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ABSTRACT
Smart meter networks are part of the critical infrastructure and
therefore central to IT security consideration. Besides various
forms of access control a permanent monitoring of the network
traffic is of utmost importance to the detection of malicious ac-
tivities taking place. Such monitoring must happen in real time
and should possibly be implementable everywhere in the network.
These requirements do not allow for the decryption of the network
traffic. The paper describes a method by which network packets
can be assigned to use cases common in smart meter infrastructures
without the need for decryption. It is based solely on metadata and
reliably can establish the relationship between a network packet
and a use case. The information calculated with this method can
be used to detect packets that are not pertaining to any of the al-
lowed use cases and hence are highly suspicious. Moreover, the
execution of use cases not initiated by the central server become
evident, too, and should raise corresponding alerts. The method
was implemented as a proof-of-concept and tested in the real-world
environment of a medium-sized city.
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1 INTRODUCTION
The progressively increasing automation and digitization of distri-
bution networks for electrical energy opens up a large new range of
possibilities for cyber-attacks. To guarantee the resilience of such
critical infrastructure the implementation of effective protection
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mechanisms is essential. Security measures generally used today
are limited to access control methods. State of the art security,
however, demands “security in depth”: additional measures must
be implemented that become effective if an attacker has succeeded
in overcoming the access barriers. Among others this can be real-
ized by monitoring the network traffic with the goal of detecting
anomalies in the system’s behavior.

Intrusion detection and anomaly detection systems for smart
meter networks do have quite different requirements from general
intrusion detection systems: they must cope with specialized indus-
trial protocols like Power Line Communications (PLC), scalability,
availability in environments with restricted resources and others;
see [1]. On the other hand, smart grid infrastructures are highly
dedicated systems, which means that there is only reduced vari-
ability during normal operation. Hence anomaly detection systems
based on a strict definition of regular operations are especially apt
for securing such systems.

The first step to implement an anomaly detection system in
automation networks of energy distribution systems is the devel-
opment of a model of normal system behavior. The monitoring
process uses this model and compares it with ongoing network
traffic to detect anomalies. It’s an advantage of smart meter net-
works that only a restricted set of use cases (such as meter readings,
turning meters on or off and others) is executed on the network.
If it turns out that each use case has a distinguished traffic profile,
network packets could be assigned to use cases. And packets not
belonging to a valid use case would indicate an anomaly. Moreover,
use cases that were not initiated by the server are suspicious, too. In
this paper we discuss a classification algorithm that assigns packets
to use cases.

Network traffic in smart meter systems, however, nowadays
usually comes along encrypted. And due to the fact that anomaly
detection must occur in real-time, a workable detection system
should work with the encrypted network packets only, as a de-
cryption process would take too much time. Moreover, a detection
algorithm that is distributed over the network is confined to using
the encrypted packets only (decryption should be done solely by a
safeguarded central server to prevent attackers from using it). A
model of normal network behavior must therefore rely on metadata
only.

The approach in this paper is characterized by the following
aspects, the combination of which is to our knowledge not used so
far:

1. It defines normal behavior by assigning packets to use cases.
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2. It does not work with statistical values only, but tries to
base its detection on semantically relevant data by relating
network packets to use cases.

3. It works with encrypted packets and bases the classification
of packets to use cases on metadata only.

Section 2 discusses related work, section 3 gives an overview of
smart meter network traffic and section 4 describes the classification
method. Section 5 shows the method in a real-world example
(the project includes a proof-of-concept implementation of the
monitoring and anomaly detection system). Conclusions and an
outlook to future work completes the paper.

2 RELATEDWORK
General discussions about security in distribution networks of elec-
trical energy can be found among others in [2–7]. The concept of
anomaly detection in general is described fully in [8], showing the
multifaceted requirements of such systems; for example how to
deal with future changes in normal behavior.

Most of the papers on anomaly detection in smart meter net-
works try to define anomalies, i.e. behavior that is related to ex-
pected attacks. In a paper by Zhang et al. [9] a distributed analysis
module is proposed that should detect malicious behavior within
all sections of a smart grid. The patterns of such malicious behavior
are deduced statistically from observations of the network traffic by
means of SVM based machine learning algorithms. Formal defini-
tions of anomaly detection methods can be found in [10]. A paper
by Mitchell und Chen [11] describes a behavior-based intrusion
detection system that aims at anomalies in the behavior of smart
metering devices, where rules are defined in propositional calculus.
A paper by Wei et al. [12] sets its focus on communication patterns
in network traffic.

One of the very few papers that tries to define normal behavior
(and everything else is classified as malicious) is [13]. It describes
an intrusion detection system based on specifications of normal
behavior; these specifications are mainly defined as statistical val-
ues. The system, however, works only on the two lower levels
of the network, which reduces the relevance of the parameters
observed significantly. Another one is [14] where the authors de-
scribe a purely statistical model based on Brown’s, Holt’s, and
Winters’ models. Realtime anomaly detection based on payload
specifications is described by Düssel et al. [15]. This system defines
a multidimensional feature space and detects suspicious packets
by comparing them with the byte sequences of normal packets. It
analyzes n-grams of the TCP payload and hence can be applied to
upper levels of the protocol.
Encrypted packet classification is dealt with in a paper by Chen
et al. [16], but not specifically for smart meter networks. Another
paper [17] describes a classification method for TLS/SSL traffic
based on a neural network. An intrusion detection system für
smart meter network that partially relies on metadata of network
traffic (number and size of packets sent and received) is described
in [18]. A research report on intrusion detection in smart meter
data [19] deals with machine learning methods, but does not go
into details about the method and the infrastructure.

3 SMART METER NETWORK TRAFFIC
We restrict the analysis to smart meter networks using the common
DLMS-COSEM/G3PLC protocol (which is more or less equivalent
with IEC 62056). This choice is due to the protocol used in the real
world example described below, but should be no real restriction as
the method works with encrypted packets only and thus cannot
access the contents. The packets conforming these protocols are
first filtered out and all other packets are neglected. The number
of uses cases executed over the network is limited. As a reference
for the use cases available in smart meter networks see [20], where
all use cases are described in detail. (Though the document dates
from 2015 it is still valid and current as of June 2024.) The scope of
these use cases covers the end-to-end encrypted communication
path between a terminal device, which is both a smart meter and
a load switching device, and the central system. This includes the
following components:

• TheWAN communication unit of the end device (smart meter
and load switching device). Not included in the scope are
the other parts of the end device, including e.g. the customer
interface of the end device and the actual electricity meter
(the metering unit).

• The last mile: This refers to the communication of the end
device with the next gateway. This communication can take
place on the network layer (layer 3 in the OSI model) via
IPv4 or IPv6 and on the physical layer (layer 1 in the OSI
model) via PLC (Power Line Carrier) or radio. For PLC, the
G3-PLC protocol is used in layer 2 (data link layer), which
itself secures the last mile with end-to-end encryption.

• The second mile: This is the communication between the
gateway that communicates with the end device and the cen-
tral system. This communication takes place on the physical
layer via fiber optic cables, copper cables (e.g. Ethernet; no
power cables) or radio.

• Point-to-point: This is the direct communication of a termi-
nal device with the central system via mobile radio (GPRS,
LTE, etc.) If a terminal device communicates directly with
the central system via mobile radio, the subdivision into last
and second mile does not apply.

• The central system: This is the end point of communication
for terminal device protocols. The central system has in-
terfaces for connecting to the IT backend systems. These
systems and the interfaces of the central system to these IT
backend systems are no longer part of the scope of the use
cases.

The entire scope is represented on layer 4 of the OSI model as a
continuous TCP connection between the end device and the central
system. On layer 5, the TLS (Transport Layer Security) protocol
is used to secure the payload of the higher layers end-to-end. In
the higher layers, special protocols like DLMS-COSEM are used to
transmit requests and responses for the defined use cases.

The above-mentioned document describes 83 use cases, which
are divided into 12 groups:

1. Reading (5 use cases) – reading data from a smart meter
2. Switching off and enabling to switch on (8 use cases) –

switching off the load switching device and enabling the
load switching device to be switched on
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3. Parameterization (22 use cases) – setting various parameters
and switching various functions of the end device on or off

4. Firmware upgrade (12 use cases) – loading, installing and
canceling upgrades of calibrated and non-calibrated parts of
the terminal device

5. Alarms and events (2 use cases) – sending alarms and events
to the end device

6. Load switching (8 use cases) – functions for controlling the
switching table of the load switching device

7. Calibration / testing (2 use cases) – calibration and testing
of the smart meter

8. Interface activation and deactivation (3 use cases) – activate
or deactivate the maintenance and communication interface
on the end device

9. Prepayment (4 use cases) – activate and deactivate prepay-
ment, load credit

10. Registration and deregistration of the end device (2 use cases)
– automated registration and re-registration of the end device

11. Gateway (6 use cases) – switch gateway function of the end
device on and off, query status of the gateway

12. Security (9 use cases) – functions for managing crypto-
graphic parameters and roles

Of these 83 use cases, 31 use cases describe physical manipulation
of the device on site and do not use network communication at all.
The remaining 52 use cases, involving data transmission via the
network communication path, include many that are used only in
exceptional situations and do not occur in everyday operation.

Each connection between a smart meter and a server uses a
different encryption key. This can be used to assign packets to use
cases as there is only one use case at a time executed between a spe-
cific smart meter and the server. Each use case must first establish
a connection between the server and the smart meter by executing
a handshake consisting of a TCP packet “hello” sent from the server
to the smart meter followed by an acknowledgement packet from
the smart meter to the server. Usually a use case ends by a packet
terminating the connection (there is only one exception to this rule
– the “reset”-use case). Between establishing and terminating the
connection the number of packets sent is always greater than one
and less than 21.

4 PACKET CLASSIFICATION
The general idea is to carry out a series of defined use cases in a
lab environment mimicking a real-life smart meter network traffic.
This results for each of the defined use cases in a set of network
packets pertaining to this use case. The exploration of features
extracted for each use case offers a profound insight into its opera-
tional intricacies. With the help of a data analyzing tool (the Python
library SK-Learn) possible features of the packets can be calculated,
limited solely to the metadata (as the packets are encrypted). Over-
all 29 features were extracted. Each recorded use-case cycle of
the smart meter network is represented by a time series. In its
current form, the acquired data is challenging to process using a
classification algorithm due to factors such as the vast amount of
data and numerous identical values. To mitigate this, automatic
feature extraction (with the feature-importance-function of the tool
used) was employed to reduce the dimensionality of the data while

ensuring sufficient accuracy. Based on the extracted features from
the recorded data (only metadata was used due to encryption), dis-
tinct differences between the use cases were discernible. Following
fine-tuning and weighting of these features, the set was reduced to
just 23 (per use case). Table 1 shows these 23 features. A subset of
the final extracted features, weighted according to their correlation
or stability, is illustrated in Fig. 1.

These features were used to define the normal packet distribution
for each use case. In a next step network data from the real-life
smart meter network was used to finetune the characterization of
the use case – packet relationship by features. Features and feature
values (lower and upper bounds) are used to formulate conditions
that describe every use case uniquely. The set of these conditions
constitutes a model for admissible network traffic: only a packet
with feature values fitting into the model is admissible.

After successfully extracting these features, they were used to
assign packets to use cases. The fundamental metrics of ’Count’,
’Standard Deviation’, ’Arithmetic Mean’, ’Minimum’ and ’Maxi-
mum’ values, and ’Sum’ lay the groundwork for comprehending
the data flow dynamics within the network. These metrics provide
a quantitative overview of packet and byte transmission, offering
insights into the volume and variability of data exchange. Further
granularity is achieved through the analysis of specific features
such as ’PKT_CNT’, ’BYTES_CNT’, and ’TCP_LEN’. These metrics
delve into the intricate details of packet and byte counts, as well as
the length of TCP payloads, crucial for assessing network efficiency
and throughput. Temporal dynamics play a pivotal role in network
performance, as evidenced by the ’TIME_DELTA’ feature. This
metric encapsulates the temporal gaps between network activities,
facilitating the identification of latency issues and assessing the du-
ration of use cases. By quantifying the intervals between network
events, it enables a thorough examination of the time taken for each
operational phase, aiding in the optimization of network respon-
siveness and the refinement of use case durations. Bidirectional
communication is fundamental to smart meter networks, reflected
in features like ’TX_PKT_CNT’, ’RX_PKT_CNT’, ’TX_BYTES’, and
’RX_BYTES’. These metrics gauge the volume and directionality
of data transmission, essential for assessing network reliability
and data integrity. In summary, the features extracted from the
smart meter network serve as indispensable assets for reducing
dimensionality and gaining insights for each use case.

This model is used for analyzing real-life network traffic and
for detecting anomalies. During the monitoring phase the feature
values of the packets are measured and compared to the patterns
defined for the use cases. In order to check, whether the packet fits
into one of the admissible use cases, the distance of the combined
feature values to the use case classes is computed and compared
to the threshold value. If it lies within the threshold of one of the
allowed use cases the packet can be assigned to this use case. With
the help of this method packets can be classified with respect to
use cases. Packets that do not fit into the defined use cases are
categorized as anomalies and reported to the operations personnel
for further action. Moreover, sensible use cases (such as turning
off the power supply for a smart meter) can be re-checked with
the protocol data of the server. This will identify use cases not
initiated by the power supply company – which are of course
highly suspicious and should lead to an alert, too.
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Table 1: Feature list

Feature Explanation

stdev(IP_LEN) Standard deviation of the length of the IP-packet header
stdev(TCP_LEN) Standard deviation of the length of the TCP-Paket packet header
stdev(TCP_PAYLOAD_LEN) Standard deviation of the length of the payload of the TCP-packet
avg(TIME_DELTA) Average time delay between 2 packets
avg(IP_LEN) Average length of the IP-packet header
avg(TCP_LEN) Average length of the TCP-packet header
avg(TCP_PAYLOAD_LEN) Average length of the payload of the TCP-packets
avg(TX_BYTES) Average number of bytes transmitted
avg(RX_BYTES) Average number of bytes received
min(IP_LEN) Minimum length of the IP-packet header
max(IP_LEN) Maximum length of the IP-packet header
min(TCP_PAYLOAD_LEN) Minimum length of the payload of the TCP-packets
max(TCP_PAYLOAD_LEN) Maximum length of the payload of the TCP-packets
min(TCP_LEN) Minimum length of the TCP-Paket Header
max(TCP_LEN) Maximum length of the TCP-Paket Header
sum(TX_PKT_CNT) Sum of all packets sent
sum(RX_PKT_CNT) Sum of all packets received
sum(RX_BYTES) Sum of bytes received
sum(TX_BYTES) Sum of bytes sent
sum(TIME_DELTA) Sum of the time delays between 2 packets
sum(TCP_PAYLOAD_LEN) Sum of the length of the payloads of the TCP-packets
pkt_Cnt Number of the packets of the use case (TX + RX)
bytes_Cnt Number of the bytes of the use case (TX + RX)

Figure 1: Subset of features with most influence for prediction

5 PRACTICAL APPLICATION
The experiments were carried out in the smart meter infrastructure
of a middle-sized Austrian city (Wels, 65.000 inhabitants). The
configuration of the network is shown in Fig. 2: Smart meter
infrastructure.

From the use cases mentioned in [20] only a small subset is used
in everyday communication. Some of the use cases – as mentioned
above – are not involved in network activities and hence can be
neglected. From the remaining use cases only 7 are used in day-to-
day operation of the environment. Thus, only those were subject
to the investigations in the real-world environment:
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Figure 2: Smart meter infrastructure

Figure 3: Feature differences between the individual use cases

1. Switching off the load switching device
2. Enabling the load switching device to switch on
3. Direct switching-on of the load switching device
4. Event query
5. Load profile query
6. Parameterization
7. Meter reading query

The classification method obtained by statistical machine learn-
ing – as described above – was applied to data from the real-world
smart meter network. The data was provided by the energy sup-
plier of the city and consisted of several recordings, each showing
between 6 and 12 consecutive hours. The analysis showed clear
differences in the feature values of the various use cases – see Fig.
3. The assignment of the packets to use cases was checked by
comparing it to the log files of the system.

By standard methods of statistical machine learning a threshold
(maximum distance of the feature set from the center of the use
case) for defining a use case was calculated (by means of the tool
Rapid Miner Studio) and resulted in a value of 0.62. Every set
of values exceeding this threshold was considered an outlier –
meaning that the data did not pertain to one of the defined use
cases. The confusion matrix (Fig. 4) shows the reliability of the
method.

Such outliers in the context of smart meter use case data indicate
severe anomalies, which may have significant implications concern-
ing network security. For instance, unusual patterns or unexpected
spikes in features and requests, such as repeated attempts to switch
off or tamper with load switching devices, could indicate potential
security breaches or malicious activities. Identifying these outliers
is crucial for promptly detecting and mitigating security threats to
the smart meter network. Moreover, these outliers may also signal
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Figure 4: Confusion Matrix

operational anomalies or errors, which could impact the reliability
and integrity of the network. For example, irregularities in event
queries, load profile queries, or meter reading queries may indicate
communication issues, device malfunctions, or unauthorized access
attempts.

The system was implemented to show its viability within the
context of the smart meter infrastructure of the city in question.

6 CONCLUSION AND FUTUREWORK
The work showed clearly that in a smart meter network a classifi-
cation of use cases solely based on metadata is possible with high
accuracy. Thus, for identifying use cases in smart meter networks
with encrypted traffic it is not necessary to decrypt the network
traffic. The identification of use cases can be used for detecting
anomalies not only in the network traffic itself, but in the way the
network is used, too. Hence it constitutes an important building
block in ensuring security and safety of smart meter infrastructures.
By avoiding the necessity of decryption such anomaly detection
can be executed with much less overhead and may be introduced in
any part of the network infrastructure without having to distribute
decryption keys and algorithms.

Further possible applications of this analysis of real-world data
from a smart meter network using the extracted features, could be
predictive maintenance and fault detection in the power grid. By
analyzing the patterns and trends in the data, such as fluctuations
in power consumption, irregularities in network traffic, or anom-
alies in voltage levels, utility companies can anticipate potential
equipment failures or malfunctions before they occur. This proac-
tive approach to maintenance not only minimizes downtime but
also helps prevent costly damages and ensures the reliability and
efficiency of the power distribution system.
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