineering attacks. J. Sys. and Softw. 150 (2019), 3–21. 
[23] Richard Baumann, Mykolai Protsenko, and Tilo Müller. 2017. Anti-ProGuard: Towards automated deobfuscation of

Android apps. In SHCIS . 7–12. 
[24] Philippe Beaucamps and Éric Filiol. 2007. On the possibility of practically obfuscating programs — Towards a unified

perspective of code protection. J. in Comput. Virol. 3, 1 (2007), 3–21. 
[25] Mihir Bellare, Igors Stepanovs, and Brent Waters. 2016. New negative results on differing-inputs obfuscation. In

EUROCRYPT . 792–821. 
[26] Stefano Berlato and Mariano Ceccato. 2020. A large-scale study on the adoption of anti-debugging and anti-

tampering protections in Android apps. J. Inf. Sec. and App. 52 (2020), 102463. 
[27] Benjamin Bichsel, Veselin Raychev, Petar Tsankov, and Martin Vechev. 2016. Statistical deobfuscation of Android

applications. In ACM CCS . 343–355. 
[28] Mohammed H. Bin Shamlan, Alawi S. Alaidaroos, Mansoor H. Bin Merdhah, Mohammed A. Bamatraf, and Adnan A.

Zain. 2021. Experimental evaluation of the obfuscation techniques against reverse engineering. In ICACIn . 383–390.
[29] Mohammed H. Bin Shamlan, Mohammed A. Bamatraf, and Adnan A. Zain. 2019. The impact of control flow obfus-

cation technique on software protection against human attacks. In ICOICE . 1–5. 
[30] Fabrizio Biondi, Thomas Given-Wilson, Axel Legay, Cassius Puodzius, and Jean Quilbeuf. 2018. Tutorial: An

overview of malware detection and evasion techniques. In ISoLA . 565–586. 
[31] Sandrine Blazy and Rémi Hutin. 2019. Formal verification of a program obfuscation based on mixed Boolean-

arithmetic expressions. In ACM CPP . 196–208. 
[32] Sandrine Blazy and Stéphanie Riaud. 2014. Measuring the robustness of source program obfuscation: Studying the

impact of compiler optimizations on the obfuscation of C programs. In ACM CODASPY . 123–126. 
[33] Sandrine Blazy and Alix Trieu. 2016. Formal verification of control-flow graph flattening. In ACM CPP . 176–187. 
[34] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2017. Syntia: Synthesizing the semantics

of obfuscated code. In USENIX Security . 643–659. 
[35] Jean-Marie Borello and Ludovic Mé. 2008. Code obfuscation techniques for metamorphic viruses. J. in Comput. Virol.

4 (2008), 211–220. 
[36] P. D. Borisov and Yu. V. Kosolapov. 2020. On the automatic analysis of the practical resistance of obfuscating trans-

formations. Autom. Control Comput. Sci. 54, 7 (2020), 619–629. 
[37] Pietro Borrello, Emilio Coppa, and Daniele Cono D’Elia. 2021. Hiding in the particles: When return-oriented pro-

gramming meets program obfuscation. In IEEE/IFIP DSN . 555–568. 
ACM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 

https://github.com/tum-i4/obfuscation-benchmarks
https://github.com/tum-i4/obfuscation-benchmarks


86:36 B. De Sutter et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

[38] Rodrigo Rubira Branco, Gabriel Negreira Barbosa, and Pedro Drimel Neto. 2012. Scientific but not academical
overview of malware anti-debugging, anti-disassembly and anti-VM technologies. Black Hat (2012). 

[39] Murray Brand. 2010. Analysis Avoidance Techniques of Malicious Software . . School of Computer and Security Science.
[40] Pierrick Brunet, Béatrice Creusillet, Adrien Guinet, and Juan Manuel Martinez. 2019. Epona and the obfuscation

paradox: Transparent for users and developers, a pain for reversers. In ACM SPRO . 41–52. 
[41] Joan Calvet, José M. Fernandez, and Jean-Yves Marion. 2012. Aligot: Cryptographic function identification in obfus-

cated binary programs. In ACM CCS . 169–182. 
[42] Gerardo Canfora, Andrea Di Sorbo, Francesco Mercaldo, and Corrado Aaron Visaggio. 2015. Obfuscation techniques

against signature-based detection: A case study. In MST . 21–26. 
[43] Mariano Ceccato, Andrea Capiluppi, Paolo Falcarin, and Cornelia Boldyreff. 2015. A large study on the effect of code

obfuscation on the quality of Java code. Empir. Softw. Eng. 20, 6 (2015), 1486–1524. 
[44] Mariano Ceccato, Massimiliano Di Penta, Paolo Falcarin, Filippo Ricca, Marco Torchiano, and Paolo Tonella. 2014. A

family of experiments to assess the effectiveness and efficiency of source code obfuscation techniques. Empir. Softw.

Eng. 19, 4 (2014), 1040–1074. 
[45] Mariano Ceccato, Massimiliano Di Penta, Jasvir Nagra, Paolo Falcarin, Filippo Ricca, Marco Torchiano, and Paolo

Tonella. 2008. Towards experimental evaluation of code obfuscation techniques. In ACM QoP . 39–46. 
[46] Mariano Ceccato, Massimiliano Di Penta, Jasvir Nagra, Paolo Falcarin, Filippo Ricca, Marco Torchiano, and Paolo

Tonella. 2009. The effectiveness of source code obfuscation: An experimental assessment. In IEEE ICPC . 178–187. 
[47] Mariano Ceccato, Paolo Tonella, Cataldo Basile, Bart Coppens, Bjorn De Sutter, Paolo Falcarin, and Marco Torchiano.

2017. How professional hackers understand protected code while performing attack tasks. In IEEE ICPC . 154–164. 
[48] Mariano Ceccato, Paolo Tonella, Cataldo Basile, Paolo Falcarin, Marco Torchiano, Bart Coppens, and Bjorn De Sutter.

2019. Understanding the behaviour of hackers while performing attack tasks in a professional setting and in a public
challenge. Empir. Softw. Eng. 24, 1 (2019), 240–286. 

[49] Aziem Chawdhary, Ranjeet Singh, and Andy King. 2017. Partial evaluation of string obfuscations for Java malware
detection. Formal Aspects of Computing 29, 1 (2017), 33–55. 

[50] Yun-Chung Chen, Hong-Yen Chen, Takeshi Takahashi, Bo Sun, and Tsung-Nan Lin. 2021. Impact of code deobfus-
cation and feature interaction in Android malware detection. IEEE Access 9 (2021), 123208–123219. 

[51] Binlin Cheng, Jiang Ming, Erika A. Leal, Haotian Zhang, Jianming Fu, Guojun Peng, and Jean-Yves Marion. 2021.
Obfuscation-resilient executable payload extraction from packed malware. In USENIX Security . 3451–3468. 

[52] Xiaoyang Cheng, Yan Lin, Debin Gao, and Chunfu Jia. 2019. DynOpVm: VM-based software obfuscation with dy-
namic opcode mapping. In ACNS . 155–174. 

[53] Seongje Cho, Hyeyoung Chang, and Yookun Cho. 2008. Implementation of an obfuscation tool for C/C++ source
code protection on the XScale architecture. In IFIP SEUS . 406–416. 

[54] Mihai Christodorescu, Somesh Jha, Johannes Kinder, Stefan Katzenbeisser, and Helmut Veith. 2007. Software trans-
formations to improve malware detection. J. in Comput. Virol. 3 (2007), 253–265. 

[55] Christian Collberg and Todd A. Proebsting. 2016. Repeatability in computer systems research. Comm. ACM 59, 3
(2016), 62–69. 

[56] Christian Collberg and Clark Thomborson. 2002. Watermarking, tamper-proofing, and obfuscation — tools for soft-
ware protection. IEEE Trans. Softw. Eng. 28, 8 (2002), 735–746. 

[57] Christian Collberg, C. Thomborson, and Douglas Low. 1997. A Taxonomy of Obfuscating Transformations . Technical
Report 148. University of Auckland. 

[58] Christian Collberg, Clark Thomborson, and Douglas Low. 1998. Manufacturing cheap, resilient, and stealthy opaque
constructs. In ACM POPL . 184–196. 

[59] Computing Research and Education Association of Australasia, CORE Inc. [n.d.]. CORE . https://w w w.core.edu.au 
[60] Kevin Coogan and Saumya Debray. 2011. Equational reasoning on x86 assembly code. In IEEE SCAM . 75–84. 
[61] Mila Dalla Preda and Roberto Giacobazzi. 2005. Control code obfuscation by abstract interpretation. In IEEE SEFM .

301–310. 
[62] Mila Dalla Preda and Roberto Giacobazzi. 2005. Semantic-based code obfuscation by abstract interpretation. In

ICALP . 1325–1336. 
[63] Mila Dalla Preda and Federico Maggi. 2016. Testing Android malware detectors against code obfuscation: A system-

atization of knowledge and unified methodology. J. Comput. Virol. and Hack. Tech. 13, 3 (2016), 209–232. 
[64] Siddhartha Datta. 2021. DeepObfusCode: Source code obfuscation through sequence-to-sequence networks. In In-

telligent Computing . 637–647. 
[65] Robin David, Sébastien Bardin, Thanh Dinh Ta, Josselin Feist, Laurent Mounier, Marie-Laure Potet, and Jean-Yves

Marion. 2016. BINSEC/SE: A dynamic symbolic execution toolkit for binary-level analysis. In IEEE SANER . 
[66] Robin David, Luigi Coniglio, and Mariano Ceccato. 2020. QSynth - a program synthesis based approach for binary

code deobfuscation. In BAR . 
CM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 

https://www.core.edu.au


Evaluation Methodologies in Software Protection Research 86:37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[67] Robbe De Ghein, Bert Abrath, Bjorn De Sutter, and Bart Coppens. 2022. ApkDiff: Matching Android app versions
based on class structure. In ACM CheckMATE . 1–12. 

[68] Bjorn De Sutter, Christian Collberg, Mila Dalla Preda, and Brecht Wyseur. 2019. Software protection decision support
and evaluation methodologies (Seminar 19331). Dagstuhl Reports 9, 8 (2019), 1–25. https://drops.dagstuhl.de/opus/
volltexte/2019/11682 

[69] Steven H. H. Ding, Benjamin C. M. Fung, and Philippe Charland. 2019. Asm2Vec: Boosting static representation
robustness for binary clone search against code obfuscation and compiler optimization. In IEEE S&P . 472–489. 

[70] Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu, Jian Liu, Zhou Li, Fenghao Xu, Kai Chen, Xiaofeng Wang,
and Kehuan Zhang. 2018. Understanding Android obfuscation techniques: A large-scale investigation in the wild.
In SecureComm . 172–192. 

[71] Weiyu Dong, Jian Lin, Rui Chang, and Ruimin Wang. 2022. CaDeCFF: Compiler-agnostic deobfuscator of control
flow flattening. In Internetware . 282–291. 

[72] Dmitriy Dunaev and Laszlo Lengyel. 2012. Complexity of a special deobfuscation problem. In ECBS . 1–4. 
[73] Shouki A. Ebad, Abdulbasit A. Darem, and Jemal H. Abawajy. 2021. Measuring software obfuscation quality–a

systematic literature review. IEEE Access 9 (2021), 99024–99038. 
[74] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. 2012. A survey on automated dynamic

malware-analysis techniques and tools. ACM CSUR 44, 2 (2012). 
[75] Ninon Eyrolles, Louis Goubin, and Marion Videau. 2016. Defeating MBA-based obfuscation. In ACM SPRO . 27–38. 
[76] Marc Fyrbiak, Simon Rokicki, Nicolai Bissantz, Russell Tessier, and Christof Paar. 2018. Hybrid obfuscation to protect

against disclosure attacks on embedded microprocessors. IEEE Trans. Comp. 67, 3 (2018), 307–321. 
[77] Peter Garba and Matteo Favaro. 2019. SATURN - software deobfuscation framework based on LLVM. In ACM SPRO .

27–38. 
[78] Jun Ge, Soma Chaudhuri, and Akhilesh Tyagi. 2005. Control flow based obfuscation. In ACM DRM . 83–92. 
[79] Franz-Xaver Geiger and Ivano Malavolta. 2018. Datasets of Android applications: A literature review. arXiv preprint

arXiv:1809.10069 (2018). 
[80] Leonid Glanz, Sven Amann, Michael Eichberg, Michael Reif, Ben Hermann, Johannes Lerch, and Mira Mezini. 2017.

CodeMatch: Obfuscation won’t conceal your repackaged app. In ESEC/FSE . 638–648. 
[81] Louis Goubin, Pascal Paillier, Matthieu Rivain, and Junwei Wang. 2020. How to reveal the secrets of an obscure

white-box implementation. J. Crypt. Eng. 10, 1 (2020), 49–66. 
[82] Pierre Graux, Jean-Francois Lalande, and Valérie Viet Triem Tong. 2019. Obfuscated Android application develop-

ment. In CCEC . 
[83] Felix Gröbert, Carsten Willems, and Thorsten Holz. 2011. Automated identification of cryptographic primitives in

binary programs. In RAID . 41–60. 
[84] GuardSquare. 2024. Dexguard . https://w w w.guardsquare.com/dexguard 
[85] S. Guelton, A. Guinet, P. Brunet, J. M. Martinez, F. Dagnat, and N. Szlifierski. 2018. Combining obfuscation and

optimizations in the real world. In IEEE SCAM . 24–33. 
[86] Yoann Guillot and Alexandre Gazet. 2009. Semi-automatic binary protection tampering. J. in Comput. Virol. 5, 2

(2009), 119–149. 
[87] Yoann Guillot and Alexandre Gazet. 2010. Automatic binary deobfuscation. J. in Comput. Virol. 6, 3 (2010), 261–276.
[88] Runsheng Guo, Qichao Liu, Man Zhang, Ning Hu, and Hui Lu. 2022. A survey of obfuscation and deobfuscation

techniques in Android code protection. In IEEE DSC . 40–47. 
[89] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor Mudge, and Richard B. Brown. 2001.

MiBench: A free, commercially representative embedded benchmark suite. In IEEE WWC . IEEE, 3–14. 
[90] Kimaya Hajarnis, Jash Dalal, Rupali Bawale, Jibi Abraham, and Ashwini Matange. 2021. A comprehensive solution

for obfuscation detection and removal based on comparative analysis of deobfuscation tools. In SMART GENCON .
1–7. 

[91] Salsabil Hamadache and Malte Elson. 2020. Creative manual code obfuscation as a countermeasure against software
reverse engineering. In AISC . 3–8. 

[92] Mahmoud Hammad, Joshua Garcia, and Sam Malek. 2018. A large-scale empirical study on the effects of code ob-
fuscations on Android apps and anti-malware products. In ICSE . 421–431. 

[93] Norman Hänsch, Andrea Schankin, Mykolai Protsenko, Felix Freiling, and Zinaida Benenson. 2018. Programming
experience might not help in comprehending obfuscated source code efficiently. In SOUPS . 341–356. 

[94] Irfan Ul Haq and Juan Caballero. 2021. A survey of binary code similarity. ACM CSUR 54, 3 (2021). Issue June 2021.
[95] Muhammad Hataba and Ahmed El-Mahdy. 2012. Cloud protection by obfuscation: Techniques and metrics. In 3PG-

CIC . 369–372. 
[96] Máté Horváth and Levente Buttyán. 2020. Cryptographic Obfuscation: A Survey . Springer. 
ACM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 

https://drops.dagstuhl.de/opus/volltexte/2019/11682
https://drops.dagstuhl.de/opus/volltexte/2019/11682
https://www.guardsquare.com/dexguard


86:38 B. De Sutter et al. 

 

 

 

 

[  

[  

[  

[  

[  

[  

[  

 

[  

[  

[  

[  

[  

 

[  

[  

 

[  

[  

[  

[  

[  

[  

 

[  

[  

[  

[  

A

[97] Shohreh Hosseinzadeh, Sampsa Rauti, Samuel Laurén, Jari-Matti Mäkelä, Johannes Holvitie, Sami Hyrynsalmi, and
Ville Leppänen. 2016. A survey on aims and environments of diversification and obfuscation in software security.
In CompSysTech . 113–120. 

[98] Shohreh Hosseinzadeh, Sampsa Rauti, Samuel Laurén, Jari-Matti Mäkelä, Johannes Holvitie, Sami Hyrynsalmi, and
Ville Leppänen. 2018. Diversification and obfuscation techniques for software security: A systematic literature re-
view. Inf. Softw. Technol. 104 (2018). 

[99] Irdeto. 2019. Cloakware by Irdeto . https://irdeto.com/cloakware- by- irdeto 
100] Zeliang Kan, Haoyu Wang, Lei Wu, Yao Guo, and Guoai Xu. 2019. Deobfuscating Android native binary code. In

ICSE Companion . 322–323. 
101] Seoyeon Kang, Jeongwoo Kim, Eun-Sun Cho, and Seokwoo Choi. 2022. Program synthesis-based simplification of

MBA obfuscated malware with restart strategies. In ACM CheckMATE . 13–18. 
102] Keshav Kaushik, Harshpreet Singh Sandhu, Neelesh Kumar Gupta, Naman Sharma, and Rohit Tanwar. 2022. A

systematic approach for evading antiviruses using malware obfuscation. In ETBS . 29–37. 
103] Patrick Kochberger, Sebastian Schrittwieser, Stefan Schweighofer, Peter Kieseberg, and Edgar Weippl. 2021. SoK:

Automatic deobfuscation of virtualization-protected applications. In ARES . 
104] Yury Kosolapov and Petr Borisov. 2020. Similarity features for the evaluation of obfuscation effectiveness. In DASA .

898–902. 
105] Christopher Kruegel, William Robertson, Fredrik Valeur, and Giovanni Vigna. 2004. Static disassembly of obfuscated

binaries. In USENIX Security . 255–270. 
106] Kaiyuan Kuang, Zhanyong Tang, Xiaoqing Gong, Dingyi Fang, Xiaojiang Chen, and Zheng Wang. 2018. Enhance

virtual-machine-based code obfuscation security through dynamic bytecode scheduling. Comput. & Secur. 74 (2018),
202–220. 

107] Akshay Kumar and Seema Sharma. 2019. Design and implementation of obfuscating tool for software code protec-
tion. In LNME . 665–676. 

108] Renuka Kumar and Anjana Mariam Kurian. 2018. A systematic study on static control flow obfuscation techniques
in Java. arXiv preprint arXiv:1809.11037 (2018). 

109] Renuka Kumar and Anand Raj Essar Vaishakh. 2016. Detection of obfuscation in Java malware. Procedia Computer

Science 78 (2016), 521–529. 
110] Clifford Liem, Yuan Xiang Gu, and Harold Johnson. 2008. A compiler-based infrastructure for software-protection.

In ACM PLAS . 33–44. 
111] Kyeonghwan Lim, Jaemin Jeong, Seong-je Cho, Jongmoo Choi, Minkyu Park, Sangchul Han, and Seongtae Jhang.

2017. An anti-reverse engineering technique using native code and obfuscator-LLVM for Android applications. In
RACS . 217–221. 

112] Cullen Linn and Saumya Debray. 2003. Obfuscation of executable code to improve resistance to static disassembly.
In ACM CCS . 290–299. 

113] Cătălin Valeriu Liţă, Doina Cosovan, and Dragoş Gavriluţ. 2018. Anti-emulation trends in modern packers: A survey
on the evolution of anti-emulation techniques in UPA packers. J. Comput. Virol. and Hack. Tech. 14, 2 (2018), 107–126.

114] Binbin Liu, Weijie Feng, Qilong Zheng, Jing Li, and Dongpeng Xu. 2021. Software obfuscation with non-linear mixed
Boolean-arithmetic expressions. In ICISC . 276–292. 

115] Binbin Liu, Junfu Shen, Jiang Ming, Qilong Zheng, Jing Li, and Dongpeng Xu. 2021. MBA-Blast: Unveiling and
simplifying mixed Boolean-arithmetic obfuscation. In USENIX Security . 1701–1718. 

116] Han Liu. 2016. Towards better program obfuscation: Optimization via language models. In ICSE Companion . 680–682.
117] H. Liu, C. Sun, Z. Su, Y. Jiang, M. Gu, and J. Sun. 2017. Stochastic optimization of program obfuscation. In ICSE .

221–231. 
118] T. Long, L. Liu, Y. Yu, and Z. Wan. 2010. Assure high quality code using refactoring and obfuscation techniques. In

FCST . 246–252. 
119] Lannan Luo, Jiang Ming, Dinghao Wu, Peng Liu, and Sencun Zhu. 2017. Semantics-based obfuscation-resilient bi-

nary code similarity comparison with applications to software and algorithm plagiarism detection. IEEE Trans. Softw.

Eng. 43, 12 (2017), 1157–1177. 
120] Benjamin Lynn, Manoj Prabhakaran, and Amit Sahai. 2004. Positive results and techniques for obfuscation. In EU-

ROCRYPT . 20–39. 
121] Matias Madou, Ludo Van Put, and Koen De Bosschere. 2006. LOCO: An interactive code (De)Obfuscation tool. In

ACM PEPM . 140–144. 
122] Anirban Majumdar, Stephen Drape, and Clark Thomborson. 2007. Metrics-based evaluation of slicing obfuscations.

In IAS . 472–477. 
123] Anirban Majumdar, Stephen Drape, and Clark Thomborson. 2007. Slicing obfuscations: Design, correctness, and

evaluation. In ACM DRM . 70–81. 
CM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 

https://irdeto.com/cloakware-by-irdeto


Evaluation Methodologies in Software Protection Research 86:39 

[  

[  

[  

[  

[  

[
[  

 

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

 

[  

 

[  
124] Anirban Majumdar, Clark Thomborson, and Stephen Drape. 2006. A survey of control-flow obfuscations. In ICISS .
353–356. 

125] Ramya Manikyam, J. Todd McDonald, William R. Mahoney, Todd R. Andel, and Samuel H. Russ. 2016. Comparing
the effectiveness of commercial obfuscators against MATE attacks. In ACM SSPREW . 

126] Nikos Mavrogiannopoulos, Nessim Kisserli, and Bart Preneel. 2011. A taxonomy of self-modifying code for obfus-
cation. Comput. Secur. 30, 8 (2011), 679–691. 

127] J. Todd McDonald, Ramya Manikyam, Sébastien Bardin, Richard Bonichon, and Todd R. Andel. 2021. Program pro-
tection through software-based hardware abstraction. In SECRYPT . 247–258. 

128] Grégoire Menguy, Sébastien Bardin, Richard Bonichon, and Cauim de Souza Lima. 2021. Search-based local black-
box deobfuscation: Understand, improve and mitigate. In ACM CCS . 2513–2525. 

129] Parkour Mila. 2024. Contagio . https://contagiodump.blogspot.com 

130] Jiang Ming, Fangfang Zhang, Dinghao Wu, Peng Liu, and Sencun Zhu. 2016. Deviation-based obfuscation-resilient
program equivalence checking with application to software plagiarism detection. IEEE Trans. Reliability 65, 4 (2016),
1647–1664. 

131] Alireza Mohammadinodooshan, Ulf Kargén, and Nahid Shahmehri. 2019. Robust detection of obfuscated strings in
Android apps. In ACM AISec . 25–35. 

132] Marvin Moog, Markus Demmel, Michael Backes, and Aurore Fass. 2021. Statically detecting JavaScript obfuscation
and minification techniques in the wild. In IEEE/IFIP DSN . 569–580. 

133] Jasvir Nagra and Christian Collberg. 2009. Surreptitious Software: Obfuscation, Watermarking, and Tamperproofing

for Software Protection . Addison-Wesley Professional. 
134] Mathilde Ollivier, Sébastien Bardin, Richard Bonichon, and Jean-Yves Marion. 2019. How to kill symbolic deobfus-

cation for free (or: Unleashing the potential of path-oriented protections). In ACM ACSAC . 177–189. 
135] Mathilde Ollivier, Sébastien Bardin, Richard Bonichon, and Jean-Yves Marion. 2019. Obfuscation: Where are we in

anti-DSE protections? (A First Attempt). In ACM SSPREW . 
136] Colby B. Parker., J. Todd McDonald., and Dimitrios Damopoulos. 2021. Machine learning classification of obfuscation

using image visualization. In SECRYPT . 854–859. 
137] Ugo Piazzalunga, Paolo Salvaneschi, Francesco Balducci, Pablo Jacomuzzi, and Cristiano Moroncelli. 2007. Security

strength measurement for dongle-protected software. IEEE Security & Privacy 5, 6 (2007), 32–40. 
138] Igor V. Popov, Saumya K. Debray, and Gregory R. Andrews. 2007. Binary obfuscation using signals. In USENIX

Security . 275–290. 
139] Junyang Qiu, Jun Zhang, Wei Luo, Lei Pan, Surya Nepal, and Yang Xiang. 2020. A survey of Android malware

detection with deep neural models. ACM CSUR 53, 6 (2020). 
140] Daniel A. Quist and Lorie M. Liebrock. 2009. Visualizing compiled executables for malware analysis. In IEEE VizSec .

27–32. 
141] L. Regano, D. Canavese, C. Basile, and A. Lioy. 2017. Towards optimally hiding protected assets in software appli-

cations. In QRS . 374–385. 
142] Leonardo Regano, Daniele Canavese, Cataldo Basile, Alessio Viticchié, and Antonio Lioy. 2016. Towards automatic

risk analysis and mitigation of software applications. In WISTP . 120–135. 
143] Benjamin Reichenwallner and Peter Meerwald-Stadler. 2022. Efficient deobfuscation of linear mixed Boolean-

arithmetic expressions. In ACM CheckMATE . 19–28. 
144] Kevin A. Roundy and Barton P. Miller. 2013. Binary-code obfuscations in prevalent packer tools. ACM CSUR 46, 1

(2013). 
145] Aleieldin Salem and Sebastian Banescu. 2016. Metadata recovery from obfuscated programs using machine learning.

In ACM SSPREW . 
146] Shaown Sarker, Jordan Jueckstock, and Alexandros Kapravelos. 2020. Hiding in plain site: Detecting JavaScript

obfuscation through concealed browser API usage. In ACM IMC . 648–661. 
147] Moritz Schloegel, Tim Blazytko, Moritz Contag, Cornelius Aschermann, Julius Basler, Thorsten Holz, and Ali Abbasi.

2022. Loki: Hardening code obfuscation against automated attacks. In USENIX Security . 3055–3073. 
148] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder, Georg Merzdovnik, and Edgar Weippl. 2016. Pro-

tecting software through obfuscation: Can it keep pace with progress in code analysis? ACM CSUR 49, 1 (2016),
4:1–4:37. 

149] Sebastian Schrittwieser, Patrick Kochberger, Michael Pucher, Caroline Lawitschka, Philip König, and Edgar R.
Weippl. 2022. Obfuscation-resilient semantic functionality identification through program simulation. In NordSec .
273–291. 

150] S. A. Sebastian, S. Malgaonkar, P. Shah, M. Kapoor, and T. Parekhji. 2016. A study & review on code obfuscation. In
WCFTR (Startup Conclave) . 1–6. 
ACM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 

https://contagiodump.blogspot.com


86:40 B. De Sutter et al. 

[  

[  

[  

[  

 

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[
[  

 

[  

[  

[  

[  

A

151] Serhii Semenov, Viacheslav Davydov, and Denys Voloshyn. 2019. Obfuscated code quality measurement. In MMA .
1–6. 

152] Zihan Sha, Hui Shu, Xiaobing Xiong, and Fei Kang. 2022. Model of execution trace obfuscation between threads.
IEEE Trans. Dep. Sec. Comp. 19, 6 (2022), 4156–4171. 

153] Li Shijia, Jia Chunfu, Qiu Pengda, Chen Qiyuan, Ming Jiang, and Gao Debin. 2022. Chosen-instruction attack against
commercial code virtualization obfuscators. In NDSS . 

154] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Audrey Dutcher, John Grosen, Siji
Feng, Christophe Hauser, Christopher Kruegel, and Giovanni Vigna. 2016. SoK: (State of) the art of war: Offensive
techniques in binary analysis. In IEEE S&P . 

155] Praveen Sivadasan and P. Sojan Lal. 2011. Suggesting potency measures for obfuscated arrays and usage of source
code obfuscators for intellectual property protection of Java products. In ICINT . 

156] Philippe Skolka, Cristian-Alexandru Staicu, and Michael Pradel. 2019. Anything to hide? Studying minified and
obfuscated code in the web. In W W W . 1735–1746. 

157] Yingbo Song, Michael E. Locasto, Angelos Stavrou, Angelos D. Keromytis, and Salvatore J. Stolfo. 2010. On the
infeasibility of modeling polymorphic shellcode. Mach. Learn. 81, 2 (2010), 179–205. 

158] Standard Performance Evaluation Corporation (SPEC). 1988. SPEC — Standard Performance Evaluation Corporation .
https://spec.org 

159] Jon Stephens, Babak Yadegari, Christian Collberg, Saumya Debray, and Carlos Scheidegger. 2018. Probabilistic ob-
fuscation through covert channels. In IEEE EuroS&P . 243–257. 

160] Fang-Hsiang Su, Jonathan Bell, Gail Kaiser, and Baishakhi Ray. 2018. Obfuscation resilient search through executable
classification. In ACM MAPL . 20–30. 

161] Anjali J. Suresh and Sriram Sankaran. 2020. A framework for evaluation of software obfuscation tools for embedded
devices. In ATIS . 1–13. 

162] Anjali J. Suresh and Sriram Sankaran. 2020. Power profiling and analysis of code obfuscation for embedded devices.
In IEEE INDICON . 1–6. 

163] M. Talukder, S. Islam, and P. Falcarin. 2019. Analysis of obfuscated code with program slicing. In Cyber Security .
1–7. 

164] Xiaoxiao Tang, Yu Liang, Xinjie Ma, Yan Lin, and Debin Gao. 2017. On the effectiveness of code-reuse-based Android
application obfuscation. In ICISC . 333–349. 

165] Technische Universität Braunschweig. 2016. The Drebin Dataset . https://w w w.sec.cs.tu-bs.de/ ∼danarp/drebin/
download.html 

166] Zhenzhou Tian, Hengchao Mao, Yaqian Huang, Jie Tian, and Jinrui Li. 2022. Fine-grained obfuscation scheme recog-
nition on binary code. In ICDF2C . 215–228. 

167] Dennis Titze, Michael Lux, and Julian Schuette. 2017. Ordol: Obfuscation-resilient detection of libraries in Android
applications. In IEEE Trustcom/BigDataSE/ICESS . 618–625. 

168] Ramtine Tofighi-Shirazi, Irina Asăvoae, Philippe Elbaz-Vincent, and Thanh Ha Lê. 2019. Defeating opaque predicates
statically through machine learning and binary analysis. arXiv preprint arXiv:1909.01640 (2019). 

169] Ramtine Tofighi-Shirazi, Irina Măriuca Asăvoae, and Philippe Elbaz-Vincent. 2019. Fine-grained static detection of
obfuscation transforms using ensemble-learning and semantic reasoning. In ACM SSPREW . 

170] Denis Ugarte, Davide Maiorca, Fabrizio Cara, and Giorgio Giacinto. 2019. PowerDrive: Accurate de-obfuscation and
analysis of PowerShell malware. In DIMVA . 240–259. 

171] Jens Van den Broeck, Bart Coppens, and Bjorn De Sutter. 2021. Obfuscated integration of software protections. Int.

J. Inf. Secur. 20, 73–101 (2021). 
172] Bogdan Vasilescu, Casey Casalnuovo, and Premkumar Devanbu. 2017. Recovering clear, natural identifiers from

obfuscated JS names. In ESEC/FSE . 683–693. 
173] VirusShare.com. 2024. VirusShare.com . https://virusshare.com 

174] Alessio Viticchié, Leonardo Regano, Cataldo Basile, Marco Torchiano, Mariano Ceccato, and Paolo Tonella. 2020.
Empirical assessment of the effort needed to attack programs protected with client/server code splitting. Empir.

Softw. Eng. 25, 1 (2020), 1–48. 
175] Alessio Viticchié, Leonardo Regano, Marco Torchiano, Cataldo Basile, Mariano Ceccato, Paolo Tonella, and Roberto

Tiella. 2016. Assessment of source code obfuscation techniques. In IEEE SCAM . 11–20. 
176] Pei Wang, Qinkun Bao, Li Wang, Shuai Wang, Zhaofeng Chen, Tao Wei, and Dinghao Wu. 2018. Software protection

on the go: A large-scale empirical study on mobile app obfuscation. In ICSE . 26–36. 
177] Pei Wang, Shuai Wang, Jiang Ming, Yufei Jiang, and Dinghao Wu. 2016. Translingual obfuscation. IEEE EuroS&P

(2016), 128–144. 
178] Pei Wang, Dinghao Wu, Zhaofeng Chen, and Tao Wei. 2018. Protecting million-user IOS apps with obfuscation:

Motivations, pitfalls, and experience. In ICSE-SEIP . 235–244. 
CM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 

https://spec.org
https://www.sec.cs.tu-bs.de/~danarp/drebin/download.html
https://www.sec.cs.tu-bs.de/~danarp/drebin/download.html
https://virusshare.com


Evaluation Methodologies in Software Protection Research 86:41 

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[  

[
[
[  

[  

 

[  

[  

 

[  

[  

[  

[  

[  

[  

[  

R

179] Yongzhi Wang, Yulong Shen, Cuicui Su, Ke Cheng, Yibo Yang, Anter Faree, and Yao Liu. 2019. CFHider: Control flow
obfuscation with Intel SGX. In IEEE INFOCOM . 541–549. 

180] Yan Wang, Haowei Wu, Hailong Zhang, and Atanas Rountev. 2018. ORLIS: Obfuscation-resilient library detection
for Android. In MOBILESoft . 13–23. 

181] Dominik Wermke, Nicolas Huaman, Yasemin Acar, Bradley Reaves, Patrick Traynor, and Sascha Fahl. 2018. A large
scale investigation of obfuscation use in Google play. In ACM ACSAC . 222–235. 

182] Carsten Willems and Felix C. Freiling. 2012. Reverse code engineering – state of the art and countermeasures. it -
Information Technology 54, 2 (2012), 53–63. 

183] P. Wrench and B. Irwin. 2016. Detecting derivative malware samples using deobfuscation-assisted similarity analy-
sis. SAIEE Africa Research J. 107, 2 (2016), 65–77. 

184] Zhenyu Wu, Steven Gianvecchio, Mengjun Xie, and Haining Wang. 2010. Mimimorphism: A new approach to binary
code obfuscation. In ACM CCS . 536–546. 

185] Dongpeng Xu, Binbin Liu, Weijie Feng, Jiang Ming, Qilong Zheng, Jing Li, and Qiaoyan Yu. 2021. Boosting SMT
solver performance on mixed-bitwise-arithmetic expressions. In ACM PLDI . 651–664. 

186] D. Xu, J. Ming, and D. Wu. 2017. Cryptographic function detection in obfuscated binaries via bit-precise symbolic
loop mapping. In IEEE S&P . 921–937. 

187] Hui Xu, Yangfan Zhou, Yu Kang, and Michael R. Lyu. 2017. On secure and usable program obfuscation: A survey.
arXiv preprint arXiv:1710.01139 (2017). 

188] Hui Xu, Yangfan Zhou, Jiang Ming, and Michael Lyu. 2020. Layered obfuscation: A taxonomy of software obfuscation
techniques for layered security. Cybersecurity 3, 1 (2020), 9. 

189] Babak Yadegari, Jon Stephens, and Saumya Debray. 2017. Analysis of exception-based control transfers. In ACM

CODASPY . 205–216. 
190] Zhou Yajin and Jiang Xuxian. 2012. Android Malware Genome Project . http://w w w.malgenomeproject.org 
191] Ilsun You and Kangbin Yim. 2010. Malware obfuscation techniques: A brief survey. In IEEE BWCCA . 297–300. 
192] Junyuan Zeng, Yangchun Fu, Kenneth A. Miller, Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. 2013. Obfuscation

resilient binary code reuse through trace-oriented programming. In ACM CCS . 487–498. 
193] Qiang Zeng, Lannan Luo, Zhiyun Qian, Xiaojiang Du, Zhoujun Li, Chin-Tser Huang, and Csilla Farkas. 2019. Re-

silient user-side Android application repackaging and tampering detection using cryptographically obfuscated logic
bombs. IEEE Trans. Dep. Sec. Comp. (2019), 1–1. 

194] Jiexin Zhang, Alastair R. Beresford, and Stephan A. Kollmann. 2019. LibID: Reliable identification of obfuscated
third-party Android libraries. In ACM ISSTA . 55–65. 

195] Xiaolu Zhang, Frank Breitinger, Engelbert Luechinger, and Stephen O’Shaughnessy. 2021. Android application
forensics: A survey of obfuscation, obfuscation detection and deobfuscation techniques and their impact on in-
vestigations. FSI: Digital Investigation 39 (2021). DOI: https://doi.org/10.1016/j.fsidi.2021.301285 

196] Xuesong Zhang, Fengling He, and Wanli Zuo. 2008. An inter-classes obfuscation method for Java program. In ISA .
360–365. 

197] Xuesong Zhang, Fengling He, and Wanli Zuo. 2010. Theory and practice of program obfuscation. Convergence and

Hybrid Information Technologies (2010), 426. 
198] Xiaochuan Zhang, Jianmin Pang, and Xiaonan Liu. 2018. Common program similarity metric method for anti-

obfuscation. IEEE Access 6 (2018), 47557–47565. 
199] Yujie Zhao, Zhanyong Tang, Guixin Ye, Xiaoqing Gong, Dingyi Fang, and Zhiyuan Tan. 2021. Input-output example-

guided data deobfuscation on binary. Security and Communication Networks 2021 (2021). 
200] Yujie Zhao, Zhanyong Tang, Guixin Ye, Dongxu Peng, Dingyi Fang, Xiaojiang Chen, and Zheng Wang. 2020.

Semantics-aware obfuscation scheme prediction for binary. Comput. & Secur. 99 (2020), 102072. 
201] Hao Zhou, Ting Chen, Haoyu Wang, Le Yu, Xiapu Luo, Ting Wang, and Wei Zhang. 2020. UI obfuscation and its

effects on automated UI analysis for Android apps. In IEEE/ACM ASE . 199–210. 
202] Yan Zhuang, Mykola Protsenko, Tilo Muller, and Felix C. Freiling. 2014. An(other) exercise in measuring the strength

of source code obfuscation. In DEXA . 313–317. 
eceived 18 July 2023; revised 3 October 2024; accepted 10 October 2024 

ACM Comput. Surv., Vol. 57, No. 4, Article 86. Publication date: December 2024. 

http://www.malgenomeproject.org
https://doi.org/10.1016/j.fsidi.2021.301285

	1 Introduction
	2 Scope and Methodology
	2.1 Paper Retrieval and Selection Process
	2.2 Information Collection
	2.3 Top-level Paper Categorization
	2.4 Quality of Venues

	3 Sample Sets
	3.1 Sample Categories
	3.2 Sample Set Sizes
	3.3 Correlation with Publication Venue
	3.4 Identified Challenges

	4 Sample Treatment
	4.1 Protection Code Representation
	4.2 Deployed Protections
	4.3 Employed Analysis Methods
	4.4 Used Tools
	4.5 Identified Challenges

	5 Measurements
	5.1 Evaluation Representation
	5.2 Measurement Aspects and Categories
	5.3 Identified Challenges

	6 Experiments with Human Subjects
	7 Recommendations for Goodware Obfuscation Research
	8 Related Work
	9 Conclusions
	10 Acknowledgments
	Referencesendgraf 

