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Abstract—The analysis of complex high-dimensional data is
a common task in many domains, resulting in bespoke visual
exploration tools. Expectations and practices of domain experts
as users do not always align with visualization theory. In this
paper, we report on a design study in the medical domain where
we developed two high-fidelity prototypes encoding EEG-derived
brain network data with different types of visualizations. We
evaluate these prototypes regarding effectiveness, efficiency, and
preference with two groups: participants with domain knowledge
(domain experts in medical research) and those without domain
knowledge, both groups having little or no visualization experi-
ence. A requirement analysis and study of low-fidelity prototypes
revealed a strong preference for a novel and aesthetically pleasing
visualization design, as opposed to a design that is considered
more optimal based on visualization theory. Our study highlights
the pros and cons of both approaches, discussing trade-offs
between task-specific measurements and subjective preference.
While the aesthetically pleasing and novel low-fidelity prototype
was favored, the results of our evaluation show that, in most cases,
this was not reflected in participants’ performance or subjective
preference for the high-fidelity prototypes.

Index Terms—Design study, EEG data, network analysis

I. MOTIVATION

THE visualization community developed many helpful de-
sign guidelines to greatly narrow the possible approaches

for developing visual analysis interfaces, from facetting (and
the general approach of interactive multi-view dashboards) to
Shneiderman’s Mantra [1]. However, all of these guidelines
optimize the effectiveness of such visual analysis systems.
When a new goal, such as aesthetics and engagement, is
being formulated, it becomes again a challenge to narrow
the design space properly. This paper reports on a design
study to help clinical researchers explore and understand
complex high-dimensional data from electroencephalography
(EEG) and epilepsy patients. Specifically, they compute and
analyze the specific network of connections between brain
regions across different EEG frequencies (frequency bands)
where simple visualization approaches have not helped the
analysis. However, our domain experts very much favor novel
and engaging interfaces.

One of the non-trivial challenges of this process is to
develop tools that (a) embed properly in an existing workflow
and (b) respect certain expectations of the domain experts.
From the beginning, our domain experts communicated to us
their expectations of engaging visual encodings that would be
novel within their particular domain. Due to their aesthetics,
they favored particular visual encodings (circular design) early

on in the prototyping process. Thus, we were interested in the
challenge of developing the best prototype under the constraint
of an engaging circular layout and comparing it to the best
prototype based on alternative designs, following a traditional
functional design approach. We are unaware of other design
studies that have dealt explicitly with these competing design
goals.

Because of our domain experts’ bias toward novelty and
aesthetics, it was important for us to test and collect feed-
back on our prototypes from people outside of the specific
domain as well. While there are many definitions for domain
novices [2], we refer to them as lay people without domain
expertise having little or no visualization experience. The
drawback was to find a way to give them tasks to be done
with our prototypes that they could understand without domain
knowledge. The advantage would be that they have likely not
dealt with similar visualization problems before and might be
less biased in either direction (aesthetics vs. functionality). At
the same time, however, it was essential for our evaluation to
not just measure overall usability (and functionality) as in a
typical design study but to measure perceived aesthetics and
engagement specifically.

We developed two high-fidelity prototypes encoding multi-
frequency EEG data. We evaluate these prototypes regarding
effectiveness, efficiency, and subjective preference with partic-
ipants with domain knowledge (domain experts) and without
domain knowledge (lay people), both groups having little or
no visualization experience. The primary contributions of this
paper include:

• a characterization of the domain problem and tasks
through an in-depth requirement analysis with diverse
medical researchers working on multi-frequency network
data (section IV).

• two high-fidelity prototypes with different visual en-
codings both optimized for functionality. However, one
was additionally constrained by an aesthetically pleasing
visual encoding (section V).

• a user study comparing four domain experts’ and twelve
lay peoples’ subjective preferences and objective task
performance (section VI).

II. DOMAIN BACKGROUND

Recently, EEG-based network analyses have been increas-
ingly applied to investigate brain networks in physiologi-
cal conditions or brain disorders such as epilepsy [3]–[5].
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Promising results have been found for both the diagnosis and
prognosis of epilepsy patients. At the core of the analysis are
novel approaches for estimating and characterizing the brain
network of a particular patient. These networks give insight
into the brain’s function (or dysfunction). However, insufficient
validation of these brain networks limits the applicability of
analysis techniques for clinical practice [6].

Among issues linked to the multiple ways of estimating
connectivity and characterizing functional graphs, the visu-
alization of graphs and measures within them is complex.
Simplified visualizations, as used commonly in the domain,
further hinder the interpretation of these networks. Typically,
for brain networks derived from high-density EEG (HD-EEG),
the number of (cortical) regions investigated ranges from
64 [7] to 72 to even more regions, depending on specific
research needs [8], [9]. Furthermore, EEG data is usually
analyzed in several frequency bands to reflect specific activity
patterns related to cognition and pathological alterations [10].
Graph measures can be computed at the global level (e.g., to
describe the global integration or segregation of the graph),
at the hemispheric level, or even at the nodal one [11].
Significant differences between nodal measures (e.g., across
patients, vigilance state, before and after medication, etc.) are
much harder to visualize due to the high number of nodes
and frequency bands in the brain network, not to mention the
temporal dimension in some studies.

Therefore, we developed a tool that provides a descriptive
visual view of nodal graph measures (e.g., the clustering
coefficient) and visualizes them across frequency bands or as
part of different subnetworks. The goal of this tool is, on the
one hand, to enable researchers to gain a descriptive view of
the network before statistical testing. It should allow them
to formulate hypotheses based, for example, on perceptual
similarities across frequency bands for a specific cluster of
nodal regions of interest (ROI). This would enable exploratory
visual analyses of the data without investigating each brain
region separately, leading to more powerful targeted analyses.
It eliminates the need to adjust significance levels for multiple
testing [12]. On the other hand, it could, for example, enable
clinicians to explore different network patterns arising from
removing some nodes to simulate a lesion or a surgical proce-
dure, facilitating the incorporation of research data into clinical
discussions and promoting interactive multidisciplinary meet-
ings.

III. RELATED WORK

In this section, we review existing literature on the effective-
ness of visualization encodings, different factors influencing a
visualization design, and visual analysis tools for EEG data.

A. Visualization Marks and Channels

To create effective visualizations, designers must choose
the optimal encoding for their data. Visual encodings consist
of marks and channels. Marks are graphical elements in
visual encodings, and their appearance is controlled through
channels [13]. The effectiveness of a channel depends on the
data type. We primarily use the length of a bar and color

saturation as channels in our prototypes—the former being the
more effective encoding for our data based on visualization
literature [13]–[16]. These studies show that spatial channels
most effectively encode ordered data. A recent survey by
Quadri and Rosen [17] provides an overview of existing
perception-focused visualization studies, categorizing them by
the task taxonomy of Amar et al. [18].
Bar length as a channel. There are several studies inves-
tigating the perception of bar charts. The visualization tasks
discussed in our work commonly relate to visual comparison,
e.g., of bars across five frequency bands and up to 72 ROIs,
as detailed in subsection IV-B. For instance, the visual com-
parison of bars has been researched by Talbot et al. [19], who
found that comparing non-adjacent bars is difficult, especially
for short bars. A study by Nothelfer and Franconeri [20]
looked at how relations between bars are perceived and found
that data deltas were better processed visually when explicitly
coded. This is also suggested by Srinivasan et al., who
evaluated different bar chart variants for visual comparison
and found that adding “difference overlays facilitate a wider
range of comparison tasks” [21, p. 1]. While most of these
studies focus on comparing a pair or a small number of bars,
one of our prototypes displays up to 72 bars in each of the
five bar charts. Gramazio et al. [22] showed that size, quantity,
and grouping of marks influence user performance and found
that search tasks can be solved faster when marks are spatially
grouped (such as in bar charts) rather than randomly arranged.
Additionally, linear arrangements of marks are usually more
effective [23] and efficient [24] than radial arrangements – a
comparison we also touch upon in our prototypes.
Color as a channel. Using color in visualizations has also
been broadly researched. Szafir [25] conducted experiments
to measure the perception of color difference in visualizations.
She found that “elongated marks provide significantly greater
discriminability for encoding designers” [25, p. 392]. Color
often encodes continuous quantitative data (e.g., on maps),
such as the EEG data we used in our design study. While
rainbow color maps are usually considered a poor choice [26]–
[28], Khairi et al. [29] observed that rainbow schemes can be
effective for quantity estimation, while divergent colormaps
facilitate the perception of high-frequency patterns. We used
single-hue sequential colormaps in our prototypes informed by
the findings of Karim et al. [30] where they compared different
single- and multi-hue colormaps in network visualization.
They found that participants in their study completed tasks
significantly faster with a blue single-hue sequential colormap.
There are also tools [31], [32] that enable finding effective
color schemes for a visualization, which we used to find
effective colormaps.

B. Influencing Factors for Visualization Design

Visualization design decisions are influenced by the appro-
priate visual encoding and several other factors (e.g., aes-
thetics, familiarity) that need to be considered when creating
effective visualizations. Tory and Möller [33] argue that human
factors (e.g., visual acuity, culture, previous experience) must
be considered in designing and evaluating visual analysis tools
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to add to the systems’ usefulness for future users. While
human-centered design approaches for visualization systems
usually involve a requirement analysis to characterize the
domain problem and prospective users, visualization designers
often focus primarily on task-based objectives (e.g., conveying
facts or insights), and only recently, there has also been a
shift towards affective objectives by the academic visualization
community. Lee-Robbins and Adar also emphasize paying
attention to affective intents “that seek to influence or leverage
the audience’s opinions, attitudes, or values” [34, p. 1]. Pandey
et al. [35], who examined persuasion of data visualizations,
also reflected on affective intent. They found that people’s
attitudes about a topic influence the persuasive power of data
visualization. In our study, we were especially interested in
the influence of aesthetics of visualizations [36]–[38]. He et
al. [39] introduced a novel scale called BeauVis for measuring
and comparing the aesthetic pleasure of visual representations.
Another important factor to consider is the familiarity of future
tool users with the visual medium [40], [41].

C. Visualization Tools for EEG Data

Visualization is widely used for displaying and analyzing
multi-channel EEG data. While all of the following papers
use visualization to facilitate EEG analysis, to the best of
our knowledge, there are no bespoke tools tailored to domain
experts’ needs for exploratory EEG data analysis. Slaybeck et
al. [42] report on novel visualization methods for EEG signals
using a virtual reality system and a physical head model. A
parallel coordinate method is proposed and evaluated by ten
Caat et al. [43]. Since visualizing connectivity in EEG data
as a graph layout can result in visual clutter, ten Caat et
al. [44] propose a graph layout based on functional units (data-
driven region of interest). We alleviated the issue of visual
connectivity clutter by allowing users to filter the connections.
Wulandari et al. [45] developed a system to visualize the brain
wave signals of epilepsy patients. Fang et al. [46] created
a visualization dashboard for comparative analysis. There is
also literature on using 3D representations for analyzing EEG
data [47]–[49]. FCLAB [50] is a plugin-based environment
that visualizes brain functional connectivity networks with
local and global measures. While this system enables network
analysis for each frequency band at the electrode level, we
focus on source-reconstructed EEG at the ROI level. Addi-
tionally, our prototypes allow for comparing metrics across
frequency bands and for user-defined subnetworks.

IV. DESIGN PROCESS

We realized a three-step design process that follows the
design study methodology framework [51]. In the first phase,
we interacted with medical domain experts from diverse fields
(medical doctors, biomedical engineers, and computer scien-
tists) to identify the challenges they face in their data analysis
and to gather ideas about how data visualization can help
facilitate this process. We conducted an in-depth requirement
analysis with domain experts on-site in the second phase.
This requirement analysis was the basis for three digital pen-
and-paper prototypes. We used the collected knowledge and

iterative feedback cycles in the third phase to implement two
interactive high-fidelity prototypes.

A. Ideation

To generate and explore promising ideas that support the
analysis of our collaborators through visualization, we con-
ducted a creative visualization-opportunities (CVO) work-
shop [52] early on in the project. Nine medical domain
experts (five male, four female), including clinicians and
neuroscientists, participated in a full-day workshop to explore
data visualization opportunities. The workshop was composed
of four guided activities: After a short introduction of the
topic and participants at the beginning of the workshop, the
aim of wishful thinking was to generate a broad spectrum
of ideas mainly focusing on the domain experts’ information
needs and the potentially related data visualization tasks. We
gathered the answers on sticky notes and clustered them into
common themes. The results showed the participants’ interest
in different aspects of EEG data, focusing on, among others,
the diagnosis, prediction, and nature of epilepsy in patients.

In the second part of the CVO workshop, the participants
were shown existing medical or related data visualizations to
inspire their thinking and prepare them for the last activity.
The workshop concluded with video prototyping [53], where
participants were asked to develop a low-fidelity prototype in
small groups for one of the themes that were found earlier.
The CVO workshop helped characterize the domain experts’
analysis challenges, gather ideas on how visualization could
facilitate the analysis process, and produce the first prototypes
that showcase how a visual analysis interface could look. We
also identified collaborators who were excited to work with us
on this project.

B. Requirement Analysis

In the second phase, we analyzed the artifacts produced in
the initial workshop and used this knowledge to plan an in-
depth requirement analysis with our collaborators. We spent
one week working closely with the domain experts at their
hospital to define the requirements for a visual analysis tool
to facilitate their analysis of multi-frequency EEG data. Inter-
views with four domain experts (medical doctors, neuroscien-
tists, and engineers) about their research, focusing specifically
on the data they analyze and the context of data use, gave us
an in-depth understanding of their analysis processes.
Data. The domain experts mainly operate in a clinical setting
and look at multidimensional EEG data (see Figure 1) of
epilepsy patients over time. EEG is a non-invasive technique
used to measure the electrical activity in the brain using
electrodes placed on the scalp. The data consists of a time
series of electrical voltages reconstructed for different areas
of the brain (regions of interest, ROI). By quantifying the
level of similarity between time series belonging to differ-
ent ROIs, the domain experts build a connectivity matrix
that describes statistical dependencies between different brain
regions. As different frequency components have cognitive
and pathological correlates, domain experts analyze the brain
network across frequency bands. In other words, the final
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Fig. 1. Schematic representation of the EEG data. The grey matter (outer layer
of the brain) was parceled into 72 ROIs (red dots), and each ROI’s electrical
activity was reconstructed from the EEG signal. The frequency content of
the ROI signal is displayed for each frequency band in the box. Once the
connectivity between each ROI is estimated, a brain network (ROI x ROI)
is built for each frequency band. Then, nodal network metrics – such as the
clustering coefficient – are computed for each ROI.

EEG connectivity data is a multidimensional matrix (ROI
x ROI x frequency), where ROI’s are the nodes and their
relations are the network’s edges. Finally, graph metrics are
computed to characterize the brain graph at different fre-
quencies, for example, by describing its segregation. More
specifically, metrics such as the clustering coefficient (CC)
are computed for each ROI and frequency band and describe
the local level of clusterization between neighboring nodes,
reflecting functional specialization. More details about EEG
data collection, preprocessing, and connectivity analyses are
provided as supplemental material. We used the knowledge
gathered in the first part of the week to develop three low-
fidelity prototypes in a digital pen-and-paper setting, which
will be described in detail in subsection V-A.
Tasks. The domain experts focus their analyses on the whole
brain network and the connections between specific ROI, and
they extract global and nodal graph measures to describe
these interactions. Whether this is done in broadband or for
different frequency bands depends on the research focus.
As mentioned, our data set consisted of five connectivity
matrices, one for each frequency band (delta, theta, alpha,
sigma, and beta), representing a typical data set for domain
experts. The interview results show that the domain experts
are especially interested in exploring nodal graph measures
across frequency bands, as global measures are usually easier
to display (typically in a boxplot). To summarize, the domain
experts need a tool for the visual exploration of EEG data that
facilitates the following tasks:

• Overview: getting an overview of ROIs and their connec-
tivity for different frequency bands

• Cluster: grouping of ROIs in subnetworks
• Locate: locating ROIs and connections with high activity
• Compare: comparing ROIs and connections within and

across frequency bands

C. Implementation

The last phase of our process focused on the prototype
transition from low-fidelity to high-fidelity. Based on the

results of the evaluation of the low-fidelity prototypes through
interviews with the domain experts, we decided on two high-
fidelity designs (see subsection V-B) for further implementa-
tion. Two interactive visualization dashboards were developed
while conducting regular feedback cycles with the domain
experts. Each dashboard consists of a JavaScript frontend that
uses D3.js [54] for visualizing the data.

V. DESIGN DECISIONS

In this section, we will detail our design decisions during
prototyping. First, we discuss our low-fidelity designs, where
we created multiple digital pen-and-paper prototypes in par-
allel to explore different design options. Next, we elaborate
on interviews that we conducted with our domain experts to
assess these low-fidelity prototypes. We conclude this section
by reporting on how we arrived at our high-fidelity prototypes.

A. Low-fidelity Designs

From the in-depth requirement analysis conducted on-site
at our collaborators’ hospital, we identified the researchers’
need for a tool that facilitates the visual investigation of
EEG-derived brain network data. While they primarily use
mathematical analysis to explore the data, inspection of results
through visualization occurs only as a final step of their
analysis due to difficulties linked to visualizing complex
multidimensional data. Finding an intuitive visual encoding
of the data is necessary for several reasons, including but not
limited to summarizing, validating, and communicating their
findings. Based on this knowledge, we developed three low-
fidelity prototypes (see Figure 2) that use different visual rep-
resentations to facilitate analysis. Detailed information about
the low-fidelity prototypes can be found in the supplemental
material. Four domain experts were interviewed to evaluate
the three low-fidelity prototypes. A ranking of the designs
revealed a preference for low-fidelity prototype 3 (see Figure
2c) as it was ranked first in three of the four interviews.
The participants found this design the most intriguing and
innovative since they had never worked with this type of
aggregated visualization before. They especially liked the idea
of layering multiple frequency bands in segments on top of
each other in a single circular layout, allowing for comparison
across the frequencies. However, one participant found the
design less intuitive than the other two, and the limited space
for the connections inside the circle was pointed out as a
weakness by another participant.

Low-fidelity prototype 1 (see Figure 2a) was ranked first by
one participant and ranked in second place (out of three) by
two other participants. Participants described the bar charts as
intuitive, and one added that they allow for identifying trends.
Grouping the bars by frequency band was identified as helpful
by one of the participants since they can compare values within
a frequency and between frequencies. The primary issue that
three of the four participants identified was related to the
tool’s scalability. The number of ROIs is usually relatively
high (from 72 ROIs and above), so showing all the regions
in the bar chart might not effectively scale. As a follow-up,
we showed them an equivalent stacked bar chart (the five
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(a) Lo-fi prototype 1 (b) Lo-fi prototype 2 (c) Lo-fi prototype 3
Fig. 2. The three low-fidelity prototypes: (a) using bar charts (metric) and a dot plot (connectivity), (b) using parallel coordinates (metric) and doughnut
charts (connectivity), and (c) using a layered doughnut chart (metric and connectivity). Remark: user interface elements (e.g., menu for selecting ROIs) have
been excluded to focus on the visual encoding of the data.

frequencies stacked for each region) to understand whether this
would help the scalability of the visualization. The feedback
suggested that this might be helpful for comparisons between
the frequency bands. Still, three of the four participants did
not find the stacked bar chart helpful since comparing values
for specific frequencies across different regions was harder.
All participants liked the dot plot encoding the connections
between the regions. However, most reported that they would
expect a heatmap to be more informative and intuitive since
they are used to working with heatmaps. The horizontal
bar chart left to the dot plot was introduced as an optional
feature for users to display data attributes of their choice. The
participants found this option intriguing but could not imagine
a usage scenario.

The least preferred low-fidelity prototype was design 2 (see
Figure 2b). Two participants pointed out that circular plots
are commonly used for plotting connections between entities
in the medical research literature, giving them a sense of
familiarity. Most participants also liked the idea of having
individual circles for each frequency. However, one participant
raised concerns about edge clutter with increasing connections
and suggested letting users switch between a node-link and an
adjacency matrix representation. The parallel coordinates plot
did not add any value for three of the four participants since
they reported it to be less intuitive than the bar charts. The
other participant, however, found it helpful to follow the value
changes across frequencies.

B. High-fidelity Designs

The interview study showed that low-fidelity prototype
3 was the most favored of our three initial designs. As
pointed out by several participants, combining different data
features into a single chart was unconventional and new
to them. Even though prototype 1 received good feedback,
participants seemed to prefer the originality of prototype 3
over conventional chart types. Since their feedback was based
on looking at the digital low-fidelity prototypes without any
interactivity, we implemented prototype 1 and prototype 3 as
testbeds for further evaluation. Prototype 2 was disregarded
from further implementation as the interviews showed that
the parallel coordinates plot did not add much value to the

analysis of our domain experts. We iteratively improved the
implemented prototypes with feedback from the collaborating
domain experts throughout the implementation phase.

Prototype A (layered doughnut chart) (see Figure 3a)
was implemented based on low-fidelity prototype 3. The final
testbed consists of four main views. The brain view (1)
(Overview, Locate) shows a schematic representation of a
patient’s brain from three perspectives (from top to bottom):
superior view, lateral view, and posterior view. The red dots
represent the 72 nodal regions. The ring view (2) (Overview,
Locate, Compare) contains two parts. The five rings show
the values of a metric (in this case, the clustering coefficient)
encoded with color. Each ring segment encodes the value
for an ROI in different frequencies, and each of the five
frequencies is depicted through a color (red, green, blue,
orange, and purple). The color saturation of each segment
encodes the metric value: brighter colors indicate lower
values than darker shades. This allows users to get a first
overview of the value distribution. Hovering over a segment,
a tooltip details the exact value.

The area within the five rings encodes the connectivity
between the different regions. Since the connectivity changes
for every frequency, the user can select the frequency by
clicking anywhere in the corresponding frequency ring. We
used the color saturation of the lines to encode the connection
strength to alleviate the problem that there might be up
to 72x72 connections where it would be impossible to see
individual lines. This should also help users visually identify
potential connectivity patterns more easily.

The button in the upper left corner opens a popup window
that lets the user select subnetworks (Cluster). A user might
want to focus only on specific groups of ROIs (here called sub-
networks) rather than looking at the global network. Figure 4
shows three subnetworks containing five, three, and five ROIs,
respectively. The lines outside the circle visually indicate the
subnetworks.

The metric histogram view (3) (Overview, Locate, Com-
pare) on the right shows the distribution of the metric values
in each frequency (ring segments). The histograms have the
same scale on the y-axis, which enables visual comparison
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(a) Prototype A (b) Prototype B
Fig. 3. High-fidelity prototypes with all 72 ROIs. Prototype A (based on low-fidelity prototype 3) shows a layered doughnut chart (metric and connectivity),
histograms (metric and connectivity), and a brain plot with 72 ROIs. Prototype B (based on low-fidelity prototype 1) shows bar charts (metric), a heatmap
(connectivity), and a brain plot with 72 ROIs.

Fig. 4. High-fidelity prototype A with three subnetworks containing five,
three, and five ROIs, respectively.

across the different frequencies. Users can select ranges in
each histogram for filtering. When a range is selected, only
the segments in the ring that are within this range stay colored.
The other ones are visually moved into the background by gray
grid lines. Each frequency can be filtered individually. In the
interview study, we learned that the domain experts are often
interested in the top [X]% of values. Hence, we implemented
the buttons above the histograms that allow for a fast selection
of those values.

The last connectivity histogram view (4) (Overview,
Locate, Compare) at the bottom in the middle of the interface
shows the distribution of the connection strengths (lines
within the circle). The user can again use a range filter,
and all connections not contained within this range are
not displayed. We also implemented brushing and linking
throughout the dashboard to identify the selected ROI(s) in
all views.

Prototype B (bar charts and heatmap) (see Figure 3b)
represents the design from low-fidelity prototype 1 and
consists of three main views. The brain view (1) (Overview,
Locate) is the same as in prototype A and represents the
patient’s brain with 72 ROIs. On top of the interface, five bar
charts show the metric value of every ROI in each frequency.
This bar view (2) (Overview, Locate, Compare) allows users
to compare the values through the length of the bar rather

than by color saturation (as in prototype A). The bar charts
have the same scale on the y-axis to visually compare the
different bar charts. A tooltip showing the exact value appears
while hovering over a bar.

The last part of this interface is the heatmap view (3)
(Overview, Locate, Compare). This view displays the connec-
tivity between the ROIs for a selected frequency, and each
column (ROI) is vertically aligned with the corresponding
bars. Connectivity values are encoded through color saturation:
brighter colors indicate lower values than darker shades.
Hovering a cell allows the user to see the exact connectivity
value. Additionally, we support navigation in the heatmap by
highlighting the cell’s row and column as well as the bars in
the bar view (2). On the bottom of this interface, the user has
the same options as in prototype A: selecting subnetworks,
selecting a frequency for the connectivity to be displayed in
the heatmap, and filtering the top percent of values for the
metric and connectivity.

VI. EVALUATION

We conducted a study where we used three methods to
evaluate the effectiveness, efficiency, and subjective preference
of the two high-fidelity prototypes:

• a task-based within-subject study where participants solve
four tasks on each prototype while thinking out loud,

• a semi-structured interview after completion of the tasks,
and

• a questionnaire aiming at usability and aesthetics.

A. Participants

We targeted two participant groups to evaluate the two
prototypes: participants with domain knowledge in medical
research (domain experts) and without domain knowledge (lay
people), both having little or no visualization experience (see
Table I). We recruited four participants between 27 and 35
years old and twelve participants between 20 and 55 for
the expert and lay groups, respectively, through purposive
sampling. While none of them have advanced visualization
experience, they are familiar with basic chart types. Despite
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TABLE I
DEMOGRAPHICS OF THE PARTICIPANTS, INCLUDING THEIR OVERALL PROTOTYPE PREFERENCE.

ID Gender Age Highest Degree Job Domain Overall Preference
L

ay
pe

op
le

P1 Male 27 Master PhD student Computer science A
P2 Male 29 Bachelor Full-time employment Computer science B
P3 Male 20 Apprenticeship Full-time employment Relocation management A
P4 Male 28 Master Full-time employment Software development B
P5 Male 28 Master Full-time employment Civil engineering B
P6 Female 27 Master Full-time employment Computer science B
P7 Male 29 Bachelor Part-time employment Computer science A
P8 Female 29 Master PhD student Computer science A
P9 Male 28 Master Part-time employment Computer science B
P10 Female 25 High school Bachelor student Statistics B
P11 Female 51 High school Full-time employment Social work B
P12 Female 55 High school Full-time employment Public service B

E
xp

er
ts

E1 Male 35 PhD Postdoc researcher Clinical neuroscience B
E2 Male 34 PhD Postdoc researcher Neuroscience A
E3 Male 27 Master PhD student Biomedical engineering B
E4 Male 31 PhD Postdoc researcher Clinical neuroscience B

our effort to aim for gender-balanced recruitment in both
participant groups for the study, we, unfortunately, had no
female participants in the domain expert group. This is because
this specific data set is currently mainly investigated by male
researchers in the research lab which we collaborated with.
The study structure was mostly the same for both groups,
with a minor difference in how the data was explained (see
subsection VI-B). The tasks used in the lay-participant group
did not require domain knowledge and focused solely on
the visualizations. We believe the lay participants’ results
strengthen the user study as they can be used to compare and
validate the domain experts’ results. We conducted individual
sessions with nine participants at our research lab, while the
others were conducted through remote sessions. All partici-
pants gave written consent to participate in the user study and
none of them reported any color vision deficiencies.

B. Task-based Within-subject Study

Our two interfaces use the Vue.js framework combined with
D3.js [54] to draw the charts. They were optimized to be
displayed in the Google Chrome web browser on a 27-inch
monitor with a resolution of 2560 by 1440 pixels.

In the first part of the study, we showed participants the
two dashboards, one at a time. To alleviate a potential priming
bias, we alternated the prototype presented first in the study.
The study started by introducing the data to the participants.
While we used the original brain network data with the
expert group, we changed the context for our lay participants.
Our goal was to make the data more relatable so that no
knowledge barrier might confuse the lay participants, and they
could entirely focus on the visualizations. We replaced the
medical terminology with more relatable terms. Specifically,
the participants were told that the data about brain activity
related to five different feelings (instead of frequency bands),
which were supposed to be measured at the points showing the
ROIs in the prototype. After the study, we told the participants
about the EEG context, clarifying that the terminology was
used to simplify and focus the task. In the next step, we
introduced the first dashboard and explained its different parts,

allowing questions during this demonstration. Afterward, the
participants were asked to complete four tasks while thinking
aloud.

We based the tasks on the findings from the earlier re-
quirement phase (see subsection IV-B). These showed that the
domain experts might focus on the whole brain and specific
parts of the brain and how these parts interact with each
other. This is true for metrics on a nodal and a global level.
Hence, for the first two tasks (task 1 and task 2), we asked the
participants to consider all 72 ROIs (the whole brain) and only
a subset for the two subsequent tasks (task 3 and task 4). We
also found that the domain experts are especially interested in
analyzing metrics across frequency bands, which is reflected
in task 1 and task 3, and connectivity between ROIs, which is
reflected in task 2 and task 4.

The following paragraphs show the task specification, which
we provided as a printout to the participants so that they
could revisit it during the study. Additionally, we explain how
the tasks are solved with each prototype. This explanation
was not provided to the participants during the study. We
relate each evaluation task to the high-level tasks identified
in subsection IV-B, as seen in parentheses.

Task 1 (Overview, Locate, Compare): “Which of the five
frequencies has the highest metric value?” (domain experts) /
“Which of the five feelings has the highest metric value?” (lay
people)

• Prototype A: Select the ring segment with the highest
color saturation of all five frequency bands/feelings in
the ring view (2).

• Prototype B: Select the highest bar of all five frequency
bands/feelings in the bar view (2).

Follow-up question: “Which region in this frequency has the
highest metric value?” (domain experts) / “Which region in
this feeling has the highest metric value?” (lay people)

• Prototype A: Identify the region’s name with the high-
est color saturation in the previously found frequency
band/feeling in the ring view (2).

• Prototype B: Identify the name of the highest bar in the
previously found frequency band/feeling in the bar view
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(2).

Task 2 (Overview, Locate, Compare): “What is the strongest
connection between these regions in each frequency band?”
(domain experts) / “What is the strongest connection between
these regions in each feeling?” (lay people)

• Prototype A: Identify the ROI-pair connected by the
line with the highest color saturation in each frequency
band/feeling in the ring view (2).

• Prototype B: Identify the ROI-pair of the cell with the
highest color saturation in each frequency band/feeling
in the heatmap view (3).

Before continuing with the next two tasks, we asked partic-
ipants to create three subnetworks containing five, three, and
five ROIs, respectively (see Figure 4).

Task 3 (Cluster, Locate, Compare): “In which frequency
band does ROI 21 have the lowest metric value?” (domain
experts) / “In which feeling does ROI 21 have the lowest
metric value?” (lay people)

• Prototype A: Find the frequency band/feeling where ROI
21 has the lowest color saturation in ring view (2).

• Prototype B: Find the frequency band/feeling where ROI
21 has the lowest bar in bar view (2).

Task 4 (Cluster, Locate, Compare): “What is the strongest
connection between these regions in each frequency band?”
(domain experts) / “What is the strongest connection between
these regions in each feeling?” (lay people)

• Prototype A: Identify the ROI-pair connected by the
line with the highest color saturation in each frequency
band/feeling in the ring view (2).

• Prototype B: Identify the ROI-pair of the cell with the
highest color saturation in each frequency band/feeling
in the heatmap view (3).

C. Semi-structured Interview

After completing the tasks, we conducted a semi-structured
interview consisting of two parts. The first part aimed at
general feedback (especially on effectiveness and efficiency) to
both prototypes. In the second part, we asked the participants
to compare the prototypes and let them rank one over the other
for different use cases. Throughout the interview, participants
had a screenshot of the two prototypes in front of them to
avoid mixing them up. The complete interview outline can be
found in the supplemental material.

D. Questionnaire

The study concluded with a questionnaire the participants
completed without supervision right after the interview. The
questionnaire included the system usability scale (SUS) [55]
to assess the prototypes’ usability, the BeauVis scale [39]
to assess the aesthetic pleasure of the prototypes, an overall
grading of the interfaces, and a demographic section. The
questionnaire can be found in the supplemental material.

TABLE II
SUMMARY OF THE EVALUATION RESULTS FOR HIGH-FIDELITY

PROTOTYPES A AND B. THE FIRST BLOCK (A) SHOWS THE PARTICIPANTS’
PROTOTYPE PREFERENCE FOR DIFFERENT ASPECTS. THE AVERAGE SUS
SCORE (0: WORST; 100: BEST), BEAUVIS SCORE (1: WORST; 7: BEST),
AND GRADE (1: BEST, 5: WORST) ARE SHOWN IN (B). PART (C) SHOWS

THE AVERAGE COMPLETION TIME PER TASK FOR EACH PROTOTYPE AND
PARTICIPANT GROUP. THE LAST PART (D) SHOWS THE AVERAGE SCORE (1:

VERY EASY; 5: NOT EASY AT ALL) OF HOW EASY PARTICIPANTS
PERCEIVED SOLVING THE TASK WITH THE RESPECTIVE PROTOTYPE.

(a
)

Pr
ef

er
en

ce

Domain Experts Lay People
(n=4) (n=12)

Prot. A Prot. B Prot. A Prot. B
Overall 25% 75% 33.3% 66.7%
Task 1 50% 50% 66.7% 33.3%
Task 2 0% 100% 25% 75%
Task 3 25% 75% 16.7% 83.3%
Task 4 0% 100% 41.7% 58.3%

Overview 25% 75% 58.3% 41.7%
Value 25% 75% 25% 75%

Aesthetic 100% 0% 91.7% 8.3%

(b
)

A
vg

.S
co

re

SUS 73.8 84.4 63.3 85.4
(0–100) (σ=14.5) (σ=3.2) (σ=24.9) (σ=13.9)
BeauVis 5.7 5.4 5.5 5.3

(1–7) (σ=1) (σ=0.9) (σ=1.3) (σ=0.9)
Grade 2.3 2.3 2.4 1.8
(1–5) (σ=1.5) (σ=0.5) (σ=1) (σ=0.6)

(c
)

A
vg

.T
im

e
[s

ec
] Task 1 98 65 104 58

(σ=69) (σ=31) (σ=58) (σ=40)

Task 2 217 164 213 208
(σ=80) (σ=41) (σ=76) (σ=68)

Task 3 62 26 53 32
(σ=58) (σ=13) (σ=34) (σ=26)

Task 4 150 77 80 75
(σ=132) (σ=34) (σ=14) (σ=26)

(d
)

A
vg

.E
as

in
es

s

Task 1 2 2.5 1.3 1.8
(1–5) (σ=1.4) (σ=1.3) (σ=0.5) (σ=1)

Task 2 2.3 1.3 2.3 1.8
(1–5) (σ=1) (σ=0.5) (σ=1.2) (σ=0.9)

Task 3 2.5 1.8 2.1 1.5
(1–5) (σ=1.7) (σ=0.5) (σ=1) (σ=0.7)

Task 4 1.5 1.3 1.4 1.3
(1–5) (σ=0.6) (σ=0.5) (σ=0.9) (σ=0.7)

VII. RESULTS

After the initial interviews about the low-fidelity prototypes
with the domain experts (see subsection V-A), the combined
ring view was preferred over conventional bar charts be-
cause of its aesthetics and originality in the medical domain.
However, visualization literature [13]–[16] has shown that the
visualization channels used to encode the data in prototype
A (metric value encoded through color saturation) are usually
less effective than the ones used in prototype B (metric value
encoded as the length of the bar). Our evaluation results show
that the initial preference changed: prototype B was the most
effective and efficient choice. The results, therefore, concur
with the visualization literature. The results are summarized
in Table II.

In the following section, we present the results and findings
of our user study. First, we discuss observations made during
the task-based within-subject study, followed by a qualitative
and quantitative analysis of the interview and questionnaire.
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A. Observations

We conducted one-on-one sessions, each taking about 1
hour (average time: 60 minutes for domain experts, 58 minutes
for lay people). The participants were asked to think aloud
while solving the tasks. During the study, they could ask
questions if something was unclear, and we observed the
participants’ interaction with the prototypes. Additionally, we
measured the time participants needed to complete the tasks
and recorded the number of wrong answers (error count).

On average, solving the tasks with prototype A took
domain experts longer than with prototype B. While they
needed between 5 and 13.4 minutes (µ = 8.8 min; σ =
4.4 min) with prototype A, they spent between 4.3 and
6.9 minutes (µ = 5.5 min; σ = 1.3 min) with prototype B.
These results show that domain experts could solve the tasks
more efficiently using prototype B. The lay participants,
who spent between 3.9 and 11.4 minutes (µ = 7.5 min;
σ = 2 min) with prototype A and between 3.5 and 9.4
minutes (µ = 6.2 min; σ = 1.9 min) with prototype B, were
also more efficient using prototype B. Except for task 2, the
individual completion times confirm this result (see Table IIc).

Task 1. Domain experts needed about two-thirds (66.3%),
while lay people only needed about half (55.8%) of the time
used for identifying the ring segment with the highest color
saturation in the ring view (lay: 104s; experts: 98s) to find the
overall highest bar in the bar chart view (lay: 58s; experts:
65s). Most participants filtered for the top [X] percentage of
metric values before identifying the highest value visually.
While lay participants did not give any wrong answers for the
tasks using prototype B, four initially gave a wrong answer
when working with prototype A. Domain experts made one
error using prototype A. In contrast, they did not answer
incorrectly when working with prototype B.

Task 2. Finding the ROI-pair with the highest connectivity
value in each frequency in the heatmap view in prototype
B (164s) took the domain experts only about three-fourths
(75.6%) of the time compared to the ring view in prototype
A (217s). This result might be influenced by the domain
experts’ familiarity with heatmaps since the time needed
by the lay people was nearly the same for prototype B
(208s) and prototype A (213s). Concerning the error rate, the
domain experts gave one wrong answer per prototype for this
task, while lay people made two wrong conclusions using
prototype A and gave three wrong answers using prototype
B.

Task 3. Solving this task with prototype B took domain
experts only about 42% of the time needed with prototype
A. Another speed-up was observed with lay participants:
they solved the task with prototype B in 60.4% of the time
needed with prototype A. Even though the participants had
to compare bars on top of each other rather than being
aligned on a common x-axis, they still needed less time than
comparing the color saturation of the ring segments. While
the solution of two domain experts was initially wrong using

prototype A, there were no errors using prototype B. All lay
participants solved the tasks correctly with prototype B, while
only one lay person gave a wrong answer with prototype A.

Task 4. The last task was similar to task 2, with the
only difference being that the task had to be solved for a
subset of 13 ROIs. Domain experts were almost twice as
fast with prototype B (77s) than with prototype A (150s).
The difference in completion times for lay participants is
not as significant as for the domain experts: lay people only
needed five seconds longer with prototype A (80s) compared
to prototype B (75s). While domain experts did not give any
wrong answers using both prototypes, only one lay participant
gave a wrong answer using prototype A.

We also asked participants to rate how easy it was to
solve each task with the prototypes (1: very easy; 5: not easy
at all). While participants found solving most tasks easier
using prototype B (see Table IId), therefore confirming the
results above, task 1 was considered easier using prototype
A. The participants mentioned this mainly because they could
see the distribution of the metric values directly in the metric
histogram view, not the ring view.

B. Interview

We recorded all interviews and took notes during the
interview. For the analysis, we extracted themes from the
gathered knowledge and clustered them for each participant
group individually. In the following subsections, we present
our interview findings.

1) Interviews with Domain Experts: While the layered
doughnut chart (paper prototype 3) was favored by the domain
experts in the low-fidelity interview study, three out of the
four experts (E1,3,4) in the final study preferred prototype B
(bar charts and heatmap) in terms of effectiveness and effi-
ciency. They found interface B especially helpful for quickly
identifying connectivity patterns in the heatmap (E1,4). This
might be related to their familiarity and experience with this
type of visualization. Another participant (E3) mentioned that
he enjoyed having separate bar charts for the metric in each
frequency as this allowed him to get a global overview of all
ROIs. He also noted that the space was used more efficiently
than in prototype A (layered doughnut chart), resulting in less
whitespace overall. However, two experts (E2,4) found it hard
to compare bars across frequencies since the corresponding
bar charts were on top of each other. One expert (E3) also
mentioned his concerns about prototype B not scaling well
for more than 72 regions since the screen real estate is limited
and comparing bars might get more difficult. Suggestions for
improvement that were mentioned include using a dynamic
or logarithmic color scale to facilitate the differentiation of
the color saturation in the heatmap view (E3,4), encoding
metric values additionally through color saturation in the
bar view (E4), and implementing a feature to save and pre-
load subnetworks (E3). While three experts (E2,3,4) saw the
potential for the current version of prototype B to facilitate
data analysis in their daily work, one expert (E1) reported he
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would need more customization features before he would use
it daily.

Only one of the four participants (E2) preferred prototype
A. He liked the overall presentation of the connections and
frequencies in the aggregated ring view and the filter option
only showing connections of interest. Even though he initially
found prototype B easier to use, he supports his choice for
prototype A by saying, “[prototype B] being easier today
does not mean that it is always easier – prototype A gets
better over time.” The main advantage of prototype A that was
mentioned (E1,2,4) is the compact ring view that allows for a
good overview and presentation of the metric and connectivity
values across all frequencies. E1 said that “[prototype] B
is better for analyzing the data; [prototype] A is better for
presenting the data”. E3 commented that if he “had both tools,
[he] would only use [prototype] B. [He is] not the biggest fan
of A as it is not so easy to interpret”.

These results underline our findings in the other two parts
of the study, which state that prototype A is still preferred in
terms of aesthetics. Still, prototype B is considered more effec-
tive and efficient for data analysis. When asked about potential
use cases for prototype A over prototype B, our participants
mentioned situations in which they must present the data (e.g.,
team meetings, research papers) and want to attract attention.
The histogram views to filter data attributes were also well
received by three experts (E1,3,4) who suggested including
them in prototype B. Two participants (E1,4) mentioned that
it is difficult to see exact values in prototype A since they are
mainly encoded through color saturation. Related to that, one
participant (E3) found it particularly “difficult to compare the
color saturation in the small ring segments”. While all experts
saw a potential benefit of prototype A for their daily work
(especially for data presentation), most of them (E1,3,4) still
preferred prototype B for analyzing the data as it is “intuitive
and easier to use than the other prototype”.

2) Interviews with Lay People: The lay participants’ re-
sponses mostly aligned with the domain experts’ opinions.
The results show that eight of them (P2,4,5,6,9,10,11,12) pre-
ferred prototype B (bar charts and heatmap). They based
their decision on several reasons, one being that it is easier
for them, especially in the bar view, to see data values
more accurately than in prototype A (layered doughnut chart)
(P1,3,4,6,8,10,11,12). More concretely, four participants (P3,5,7,9)
explicitly pointed out that they preferred the bars over the
encoding with color. The encoding of the connectivity values
in the heatmap view through a heatmap was received well
(P7,9,10). They point out that the heatmap conveys more infor-
mation visually than the ring view in prototype A (P4,6,8) and
that the color saturation is easier to distinguish in a horizontal
and vertical grid than in a circular layout (P2,10,12). Three
participants (P5,6,8) found prototype B more user-friendly
and intuitive than the other prototype. The main weakness
identified in prototype B was related to the scalability of
the interface. Since the initial interface features all 72 ROIs,
participants (P1,8,9) found that there is an overload of visual
elements on the screen when all regions are shown and P1

added that comparing bars is difficult when there are so many
of them. Therefore, the interface would not scale well as

more ROIs are added, making the analysis more difficult
(P1,3,5). Since the connectivity matrices in our data set are
all symmetric, half of the participants (P2,3,7,8,10,11) found
it unnecessary to display the whole heatmap. This was an
explicit design decision, as our requirement analysis showed
that connectivity matrices in other data sets might not be
symmetric. It is, however, a suggestion for improvement to
allow the user only to display half of the heatmap.

Even though most participants preferred prototype B overall,
almost half of them (P1,3,4,5,8) enjoyed the clean and compact
representation of the data in prototype A. P1,5,6,8 liked the
aggregation of the data attributes (metric and connectivity) in
a single ring view. Additionally, all participants pointed out
that the metric histogram view, as well as the connectivity
histogram view, are very helpful, primarily since they can
be used as a filter for the ring view. The main weaknesses
identified in prototype A are that the usability is worse than
in the other prototype (P5,6,8,9,10) and that training (P6,8,9)
is needed before the tool can be used efficiently. P5,7,9,10,11

mentioned that the ring view and its ring segments are too
small for the displayed data, thus negatively influencing the
tool’s usability. Participants also had a hard time differentiating
color saturation in the ring view for both data features: metric
(P2,5,7,8,10) and connectivity (P8,9,10). This was underlined by
P1, who said that “[data feature] values are easier estimated
through bars than color saturation”; P3 found that “hover-
ing for comparing segments with higher color saturation is
tedious”. All participants agreed that they find prototype A
more aesthetic. One of the participants (P6) commented, “I’m
just not a big fan of the circle. However, if I had to visualize
results and print them in a research paper, then I would go with
[prototype] A”. A few lay participants (P2,4,9) also pointed out
that in both prototypes the brain view did not add any value for
them since the brain representation is for users with domain
knowledge who can interpret the data.

3) Suggestions for Improvement: Both participant groups
shared suggestions to improve the prototypes after completing
a task or in the interview afterward.

Prototype A. Two participants (P6, E1) were interested
in seeing the connectivity values in prototype A, so they
suggested displaying the value when the user hovers over
a connection. E1 further mentioned that he would be
interested in simultaneously seeing connections from multiple
frequencies. However, displaying too many connections in
the ring view could result in an unreadable mesh of lines. E3

suggested adding line thickness as a second encoding channel
for the connectivity value to make strong connections even
more noticeable to the analysts. Concerning data filtering,
some participants (P1,2,4,9) wanted additional lower-level
filter options (e.g., letting users input a custom percentage for
the top percentages of values). One expert (E3) mentioned
that he had a hard time identifying bins that only contain a
few elements in the connectivity histogram view when there
were bins containing high numbers of elements. He suggested
rescaling the histogram when the user selects a range to
alleviate this problem.
Prototype B. Both histogram views (connectivity and metric)
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benefitted all participants in prototype A, making it evident
that including them in prototype B could improve it further.
This is also indicated by participants’ suggestions to add more
filter options (P1,2) and allow users to choose custom percent-
ages for the top [X] values (P2,4). Another feature request
would allow users to sort bar charts in ascending/descending
order (P2,6) to identify maxima and minima quickly. Two
participants (P6, E4) suggested adding color saturation as
a second encoding channel for the metric value in the bar
chart to help users identify higher values more easily. A dy-
namic color scheme updating whenever a filter or subnetwork
selection is applied was suggested (E1,4) for the heatmap
view to distinguish data points easily. Loading pre-defined
subnetworks and saving custom subnetwork selections could
save the user time during the configuration (E3).

C. Questionnaire

The quantitative analysis results mirrored the qualitative
analysis’s findings. The results of the questionnaire (see Ta-
ble IIb) show that prototype B has a higher SUS score for do-
main experts (84.4) as well as lay people (85.4) than prototype
A (experts: 73.8; lay people: 63.3). This almost corresponds
to “excellent” usability for prototype B, whereas the usability
of prototype A is rated between “ok” and “good” [56]. We
used the BeauVis scale [39] in its recommended version: a 7-
point Likert scale with five items (enjoyable, likable, pleasing,
nice, and appealing) from “strongly disagree” (1) to “strongly
agree” (7). Even though the usability score of prototype B is
higher, the BeauVis rating of prototype B (experts: 5.4; lay
people: 5.3) is close to the rating of prototype A (experts:
5.7; lay people 5.5). This shows that our effort for a clear and
accessible design paid off by also getting high results in terms
of aesthetics for prototype B. However, we did not reach the
same level as prototype A, which is still better, and the result
illustrates the participants’ aesthetic preference for prototype
A, as indicated clearly in the interviews.

We also asked participants to grade each prototype from 1
(best) to 5 (worst). While the average grade of domain experts
is the same for both prototypes (2.3), lay people assigned better
grades to prototype B (1.8) than to prototype A (2.4).

VIII. DISCUSSION

Quantitative and qualitative results show that we success-
fully developed effective and efficient prototypes for analyz-
ing multi-frequency network data. The visual analysis tools
facilitate the visual exploration of the data. Here we address
important aspects of the design and evaluation process.
The importance of high-fidelity prototyping. The evaluation
with domain experts in the early low-fidelity prototyping
stages showed that their preference for a tool design was
affected by its aesthetics and novelty. Another design proposal
was less preferred even though it was considered more optimal
based on visualization theory. However, the overall prefer-
ence shifted once we implemented the low-fidelity designs
as high-fidelity prototypes and allowed users to interact with
the systems. This preference shift underlines the importance
of low- and high-fidelity parallel prototyping. Visualization

designers must create multiple prototypes in parallel to explore
the design space. Furthermore, our findings in this study show
that it is not enough to stop at the low-fidelity phase since
preferences can change in further iterations when new factors
(e.g., interactivity) come into play. Hence, more and better
rapid prototyping tools are needed to bridge this gap between
low- and high-fidelity prototyping.
There is a lack of design guidelines for affective intent.
Designing visualization goals solely based on their task-based
objectives (e.g., efficiently conveying facts or insights) might
not lead to the optimal solution. Other factors (e.g., aesthetics,
engagement), which can be used to achieve affective in-
tent [34], must also be considered in characterizing the goal at
the early stages of the requirement analysis. While our results
show that prototype B outperformed prototype A in terms of
effectiveness and efficiency for analyzing the data, prototype A
was considered well-suited, especially for presenting the data,
as it was considered more engaging. While one participant
explicitly said, “[prototype] B is better for analyzing the
data; [prototype] A is better for presenting the data,” other
participants articulated similar thoughts agreeing with this
statement. We argue that this trade-off between performance
and aesthetics influences the design space significantly. The
latter are often not explicit goals of expert visualization tools.
Our results demonstrate that acknowledging these subjective
types of goals changes the design. However, our community
lacks design guidelines for affective intent. Our work shows
that there is plenty of room to incorporate aesthetic aspects into
prototype B. We believe creating engaging prototypes without
sacrificing half the performance is possible, as was the case
comparing our two prototypes.
Be aware of familiarity with visual representations. Similar
to aesthetics, familiarity with specific visual representations
could influence users’ subjective preferences. Dasgupta [41]
argues that “familiar visualizations and visual encodings
within a domain are often in conflict with the optimality
of visualization design, in terms of how well they support
the data analysis or communication tasks.”. This was not
reflected in our findings in the initial interview study during the
low-fidelity prototyping phase. Domain experts preferred the
circular prototype to the one with bar charts and a heatmap
regardless of their familiarity with heatmaps since they are
prevalent in network analysis. However, this might have been
because participants prioritized aesthetics and novelty over
familiarity. We believe familiarity can play an important role
in subjective preference and should be considered carefully
while designing and evaluating a visual analysis tool.
Limitations. We aimed to qualitatively and quantitatively
validate and compare the expert group’s findings with partici-
pants from outside the medical domain. Our non-representative
participant sample was, in the case of the lay group, not
biased or primed by domain knowledge or constrained by
familiar visualizations. Hence, they could focus primarily on
usability and aesthetics rather than functionality. This approach
strengthened our findings and validated the expert group’s
results.

As a result of this design study, we developed two high-
fidelity prototypes that showed great potential to improve
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the effectiveness and efficiency of data analysis for medical
experts. However, to evaluate these factors of the systems
in production, more implementation iterations are needed to
cover all aspects of the data. A deployed productive system
was out of scope for this project and is considered future work.

IX. CONCLUSION AND FUTURE WORK

In this paper, we reported on a design study for a visual
analysis tool that facilitates exploratory data analysis of multi-
frequency network data. We conducted an in-depth require-
ment analysis and developed two high-fidelity prototypes with
domain experts in an iterative design process. We evaluated the
prototypes regarding effectiveness, efficiency, and subjective
preference both qualitatively and quantitatively. The evalua-
tion results with domain experts and lay people, both with
little or no visualization experience, showed that subjective
preference and objective task performance do not always align.
Furthermore, subjective preference can change throughout the
design process, underlining the importance of high-fidelity
prototyping, where users interact with their own data for the
first time. We also found that subjective factors (e.g., aesthet-
ics, familiarity) are important when defining design goals for
bespoke visual analysis tools. However, as a community, we
lack the ability to design for affective intent.

In the future, we envision further investigating the rela-
tionship between different subjective factors that influence
the visualization goal and, therefore, also the tool design.
Furthermore, we want to improve the prototypes based on the
user study feedback and develop a consolidated version that
can be deployed to production.
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