Maximally Expressive GNNs for Outerplanar Graphs

Maximally Expressive GNNs for Outerplanar Graphs

Abstract

We propose a linear time graph transformation that enables the Weisfeiler-Leman (WL) algorithm and message passing graph neural networks (MPNNs) to be maximally expressive on outerplanar graphs. Our approach is motivated by the fact that most pharmaceutical molecules correspond to outerplanar graphs. Existing research predominantly enhances the expressivity of graph neural networks without specific graph families in mind. This often leads to methods that are impractical due to their computational complexity. In contrast, the restriction to outerplanar graphs enables us to encode the Hamiltonian cycle of each biconnected component in linear time. As the main contribution of the paper we prove that our method achieves maximum expressivity on outerplanar graphs. Experiments confirm that our graph transformation improves the predictive performance of MPNNs on molecular benchmark datasets at negligible computational overhead.

Grafik Top
Authors
  • Bause, Franka
  • Jogl, Fabian
  • Indri, Patrick
  • Drucks, Tamara
  • Penz, David
  • Kriege, Nils M.
  • Gärtner, Thomas
  • Welke, Pascal
  • Thiessen, Maximilian
Grafik Top
Shortfacts
Category
Journal Paper
Divisions
Data Mining and Machine Learning
Journal or Publication Title
Transactions on Machine Learning Research
ISSN
2835-8856
Publisher
TMLR
Date
3 January 2025
Export
Grafik Top