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Abstract—Detecting arbitrarily shaped clusters in high-
dimensional noisy data is challenging for current clustering
methods. We introduce SHADE, the first deep clustering algorithm
that incorporates density-connectivity into its loss function. Similar
to existing deep clustering algorithms, SHADE supports high-
dimensional and large data sets with the expressive power of a
deep autoencoder. In contrast to most existing deep clustering
methods that rely on a centroid-based clustering objective,
SHADE incorporates a novel loss function that captures density-
connectivity. It thereby learns a representation that enhances
the separation of density-connected clusters. SHADE detects a
stable clustering and noise points fully automatically without any
user input. It outperforms existing methods in clustering quality,
especially on data that contain non-Gaussian clusters, such as
video data. Moreover, the embedded space of SHADE is suitable
for visualization and interpretation of the clustering results as
the individual shapes of the clusters are preserved.

Index Terms—Clustering, Deep Clustering, Density-based
Clustering, DBSCAN

I. INTRODUCTION

Density-based clustering considers clusters as areas of high
object density that are separated by areas of low object density,
e.g., the 3d dataset in Fig. 1(a) with two intertwined rings and
one s-shaped cluster. In contrast to our synthetic 3d toy data
set, real-world data typically has a much higher dimensionality,
which exacerbates finding density-based clusters.

We introduce SHADE (Structure-preserving High-dimen-
sional Analysis with Density-based Exploration), a novel
clustering method that integrates a density-connectivity loss
into the training of a deep autoencoder. SHADE is the first
method that learns a representation that enhances density-based
clusters. Fig. 1(b) shows the 2d embedding of our 3d toy
data learned by SHADE. SHADE enhances the density-based
cluster structure by augmenting the separation of the three
clusters while preserving their individual shapes. Using this
embedding, SHADE finds – in contrast to all our deep clustering
competitors – the perfect clustering.

Why not just use an autoencoder for representation learning
followed by density-based clustering? Autoencoders minimize
the reconstruction error of individual data points. In contrast,
clustering aims at grouping similar points, which is a different
goal: the two separate rings of our 3d example are connected
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(a) 3d dataset (b) SHADE (1.00) (c) Autoencoder

(d) DEC (0.59) (e) IDEC (0.64) (f) DCN (0.64)

(g) DipEncoder (0.60) (h) DipDECK (0.57) (i) DDC (0.25)

Fig. 1: Data set (a) and its 2d embedding created by our method
SHADE (b), a regular autoencoder (c), and our competitors (d)-
(i); colors imply ground-truth clusters, numbers give the ARI.
SHADE separates the clusters and keeps their shapes, whereas
other methods merge them or change the shape entirely.

in the 2d embedding of an autoencoder as Fig. 1(c) shows.
Thus, using a classic autoencoder inhibits a correct clustering.

Recent deep clustering methods integrate specific clustering
losses into the objective function of autoencoders. However,
most approaches rely on a centroid-based cluster notion, similar
to k-Means, e.g., [8], [18], [28], [29]. Figs. 1(d)-(f) demonstrate
that these methods tend to fail on data with density-based
clusters. In the embedded space of DEC [28], the clusters
seem to be well separated, but the shapes are completely
destroyed by forcing them to fit Gaussian distributions. The
ARI measure of 0.59 shows that DEC cannot separate the two
rings. IDEC and DCN do not enforce Gaussianity as strictly
as DEC but also employ centroid-based losses. Both methods
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Fig. 2: SHADE optimizes the loss functions LD and Lrec

simultaneously in a batch-wise manner. LD aligns the density-
connectivity in the original space with the Euclidean distances
in the embedding. Lrec enforces the preservation of the
clusters’ original shapes in the embedding, allowing an accurate
reconstruction. SHADE returns the clustering C with the highest
stability S(C) based on the density-connectivity metric ddc.

preserve the ’s’ shape but fail to separate the rings. DipDECK
[15] and DipEncoder [14] support a more flexible cluster model
by relying only on modalities instead of specific distributions.
DipDECK further offers the benefit that users do not need to
select the number of clusters as an input parameter. However,
both methods perform similarly to DEC and IDEC, cf. Figs. 1(g)
and 1(h): In the embedded space of the autoencoder, both rings
heavily overlap. Fig. 1(i) shows the result of DDC [20], a recent
sequential approach aimed at density-based clusters. However,
DDC cannot separate the intertwined rings either, as it does
not incorporate the density-based notion into the embedding.
In consequence, it only yields a low ARI of 0.25.

Thus, we propose SHADE, the first approach that inherently
combines the benefits of density-based and deep clustering. A
version of this work with more elaborations and experiments
can be found in [3] (http://arxiv.org/abs/2410.06265).

Our main contributions are as follows:
1) SHADE is the first deep density-based clustering algorithm.

It learns a representation that enhances the separation of
clusters while preserving their density-connectivity.

2) Empowered by an autoencoder, SHADE supports density-
based clustering of high-dimensional data such as videos.

3) Inherited from density-based clustering, SHADE naturally
supports noise without requiring its percentage beforehand.

4) SHADE automatically finds the right number of clusters.

II. A NOVEL DEEP DENSITY-BASED CLUSTERING METHOD

Density-based methods can find important structures that
are not detectable with centroid-based methods, e.g., arbitrarily
shaped clusters. However, finding such clusters in high-
dimensional space is hard and can be slow. Hence, we first learn
a low-dimensional embedding that enhances density-connected
structures, where we then cluster the data. SHADE’s main
steps are shown in Fig. 2 and explained in the following.

A. Capturing Density-Connectivity

To enhance density-connected structures, we introduce a
novel density-connectivity loss Ld in Section II-B. It captures

the density-connectivity and enables the AE to transfer the
relevant information from the original space into the embedding.
It is based on the theoretical background given in the following.

1) Classic Density-Connectivity: For given parameters ε ∈
R>0 and µ ∈ N (often also known as minPts), core points
are points with at least µ points in their ε-range. Density-
connected clusters are then maximal subsets of connected
core points [7]. The core distance of a point x ∈ X ,
core dist(x) gives the distance to its µ-th nearest neighbor.
Core points are connected if they are closer than ε. The
transitive hull of density-connected core points defines a
cluster and contains all points that are density-reachable, i.e.,
that have a ‘chain’ of core points connecting them. These
concepts are used in a variety of literature, e.g., [7], [23].
The mutual reachability distance dm is often used in methods
building on top of it (e.g., [1], [5], [22]) and is defined as
dm(x, y) = max(deucl(x, y), core dist(x), core dist(y)) for
x, y ∈ X , where deucl is the Euclidean distance.

2) Hierarchical Density-Connected Structures: Analogous
to hierarchical single-linkage (SL) clustering [19], the minimum
spanning tree (MST) captures the hierarchical structure of
density-connected clusters. While the MST for SL clustering
is based on the Euclidean distance, the MST for density-based
clustering is based on the mutual reachability distance [2], [26].
The minimax path distances on this MST imply a tree metric
ddc that captures the smallest ε s.t. two points are density-
reachable [2] and whose values can be stored in a tree Td. Its
root node contains the length of the largest edge in the MST,
and its leaves represent the points in the dataset. The distance
ddc(x, y) between two points is stored in their lowest common
ancestor in Td, and w.l.o.g., we can assume that Td is binary.

B. Density-Connectivity Loss

We capture density-connectivity in the high-dimensional
space with ddc and enhance the structure by using the Euclidean
distance in the low-dimensional embedding. As ddc is path-
based, it hides information about the entanglement of structures
and reduces it to information about their connectivity. Thus,
we minimize the following density-connectivity loss:

Ld(X ) =
1

|X |2
∑

xi,xj∈X
( ddc(xi, xj)− deucl(zi, zj) )

2 (1)

for any points xi, xj in X and their corresponding embedded
points zi = enc(xi), zj = enc(xj). Minimizing Ld preserves
the inter-cluster distances and decreases intra-cluster distances,
yielding a higher separability between clusters. As using the
whole dataset at once is often not feasible, we optimize the
loss function in a batch-wise manner, i.e., we regard Ld(B) for
any points xi, xj in the batch B. In Section III-C2, we show
the stability across various batch sizes.

C. Preserving the Structure in the Embedding

To preserve the shapes of the clusters in the low-dimensional
embedding, we additionally minimize the reconstruction error:

Lrec =
1

|B|
∑
xi∈B

∥xi − x̂i∥22 (2)
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where x̂i = dec(enc(xi)) is the reconstruction of xi.
We can enforce the separation of the different density-

connected clusters and preserve the cluster structure by in-
cluding Ld, s.t. our overall loss function is: L = Lrec + Ld

Training on this combined loss function creates an em-
bedding that enhances density-connected structures while
preserving their shapes, making it very suitable for visualizing
data. It is, furthermore, the basis for finding density-based
clusters with our novel clustering technique described in
Section II-D. This technique unites multiple desirable and
hard-to-reach properties: it returns a stable clustering, it detects
noise, it finds the number of clusters fully automatically, and
it allows clusters with different densities.

D. Fully Automatic Clustering and Noise Detection

We can now perform the final clustering step in the embedded
space. As the clusters’ potentially non-convex shapes are
preserved in the embedding, we cannot simply apply k-Means
like some of our competitors. Instead, we detect the density-
based structures in the low-dimensional embedding based on the
cluster hierarchy given by Td (see Section II-A2). Note that Td
offers a variety of possible clusterings, some of which are better
than others. While DBSCAN-like clustering can be obtained by
thresholding the tree at a user-given ε, this would prevent the
detection of clusters with different densities, and ε is hard to
choose. Thus, automatically detecting the best partitioning for
a given tree is desirable. We impose two additional challenges
that are especially important for exploratory data analysis, as
it is typical for our unsupervised setting: 1) the number of
clusters should be detected automatically, and 2) points that
do not belong to a cluster should not be assigned to a cluster,
i.e., the algorithm needs to be able to detect noise. Note that
no other deep clustering algorithm fulfills these requirements,
yet. Our novel method, SHADE, is the first deep clustering
method that inherently detects noise and is simultaneously
part of a small group of deep clustering algorithms that can
automatically identify the number of clusters. SHADE solves
both problems by introducing a novel measure for stability and
a method to find the most stable clustering.

1) Stability of Clusters: For SHADE, we define stable
clusters as clusters that persist for a large variety of densities.
Our stability value corresponds to the range of densities that
produce the same cluster besides bordering or noise points.
We compute it by first reducing the cluster hierarchy to nodes
relevant to the structure of the tree and then regard the values
of nodes in consecutive levels in this simplified structure tree.

Notation: A group of leaves l(a) is defined by its lowest
common ancestor node a in a tree T and has |l(a)| many
members. The node a stores the distance value T (a). We
refer to the parent node of a with p(a) and the children with
ch(a). For all ε ≥ Td(a) the nodes l(a) ∈ Td build a proper
density-connected cluster as known from DBSCAN(∗) [7].

a) Structure Tree: To capture the relevant cluster splits
(rather than splits between a cluster and bordering noise), we
define a structure tree T . It exclusively contains nodes of
Td where both children have at least µ leaves. T = {a ∈

Td| ∀ch ∈ ch(a) : |l(ch)| ≥ µ}. Nodes b ∈ Td that do not
fulfill this property are skipped in T , and if they have children,
their leaves l(b) are assigned to the topmost child of b that
fulfills the property. This assigns bordering noise points within
a distance < Td(p(a)) to their closest cluster. If, after this step,
a node only has one remaining child, we merge the child node
with its parent and keep the ddc value of the child node.

b) Stability: The range of densities for which
points ∈ l(a) build a density-connected cluster c is the absolute
difference between Td(a)−1 and Td(p(a))−1, considering the
density given by 1/ε. Regarding the structure tree T and
including the sizes of the clusters gives us the stability S(c)1:

S(c) =

(
1

Td(a)
− 1

Td(p(a))

)
· |l(a)| (3)

The stability of a clustering C is the sum of its cluster’s
stabilities: S(C) =

∑
c∈C S(c)

2) Automatically finding most stable clustering: Finding
the most stable clustering efficiently is not trivial, as there
are many potential clusterings for a given hierarchy. Note that
we look for a flat clustering, where each cluster is defined
by a root node containing all descendant leaves of the root
node. Furthermore, especially for exploratory use cases, it is
important to detect the number of clusters automatically – a
property that most deep clustering methods do not have. Thus,
instead of listing every possible clustering and computing its
stability or aiming for a certain number of clusters, we find the
most stable clustering similarly as [5] with a two-step approach
where we only need one bottom-up pass through the structure
tree followed by a top-down pass:

Bottom-up: We regard a cluster ca implied by a common
ancestor a. If a is a leaf node of T , we flag the node a as a
base case containing at least 2µ−2 points. Else, if the stability
S(ca) of ca is larger than the sum of its children’s stabilities,
we also flag the node a: the cluster ca leads to higher overall
stability than choosing the clusters implied by a’s children
and is thus preferable: If S(ca) >

∑
b∈ch(a) S(cb) then ca is

flagged. If not, we store the best possible stability so far in ca
and continue, i.e., S(ca) :=

∑
b∈ch(a) S(cb).

Top-down: Every flagged node with no flagged ancestor
defines a cluster. For this, we can traverse the tree depth-first
and return whenever we hit a flagged node. Nodes that are not
flagged and have no flagged ancestor are noise.

III. EXPERIMENTS

We describe the setup, data, and evaluation in Section III-A.
We show analyses on synthetic data in Section III-B, an ablation
study in Section III-C, our method’s quality in Section III-D,
and discuss its limitations in Section III-E.

A. Experiment Details

a) Algorithms: We compare SHADE with the following
deep clustering methods (cf. Section IV): The k-means like
DCN [29], DEC [28], and IDEC [8]; DipDECK [15] and

1Note the ultrametric property of Td which determines that Td(p(a)) ≥
Td(a) for any a (besides the root node).



DipEncoder [14], deep clustering methods that are more
flexible w.r.t. cluster shapes; and DDC [20] a sequential deep
density-based clustering method. Note that except for SHADE,
DipDECK, and DDC, all the other algorithms need the ground
truth number of clusters given by the user in advance.

b) Setup: All methods were trained with a batch size of
500, a target embedding size of 10, Adam as the optimizer, and
50 pretrain epochs for the used AE for all methods, except for
SHADE, which does not need a pretrained AE. All methods
were then (further) optimized on their respective loss function
for 100 epochs. We report average results over ten runs for each
experiment. For preprocessing, we applied a z-normalization
for all image data and a feature-wise z-normalization for all
tabular data. For SHADE, we consistently use µ = 5 for every
experiment. As for the other methods, we used the default
settings of [16] for all hyperparameters.
Our full code and supplementary material are available at
https://github.com/pasiweber/SHADE.

c) Data: We evaluate all algorithms on synthetic, tabular,
video, and image data (see Table IV). Furthermore, we also
applied SHADE on popular (deep) clustering benchmark
datasets whose clusters usually are of Gaussian shape, as
Optdigits [17], USPS [9], MNIST [13], FMNIST [27], and
KMNIST [6] and report the results in [3].

d) Evaluation: As SHADE is the first deep density-
based clustering method that handles noise, the comparison
to methods that do not detect noise is not trivial. Hence,
in all tables and figures where we compare the results of
our algorithm to other methods, we assign every detected
noise point to its closest cluster. We label this comparison
variant ’SHADE 1nn’. However, assigning every point to a
cluster, instead of allowing noise, is neither our goal nor
meaningful in exploratory data analysis. This assignment serves
the sole purpose of enabling a fair, non-biased assessment of
the clustering quality compared to our competitors according
to best practices [24].

B. Systematic Evaluation regarding Noise

We evaluate the impact of up to 90% additive uniform noise
on synthetic datasets with 5000 data points and 100 dimensions.

Fig. 3: ARI on synthetic data with varying noise ratio. Note
that SHADE yields the highest quality and simultaneously the
lowest variances across ten runs. This shows the importance
of inherent noise handling for deep clustering algorithms.

Fig. 3 shows the clustering performance on the non-noise points,
where SHADE excels as it is the only deep method that can
detect noise points.

C. Ablation Study

1) Varying Parameter µ: Density-connectivity often depends
on hyperparameters like µ and ε. As Td captures all possible
density-connected clusterings in dependence of ε, users do not
need to predefine ε. While µ influences the robustness against
the single link effect, it is often fixed to some low default value
(e.g., in [5], [7]), as it does not significantly change the results.
This aligns with established [26] and recent research [23]. In
Table I, we exemplarily show SHADE’s robustness w.r.t. µ on
COIL20 as a representative dataset. Thus, we set µ = 5 for
all experiments, as this is enough to avoid single links, and
similar values are often recommended (e.g., [7], [23]).

TABLE I: SHADE’s average clustering results for varying µ.
The default value for SHADE is µ = 5 (gray column).

Dataset Metric µ = 3 µ = 4 µ = 5 µ = 6 µ = 7

COIL
20 ARI 83.6± 4.8 81.3± 8.4 82.5± 4.5 84.5± 3.1 83.4± 4.2

noise 11.4± 2.2 10.9± 2.2 12.5± 1.9 14.2± 1.8 14.8± 3.4
k 16.8± 0.6 16.6± 0.8 16.5± 1.0 16.9± 0.8 17.3± 0.8

2) Varying Batch Size: The batch size in the training phase
of our algorithm is more important than in other deep clustering
algorithms as it restricts us from learning an approximate
optimum of our original loss function stated in Equation (1).
Hence, we conducted an ablation study to show SHADE’s
robustness against different batch sizes, see Table II. We
exemplarily report results for COIL20 here. We choose a batch
size of 500 for all other experiments.

TABLE II: SHADE with different batch sizes. The default
value is batchsize = 500 (gray column).

Dataset Metric 100 300 500 700 900

COIL
20 ARI 77.6± 8.4 84.1± 5.0 85.2± 1.9 82.7± 4.3 83.2± 4.8

noise 14.0± 3.4 15.7± 2.1 13.6± 2.0 14.8± 1.9 13.0± 2.2
k 17.9± 2.1 17.9± 1.6 16.9± 0.7 16.7± 1.6 16.7± 0.9

3) Different Parts of our Loss Function: Table III shows an
ablation study regarding the different parts of our loss function:
we test the original LD combined with Lrec, only the LD loss,
and only the Lrec loss. We report the average across all tested
datasets. The combination of the LD and Lrec loss performs
best according to all three evaluation measures.

TABLE III: Individual performance and average scores of
SHADE with varying loss functions.
Per default, both Lrec and Ld are included (gray column).

Dataset Metric LD + Lrec LD Lrec

Aver
ag

e ARI 62.6± 5.9 61.9± 5.0 61.0± 5.4
NMI 79.0± 4.4 78.0± 3.8 78.4± 3.3
DCSI 55.7± 2.13 54.2± 2.4 53.4± 1.3

D. Performance Benchmark

Table IV shows our benchmark study with the competitors
and datasets described in Section III-A. SHADE performs very

https://github.com/pasiweber/SHADE


TABLE IV: Clustering results measured by ARI of SHADE 1nn, where we assign all noise points to their nearest cluster for
better comparability with our competitors. Note that we discuss results for TCGA in Section III-D and for HAR in Section III-E.

Dataset SHADE 1nn DDC DipDECK DipEncoder DCN DEC IDEC src

Ta
bu

la
r

da
ta

Synth low 98.9± 2.0 56.9± 5.5 33.9± 6.4 10.1± 9.9 9.6± 9.7 40.2± 3.0 15.3± 8.8 [10]Synth high 97.5± 1.4 33.9± 11.1 29.9± 13.6 9.3± 10.7 8.8± 10.5 30.3± 3.5 17.9± 6.6

HAR 36.4± 6.4 49.4± 3.3 51.3± 4.0 60.0± 6.9 66.1± 1.3 63.4± 2.4 64.9± 0.9

[17]

letterrec. 23.0± 0.9 9.9± 2.9 7.3± 3.5 24.7± 1.3 22.6± 1.0 23.9± 1.6 25.2± 1.8
htru2 65.0± 19.5 49.4± 13.0 9.7± 19.4 4.3± 0.8 49.7± 2.8 3.0± 0.5 3.2± 0.6
Mice 27.7± 2.9 25.2± 1.9 22.7± 4.3 21.6± 2.6 21.7± 1.4 22.0± 1.5 21.8± 1.4
TCGA 80.0± 13.7 87.5± 0.8 88.8± 4.4 93.4± 6.0 87.2± 5.3 85.1± 2.7 82.6± 0.9
Pendigits 75.1± 0.8 76.9± 2.0 74.3± 1.1 64.6± 3.0 61.6± 1.9 65.7± 3.3 64.9± 2.6

V
id

eo Weizmann 48.2± 3.6 14.7± 1.8 12.0± 1.9 23.3± 1.2 24.6± 1.1 24.9± 1.2 24.7± 1.2 [4]
Keck 7.5± 0.4 −0.2± 1.1 6.9± 0.8 7.1± 0.3 6.4± 0.5 6.1± 0.9 6.2± 0.9 [30]

Im
ag

e COIL20 68.7± 3.5 62.0± 5.5 50.5± 7.8 64.0± 3.0 62.4± 2.8 63.7± 2.8 62.9± 2.9
[17]COIL100 56.8± 5.0 16.4± 3.8 21.4± 3.0 54.3± 1.9 55.9± 3.0 55.8± 2.0 56.9± 2.0

cmu faces 34.6± 6.2 35.0± 3.5 29.8± 9.8 37.9± 2.2 40.3± 2.0 35.8± 2.8 39.4± 3.3

well on almost all datasets. One exception is the TCGA dataset,
which contains five different tumor types as clusters. Based on
the good results of centroid-based methods in Table IV, we
believe that TCGA contains Gaussian-like clusters, which are
well-represented with prototypes for each tumor type. Note
that we tested data that potentially contains density-connected
structures – many benchmark datasets like MNIST do not
contain density-connected, but convex clusters and should rather
be clustered with centroid-based deep clustering algorithms.

Table IV shows that SHADE is remarkably successful on
the datasets where we know that they contain density-based
structures, i.e., the synthetic datasets and the Weizmann video
data. On synthetic datasets, our algorithm reaches an ARI
above 97.0, whereas the second-best method merely reaches
an ARI of 56.9 resp. 33.9. For both datasets, the runner-up is
DDC – our only competitor including a concept of density.

E. Limitations

On HAR, our competitors outperformed SHADE. However,
the confusion matrix in Fig. 4 and a brief analysis of the
class labels shows why: HAR contains motion data for six
activities. Three of them describe motions and three are resting
activities. These classes are density-connected, as the transition
between the activities walk, walk upstairs, and walk downstairs
are smooth. SHADE almost perfectly differentiates between
moving and not moving activities, which might not yield high
ARI values but is a reasonable clustering nevertheless.

Fig. 4: HAR Confusion Matrix. x-axis gives ground truth
classes, y-axis clusters detected by SHADE

IV. DISCUSSION AND RELATED WORK

A. Density-based Clustering

Density-based algorithms (e.g., DBSCAN [7] or Density
Peaks [21]) have several important advantages compared to

other clustering paradigms. Most of them can find clusters of
arbitrary shape, detect the number of clusters automatically, and
can handle noise. These are invaluable properties for real-world
use cases where the expected results or properties of the data
are not known beforehand. Where centroid-based clustering
methods are often based on strong assumptions about the data,
like assuming underlying Gaussian distributions, density-based
methods are more flexible and data-driven. The associated
hyperparameters, however, are often hard to set.

Furthermore, density-based clustering methods are often
slow and do not perform well in high-dimensional data. Thus,
finding density-connected structures is, in general, no trivial
task, especially for large and high-dimensional data.

B. Deep Clustering

Deep clustering describes the combination of deep learning
techniques with specific clustering objectives. Here, various
deep learning architectures can be used, with most deep
clustering methods based on feedforward [11] or convolutional
[12] autoencoders (AEs). AEs transform the data into a lower-
dimensional space by applying the encoding function enc(·)
and try to reconstruct the original representation using the
decoding function dec(·). Deep clustering approaches utilizing
AEs usually optimize the loss function L = λ1Lrec+λ2Lclust,
where Lrec validates the quality of the embedding by compar-
ing the input x and output enc(dec(x)) of the AE and Lclust

strengthens the existing clustering structures. Most established
deep clustering methods use a centroid-based objective as the
basis for Lclust. They are often related to k-Means using
either soft assignments, like DEC [28] and IDEC [8] or hard
assignments, like DCN [29], and ACe/DeC [18] for centroid-
based deep clustering. The centroid-based objective pulls
clusters together such that they can collapse onto their cluster
centroid. While this can improve clustering accuracy, it destroys
the density-based structure. Another problem is the assumption
that distances within the clusters are smaller than distances
between clusters – which is not true for density-connected
clusters. Other methods attempt to address this problem. E.g.,
DipEncoder [14] considers modalities instead of distances.
Here, each cluster can obtain an individual spread, leading



to more diverse patterns within the embedding. However, it
can still only identify convex cluster shapes. DipDECK [15]
overcomes this limitation by initially overestimating the number
of clusters, which are later merged if they show a coherent
structure. Here, multiple k-means-like clusters can be combined
to capture more complex patterns.

C. Sequential Deep Density-based Clustering

Current methods at the intersection of deep and density-
based clustering only work sequentially. They first learn a
representation (independently of the density-based clustering
objective) using a neural network and, afterward, apply a
(non-deep) density-based clustering method on top of this
representation. E.g., DDC [20] sequentially applies an AE,
t-SNE [25], and a variant of Density-Peak Clustering (DPC)
[21] in the embedding. While DDC profits from the advantages
of both the AE and t-SNE, it also inherits the drawbacks of
both. If the AE learns a poor initial embedding, undesired
structures are reinforced by t-SNE, resulting in an insufficient
final representation. Outliers can strongly distort the result
of t-SNE. As DDC follows a sequential approach, it cannot
improve the representation w.r.t. the density-based clustering
concept. Note that by applying DPC as a last step, DDC finds
density-based clusters, but not necessarily density-connected
structures (see Section IV-A): e.g., DDC does not find elongated
density-connected structures as shown in Fig. 1. Nevertheless,
DDC achieves an overall strong cluster performance.

V. CONCLUSION

We present SHADE, the first deep clustering method
that incorporates density in its loss function. It preserves
density-connected structures in low-dimensional embeddings,
allowing a meaningful visualization that is especially useful
for exploratory data analysis. SHADE finds arbitrarily shaped
clusters and even topologically intertwined structures while
automatically detecting the number of clusters. Our experiments
show SHADE’s superiority on various datasets and noisy
data. For more elaborations and experiments, we refer to
https://arxiv.org/abs/2410.06265.
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