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Abstract

Edge AI is the fusion of edge computing and artificial intelligence (AI). It promises responsiveness, privacy
preservation, and fault tolerance by moving parts of the AI workflow from centralized cloud data centers to
geographically dispersed edge servers, which are located at the source of the data. The scale of edge AI can vary
from simple data preprocessing tasks to the whole machine learning stack. However, most edge AI implementations
so far are limited to urban areas, where the infrastructure is highly dependable. This work instead focuses on a class of
applications involved in environmental monitoring in remote, rural areas such as forests and rivers. Such applications
have additional challenges, including failure proneness and access to the electricity grid and communication
networks. We propose neuromorphic computing as a promising solution to the energy, communication, and
computation constraints in such scenarios and identify directions for future research in neuromorphic edge AI for
rural environmental monitoring. Proposed directions are distributed model synchronization, edge-only learning,
aerial networks, spiking neural networks, and sensor integration.

Impact Statement

This position article provides a comprehensive analysis of diverse environmental monitoring systems utilized in
rural areas, pinpointing prevalent challenges, and evaluates the potential of emerging technologies of edge
artificial intelligence (AI) and neuromorphic computing to address these challenges. It also highlights open
issues and suggests research directions for the full realization of their potential. The primary goal of the article is
to garner the interest of the wider environmental and computational science communities in promising
developments in sustainable computing architectures.

1. Introduction

Environmental monitoring plays a crucial role in contributing to the United Nations Sustainable
Development Goals, particularly toward Clean Water and Sanitation, Climate Action, Life Below Water
and on Land, Sustainable Cities and Communities, and Responsible Consumption and Production.
Indeed, managing the impacts of human activity on the planet necessitates continuous environmental
monitoring. Internet-of-Things (IoT) technology enhances environmental monitoring systems by enab-
ling data collection, transmission, and analysis from various sensors and devices. Driven by the exploding
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number of IoT devices and the amount of data generated at the edge of the network, edge artificial
intelligence (AI) (Deng et al., 2020; Zhou et al., 2019) is widely considered the next logical step for real-
time distributed data processing. EdgeAI arises from the convergence ofAI and edge computing (EC) and
proposes utilizing the prevalent EC resources for training AI models and inferring based on thereof.
Consequently, streaming big data from IoT devices can be processed in close proximity, which could bear
various benefits, including bandwidth savings due to reduced amount of transmitted data, high respon-
siveness due to low latency, and privacy preservation due to local processing. Initial use cases for edgeAI,
such as traffic control, smart factories, and smart cities, have been almost exclusively located in urban
areas (Ding et al., 2022; Peltonen et al., 2020). These environments are characterized by operational
utilities (e.g., electric power) and high-bandwidth Internet access. However, we argue that edge AI can
also find use in environmental monitoring applications targeted at rural and remote areas. In such a
scenario, edge AI has to encounter also the challenges such as data insularity, low computation capability,
and limited fan-in.

Another pressing issue that restrains large-scale processing of sensor data is energy consumption. Not
to mention the current global energy crisis, electricity use of data centers is already a controversial topic
(Katal et al., 2023). In 2019, the city of Amsterdam imposed a moratorium on building new data centers
due to their high electricity budget, which was expanded to the whole country by the national government
in 2022 (van der Marel et al., 2022). ICTcurrently accounts for 5% to 9% of global electricity consumption
with comparable carbon emissions to air travel. Relying on redundancy (of IoT devices, communication
links, and processors) to withstand the data explosion would increase energy consumption exponentially,
with estimates exceeding 20% of the global electricity demand by 2030 (Brandic, 2021).

We follow an incremental approach in the rest of this article. Our main contributions can be
summarized as follows. First, we define and review three classes of rural environmental monitoring
applications (ie, pollution monitoring, disaster warning, and industrial IoT) and outline common
characteristics and challenges (Section 2). Then, we introduce edge AI as a promising solution to most
of these challenges, which in turn has its own limitations (Section 3). Furthermore, we discuss how
neuromorphic computing (NC), a novel non-von Neumann technology, fits into the picture (Section 4)
and identify future research directions for its practical use in enhancing edge AI for environmental
monitoring use cases in rural areas (Section 5). We conclude the article with final remarks (Section 6).

We define neuromorphic edge AI as a distributed computing architecture, where brain-inspired,
massively parallel, and event-driven hardware is deployed at the edge of the network, close to IoT data
sources. There have been initial studies addressing rural computing from a human-computer inter-
action perspective, including those by Hardy et al. (2018) and Vázquez-López et al. (2021). Recently,
the convergence of edge AI and NC has also been considered (Rubino et al., 2020). However, to the
best of our knowledge, this work is the first to identify rural environmental monitoring as a new
research direction and also the first to employ neuromorphic edge AI for environmental monitoring.
Therefore, we believe it will be highly beneficial for scientists and practitioners in environmental data
science alike.

2. State of the art in rural environmental monitoring

In this section, we first identify the most widespread forms of practical monitoring of rural environments.
Then, we discuss the defining characteristics and limitations that distinguish them from applications in
urban areas, such as the monitoring of noise levels, metropolitan air quality, heat islands, and urban
climate. The proposed classification is summarized in Figure 1.

2.1. Classification

2.1.1. Pollution monitoring
Pollution monitoring is a process that involves measuring the ambient level of pollution in various
mediums. Increasing global human activity and its consequent impact on the environment make it
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crucial to monitor air and water quality in rural areas. Pollution monitoring is beneficial not only for
detecting sudden events such as leakages and enabling countermeasures but also for long-term
modeling, which helps environmental scientists better understand the trends, impacts, root
causes, etc.

One prominent and long-standing example of such an initiative is the Global Environment Monitoring
System (GEMS) (Gwynne, 1982) by the United Nations Environment Program, which is a comprehen-
sive attempt at worldwide pollution monitoring. GEMS focuses on air and water quality monitoring
through the combination of low-cost IoT sensors, remote sensing technology, and traditional monitoring
methods. GEMS operates through a collaborative network of national governments, research institutions,
and nongovernmental organizations, ensuring a wide-reaching and inclusive approach to environmental
data collection. By leveraging the latest in satellite imagery, ground-based sensor networks, and extensive
data analytics, GEMS delivers an integrated view of the planet’s environmental health. The GEMS data
portal currently includes more than 20,000 water quality monitoring stations from rivers, groundwaters,
lakes, reservoirs, and wetlands, as well as 30,000 air quality monitoring stations globally.

In water quality monitoring, there also exist regional monitoring systems for marine regions and
freshwater bodies (both ground and surfacewater). SWAIN project (Ahmad et al., 2023), supported by the
European Innovation Council CHIST-ERA program, focuses on surface waters, particularly rivers. The
project aims to detect and locate pollutant sources (eg, industrial leaks or failed wastewater treatment
plants) through an unprecedented implementation of EC and IoT for the real-time analysis of water
contamination data. Timely decision-making is crucial in this use case as the river water polluted upstream
might be used for irrigation or even for municipal water intake downstream. Such a scenario is illustrated
by the ErgeneRiver, Turkey, in Figure 2,where the potential health risk is apparentwith highlighted heavy
industrial development and irrigation areas. Ergene is one of the two use cases in the SWAIN project (the
other being the Kokemäki River, Finland).

2.1.2. Disaster warning
Environmental monitoring systems are also widely used to detect and predict natural and anthropogenic
disasters. Large-scale deployment of seismic sensors enables effective monitoring of earthquakes,
volcanic activities, and avalanches. Two leading organizations for seismic monitoring are the EMSC
(European-Mediterranean Seismological Centre) and the USGS (U.S. Geological Survey). The EMSC
focuses on providing real-time seismic data and rapid earthquake information, primarily serving the Euro-
Mediterranean region. It collaborates with various national seismological agencies to aggregate and
disseminate earthquake data, contributing significantly to regional safety and emergency response
planning. On the other hand, the USGS, a scientific agency of the U.S. government, plays a pivotal role
in monitoring and researching geological phenomena, including earthquakes and volcanic activity, not
just in the United States but globally. They employ a comprehensive network of seismic sensors and
leverage advanced data processing technologies to analyze seismic events.

Intercantonal Measuring and Information System (IMIS) is the snow meteorology and avalanche
warning network covering the Swiss Alps (Oester, 2021). IMIS consists of snow and wind stations to
assess snowpack stability and the potential risk of avalanches. Snow stations within the IMIS network are

Figure 1. A classification of the most prominent rural environmental monitoring systems.
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strategically placed and equipped with advanced sensors that continuously monitor snow depth, air
temperature, and surface temperature, whereas wind stations are instrumental in measuring wind speed
and direction, which are significant factors in the formation and evolution of snowpacks.

One of the most ambitious disaster warning infrastructures is maintained by the Comprehensive
Nuclear-Test-Ban Treaty Office (CTBTO), which monitors the whole planet frommore than 300 stations
for signs of nuclear explosions. The International Monitoring System (IMS) (Garwin, 2011) uses data
from seismic sensors (to monitor shockwaves), hydroacoustic sensors (sound waves in the oceans),
infrasound sensors (ultralow-frequency sound waves), and radionuclide sensors (radioactive particles in
the atmosphere). Collected data are transmitted to the IMS data center inVienna, Austria, and processed to
detect nuclear explosions, which potentially violate the Comprehensive Nuclear-Test-Ban Treaty adopted
by the United Nations.

2.1.3. Industrial IoT
The third and final class of rural environmental monitoring applications that we identify is the industrial
IoT systems. Although industries are often located within or near urban areas, e.g., in industrial zones,
there exist at least two industrial use cases that are inherently rural. In the agricultural industry, IoT-driven
smart farming is increasingly prevalent (Kasera et al., 2024). Here, sensors collect continuous data,
including light, humidity, temperature, and soil moisture, to model crop health, yield, and so forth
Furthermore, actuators can automate various tasks, including seeding, seedling, pollination, fertilization,
irrigation, and harvesting.

The second use case concerns the oil and gas industry, particularly well monitoring systems (Aalsalem
et al., 2017). Rural oil and gas wells can be monitored remotely and in real time thanks to IoT

Figure 2. Geographical overview of the Ergene Watershed located in Northwestern Turkey as a water
quality monitoring use case (Image Courtesy of TUBITAK Project 115Y064).
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deployments, which improve safety, productivity, and sustainability. By integrating sensors for tempera-
ture, pressure, and other relevant parameters, these systems enable continuous monitoring of well
conditions. This constant surveillance is crucial for the early detection of anomalies that could indicate
potential safety hazards, such as leaks or pressure build-ups, thereby preventing accidents and ensuring
the safety of both the environment and personnel. Moreover, IoT-based well monitoring contributes to
improved operational efficiency. Real-time data allow for swift decision-making and timely interventions,
reducing downtime and optimizing resource use. This increased efficiency not only boosts productivity
but also minimizes the environmental impact of these operations. By closely monitoring and managing
well operations, companies can reduce wasteful practices and better comply with environmental regu-
lations.

2.2. Discussion

Table 1 summarizes the general characteristics of the above use cases, as well as the practical challenges
in their implementation. The scale and dispersion of the monitoring systems vary significantly from a
single field with a few sensors (as in agricultural IoT) to the European-Mediterranean region (as in
seismic activity monitoring by EMSC) and even to the whole globe with tens of thousands of sensors
(as in air quality monitoring by GEMS/Air). We also observe that real-time requirements in rural
environmental monitoring systems are less strict than typical latency-sensitive IoTapplications such as
industrial control, connected vehicles, digital twins, robotics, and so on, which demand subsecond
latency. The sampling frequency and available time for decision-making are both in the range of
minutes to a few hours.

While some use cases, such as avalanche monitoring, are exclusively deployed in nonurban environ-
ments, others, such as water quality monitoring, include a combination of urban, suburban, and remote
deployments. For instance, pollutionmonitoring stations in the scope of the SWAIN project can be located
within cities when the river flows through them. However, other sections of the river in more rural areas
have to be monitored, too. All use cases discussed here require a part of the IoT infrastructure to be
deployed in remote areas. Consequently, the following new challenges (CH) arise in these use cases
compared to urban monitoring. In a similar vein, urban areas can also suffer from these challenges in the
aftermath of a disaster and require temporary solutions for data access or analytics (Kamruzzaman et al.,
2017).

CH1: Electricity Access In most use cases, the electric utility is unavailable at the measurement
locations; therefore, the sensors have limited or no access to reliable power sources. For instance, water
and air quality monitoring sensors are usually battery-powered, which makes energy efficiency critical to
avoid constant maintenance (Ko et al., 2018). The exceptions are (i) seismic activity sensors, which are
not strictly bound to narrow geolocations but can function in nearby settlements almost without loss of
accuracy and (ii) oil and gas well sensors since the wells are already powered.

CH2: Internet Access IoT sensors must transmit measurements to computational resources for pro-
cessing. However, all rural use cases suffer from intermittent or no connectivity to a wide-area network
(Ahmad et al., 2023). In theory, satellite-based communication is possible anywhere on the Earth, but in
practice, this solution is too costly and energy-intensive. An important trade-off between CH1 and CH2 is
the decision to process data locally or transfer it to a remote facility, as both local processing and data
transfer are energy-intensive operations.

CH3: Failure Risk Rural deployment of IoT sensors complicates their maintenance and results in
failure-prone infrastructures. Although most systems do not collect sensitive data, safety risks are
generally high as failures result in undetected pollution or disasters. Moreover, previous research shows
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Table 1. IoT-driven monitoring use cases in rural environments

Rural environmental
monitoring use case

Number of
stations Dispersion

Real-time
constraint

Proximity to
urban areas

Potential for
electricity access

Potential for
Internet access

Safety
risk

Data
sensitivity

Air quality
(GEMS/Air)

≥ 30000 Global Hour Any Moderate Moderate Moderate Low

Water quality
(SWAIN)

30–75 Regional Minute Any Low Low High Low

Seismic activity
(EMSC)

≥ 2500 Continental Minute Any High Moderate High Low

Avalanche
(SLF IMIS)

186 Regional Hour Mid to far Low Low High Low

Nuclear explosion
(CTBTO)

337 Global Hour Mid to far Low Low High High

Agriculture ≈ 1 per 2 ha Local Hour Near to mid Low Low Moderate Low
Oil and gas well ≈ 1 per well Local Minute Mid to far High Low High High
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that such failures in geo-distributed systems can be spatiotemporally correlated, resulting in cascading
failures, which might cripple monitoring systems (Aral and Brandić, 2020).

CH4: Sustainability As a direct repercussion of spatially large environments and a wide dispersion of
sensors, it is a challenge to achieve good coverage of the target environment. Even on relatively smaller
scales, as in river or avalanche monitoring, better coverage requires a higher number of sensors, which
undermines sustainability in terms of cost, energy and network use, and ecological footprint. Strategical
placement of sensors can improve data quality and reduce the need for an excessive number of sensors
(Ahmad et al., 2023).

3. Leveraging edge AI for environmental monitoring

3.1. Background and challenges

In the edge AI paradigm, a part of the computation capacity is deployed at the edge of the network, in the
proximity of where the data are generated. Accordingly, the data can be at least partially processed at the
edge servers, which have a high-bandwidth local area connection to the IoT devices. The output of
preprocessing is usually transferred to the central facility for further analysis (Varghese et al., 2021).
Contemporary machine learning algorithms, such as deep neural networks, consist of multiple layers of
processing. The size of the data that is required to be transmitted between these layers is multiple orders of
magnitude smaller than the raw input data. Therefore, these layers can be partitioned between cloud and
edge data centers reducing network overhead significantly and alleviating CH2 (Luger et al., 2023).
However, the energy consumption of the processing at the edge servers (CH1) has to be taken into
consideration. There also exists federated learning solutions for environmental monitoring such as
Nguyen and Zettsu (2021) and Siddique et al. (2024). In such systems, all learning is carried out at the
edge of the network, and a central facility is only required as a parameter server that synchronizes learned
parameters in distributed locations. This allows to improve the performance of locally trained models
using information from other locations without transferring sensor data.

We identify the following additional challenges to achieve effective edge AI for environmental
monitoring. The relations between previously introduced CH1–4 and CH5–7 are visualized in Figure 5.

CH5: InsularityTrainingAImodels at the edge results in data scarcity and insularity. Since thesemodels
are fed with limited training data from a narrow local area, the models might not generalize well. This is
exacerbated by failure-prone IoT sensors (CH3) and unreliable connectivity (CH2), as they make it
difficult to fight insularity by transmitting data between edge locations (Aral et al., 2020).

CH6: Computational Capability Compared to the resource-rich cloud environment, EC lacks com-
putational capability and fan-in (the maximum number of input signals) to process streaming data from a
high number of sensors, especially under energy (CH1) and cost (CH4) constraints. State-of-the-art edge
AI processors range from tiny onboard systems at sensors to system-on-chip devices, such asRaspberry Pi
and Jetson Orin.

CH7: Parameter Mismatch There might be a mismatch between the target parameters required by the
monitoring goals and parameters that can be sensed under the technical limitations in sensor technology.
Additionally, the frequency of the measurements or the geographical diversity of the sensors might not be
sufficient for real-time monitoring under sustainability constraints (CH4).

3.2. Case study

Edge AI deployment in the SWAIN project is illustrated in Figure 3 to exemplify the above-listed
challenges. The monitoring system consists of measurement stations equipped with various IoT sensors
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deployed along the river (ie, red circles in Figure 2). Streaming data from these stations are preprocessed
through local AI models in nearby deployed EC servers and further analyzed in a remote resource-rich
environment (e.g., cloud). Once pollution is detected, corresponding authorities are informed, along with
the estimated location of the pollution source.

Here, there exist multiple EC locations (around 70 in one of the use case rivers) considering the size
of the area monitored, the lack of network connectivity (CH2), and failure resilience (CH3). Each EC
server models a part of the river and lacks a global view of the whole watershed (CH5). This renders
source-tracking micropollutants very difficult. Therefore, an effective mechanism that enables servers
to communicate and collaborate is required. Furthermore, each EC server can only handle a limited
number of measurement stations and a simplified AI model due to computational and I/O constraints
(CH6). This necessitates novel hardware with higher computational capabilities yet without higher
energy consumption (CH1). Finally, the SWAIN project aims to detect micropollutants in the river
water; however, state-of-the-art sensors can only measure conventional water quality parameters, such
as pH and turbidity in real time (CH7). Moreover, the environmental impact of the monitoring stations
prevents dense deployment (CH4). Accurate AI-driven mapping methods are therefore necessary to
resolve the mismatch.

4. The potential of NC

Contemporary computers are almost exclusively based on von Neumann architecture, the main principles
of which have remained unchanged since it was first proposed in 1945. This architecture consists of a
processing unit and a separate memory that stores data temporarily during processing. The input data has
to be transferred to the processing unit and the output data back to the memory through a data path.
Moore’s law accurately predicted the growth of the processing speed thus far. However, the steep rise in
the processing unit and memory speeds started to increase pressure on the data path capacity, which
stopped the already lagging growth (De Maio et al., 2022; Schuller et al., 2015).

Figure 3. Information flow in the edge AI architecture for water quality monitoring in the context of the
SWAIN project (Ahmad et al., 2023).
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Yet, the requirement for faster computing systems is ever-increasing exponentially. State-of-the-art
machine learning algorithms such as Hierarchical Temporal Memory or Generative Adversarial Network
entails an unprecedented level of computing resources that cannot be fulfilled by von Neumann-based
computers efficiently (Zyarah et al., 2020). Since a single computer cannot be any faster, researchers are
developing systems that consist of thousands of processing units to benefit from parallelism. However,
this results in extremely high energy consumption, and therefore, such systems are not feasible for
widespread use. As an example, the fourth fastest supercomputer currently, Fugaku (Sato et al., 2020), can
perform 537 quadrillions (1015) floating point operations per second using 158,976 processing units with
an energy budget of 30 to 40 MW, which is comparable to 100,000 average EU households. Considering
the proliferation of time-sensitive, streaming, and distributed data sources caused by the IoT revolution, it
is of the utmost importance to invent non-von Neumann architectures.

NC (Rubino et al., 2020) is a new disruptive technology providing intelligent systems that imitate
human neurobiological processes through massively parallelized computing architectures. NC hard-
ware is not based on von Neumann architecture, as the processing unit and memory are co-located. A
pioneer neuromorphic hardware developed by Intel was shown to train deep learning models in up to
81% shorter time than conventional systems (Li et al., 2018). Moreover, massively parallel neuro-
morphic circuits are event-driven. When the input signal is not present, the corresponding part of the
hardware is inactive, which results in immense energy savings. Neuromorphic architecture is based on
neurons and synapses, both of which are responsible for processing and memory. As visualized in
Figure 4, input neurons are charged with incoming analog inputs (spikes) and eventually fire further
spikes through the outgoing synapses, which in turn, charge other neurons. The timing and strength of
the spikes (plasticity) can be modulated via synaptic weights. NC hardware facilitates massively
parallel event-driven processing since each neuron and synapse is independent, and spikes are
asynchronous (Schuman et al., 2022). Such temporal models, also called spiking neural networks
(SNNs), are typically implemented using memristors, which are resistive memory devices that can
collocate processing and memory (Strukov et al., 2008).

In the specific context of environmental monitoring, where events of interest are infrequent yet critical,
NC stands out as an exceptionally energy-efficient solution. The sporadic nature of these events, such as
rare seismic activities or unexpected environmental changes, demands a system that is always alert yet
consumes minimal energy during periods of inactivity. NC, with its ability to mimic the human brain’s
efficiency in pattern recognition and anomaly detection, is ideally suited for this task. We propose
integrating neuromorphic hardware into the edge servers. This integration would significantly improve
the overall monitoring performance in several ways.

1. By increasing the fan-in, the system can process a greater volume of environmental data from a
multitude of sensors simultaneously. This is particularly useful in complex monitoring scenarios
where diverse data types, such as temperature, humidity, and chemical composition, need to be
analyzed collectively.

Figure 4. A simple spiking neural network.
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2. Enhancing data throughput is crucial for real-time monitoring and decision-making. Neuro-
morphic hardware, due to its increased data processing capabilities, can analyze incoming data
streams in real time and enable an immediate response to environmental changes or emergencies.

3. NC is inherently low power, especially when compared to traditional computing architectures. In
environmentalmonitoring, where power sourcesmay be limited, especially in remote or rural areas,
energy efficiency is a critical factor.

5. Directions for future research

Given the emerging nature of neuromorphic edge AI, several future research directions are identified,
poised to tackle the challenges outlined earlier. For a visual summary of these challenges and research
directions, along with their interconnections, refer to Figure 5.

RD1: Distributed model synchronization Improved fan-in enables more training data and alleviates
CH5. However, the challenge of non-independent and identically distributed (non-IID) data in geospatial
applications is still a significant issue. Non-IID data are a common scenario in environmental data
collected from different geographical locations. This poses a challenge as traditional machine learning
models often assume data to be IID, leading to potential biases and inefficiencies when this assumption is
violated. Therefore, local models have to intercommunicate either directly or through a parameter server
to improve the variety of the data and address the statistical imbalances. Previous work (Aral et al., 2020)
demonstrates that complete synchronization is unnecessary and optimized communication can bring
significant bandwidth savings. Considering CH2, it is crucial to optimize which and how much data are
transmitted between edge nodes. Future research in this area should focus on developing methods that
allow for efficient partial synchronization of models. This could involve determining which data are most
valuable for transmission and developing algorithms that can efficiently process and integrate these data
into local models. Such research could lead to more robust and efficient environmental monitoring
systems that can handle the complexities of non-IID data in geospatial applications.

RD2: Edge-only learning Ultralow power operation of neuromorphic hardware could render energy
harvesting possible for EC. This meansmore complex processing tasks can be done locally using ambient
power sources, such as solar, wind, or water flow energy, even when the electricity grid is inaccessible
(CH1). However, new approaches are required to optimize which data to process locally andwhich data to
offload to remote resources (eg, cloud). It is estimated that transmitting one bit of data requires the same
amount of energy as executing 50 to 150 instructions in von Neumann computers (Piotrowski et al.,

Figure 5. An overview of the interrelations between challenges (CH) and research directions (RD).
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2006). Considering NC’s improved energy efficiency and computational capability, local AI models
could come into more prominence.

RD3: Aerial networks Collaborative approaches between edge servers and unmanned aerial vehicles
(UAVs), high-altitude platform stations (HAPS), or low-earth orbit (LEO) satellites (Pfandzelter et al., 2021)
(Traspadini et al., 2023) are promising to counter CH2 by enabling global network coverage in the future. The
improved coverage through these novel technologies would benefit rural environmental monitoring systems
primarily in synchronizing local model parameters. However, transmitting massive raw data without
preprocessing would consume too much energy in practice. Therefore, we envision that such technologies
will complement neuromorphic edge AI rather than replace it, at least in rural scenarios. Aerial networks also
promise less ground-based communication infrastructure in natural areas and thus contribute to the sustain-
ability of the monitoring systems (CH4) by reducing their ecological footprint (Sari et al., 2023).

RD4: Spiking neural networks Ensuring that SNN-based systems can scale to cover large geographical
areas and integrate seamlessly with existing environmental monitoring infrastructure is a complex task.
Another open question is how existing AI models for learning from environmental data can be deployed
on NC hardware. The benefits of NC, such as high throughput (CH6), would fully apply only if these
models can be converted to SNNs accurately (Wang et al., 2023). This transition poses a significant
challenge, as it requires not just a simple transfer, but a fundamental reconfiguration of themodels to align
with the unique operational dynamics of SNNs.

RD5: Sensor Integration Novel data fusion (Himeur et al., 2022) techniques are needed to cope with
unreliable sensors (CH3) and parameter mismatch (CH7) issues in neuromorphic edgeAI. They should be
capable of identifying and compensating for inconsistencies such as missing data. This is particularly
important in neuromorphic edge AI, where the integration of diverse sensor inputs is crucial. Due to
technological limitations, parameters of interest in environmental monitoring can often differ from those
that can be actually measured. Sensor fusion could help with this challenge by combining data from
multiple types of sensors to create a more comprehensive and accurate representation of environmental
conditions. Furthermore, integrating sensors can enhance the spatial and temporal resolution of envir-
onmental monitoring. Different sensors, deployed in geographically diverse locations or having diverse
sensing capabilities, can provide a more detailed and comprehensive understanding of environmental
phenomena, capturing changes that might be missed by a single sensor.

6. Conclusion

This article identifies common characteristics and open challenges for IoT- and AI-driven monitoring of
rural environments. Furthermore, it presents neuromorphic edge AI as a promising solution to these
challenges and proposes directions for future research toward its conception. Compared to other non-von
Neumann architectures, NC is arguably themostmature technology; hence, researchers in this areawill be
the first to face the identified challenges. Therefore, we expect high interest in neuromorphic edge AI
research in the following years.
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