
The Journal of Systems and Software 222 (2025) 112343

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

On the understandability of machine learning practices in deep learning and
reinforcement learning based systems✩

Evangelos Ntentos a ,∗, Stephen John Warnett a,b , Uwe Zdun a

a Faculty of Computer Science, Research Group Software Architecture, University of Vienna, Vienna, Austria
b UniVie Doctoral School Computer Science DoCS, Faculty of Computer Science, University of Vienna, Vienna, Austria

A R T I C L E I N F O

Keywords:
Machine learning
Modeling
Best practices
Controlled experiment
Empirical software engineering

A B S T R A C T

Machine learning (ML) has emerged as a transformative subject, using various algorithms to help systems
analyze data and make predictions. Deep Learning (DL) uses neural networks to address hard problems.
Reinforcement Learning (RL) is a way to solve problems by making consecutive decisions.

Understanding ML systems based only on the source code is often a challenging task, especially for
inexperienced developers. In a controlled experiment involving one hundred fifty-eight participants, we
assessed the understandability of ML-based systems and workflows through source code inspection compared
to semi-formal representations in models and metrics.

We hypothesize that ML system diagrams modeling details of ML workflows and practices like transfer
learning and checkpoints can enhance the understandability of ML practices in system design comprehension
tasks, assessed through task correctness. Additionally, providing these sources could lead to an increase in task
duration, and we expect a significant correlation between correctness and duration.

Our findings show that providing semi-formal ML system diagrams with the source code improves the
effectiveness of the correctness for the DL relevant tasks. The control group had an average correctness
of 0.7121, while the experimental group had a higher average correctness of 0.7759. On the other hand,
participants who received only the system source code showed slightly better performance in the correctness
task (average correctness 0.6808) within the RL relevant tasks compared to those who also received the semi-
formal diagrams (average correctness of 0.6612). However, no significant difference was found in the duration
task between the two. The control group, for the DL relevant tasks, took an average of 1571.62 s, whereas the
experimental group took an average of 1763.85 s. For the RL relevant tasks, the control group had an average
of 1883.80 s, while the experimental group 1925.46 s. However, semi-formal ML system diagrams can benefit
specific scenarios.
1. Introduction

In the rapidly evolving field of artificial intelligence, DL, a subset
of ML, has become a highly effective tool for addressing complex prob-
lems. Use neural networks to solve complex problems. In the same way,
RL has become important in solving sequential decision-making tasks
and developing automation and intelligence (Winder, 2021). Transfer
learning is gaining traction from both DL (LeCun et al., 2015; Pouyanfar
et al., 2018) and RL (Zhu et al., 2023; Islam et al., 2023; Tan et al.,
2018) which is an effective way to improve the learning process by
transferring knowledge from one domain to another. Transfer learning
aims to improve the model’s adaptability and applicability in various
tasks (Valliappa Lakshmanan, 2021).

✩ Editor: Alexander Chatzigeorgiou.
∗ Corresponding author.
E-mail addresses: evangelos.ntentos@univie.ac.at (E. Ntentos), stephen.warnett@univie.ac.at (S.J. Warnett), uwe.zdun@univie.ac.at (U. Zdun).

In software engineering, ML design models serve as a collection of
best practices for addressing common challenges and providing solu-
tions. These models refine the collective expertise and insights of expe-
rienced professionals. It provides practitioners with widely applicable
guidance.

Industry-scale systems often support a wide range of practices and
implementations, making it challenging to evaluate whether a given
system adheres to best practices and models. Today, in ML, the source
code of the ML system is usually the only source to comprehend
the ML workflow and the use of best practices and patterns in those
workflows (Winder, 2021; Chen et al., 2023; Eisenman et al., 2020;
Hosna et al., 2022). This can make it hard to comprehend the ML
workflows and assess their conformance to best practices and patterns,
https://doi.org/10.1016/j.jss.2025.112343
Received 27 March 2024; Received in revised form 18 October 2024; Accepted 9 J
vailable online 16 January 2025
164-1212/© 2025 The Authors. Published by Elsevier Inc. This is an open access ar
anuary 2025

ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://orcid.org/0000-0002-7997-905X
https://orcid.org/0000-0003-0650-0981
https://orcid.org/0000-0002-6233-2591
mailto:evangelos.ntentos@univie.ac.at
mailto:stephen.warnett@univie.ac.at
mailto:uwe.zdun@univie.ac.at
https://doi.org/10.1016/j.jss.2025.112343
https://doi.org/10.1016/j.jss.2025.112343
http://creativecommons.org/licenses/by/4.0/

E. Ntentos et al.

u
c
u
n
n
d

p

a
h

s

t
a

c
a
s

d
n

i

a

an

o
m
w

a
s
f
e

b
c
a
d

The Journal of Systems & Software 222 (2025) 112343
as the source code of those workflows can be complex and hard to
nderstand. Many techniques exist to realize the same ML workflows in
ode, and multiple technologies and library versions further complicate
nderstanding. This is especially true for software developers who are
ovices in ML, and today, more and more software developers who are
ot formally trained in ML have to work on such systems. Conversely,
ata scientists with limited software engineering education often have

to perform software engineering tasks in the context of ML workflows.
Design and architecture models, commonly used in other software
engineering fields to ease the comprehension of complex source code
parts, remain virtually unused so far for modeling ML workflows.

This study aims to answer the following research question:

• RQ To what extent does the provision of semi-formal architecture
models, in addition to system source code, improve the under-
standability of ML patterns and practices, particularly for software
developers with limited ML experience?

This empirical study aims to address this question by evaluating
articipants’ understanding of ML practices in the context of deep

learning and reinforcement learning. To do so, we experimented with
 total of 158 participants who are trained as software developers but
ave limited ML experience. We created four groups (see Section 4.3,

and we call the tasks in the groups, where the participants get only a
ystem source code repository, the Control Tasks, and the tasks in the

four groups, where the participants get a system source code repository
plus help in the form of models, the Experiment Tasks.

We hypothesize that measuring understandability through the de-
pendent variables’ correctness and duration would reveal a significantly
better understanding of ML practices when models of a given system are
provided. More specifically, correctness is used to measure the effective-
ness, and duration is used to measure the efficiency of understanding
ML practices.

Our results show that participants who were given a system source
code repository, and semi-formal ML models demonstrated a signifi-
cantly better understanding than those who only received the system
source code repository. The provision of models showed an improve-
ment in the effectiveness of understanding the ML practices without
impacting the overall efficiency.

1.1. Structure of this paper

We provide an overview of ML practices and related studies in
Section 2. Section 3 discusses related work. Next, we describe the
planning of this study in Section 4. In Section 5, we detail the execution
of the experiment, and the results are presented in Section 6. We discuss
he results in Section 7. Section 8 we describe the threats to validity,
nd we conclude in Section 9.

2. Background

In this section, we provide an overview of the background for this
study. We introduce two ML design patterns (Valliappa Lakshmanan,
2021) and the relevant architectural models. These patterns apply in
many forms to both deep learning and reinforcement learning.

2.1. Design patterns

In machine learning, design patterns are useful for addressing the
common issues faced when developing and training models. These pat-
terns provide structure and organization to the tasks of data handling,
model optimization, and effective workflow management. Checkpoints,
for example, present a methodical approach of storing a model state
at specific intervals in time, which helps to resume the training phase
with minimal loss of data. Transfer learning capitalizes on the use
of pre-learned models to apply to new tasks in order to improve the
performance of those tasks, thus cutting down on the training time and
osts involved. Adoption of such design patterns leads to better resource
llocation, ease of model exploitation across various applications, and
implification of maintenance.
 m

2
Checkpoints. During ML training, interruptions or failures can result in
ata loss and inefficient use of computing resources. It indicates the
eed for a mechanism to maintain and restore the ideal state. Winder

(2021) which guarantees training recovery to the precise point.
Strengthening ML Workflows in the Long-Term Additionally, it is
mportant to be able to specialize the model beyond initial training.

This problem involves the complex, time-consuming process of
training ML models and the possibility of training interruption or
failure. Restarting training from scratch in such cases can be inefficient
nd result in the loss of valuable data. Dedicated computation and

data loss affect efficiency, especially when there is a need to restart
training. Storage and computation need to increase due to the high
demands imposed by ML processes (Chen et al., 2023). Adding features,
such as saving ML model states, increases the complexity of the code
in ML pipelines, and latency becomes a consideration, with additional
pipeline steps impacting overall training time.

One solution to address these challenges is to use checkpoints (Eisenm
et al., 2020; Winder, 2021). This practice allows storing the complete
state of the ML model regularly during training. This facilitates training
recovery from a specific point and ensures the reliability of your ML
workflow.

The solution details involve key pattern participants and concepts,
including the creation of a checkpoint repository to store and organize
checkpoints, defining when and how checkpoints are created, manag-
ing checkpoints with assigned names or identifiers and metadata, and
utilizing checkpoints for purposes such as resuming training, model
persistence, and fine-tuning.

However, this pattern also provides certain drawbacks. Storage
and computation overheads are incurred, especially with big fashions
or extended schooling processes. Managing many checkpoints may
additionally turn out to be hard, and there may be an ability advent
f computational overhead, despite the fact that that is commonly
inimal compared to the benefits received. Implementing and dealing
ith checkpoints can also introduce complexity into the ML pipeline,

requiring extra code and considerations regarding how and when to
create checkpoints. Additionally, developing and saving checkpoints at
regular durations introduce latency into the training procedure, which
may additionally impact actual time or time-touchy packages.

Variations include checkpoints. Agrawal et al. (2023) in deep learn-
ing where checkpoints are generated at the end of each training epoch
for training the deep neural network and checkpoints in reinforcement
learning where algorithm checkpoints determine the state of the al-
gorithm used to ensure the continuity of the reinforcement learning
process.

Transfer learning. The need for a mechanism to be able to preserve
nd recover the model state to enable the recovery of training from
pecific points is emphasized by the demand for specialized models
or particular cases, such as adapting resource-intensive models to
fficiently meet specific objectives (Winder, 2021; Hosna et al., 2022).

Standard solutions include the use of transfer learning (Winder,
2021; Hosna et al., 2022; Farahani et al., 2021). This involves loading
a saved model from a previously trained model repository. The new
model is optimized to address the same problem.

There are many forces influencing this problem and the resulting
solutions. Transfer learning emphasizes the efficiency of information.
It leverages knowledge from pre-trained models to source functions
with sufficient data (Winder, 2021; Hosna et al., 2022; Raffel et al.,
2023). This information shows known properties. This reduces reliance
on large amounts of job-specific data. Resource efficiency is completed
y using reusing the trained model load. This ends in faster model
onvergence and reduces hardware requirements. Transfer learning
lso supports domain optimization by adapting to changes in the data
istribution. Effective use of relevant features and knowledge.

Transfer learning offers an efficient way to leverage pre-trained
odels on large labeled datasets. This approach eliminates the need for

E. Ntentos et al.

i
o
h

i
r
t
s
d
g

a
(
d

l

l

a

W

s

s
t
a

m
T

a
F
t
a
o
c
e
n
s
t
a

p
l
a
d
p
a

p

i
l
c

s
s
g
t
a
g
d
t
d
s
t
d
M

w
f
p

The Journal of Systems & Software 222 (2025) 112343
extensive custom datasets. It allows small organizations and specialized
sectors to develop custom models tailored to specific tasks. They can
benefit from collective knowledge using the wealth of research and
nsights gained from others in the field. Additionally, advances in state-
f-the-art transfer learning are powered by images and suites that
ave significantly increased the capabilities of this technique. Also,

this technique enables model similarity and improves performance on
specific tasks (Winder, 2021; Hosna et al., 2022; Farahani et al., 2021;
Raffel et al., 2023).

Pattern variants consist of transfer learning in deep learning, which
includes leveraging a pre-trained version, freezing its weights, and
ntegrating non-trainable layers into a new model. In the context of
einforcement learning, transfer learning empowers agents to improve
heir overall performance on related obligations via leveraging under-
tanding from previous experiences, overcoming challenges related to
ata scarcity, and time-consuming training in domains such as robotics,
aming, natural language processing, and autonomous systems.

2.2. ML scripts and pipeline models

The behavior or workflow of the ML system is usually given either
s an ML script or a pipeline. Both can be modeled as an extended
i.e., more detailed) activity diagram. An illustrative script/pipeline
iagram is presented in Fig. 1.

ML scripts are basically pieces of code written to carry out machine
earning tasks step by step. They manage different parts of the process,

like bringing in data, cleaning it, training a model, and testing how well
the model works. These scripts make sure that all the tasks are done in
the right order and help automate things that would otherwise take a
ot of time.

In more advanced systems, like reinforcement learning, ML scripts
lso manage things like setting up the learning environment, training

agents, and saving the model during training so it can be used later.
An ML pipeline can be represented using formal model diagrams.

e use and extend a formal modeling method based on our prior
work (Zdun et al., 2017). All script/pipeline diagrams adhere to a
equential pattern, guiding the flow from an initial node to a designated
final node. These diagrams comprise pipeline nodes that symbolize dis-
tinct stages within the pipeline. Notable pipeline node types encompass
teps like data extraction and analysis, data preparation, and model
raining in deep learning, and RL environment setup, RL model saving,
nd RL model training in reinforcement learning.

Pipeline nodes can have specific properties. Each pipeline node, at a
inimum, features an automatic property, which can assume a value of
rue or False to signify whether the step executes automatically. Most

steps in a script/pipeline are usually automated. Other properties in-
cludes runs in (indicating the component(s) in which the step operates),
output to (identifying the component(s) receiving the step’s output),
invokes (identifying the component(s) that are called by the step, such
as a task), and environments (specifying the execution environment(s) in
which the step operates). Please note that the execution environments
are the cloud or local execution environments in which the components
run and not the reinforcement learning environments.

Complex pipelines may involve multiple branching paths, denoted
s fork nodes, with these distinct paths converging at a join node.
or instance, if there are multiple triggers for a pipeline run, these
riggers branch out from a fork node, with their paths later merging
t a join node. Additionally, there are decision nodes, enabling a choice
f paths, usually annotations with a question to be decided. Outgoing
onnections in a process diagram can have labels like yes or no’’ For
xample, if a human needs to decide whether to approve releasing a
ew model version into production, this decision can be shown with
uch labels. If a connection is labeled asynchronous call, it means that
he process can move forward without waiting for the result from
nother step. The main step continues running while the other one
happens at the same time.

3
3. Related work

This section provides an overview of the existing literature on ML
best practices and studies that employ comparable methodologies to
our research.

Hosna et al. (2022) contribute to the field of transfer learning by
resenting a paper that discusses the domain and scope of transfer
earning, considering its situational use based on different periods
nd applications. The paper delves deeply into techniques like In-
uctive Transfer Learning, Transductive Transfer Learning, and Unsu-
ervised Transfer Learning, covering aspects such as sample selection
nd domain adaptation. Agrawal et al. (2023) make a significant

observation regarding the sensitivity of model weights to compression
during training. They propose a non-uniform quantization scheme,
an efficient search mechanism to adjust quantization configurations
dynamically, and a quantization-aware delta compression mechanism,
all instantiated in DynaQuant - a framework for deep learning workload
checkpoint compression. Chen et al. (2023) introduce self-ensemble
rotection (SEP), a model that leverages checkpoints’ gradients. SEP

is effective due to its ability to learn from examples ignored during
normal training and the orthogonal nature of checkpoints’ cross-model
gradients, making them diverse without training multiple models. Chen
et al. (2020) propose LC-Checkpoint, a lossy compression scheme for
checkpoint constructions, optimizing both compression rate and recov-
ery speed. LC-Checkpoint uses quantization and priority promotion to
store crucial information for SGD recovery, employing Huffman coding
to leverage the non-uniform distribution of gradient scales. Eisenman
et al. (2020) introduce Check-N-Run, a scalable checkpointing system
designed for training large ML models at Facebook. The system ad-
dresses size and bandwidth challenges through differential checkpoint-
ng, which tracks and checkpoints the modified part of the model and
everages quantization techniques to reduce checkpoint size without
ompromising training accuracy.

Warnett and Zdun (2024) carried out a controlled experiment with
ixty-three participants to evaluate the understandability of MLOps
ystem architecture descriptions. They compared informal textual and
raphical representations with UML-based diagrams. Their results show
hat task correctness significantly improves when UML-based diagrams
re used. Additionally, they noted that incorporating UML-based dia-
rams does not significantly extend task duration and thus does not hin-
er understanding. They also found that a significant positive correla-
ion between task correctness and duration, but only when semi-formal
iagrams are utilized. Similar to our research, they recruited university
tudents, provided UML-based diagrams as assistance, and statistically
ested their hypotheses. However, their study used a between-subject
esign and focused on MLOps system architecture features rather than
L practices.

Allodi et al. (2020) conducted a study involving seventy-three par-
ticipants to evaluate the accuracy of security professionals and students
with advanced technical education in assessing the severity of soft-

are vulnerabilities based on various attributes. In contrast to our
ocus on comparing different system description methods, they em-
hasized participants’ background knowledge and education. A signif-

icant methodological difference is categorizing participants into three
groups: students with a BSc in information security enrolled in an MSc
in information security degree program, students in an MSc in computer
science program, and security practitioners. Moreover, they specifically
recruited students with no professional expertise, distinguishing their
approach from ours.

Heijstek et al. (2011) conducted a controlled experiment that resem-
bles our investigation. Their primary objective was to assess the efficacy
of visual versus textual artifacts in conveying software design decisions
to software developers. The study enlisted forty-seven participants from
both industry and academia who evaluated UML representations as
diagrammatic artifacts and informal textual descriptions. However, dis-

tinctions exist between their research and ours. Firstly, all participants

E. Ntentos et al.

v
s
a
H
t
b

t
v
e
c
F
t
s
t
s
a

The Journal of Systems & Software 222 (2025) 112343
Fig. 1. Generic pipeline diagram illustrating the elements and relations.
H
s

m

in their study assessed both representations, whereas there may be
ariations in the evaluation process in our research. Secondly, our study
pecifically delves into ML practices in the context of deep learning
nd reinforcement learning, setting it apart from the broader scope of
eijstek et al.’s inquiry. These methodological variations underscore

he unique aspects of our study, making a valuable contribution to the
roader research landscape in this field.

Labunets et al. (2014) conducted a controlled experiment with
wenty-nine MSc students to investigate participants’ perceptions of
isual and textual methods for security risk assessment in terms of
ffectiveness. Although their study shares similarities with ours in
omparing visual and textual representations, notable differences exist.
irstly, the research does not specifically examine the distinctions be-
ween formal and informal representations, nor does it revolve around
ystem understanding, which is a key focus of our study. Additionally,
heir experiment does not investigate ML practices, which is our re-
earch’s primary area of interest. This underscores the specific scope
nd objectives of our study.

Allodi et al. (2017) executed a controlled experiment with twenty-
nine students to explore the challenges participants face in assess-
ing system vulnerabilities when security requirements change. Unlike
4
our study, they employed a within-subject design, concentrating on
variations in system requirements rather than modeling differences.

owever, similar to our approach, they formulated hypotheses and
ubjected them to testing using statistical methods.

Our work’s main contribution is its study on how using ML sys-
tem diagrams modeling workflows, including transfer learning and
checkpoints alongside source code can help people better understand

achine learning systems, especially in deep learning and reinforce-
ment learning. While those related works have looked at best practices
in ML, such as transfer learning and checkpoints, this study focuses on
how these diagrams can help beginners who have limited experience
with ML. By testing how well participants performed tasks and how
long it took them, the research shows that these diagrams improve
understanding. This work fills a gap in the field by offering practical
advice on when and how to use visual aids to make complex ML systems
easier to understand, which has not been deeply studied before.

4. Experiment planning

Our research aligns with the empirical research principles outlined
in the field of software engineering, as proposed by Jedlitschka et al.

E. Ntentos et al.

g
e

e

i

p
c
T
r

s
c
s
M
t
a

m
s

f
a
r
b
t

c
t
S
c
t

a
8
1
u
i
a
m

c

f
t

t
c
t
n

o
o

d
t
t
b

e

r

The Journal of Systems & Software 222 (2025) 112343
(2008). Furthermore, the study design integrates empirical research
uidelines in software engineering from sources including Kitchenham
t al. (2002), Wohlin et al. (2012), and Juristo and Moreno (2001). In

terms of statistical analysis applied to the gathered data, the study em-
ploys the robust statistical methods recommended in empirical software
ngineering by Kitchenham et al. (2016).

4.1. Goals

In this experiment, the goal is to perform a code and model review
n a limited time session of 1.5 h regarding the design of two systems

(one DL and one RL) and recommended model training patterns and
ractices used in them. The goal was to assess understanding through
ode and model reviews, with a specific emphasis on DL and RL scripts.
he focus was on the review of general design aspects and specific
ecommended model training patterns and practices. In particular, the

checkpoints and transfer learning practices described in Section 2 were
tudied. For both systems, the participants reviewed a system source
ode. To study the extent to which participants understand a given
ystem, each participant received help in the form of a model of the
L system to be studied in one of the two tasks. In the tasks where

his help is present, we advised participants to consult the models first
nd then study the code if more details are required.

4.2. System description

The selection is based on their domain. The focus is on reinforce-
ent learning including game environments and on medical image clas-

ification. Both systems utilize advanced techniques, such as Proximal
Policy Optimization (PPO) and transfer learning, demonstrating dif-
erent machine learning methodologies. Furthermore, the source code
vailability ensures transparency and reproducibility as well as allows
esearchers to efficiently examine and compare the results. Moreover,
oth systems have detailed documentation facilitate understanding and
roubleshooting.

The Reinforcement Learning System using Checkpoints system1 (Fig. 2)
reated in 2023, is a Python-based reinforcement learning framework
hat trains agents in the Knights-Archers-Zombies environment using
table-Baselines3 and SuperSuit for multi-agent training and prepro-
essing. It uses the PPO (Proximal Policy Optimization) algorithm to
rain agents, with CNN and MLP policies depending on whether the

observations are visual or vector-based. The system applies multiple
SuperSuit wrappers, including black_death_v3 to handle agent death
nd ensure a constant number of agents. It trains models for around
1,920 timesteps and evaluates them over 100 games. With around
37 lines of code, it effectively handles agent training and evaluation,
sing vectorized environments and saving trained models. The system
s flexible, allowing for easy adjustments to different agent setups,
nd supports multi-agent scenarios through the PettingZoo library. We
odified the system to use checkpoints.2

The Deep Learning System using Transfer Learning system3 (Fig. 3)
reated in 2020, is a Python-based machine learning pipeline using

TensorFlow, Keras, and TensorFlow Hub for transfer learning in both
image and text classification tasks. It first trains a model on the col-
orectal_histology dataset (5000 images, 8 classes) using a pre-trained
VGG19 model from TensorFlow Hub with additional layers for classi-
ication. The system preprocesses the data, creates batches, and fine-
unes the model for 15 epochs, optimizing using Adam and categorical

1 Reinforcement learning source code available at: https://web.archive.org/
web/20240119081250/https://pettingzoo.farama.org/tutorials/sb3/kaz/.

2 Refer to Data and Scripts/RL System Source Code/checkpoints_RL.py at
https://doi.org/10.5281/zenodo.14677668.

3 Transfer learning source code available at: https://github.com/
GoogleCloudPlatform/ml-design-patterns/blob/master/04_hacking_training_
loop/transfer_learning.ipynb.
5
cross-entropy. Additionally, it trains a sentiment analysis model using
the IMDB reviews dataset, leveraging pre-trained gnews-swivel-20dim
text embeddings, and adds dense layers for binary classification. The
otal system includes around 168 lines of code for data loading, model
onstruction, training, and evaluation. It is optimized for efficient
ransfer learning by freezing pre-trained layers and focusing on the
ewly added layers.

4.3. Context and design

In this study, we chose to employ a Within-Subjects Design based
n the insights provided by Charness et al. (2012) on the advantages
f this experimental approach in certain contexts. In a within-subject

design, each participant goes through all conditions, which increases
statistical accuracy since each person acts as their own control. This
method is particularly useful in our study, where we aim to identify
small differences in task performance when participants have addi-
tional support versus when they do not. Furthermore, within-subject
designs tend to align well with theoretical models in which a single
individual is exposed to variations in their environment, which matches
our interest in observing how different support structures (help versus
no help) affect the same participant’s performance across two systems.

To minimize potential biases often associated with within-subject
designs – such as order effects and demand characteristics – we intro-
uced the reversed-order groups (A2 and B2). This approach addresses
he concern that participants may perform differently on the second
ask due to learning or fatigue from the first task, as highlighted
y Charness et al. (2012). By alternating the order of tasks with and

without help between groups, we reduce biases and strengthen the
xperiment’s internal validity. This design ensures that any differences

in performance are more likely due to the presence or absence of help,
ather than the order in which the tasks are done

Each student was assigned two tasks, one with help and one with-
out. The two sub-tasks were called:

• Deep Learning System using Transfer Learning (DLS).
• Reinforcement Learning System using Checkpoints (RLS).

The groups are composed as follows:

• (A1) DLS: system source code repository and additional help with
semi-formal models + RLS: only system source code repository.

• (A2) RLS: only system source code repository + DLS: system
source code repository and additional help with semi-formal mod-
els; identical to A1, only order reversed.

• (B1) RLS: system source code repository and additional help with
semi-formal models + DLS: only system source code repository.

• (B2) DLS: only system source code repository + RLS: system
source code repository and additional help with semi-formal mod-
els; identical to B1, only order reversed.

4.4. Participants

Our study involves advanced Bachelor’s students enrolled in the
Software Engineering 2 (SE2) and Distributed Software Engineering
(DSE) courses. Both courses use an introductory pre-test designed to
assess participants’ knowledge related to the course. The pre-test al-
lowed us to identify any knowledge gaps and tailor the course content
to address specific areas of concern. Participation in the experiment,
which consisted of a hands-on task during the lecture, contributed 5%
towards the students’ overall course points. No further incentives were
provided beyond this participation credit. Participants were offered the
possibility to engage in the hands-on task while opting out of the exper-
iment. In preceding lectures leading up to the hands-on task, topics such
as code reviews, design practices, and general design patterns were

discussed. Participants were also introduced to the experiment through

https://web.archive.org/web/20240119081250/https://pettingzoo.farama.org/tutorials/sb3/kaz/
https://web.archive.org/web/20240119081250/https://pettingzoo.farama.org/tutorials/sb3/kaz/
https://doi.org/10.5281/zenodo.14677668
https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/04_hacking_training_loop/transfer_learning.ipynb
https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/04_hacking_training_loop/transfer_learning.ipynb
https://github.com/GoogleCloudPlatform/ml-design-patterns/blob/master/04_hacking_training_loop/transfer_learning.ipynb

E. Ntentos et al.

p
m

The Journal of Systems & Software 222 (2025) 112343
Fig. 2. Semi-formal model of the reinforcement learning script pipeline.
f

an informational text.4 This introduction covered background in ML,
ertinent deep learning and reinforcement learning practices, and the
odeling techniques employed in the experiment.

Moreover, our participants show a varied spectrum of knowledge
and expertise in the field of software development. A notable reference

4 Refer to the Information Sheet available in the experiment documents
archived online at: https://doi.org/10.5281/zenodo.14677668.
6
point is a 2016 survey conducted on the online platform Stack Over-
low, which involved fifty thousand developers.5 A comparison between

the characteristics of our participants and those from the survey reveals
noteworthy similarities in key demographics. Notably, all participants
in our study possessed diverse levels of programming experience, a crit-
ical factor for effectively comprehending and reviewing the provided
source code materials (see Section 6.2 for detailed information).

5 https://survey.stackoverflow.co/2016

https://doi.org/10.5281/zenodo.14677668
https://survey.stackoverflow.co/2016

E. Ntentos et al.

d

t
p
a
e

e

i
i
t
t
s

Z

The Journal of Systems & Software 222 (2025) 112343
Fig. 3. Semi-formal model of the deep learning script pipeline.
o
e
i
d
p
s
t

In our study, we use advanced Bachelor’s students as proxies for the
target population of software developers with limited ML training or
ata scientists with limited software engineering training. Our study ob-

jectives do not revolve around techniques exclusive to a select group of
highly trained experts, and as such, we did not specifically target such
individuals. In alignment with the findings of Kitchenham et al. (2002),
utilizing students in our study is deemed appropriate, as they represent
the next generation of software professionals and share similarities with
he population of interest. This is reinforced by the fact that some
articipants in our experiment possessed several years of programming
nd industry experience. Furthermore, corroborating studies by Höst
t al. (2000), Runeson (2003), Svahnberg et al. (2008), Salman et al.

(2015), and Falessi et al. (2018) argue that students can serve as
valid representatives for professionals in specific empirical software
ngineering experiments.

4.5. Material and tasks

The experiment is based on a selection of ML practices. The selection
ncludes the practices for Checkpoints and Transfer Learning summarized
n Section 2. The selected software practices are related to the subjects
aught in the courses SE2 and DSE, such as related software modeling
echniques, software design patterns, and software architecture. This
tudy consists of two major experiment material artifacts6:

6 See our replication package published on the long-term open repository
enodo: https://doi.org/10.5281/zenodo.14677668.
7
• (1) Information Sheet. A document explaining the ML practices
with an example model that was provided to participants two
weeks before the experiment was conducted.

• (2) Survey Form. Four experiment survey forms per group were
handed out to participants during the experiment sessions.

All experiment survey forms are structured the same way, consisting
f three parts: (1) a participant information questionnaire; (2) two
xperiment tasks (for one of the four groups A1, A2, B1, B2 explained
n Section 4.3); (3) an overall experiment questionnaire. Each task is
ivided into sub-tasks to test the participants’ understanding of ML
ractices. The participants were instructed to read the code and de-
criptions in the given repositories for each system before they started
o process the following four sub-tasks:

• Seven tasks with four true/false answers for practices were used
to determine the understanding of used/supported/realized tech-
niques in the provided systems. An example from Task RLS.1
follows:
What is the purpose of using checkpoints during training in this
example? (Multiple options might be correct)

□ The checkpoints are part of the model evaluation step and are
created to record the validation results.

□ Checkpoints are used during training to save the policy train-
ing so far. This is particularly important in case training
gets interrupted or for later model evaluation and deploy-
ment.

https://doi.org/10.5281/zenodo.14677668

E. Ntentos et al. The Journal of Systems & Software 222 (2025) 112343
Table 1
Structure of the questionnaire.
Section Questions/Elements

Demographics Age (Optional), Gender (Optional), Highest Education Level, Programming
Experience, Modeling Experience, Industry Experience, Prior Knowledge in Deep
Learning, Reinforcement Learning, and Formal Modeling

Deep Learning Task (DLS) DLS.1 - Transfer Learning, DLS.2 - Model Layer Configurations, DLS.3 - Epochs
Trained, DLS.4 - Component Relationships, DLS.5 - Order of Script Steps, DLS.6 -
Automation and Outputs, DLS.7 - Training Practices, DLS.8 - Detailed Relations

Deep Learning Survey Confidence in answers, Ease of understanding system descriptions and diagrams,
Identifying components and relations, Understanding DL/RL practices, Component
models for large-scale systems

Reinforcement Learning Task (RLS) RLS.1 - Checkpoints in Training, RLS.2 - Checkpoint Frequency, RLS.3 - Agent
Training, RLS.4 - Component Relationships, RLS.5 - Order of RL Script Steps, RLS.6 -
Automation and Outputs, RLS.7 - Transfer Learning Relations, RLS.8 - Detailed
Relations

Reinforcement Learning Survey Confidence in answers, Ease of understanding system descriptions and diagrams,
Identifying components and relations, Understanding RL practices

Concluding Survey Familiarity with textual and graphical descriptions before the study
e

a

□ Multiple agents are trained in parallel in the Reinforcement
Learning environment. The checkpoints are stored every
1000 training steps using a callback.

□ The checkpoints can be used to compare the results of dif-
ferent stages of the training. While training should usually
improve over time, in Reinforcement Learning, earlier it-
erations may perform better than later ones. If this is the
case, a checkpoint can be used instead of the model stored
after the training.

• A task involving the appropriate sequencing of pipeline steps
was employed to assess comprehension regarding the sequence of
steps in the provided systems. For instance, consider Task DLS.5:
Put the following major steps of the machine learning script into
the correct order in which they are performed. Use numbers like
1, 2, 3 . . . Some steps are not part of the script. Add no number for
those steps. If a step is performed repeatedly or more than once,
only put in the number for the first occurrence and add ‘‘*’’.

Model Building

Model Training

Data Processing

Model Loading

Model Saving

Data Transformation

Data Version Control

Data Ingestion

Data Loading

Model Version Control

Mini-Batch Creation

Model Validation

Model Deployment

Hyperparameter Tuning

• In addition to the tasks, a task-based questionnaire was used
to obtain an objective perspective later (see Section 6.6) of the
participants’ self-assessment based on their subjective assessment
of how confident they were in the correctness of their answers
compared with their answers’ true correctness.

Table 1 presented above outlines the main structure of the question-
naire used in the hands-on tasks for Deep Learning and Reinforcement
Learning
8
4.6. Variables and hypotheses

To address the research question, we formulated the following
hypotheses to explore the relationship between experimental condi-
tions and their impact on understanding ML practices. Our controlled
xperiment measures the following two dependent variables:

• Correctness as achieved in answering the questions, which in-
cludes trying to mark the correct answer and filling in the blanks
in the tasks. It is used to measure the effectiveness of understand-
ing ML practices.

• Duration as the time it took to complete the experiment tasks
(excluding breaks). It is used to measure the efficiency of under-
standing ML practices.

The two dependent variables, correctness and duration, may be used
to gain insight into the overall understandability of system source code
nd descriptions (Czepa and Zdun, 2019, 2020; Paulweber et al., 2021;

Siegmund et al., 2012; Hoisl et al., 2014). Accordingly, we devised the
following Null Hypotheses:

• H01 There is no significant difference in correctness for Experimen-
tal compared to Control.

• H02 There is no significant difference in duration for Experimental
compared to Control.

• H03 There is no significant increase in correctness as duration
increases for Experimental compared to Control.

and the corresponding Alternative Hypotheses:

• Ha1 There is significant difference in correctness for Experimental
compared to Control.

• Ha2 There is significant difference in duration for Experimental
compared to Control.

• Ha3 There is significant increase in correctness as duration in-
creases for Experimental compared to Control.

5. Experiment execution

This experiment was executed in three stages: a preparation phase,
a pilot test, and a procedure phase.

5.1. Preparation

Two weeks before the experiment, we distributed preparatory ma-
terials, including the experiment information sheet (refer to Section 2),

E. Ntentos et al.

w
t
a
s
p
t
t
d

S
w
f
T
w
p
q

d
s
c
t
a
m

p
v
t

t
s
p

i

s

t
w
w
s
v
d

o
c
c

i

The Journal of Systems & Software 222 (2025) 112343
through an e-learning platform.7 This document furnished participants
ith general information about the upcoming experiment and an in-

roduction to ML practices. Comprising ML patterns and practices,
n illustrative model, and a comprehensive description, the document
erved as a valuable reference. Participants were permitted to use a
rinted version of this document during the experiment. The distribu-
ion of the experiment information document was essential to ensure
hat all participants were equally well-informed about ML practices in
eep learning and reinforcement learning, as outlined in Section 2.

5.2. Pilot test

Following the preparation of our experimental materials, we con-
ducted preliminary tests with student tutors from our research group.
imilar to participants in subsequent stages, we provided the tutors
ith the information sheet two weeks in advance, allowing them to

amiliarize themselves with the necessary knowledge for the tasks.
he tutors participated in the experiment under predefined conditions,
hich included the option to seek clarifications on the experimental
rocedure, a ninety-minute timeframe for responding to experiment
uestions, and no additional support beyond the provided materials.

Beyond the pilot tests, we gathered feedback from the tutors about
their experiences. Without making any changes to our experiment
esign, we took note of the tutors’ feedback. The feedback we received
uggests that our information sheet was expertly designed, providing
lear instructions for tackling the experiment questions. We crafted
he information sheet exceptionally well, offering ample guidance for
ddressing the experiment questions. Given this positive feedback, we
aintained our original experiment design.

5.3. Procedure

The experiment took on the format of a closed-book exam, utilizing
en and paper, and the participants were provided with a printed
ersion of the source code for both systems. Participants were restricted
o bringing only the preparation material, as outlined in Section 4,

to aid in completing the experiment tasks. At the commencement of
he experiment, each participant was handed a random experiment
urvey form (refer to Section Section 4.5). Distribution ensured ap-
roximately equal numbers of forms of each type (A1, A2, B1, B2

in Section 4.3). Participants were instructed to systematically fill out
and process the survey from the first page to the last page in the
specified order. Additionally, a clock displaying seconds granularity
was projected onto a wall to furnish timestamp information to the
participants. They were directed to record start and stop timestamps
while executing the experiment tasks. Subsequently, the participants’
task start and stop timestamps were converted into a duration in
seconds and aggregated to determine the total duration for all tasks.
To safeguard the confidentiality of participant data, an individual not
involved in the experiment dissociated personal information (such as
name and student number) from the experiment sheets by assigning a
unique identification number.

6. Analysis

The statistical analysis for the study was conducted using the R
programming language.8 This analysis contains several steps, includ-
ng loading the pre-processed dataset outlined in Section 6.1, calcu-

lating descriptive statistics for the dependent variables discussed in
Section 6.4, performing group-by-group comparisons through relevant
tatistical hypothesis tests as discussed in Section 6.5, and generat-

ing tables and plots. The reproduction of these results requires the
installation of specific R library package dependencies.9

7 https://moodle.univie.ac.at
8 Refer to https://www.r-project.org for version 4.2.2.
9 Refer to Data and Scripts/Scripts/install.r at https://doi.org/10.5281/

zenodo.14677668.
9
Fig. 4. Participants’ age.

Fig. 5. Participants’ programming experience.

6.1. Data-set preparation

The collected raw data10 from the experiment execution phase (refer
o Section 5) was prepared as follows: (1) a Microsoft Excel document
as exported to a Comma-Separated Values (CSV) file; (2) the CSV file
as imported for further processing; (3) type casting was performed for

everal data rows; and (4) the overall correctness for all task correctness
alues was calculated. The data set is published in the long-term open
ata archive Zenodo11 together with all documents and R scripts.

6.2. Participant demographics

The experiment collects data on participants’ age (as depicted in
Fig. 4), gender, course, educational level, programming experience
(refer to Fig. 5), industry experience in software (refer to Fig. 6), and
knowledge of DL and RL practices (refer to Figs. 7 and 8) to capture
their background information and experience.

The tables provide an overview of percentages for participants’
experiences. The data is compared between two groups: DLS and RLS,
each with both experimental and control conditions.

Table 2 shows participants’ experience in the software industry.
The largest group of participants (around 58%–65%) reported having
no experience. For those with experience, the percentages drop as
the years of experience increase. Most participants have between 1 to
2 years of experience, and only a few have more than that. Both the
experimental and control groups have very similar patterns, meaning
their levels of experience in the software industry are quite comparable.

Table 3 shows participants’ experience with deep learning. Most
people (about 58%–61%) have no experience, while around 39%–42%
have some. This is true for both the experimental and control groups,
meaning their knowledge of deep learning is quite similar.

In Table 4, we can see the participants’ experience with reinforce-
ment learning. A large majority (87%) reported no experience, while
nly 13% have some. This is the same for both the experimental and
ontrol groups, which suggests that reinforcement learning is not very
ommon among participants.

Table 5 shows the programming experience of participants. There
s a wide range of experience here, with many people having between

2 to 4 years. The largest group (around 25%–30%) has 3 years of

10 See Experiment Documents/Questionnaire Results/experiment-results.csv
at https://doi.org/10.5281/zenodo.14677668.

11 https://doi.org/10.5281/zenodo.14677668

https://moodle.univie.ac.at
https://www.r-project.org
https://doi.org/10.5281/zenodo.14677668
https://doi.org/10.5281/zenodo.14677668
https://doi.org/10.5281/zenodo.14677668
https://doi.org/10.5281/zenodo.14677668

E. Ntentos et al.

s

e

P
t
w
s
s

p
a
w
a
l
b

d
a

The Journal of Systems & Software 222 (2025) 112343
Fig. 6. Participants’ software industry experience.

Fig. 7. Participants’ deep learning experience.

Fig. 8. Participants’ reinforcement learning experience.

programming experience, followed by those with 4 years (17%–24%).
The experimental and control groups are very similar in this area.

Table 6 shows participants’ experience with modeling. Most partic-
ipants have 2 years of experience (26%–35%), followed by those with
1 year (17%–21%). Both experimental and control groups have nearly
the same distribution, meaning there are not big differences between
them.

For the RLS the results are reversed for the Control and Experimental
ince we applied the Within-Subjects Design (Charness et al., 2012).

We did not specifically remove students with little ML or DL knowl-
dge from the study because their goal was to include a wide range of

experience levels, similar to what is often found in real-world projects.
articipants had between 0 and 11 years of industry experience, and
heir programming experience ranged from 0 to 14 years. While some
ere early in their careers, others had more practical knowledge. The

tudy also used questionnaires to get feedback from students who had
ome real-world experience, even if they were not experts.

By focusing on practitioners with limited ML expertise, we want to
explore how they deal with DL and RL technologies. The fact that many
articipants were not ML specialists is not seen as a weakness but rather
s a realistic reflection of the industry, where many developers must
ork with ML technologies without deep formal training. The authors
rgue that this mix of participants better represents the current tech
andscape, where engineers often have to use ML in their work without
eing experts in the field.

While the non experts might not be ideal for understanding the
behavior of highly specialized ML engineers or data scientists, we be-
lieve it accurately reflects the real-world experience of many software
evelopers. These developers often face the challenge of using ML
longside their broader software engineering work, even if they do

not have extensive ML training. We acknowledges that the inclusion
of students with limited ML or DL knowledge might affect how well
the results apply to more specialized groups, but it still offers valuable

insights into how typical developers interact with ML practices.

10
Table 2
DLS experimental and control group percentage for experience in soft-
ware industry.
Years DLS experimental DLS control

0 65.38 58.23
1 10.26 22.78
2 10.26 11.39
3 5.13 2.53
4 5.13 0.00
5 1.28 2.53
6 1.28 1.27
7 0.00 1.27
11 1.28 0.00

Table 3
DLS experimental and control group percentage for experience in deep
learning.
Experience DLS experimental DLS control

No 60.76 58.23
Yes 39.24 41.77

Table 4
DLS experimental and control group percentage for experience in rein-
forcement learning.
Experience DLS experimental DLS control

No 87.34 87.34
Yes 12.66 12.66

Table 5
DLS experimental and control group percentage for experience in pro-
gramming.
Years DLS experimental DLS control

0 3.80 6.33
1 5.06 7.59
2 16.46 16.46
3 30.38 25.32
4 17.72 24.05
5 6.33 7.59
6 6.33 1.27
7 3.80 5.06
8 7.59 2.53
10 1.27 1.27
11 0.00 1.27
12 0.00 1.27
13 1.27 0.00

Table 6
DLS experimental and control group percentage for experience in mod-
eling.
Years DLS experimental DLS control

0 5.06 13.92
0.33 0.00 1.27
0.5 5.06 2.53
1 17.72 21.52
1.5 3.80 6.33
2 35.44 26.58
2.5 3.80 5.06
3 21.52 12.66
3.5 0.00 1.27
4 5.06 7.59
7 0.00 1.27
8 1.27 0.00
9 1.27 0.00

6.3. Normality assessment

The normal Q-Q plots for DLS (Fig. 9) for correctness indicate that
the data for both Control and Experimental appear to follow a normal
distribution. Furthermore, examining the normal Q-Q plots for RLS
for correctness (Fig. 10), it can be inferred that the data for Control

E. Ntentos et al.

n

t

b

T

d
t
t

t
f
a

The Journal of Systems & Software 222 (2025) 112343
Fig. 9. Normal Q-Q plot of Correctness (DLS).
Fig. 10. Normal Q-Q plot of Correctness (RLS).
appears normally distributed. However, it is inconclusive regarding the
ormality of the data for Experimental.

To test for normality, we chose the Shapiro–Wilk (Shapiro and Wilk,
1965) normality test since, according to Razali and Yap (Mohd Razali
and Yap, 2011), it is more powerful than alternatives (such as
Anderson–Darling (Anderson and Darling, 1954), Lilliefors (Lilliefors,
1967), and Kolmogorov–Smirnov (Kolmogorov, 1933)). Assuming
𝛼 = 0.05, the test for DLS shows that the Control’s and Experimental’s
distributions are not significantly different from the normal distribu-
tion, with a value 𝑝 > 𝛼. For RLS, the test indicated that the Control’s
distribution is not significantly different from the normal distribution
either, whereas Experimental’s distribution significantly deviates from
he normal distribution, with a value 𝑝 ≤ 𝛼.

Visual inspection of the normal Q-Q plots for both groups and
oth systems for duration, visible in Figs. 11 and 12, was insufficient

to determine whether each group’s data were normally distributed.
he Shapiro–Wilk normality test for DLS indicated that Experimental’s

distribution significantly deviates from the normal distribution. In con-
trast, Control’s distribution is not significantly different from the normal
istribution, with a value 𝑝 ≤ 𝛼. However, for RLS, the test indicated
hat, for duration, the groups’ distributions significantly deviate from
he normal distribution, with a value 𝑝 ≤ 𝛼 for both groups.

6.4. Descriptive statistics

Correctness
Table 7 and Table 8 show the number of corresponding observa-

ions, central tendency measures, and dispersion measures per group
or the dependent variable.correctness12 These statistics are illustrated
s a kernel density plot in Fig. 13 and Fig. 15 and as box-plots in Fig. 14

and Fig. 16
Visual inspection of the DLS correctness results (Fig. 13) and the

values in Table 7 indicates significant differences between Control

12 correctness is defined as a value in 0, 1 ∩ R.
[]

11
Table 7
Descriptive statistics per group of dependent variable Correctness (DLS).

Control Experimental

Number of observations 79 79
Mean 0.7121 0.7759
Standard deviation 0.1006 0.1242
Median 0.7188 0.7902
Median absolute deviation 0.0927 0.1324
Minimum 0.4375 0.3438
Maximum 0.9107 0.9464
Skew −0.6328 −0.9525
Kurtosis −0.1057 0.7913
Shapiro–Wilk Test 𝑝-value 0.0191 0.0002

Table 8
descriptive statistics per group of dependent variable Correctness (RLS).

Control Experimental

Number of observations 79 79
Mean 0.6808 0.6612
Standard deviation 0.1237 0.1233
Median 0.6741 0.6652
Median absolute deviation 0.1588 0.1324
Minimum 0.4152 0.3929
Maximum 0.8839 0.9152
Skew −0.1647 −0.1286
Kurtosis −0.9471 −0.7313
Shapiro–Wilk Test 𝑝-value 0.0383 0.3494

and Experimental across various statistical measures. The standard and
median absolute deviations demonstrate greater variability in Experi-
mental, indicating a wider range of data points. The skewness values
indicate that both groups exhibit a degree of asymmetry, with the
Experimental having a more pronounced leftward skew. Negative kur-
tosis in Control suggests a flatter distribution compared to Experimental,
which shows a more peaked distribution. The Shapiro–Wilk Test p-
values below the conventional significance level (0.05) suggest that
both groups deviate from a normal distribution.

E. Ntentos et al. The Journal of Systems & Software 222 (2025) 112343
Fig. 11. Normal Q-Q plot of Duration (DLS).
Fig. 12. Normal Q-Q plot of Duration (RLS).
Fig. 13. Kernel density plot of Correctness (DLS).

Fig. 14. Box-Plots of Correctness (DLS).

Fig. 15. Kernel density plot of Correctness (RLS).

Fig. 16. Box-Plots of Correctness (RLS).

Moreover, for the RLS, the statistical measures in Table 8 for the
Control and Experimental groups are presented. The mean values indi-
cate that Control has a slightly higher average (0.6808) than Experimen-
tal (0.6612). Both groups exhibit similar standard deviations (0.1237
for Control, 0.1233 for Experimental), indicating comparable variability.
12
Table 9
Descriptive statistics per group of dependent variable Duration (DLS).

Control Experimental

Number of observations 79 79
Mean 1571.62 1763.85
Standard deviation 607.84 954.04
Median 1489 1320
Median absolute deviation 431.44 518.91
Minimum 630 705
Maximum 3436 5357
Skew 0.9501 1.6488
Kurtosis 0.5306 2.6149
Shapiro–Wilk Test 𝑝-value 0.0003 0.0000

The median values and median absolute deviations are close, suggest-
ing similar central tendencies and dispersion around the median. The
minimum and maximum values show that the range of data points
is broader in Control. Skewness values are negative for both groups,
indicating a slight leftward asymmetry. Negative kurtosis values sug-
gest relatively flatter distributions for both groups. The Shapiro–Wilk
Test p-values (0.0383 for Control, 0.3494 for Experimental) indicate that
Control’s data deviates from a normal distribution, while Experimental’s
data is more consistent with normality.

Duration
Table 9 shows the number of observations, central tendency mea-

sures, and dispersion measures per group for the dependent vari-
able.duration13 Results for DLS shown in Table 9 indicate substantial
differences in the distribution of the observed values. The mean values
show a notable distinction, with Control having a mean of 1571.62 and
Experimental having a higher mean of 1763.85. The standard deviation

13 Duration is denoted in seconds.

E. Ntentos et al. The Journal of Systems & Software 222 (2025) 112343
Table 10
Descriptive statistics per group of dependent variable Duration (RLS).

Control Experimental

Number of observations 79 79
Mean 1883.80 1925.46
Standard deviation 1019.86 949.80
Median 1560 1670
Median absolute deviation 622.69 726.47
Minimum 782 723
Maximum 6242 5700
Skew 1.9091 1.3771
Kurtosis 4.2426 2.1888
Shapiro–Wilk Test 𝑝-value 0.0000 0.0000

Fig. 17. Kernel density plot of Duration (DLS).

Fig. 18. Box-Plots of Duration (DLS).

Fig. 19. Kernel density plot of Duration (RLS).

and median absolute deviation are considerably larger for Experimental,
signifying greater variability in the data compared to Control. The me-
dian values indicate that the center of the data is lower in Experimental
(1320) than in Control (1489). The range of values, as reflected by
the minimum and maximum, is wider in Experimental. Skewness values
reveal that both groups exhibit positive skewness, indicating a tail
towards higher values, with Experimental having a more pronounced
skew. The kurtosis values suggest that the distributions for both groups
are more heavy-tailed than a normal distribution. The Shapiro–Wilk
Test p-values are very low for both groups, indicating a significant
difference from normality.

Moreover, for RLS, the data in Table 10 indicates differences in the
distribution of the observed values. The mean values show that Exper-
imental has a slightly higher mean (1925.46) than Control (1883.80).
The standard deviation is lower in Experimental (949.80) compared to
Control (1019.86), suggesting less variability in Experimental. The me-
dian values indicate that the center of the data is higher in Experimental
(1670) than in Control (1560). The range of values, as reflected by the
minimum and maximum, is wider in Control. Skewness values reveal
that both groups exhibit positive skewness, indicating a tail towards
higher values, with the Control group having a more pronounced skew.
The kurtosis values suggest that the distribution for Control is highly
heavy-tailed, while Experimental is also heavy-tailed but to a lesser
extent. The Shapiro–Wilk Test p-values shows similar results to DLS.

These statistics are illustrated as a kernel density plot in Fig. 17 and
Fig. 19 and as box-plots in Fig. 18 and Fig. 20
13
Fig. 20. Box-Plots of Duration (RLS).

Table 11
Hypothesis tests per group for correctness.
System: DLS

cont vs. expr

Cliff’s 𝛿 Test
Cliff’s 𝛿 0.3616
𝑠𝛿 0.0854
𝑣𝛿 0.0073
𝑧𝛿 4.2336
CI (low) 0.1837
CI (high) 0.5166
𝑃 (𝑋 > 𝑌) 0.3089
𝑃 (𝑋 = 𝑌) 0.0205
𝑃 (𝑋 < 𝑌) 0.6706
𝑝 0.0000

System: RLS

cont vs. expr

Cliff’s 𝛿 Test
Cliff’s 𝛿 −0.0803
𝑠𝛿 0.0922
𝑣𝛿 0.0085
𝑧𝛿 −0.8706
CI (low) −0.2569
CI (high) 0.1015
𝑃 (𝑋 > 𝑌) 0.5329
𝑃 (𝑋 = 𝑌) 0.0144
𝑃 (𝑋 < 𝑌) 0.4527
𝑝 0.3853

6.5. Hypothesis testing

Correctness and Duration
Suppose multiple groups are being compared on several dependent

variables, as is the case in this study. Then, it is customary to employ
the Multivariate Analysis of Variance (MANOVA) statistical test under
the condition that specific assumptions are satisfied (Bray and Maxwell,
1982). This test helps determine whether independent variables impact
the dependent variables, individually or in combination. As Section 6.4
mentions, the distribution of Control for correctness and duration does
not significantly differ from the normal distribution. However, the
distribution of Experimental significantly differs from the normal dis-
tribution for correctness, but not for duration. It is important to note
that MANOVA requires all distributions to be normally distributed.
Therefore, it was essential to compare the variances of both groups for
both dependent variables to assess their equality, as this information
would guide the selection of appropriate statistical tests. In this study,
we opted to use Cliff’s 𝛿 (Cliff, 1993) as a robust and nonparamet-
ric test recommended by Kitchenham for scenarios where differing
distributions between populations, or unequal variances are present.
Although Cliff’s 𝛿 was originally designed for measuring ordinal data,
it is equally applicable to the quantitative and continuous data used in
this study (Delaney and Vargha, 2002; Hsu, 2004). This test estimates
the probability that a randomly selected observation from one group is
larger than a randomly selected observation from another group, taking
into account the reverse probability (Cliff, 2010).

When conducting multiple hypothesis tests using a single method
(in this case, Cliff’s 𝛿 was applied twice), it is necessary to adjust
the significance level (𝛼) to mitigate the risk of Type I errors.14 Sev-
eral methods can be employed for 𝛼 adjustment, such as the false
discovery rate (Benjamini and Hochberg, 1995) or the Bonferroni–
Dunn (Bonferroni, 1936; Dunn, 1961) correction. The Bonferroni–Dunn
correction is the most stringent form of correction and can be calculated
using Equation: 𝛼′ = 𝛼

𝑛 or 𝛼′ = 𝛼
𝑛 where 𝑛 is the number of times a

test was applied. In our study, this results in 𝛼′ = 0.05
2 = 0.025 where

𝛼 = 0.05 and 𝑛 = 2. The results of the one-tailed Cliff’s 𝛿 test are shown
in Table 11 for correctness and Table 12 for duration.

14 It is important to note that there is no need to adjust the significance level

(𝛼) when conducting tests for normality or comparing variances.

E. Ntentos et al.

s
s
C

i
a

p
a
g
c

n

v
t
s
H

The Journal of Systems & Software 222 (2025) 112343
Fig. 21. Scatter plot per group of the dependent variables Correctness to Duration (DLS).
r
n
t
a

a
w
H
H

s
l

d

Table 12
Hypothesis tests per group for duration.
System: DLS

cont vs. expr

Cliff’s 𝛿 Test
Cliff’s 𝛿 0.0333
𝑠𝛿 0.0929
𝑣𝛿 0.0086
𝑧𝛿 0.3587
CI (low) −0.1483
CI (high) 0.2128
𝑃 (𝑋 > 𝑌) 0.4799
𝑃 (𝑋 = 𝑌) 0.0069
𝑃 (𝑋 < 𝑌) 0.5132
𝑝 0.7203

System: RLS

cont vs. expr

Cliff’s 𝛿 Test
Cliff’s 𝛿 0.0570
𝑠𝛿 0.0926
𝑣𝛿 0.0086
𝑧𝛿 0.6159
CI (low) −0.1248
CI (high) 0.2351
𝑃 (𝑋 > 𝑌) 0.4679
𝑃 (𝑋 = 𝑌) 0.0072
𝑃 (𝑋 < 𝑌) 0.5249
𝑝 0.5388

For correctness, Cliff’s 𝛿 indicates by 𝑝 ≤ 𝛼′ that Experimental scored
ignificantly higher than Control. For duration, Cliff’s 𝛿 yielded 𝑝 > 𝛼′,
o we cannot conclude that Experimental took significantly longer than
ontrol to complete the experiment.

DLS. Based on Cliff’s 𝛿 we fail to reject the null hypothesis H01,
ndicating that there is not enough statistical evidence to support the
lternative hypothesis Ha1.

RLS. Concerning correctness, we reject the null hypothesis H01, which
suggests sufficient evidence to support the alternative hypothesis Ha1.

Regarding duration, for both DLS and RLS, we again fail to reject the
null hypothesis H02, indicating insufficient evidence for the alternative
hypothesis Ha2.

Correlation Between Correctness and Duration for DLS
Upon visually examining the scatter plot in Fig. 21, which explores

otential correlations between the two dependent variables correctness
nd duration, no evident linear correlation was observed for either
roup. For both Control and Experimental, there was a decrease in
orrectness with respect to time.

After the visual inspection, we deemed it necessary to perform a
correlation test. Spearman’s 𝜌 test was selected for this purpose.

Control group. Spearman’s 𝜌 coefficients (see Table 13) indicated a
egative association between correctness and duration. However, given

that 𝑝 > 𝛼′ (where 𝛼′ is derived from the earlier adjustment of 𝛼), we
fail to reject the null hypothesis H03, indicating insufficient evidence
to support the alternative hypothesis Ha3 for both tests.

Experimental group. Spearman’s 𝜌 coefficients (see Table 13) also re-
ealed a negative association between correctness and duration. Despite
his, the 𝑝-value 𝑝 > 𝛼′) suggests that the observed association is not
tatistically significant, leading us to fail to reject the null hypothesis
3. Additionally, the value of S obtained from Spearman’s 𝜌 test
0

14
Table 13
Correlation per group of the dependent variables Correctness with Dura-
tion per Group (DLS)

Control Experimental

Spearman’s 𝜌 −0.0651 −0.1640
𝑝 0.5688 0.1486
𝑆 87 506.3029 95 635.5933

Table 14
Correlation per group of the dependent variables Correctness with Dura-
tion per Group (RLS)

Control Experimental

Spearman’s 𝜌 −0.1185 0.0811
𝑝 0.2982 0.4773
𝑆 91 897.0184 75 495.2409

indicates that the ranks of the two variables are not identical, but this
evidence is not strong enough to support the alternative hypothesis.

Correlation Between Correctness and Duration for RLS
A visual inspection of potential correlations in Fig. 22 per group did

not reveal any significant linear correlation. In the case of Control, there
was a minimal decrease in correctness relative to time. On the other
hand, for Experimental, although there seemed to be a rise in correctness
with duration, the data points were widely dispersed from the indicated
reference line, making it inappropriate to assume a linear correlation.

Control group. Spearman’s 𝜌 coefficients (see Table 14) yielded similar
esults to DLS, indicating a weak positive association between correct-
ess and duration. However, given that 𝑝 > 𝛼′, we also fail to reject
he null hypothesis H03, providing insufficient evidence to support the
lternative hypothesis Ha3.

Experimental group. Spearman’s 𝜌 coefficients (see Table 14) showed
 very weak positive association between correctness and duration. As
ith DLS, the 𝑝-value suggests that we cannot reject the null hypothesis
03, indicating insufficient evidence for the alternative hypothesis
a3.

6.6. Observation

Following the details provided in Section 4.5, participants were in-
tructed to fill out a survey after each task to evaluate their confidence
evel in the accuracy of their responses. This self-assessment score was

calculated using a formula that considers both the correctness of par-
ticipants’ answers and their level of confidence in the correctness. The
erived formula for calculating the self-assessment score is presented

in Eq. (1):
5 − 𝑠𝑒𝑙 𝑓𝑐 𝑜𝑛𝑓 𝑖𝑑 𝑒𝑛𝑐 𝑒
𝑠𝑒𝑙 𝑓𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 = 𝑠𝑒𝑙 𝑓𝑐 𝑜𝑟𝑟𝑒𝑐 𝑡𝑛𝑒𝑠𝑠 − 5

(1)

E. Ntentos et al.

i

0
t

i
s
f

The Journal of Systems & Software 222 (2025) 112343
Fig. 22. Scatter plot per group of the dependent variables Correctness to Duration (RLS).
H
s

c

b

a

Fig. 23. Kernel density plot per group of participants’ self assessment (DLS).

Fig. 24. Kernel density plot per group of participants’ self assessment (RLS).

where 𝑠𝑒𝑙 𝑓𝑐 𝑜𝑟𝑟𝑒𝑐 𝑡𝑛𝑒𝑠𝑠 represents the participants’ average correctness as
defined in 6.4, with 0 indicating entirely incorrect answers and 1
ndicating completely correct answers.

The variable 𝑠𝑒𝑙 𝑓𝑐 𝑜𝑛𝑓 𝑖𝑑 𝑒𝑛𝑐 𝑒 ∈ [1, 5] ∩ R represents the average confi-
dence of participants based on a survey that utilized a five-point Likert
scale. Each point on the scale is assigned equidistant values within the
range of 1 to 5. A value of 1 indicates high confidence in the correctness
of the answers, while a value of 5 indicates low confidence.

The variable 𝑠𝑒𝑙 𝑓𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 ∈ [−1, 1] ∩ R represents the average self-
assessment score of participants. A value less than 0 (𝑠𝑒𝑙 𝑓𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 < 0)
indicates that participants tend to overestimate the correctness of their
answers. A value of 0 (𝑠𝑒𝑙 𝑓𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 = 0) indicates that participants ac-
curately estimate the correctness of their answers. A value greater than
 (𝑠𝑒𝑙 𝑓𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 > 0) indicates that participants tend to underestimate
he correctness of their answers.

Fig. 23 illustrates the kernel density plot of participants’ overall
self-assessment score per group. The plot shows that, on average,
participants in both Control and Experimental groups underestimated
their correctness across all tasks. Similarly, Fig. 24 indicates that both
Control and Experimental groups underestimated their correctness.

7. Discussion

7.1. Interpretation of the results

Correctness and Duration
In the DLS study, our investigation of H01 revealed a significant find-
ng: there was a difference in task correctness, indicating that providing
emi-formal ML system diagrams alongside source code improves per-
ormance. However, when we tested H 2, we found no significant
0 t

15
difference in task duration between Control and Experimental. Regarding
03, we observed that for both Control and Experimental, there was no

ignificant correlation between correctness and duration.
In contrast, during the RLS study, our examination of H01 showed

that Control performed similarly to, and slightly better than, Experi-
mental in task correctness. This result can be caused by a number of
factors. This includes the relatively small size of the system’s source
code and the added complexity from multiple diagrams. Participants
in the Experimental group may struggle to fully understand some of
the details in these diagrams, leading to minor misunderstandings.
Meanwhile, those in the Control group could more easily grasp the
underlying practices since they only had to deal with a modest amount
of source code.

Additionally, we noticed that modeling recurring elements as a
sub-activity within another model might have introduced unnecessary
omplexity. To address this, we included a third sub-model, but it

became clear that these sub-models might have added structural com-
plexities similar to those in the source code itself. This suggests that
models need to reach a certain level of abstraction to be truly useful,
though determining the exact threshold for this abstraction remains an
area for future research.

Similarly, when testing H02, we found no significant difference in
task duration between Control and Experimental. Moreover, in evaluating
task duration, it was apparent that participants in the Experimental
group took slightly more time to answer the questions. This result
can be expected given the additional cognitive load associated with
analyzing both the source code and the accompanying diagrams. When
testing H03, we discovered that within Control, no significant positive
correlation between correctness and duration was discerned; conversely,
within Experimental, a positive correlation between correctness and
duration was detected.

Furthermore, we must recognize that the complexity inherent in
the source code of DL systems presents unique challenges. It requires
a careful effort to identify and understand the various practices em-
edded within them. When we contrast the modeling approaches of

RLS and DLS systems, an interesting observation emerges. The RLS
model delved into finer details, offering a comprehensive depiction of
the workflow, while the DLS model embraced abstraction, providing
 broader overview. This difference suggests that the value of models

may lie in their ability to offer a level of abstraction distinct from the
source code. It leads us to consider that if the source code is available,
models might be most beneficial when they operate at a higher level of
abstraction. We employed different modeling strategies in developing
these two systems, each serving a unique purpose.

Correlation Between Correctness and Duration
Our initial impressions and intuition about DLS led us to expect a posi-
ive correlation between correctness and duration. However, contrary to

E. Ntentos et al.

t
i
a

i
r
c
d
b
s
r
c
M
p
a

s
m
h
b
w

t
s
t

m
t

I

s
m
a
r
b
u

h

k
a

p

c
t
A
t

i
t

d
t
a
d
t
t
a
e
i
a

s
a

a
t
l
e
d

The Journal of Systems & Software 222 (2025) 112343
our expectations, in the case of Control, there was no positive correla-
ion between correctness and duration. This indicates that participants
n Control were satisfied with the correct answer within a reasonable
mount of time. and continue the work accordingly.

On the other hand, in the case of RLS, as shown in Figs. 21 it is clear
that Experimental shows improvement with more time in correctness
n contrast to Control. Consistent with our initial hypothesis in our
esults for Experimental in both correctness and duration show a positive
orrelation. It is possible that participants in Experimental adopted a
ifferent strategy for answering the questions. Since the only difference
etween Control and Experimental was the inclusion of semi-formal ML
ystem diagrams, it is plausible that participants heavily relied on these
esources in Experimental. Alternatively, participants may have initially
onsulted the source code for answers and then used the semi-formal
L system diagram to review and edit their answers. This leads to a

ositive relationship between correctness and duration. This resulted in
 positive correlation between correctness and duration.

Therefore, participants working on source code should be aware
that spending more time on such tasks does not necessarily lead to
better performance in terms of correctness. Participants in Control spent
the same amount of time on average as compared to participants in
Experimental before being satisfied with the answer. This suggests that
other factors may affect the performance. In this study, semi-formal
models of ML systems have proven to be crucial, especially when the
time constraints are the same. This result further supports the necessity
of providing semi-formal ML system diagrams for practitioners.

Addressing the RQ

In the DLS, we found that giving participants models along with
ource code did help improve their accuracy in answering questions,
eaning they understood the ML practices better. However, the extra
elp did not make them complete the tasks any faster. This might be
ecause the models added more complexity, especially since the system
as fairly simple. In cases where the task was simple, just having the

source code was enough for participants to understand well. The extra
diagrams may have actually caused some confusion.

Overall, the study suggests that semi-formal models can improve
understanding, but how useful they are depends on the complexity of
he task and how clearly the models are designed. For easier tasks,
ource code alone might work better, but for more complex systems,
he models can make a positive difference.

We also found that in the RLS, participants who had the models took
ore time but were more accurate in their answers. This suggests that

he models helped them think more deeply. So, while models can be
useful, they should not be complex to be helpful for developers who
are new to ML.

Self Assessment
n Section 6.6, our examination of participants’ survey responses in the

context of DLS yielded an interesting finding: Those who did not receive
semi-formal ML system diagrams were more likely to estimate their
performance slightly more accurately than those with the additional
materials. Conversely, in the RLS, participants who did not receive
emi-formal ML system diagrams tended to underestimate their perfor-
ance slightly more than those who did receive them. The provision of

dditional semi-formal ML system diagrams may have contributed to a
eduction in confidence levels. It is possible that these participants may
e overwhelmed with information or have doubts about their complete
nderstanding of semi-formal ML system diagrams.

This result deviated from our initial expectations as we expected
igher levels of confidence in participants who performed better. How-

ever, this finding does not strongly support or oppose the use of
semi-formal ML system diagrams. Practitioners’ tendencies to display
overconfidence, underconfidence, or a position somewhere in between

are subjective and context-dependent; they cannot be solely deduced

16
from the relationship between correctness and duration.
Therefore, this observation remains neutral, with no definitive

tremendous or negative effect on our hypothesis. However, we ac-
nowledge the significance of careful consideration throughout our
nalysis.

8. Threats to validity

Threats to Internal Validity
The experiment proceeded without any problems that could affect the
rocess. Participants received clear instructions and an opportunity to

ask questions. There are no major concerns that may affect the sessions
and any individual questions will be handled personally.

The limited time for each session helped reduce the chance of any
hanges over time, and no such effects were observed. Each participant
ook part in only one session, preventing any learning between sessions.
ny learning that happened within a session did not give an advantage

o either Control or Experimental. All participants had an equal chance
to earn points for their performance, no matter which group they were
n, avoiding any bias in scoring. The random assignment of participants
o groups also helped prevent selection bias.

Although it was not possible to completely stop participants from
iscussing the experiment with others, steps were taken to reduce
he chance of this happening between sessions. Participants were not
llowed to take any materials with them or use electronic devices
uring the experiment. The complexity of systems and tasks, including
he distance between activities, reduces the opportunity for participants
o gain an advantage over the session. The random allocation of groups
ttempts to ensure an equitable distribution of benefits. The ban on
lectronic devices also prevents participants from accessing outside
nformation. As described in Section 5.3, the only authorized materi-
ls are the printed information sheets described in Section 4.5 and,

together with restricting access to the source code, prevent participants
from using other external sources.

Threats to External Validity
One issue that may affect the external validity of our study is the size of
the data, which may not be sufficient to produce statistically significant
results. To answer this concern we use robust statistical methods that
are tailored to the size of our sample. This ensures that the analysis is
carried out appropriately and accurately given the available data.

Another consideration of external validity arises from the use of
students rather than non-student professionals in our study. This raises
questions about the generalizability of our findings to practical settings.
To alleviate this problem we took measures to familiarize students
with the ML-related concepts used in the experiment. All participants
have different levels of theoretical background in software engineering,
distributed system programming, and industry experience. According
to the Stack Overflow industry survey (refer to Section 4.4), 69% of
respondents were self-taught, 43% held a bachelor’s degree in computer
cience or a related field, 19% had a master’s degree, and 2% had
 Ph.D. These statistics indicate that a significant portion of the fifty

thousand developers surveyed, even on a widely respected software
development platform, are self-taught and lack formal degrees. This
implies that having a degree may not necessarily be a prerequisite for
qualifying as a professional developer.

Given this context, we assert that students can reasonably serve
s substitutes for developers in our study. Consequently, we propose
hat our findings may apply to professional software developers, at
east to some extent. However, it would be prudent to replicate similar
xperiments with practitioners to confirm the absence of significant
ifferences compared to the population of professional developers.

While developers would normally use IDEs in real life, our experi-
ment was designed to test how well people understood the code when
diagrams were included, not how fast they could navigate it. Using

E. Ntentos et al.

C
w

d

c
t
p

i

i

a
t
k

i

t

p
n

i
f
s
d

a
d
a
o

t

t
E
t
p

The Journal of Systems & Software 222 (2025) 112343
printed code helped us see how the diagrams affected understanding
without other factors getting in the way. We agree that using IDEs
might change how long tasks take, but the controlled setup we used
still provides useful insights.

Threats to Construct Validity
hallenges to construct validity occur when there is uncertainty about
hether the methods used to measure and define variables truly rep-

resent the concepts being studied. These challenges can include doubts
about the accuracy of measurement methods, unclear definitions, in-
struments that are not sensitive enough, or bias introduced by the
researcher. In Section In Section 4.6, we focused on correctness and
uration as dependent variables to assess understandability, but we

acknowledged that other metrics might be more appropriate. Addition-
ally, there could be better ways to measure participants’ confidence in
answering our research question.

It is important to ensure that the times recorded by participants
accurately reflect the time they spent completing tasks. Threats to
onstruct validity here could include unclear task definitions, leading
o inconsistent timekeeping. We tried to reduce this risk by giving
articipants clear instructions and guidance.

To ensure reliable self-timing, we carefully checked the reliability
of all recorded timestamps when preparing the dataset, removing any
inconsistent or unrealistic entries. We also addressed any missing or
mplausible time values to reduce the chance of unreliable time data af-

fecting our results. Participants were asked to use a centrally controlled
clock with high readability and accuracy to avoid errors in timing,
such as manual manipulation or misreading, and to ensure consistency
across all sessions.

We carefully created the diagrams to show the workflows of both
systems (DLS and RLS) in a clear and structured way. However, because
RLS is more complex, we needed multiple diagrams to cover all the
details. This might have made the diagrams harder to understand for
RLS compared to DLS, leading to a bigger gap between the diagrams
and the code. This could be one reason why the results for RLS were
different.

To make sure the diagrams were useful for both systems, we de-
signed the questions at the same level of detail, so the diagrams would
be equally helpful. We also checked the diagrams to ensure they were
accurate and captured the main parts of each system without adding
too much complexity. Still, we recognize that the bigger gap between
the RLS diagrams and the code may have affected how participants
understood the system, and this is something future studies could look
into further.

Threats to Content Validity
We consider no threat to the integrity of the content. This is because
the subject and topic of the test are related to the university courses of
all participants. Regardless of their group assignment, the information
materials provided to participants also provided sufficient background
knowledge to enable them to effectively participate in the study. Any
nconsistencies or ambiguities in the experiment material would have

impacted both groups uniformly.

Threats to Conclusion Validity
Considering that the experiment’s topic and subject matter were per-
tinent to all participants’ university courses, regardless of their group
ssignment, we anticipate no threats to content validity. Additionally,
he information sheet provided to participants contained the basic
nowledge needed to participate in the study. Discrepancies or uncer-

tainties in the experimental materials affected both groups equally to
ensure a fair and consistent experience.

9. Conclusion

Our investigation of DLS and RLS provides interesting insights
nto the effectiveness of including semi-formal ML system diagrams
17
alongside source code. Our analysis in DLS shows significant differences
in task correctness, indicating that semi-formal ML system diagrams,
ogether with the source code, contribute to better results.

Concerning RLS, our investigation revealed that Control shows com-
arable or slightly superior performance to Experimental on the correct-
ess task, contrary to expectations. We found no significant difference

in the duration function between Control and Experimental. In this
case, Experimental participants faced challenges in understanding the
complex details in the diagrams and the complexity of multiple dia-
grams. In contrast, participants in Control are required to handle only
reasonably sized source code and, therefore, show better understand-
ing. Additionally, we found a positive correlation between correctness
and duration within Experimental, indicating a different approach to
answering questions between participants.

In addition, examining participants’ survey responses yielded some
nteresting findings. In DLS, participants who did not receive semi-
ormal ML system diagrams tended to estimate their performance
lightly more accurately, whereas, in RLS, participants in RLS who
id not receive these diagrams underestimated their performance. This

outcome highlights the impact of additional materials on participants’
confidence levels.

In conclusion, while providing semi-formal ML system diagrams
ppears beneficial in certain contexts, their effectiveness varies across
ifferent learning environments. The choice to incorporate these di-
grams should be made with careful consideration of the specific
bjectives of practitioners.

CRediT authorship contribution statement

Evangelos Ntentos: Writing – review & editing, Writing – original
draft, Visualization, Validation, Resources, Formal analysis, Data cura-
ion, Conceptualization. Stephen John Warnett: Writing – review &

editing, Investigation, Formal analysis. Uwe Zdun: Writing – review &
editing, Supervision, Methodology, Formal analysis.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
vangelos Ntentos reports was provided by University of Vienna. If
here are other authors, they declare that they have no known com-
eting financial interests or personal relationships that could have

appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by the FFG (Austrian Research Promotion
Agency) project MODIS (no. FO999895431).

Data availability

No data was used for the research described in the article.

References

Agrawal, A., Reddy, S., Bhattamishra, S., Nookala, V.P.S., Vashishth, V., Rong, K.,
Tumanov, A., 2023. DynaQuant: Compressing deep learning training checkpoints
via dynamic quantization. arXiv:2306.11800.

Allodi, L., Biagioni, S., Crispo, B., Labunets, K., Massacci, F., Santos, W., 2017.
Estimating the assessment difficulty of CVSS environmental metrics: An experiment.
In: Dang, T.K., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E.J. (Eds.),
Future Data and Security Engineering. Springer International Publishing, Cham, pp.
23–39.

Allodi, L., Cremonini, M., Massacci, F., Shim, W., 2020. Measuring the accuracy of
software vulnerability assessments: experiments with students and professionals.
Empir. Softw. Eng. 25, http://dx.doi.org/10.1007/s10664-019-09797-4.

http://arxiv.org/abs/2306.11800
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb2
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb2
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb2
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb2
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb2
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb2
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb2
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb2
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb2
http://dx.doi.org/10.1007/s10664-019-09797-4

E. Ntentos et al. The Journal of Systems & Software 222 (2025) 112343
Anderson, T.W., Darling, D.A., 1954. A test of goodness of fit. J. Amer. Statist. Assoc. 49
(268), 765–769. http://dx.doi.org/10.1080/01621459.1954.10501232, URL: https:
//www.tandfonline.com/doi/abs/10.1080/01621459.1954.10501232, arXiv:https:
//www.tandfonline.com/doi/pdf/10.1080/01621459.1954.10501232.

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate - a practical
and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300.
http://dx.doi.org/10.2307/2346101.

Bonferroni, C., 1936. Teoria statistica delle classi e calcolo delle probabilita. Pubbl. Del
R Ist. Super. di Sci. Econ. E Commer. di Firenze 8, 3–62.

Bray, J.H., Maxwell, S.E., 1982. Analyzing and interpreting significant MANOVAs. Rev.
Educ. Res. 52 (3), 340–367, URL: http://www.jstor.org/stable/1170422.

Charness, G., Gneezy, U., Kuhn, M.A., 2012. Experimental methods: Between-subject
and within-subject design. J. Econ. Behav. Organ. 81 (1), 1–8.

Chen, Y., Liu, Z., Ren, B., Jin, X., 2020. On efficient constructions of checkpoints. CoRR
arXiv:2009.13003.

Chen, S., Yuan, G., Cheng, X., Gong, Y., Qin, M., Wang, Y., Huang, X., 2023. Self-
ensemble protection: Training checkpoints are good data protectors. arXiv:2211.
12005.

Cliff, N., 1993. Dominance statistics: Ordinal analyses to answer ordinal questions.
Psychol. Bull. 114, 494–509.

Cliff, N., 2010. Answering ordinal questions with ordinal data using ordinal statistics.
Multivar. Behav. Res. 31, 331–350. http://dx.doi.org/10.1207/s15327906mbr3103_
4.

Czepa, C., Zdun, U., 2019. How understandable are pattern-based behavioral constraints
for novice software designers? ACM Trans. Softw. Eng. Methodol. (TOSEM) 28,
1–38.

Czepa, C., Zdun, U., 2020. On the understandability of temporal properties formalized
in linear temporal logic, property specification patterns and event processing
language. IEEE Trans. Softw. Eng. 46, 100–112.

Delaney, H.D., Vargha, A., 2002. Comparing several robust tests of stochastic equality
with ordinally scaled variables and small to moderate sized samples. Psychol.
Methods 7 4, 485–503.

Dunn, O.J., 1961. Multiple comparisons among means. J. Amer. Statist. Assoc. 56,
52–64.

Eisenman, A., Matam, K.K., Ingram, S., Mudigere, D., Krishnamoorthi, R., An-
navaram, M., Nair, K., Smelyanskiy, M., 2020. Check-n-run: A checkpointing system
for training recommendation models. CoRR arXiv:2010.08679.

Falessi, D., Juristo, N., Wohlin, C., Turhan, B., Münch, J., Jedlitschka, A., Oivo, M.,
2018. Empirical software engineering experts on the use of students and profes-
sionals in experiments. Empir. Softw. Eng. 23, http://dx.doi.org/10.1007/s10664-
017-9523-3.

Farahani, A., Pourshojae, B., Rasheed, K., Arabnia, H.R., 2021. A concise review of
transfer learning. arXiv:2104.02144.

Heijstek, W., Kühne, T., Chaudron, M.R.V., 2011. Experimental analysis of textual and
graphical representations for software architecture design. In: 2011 International
Symposium on Empirical Software Engineeringand Measurement. pp. 167–176.

Hoisl, B., Sobernig, S., Strembeck, M., 2014. Comparing three notations for defining
scenario-based model tests: A controlled experiment. In: Proceedings- 2014 9th
International Conference on the Quality of Information and Communications
Technology. QUATIC 2014, pp. 95–104. http://dx.doi.org/10.1109/QUATIC.2014.
19.

Hosna, A., Merry, E., Gyalmo, J., Alom, Z., Aung, Z., Azim, M.A., 2022. Transfer
learning: a friendly introduction. J. Big Data 9 (1), 102.

Höst, M., Regnell, B., Wohlin, C., 2000. Using students as subjects - a comparative
study of students and professionals in lead-time impact assessment. Empir. Softw.
Eng. 5, 201–214. http://dx.doi.org/10.1023/A:1026586415054.

Hsu, L.M., 2004. Biases of success rate differences shown in binomial effect size
displays. Psychol. Methods 9 2, 183–197.

Islam, T., Abid, D.M.H., Rahman, T., Zaman, Z., Mia, K., Hossain, R., 2023. Transfer
learning in deep reinforcement learning. In: Yang, X.-S., Sherratt, S., Dey, N.,
Joshi, A. (Eds.), Proceedings of Seventh International Congress on Information and
Communication Technology. Springer Nature Singapore, Singapore, pp. 145–153.

Jedlitschka, A., Ciolkowski, M., Pfahl, D., 2008. Reporting experiments in software
engineering. Empir. Softw. Eng. - ESE 201–228. http://dx.doi.org/10.1007/978-1-
84800-044-5_8.
18
Juristo, N., Moreno, A., 2001. Basics of Software Engineering Experimentation. http:
//dx.doi.org/10.1007/978-1-4757-3304-4.

Kitchenham, B., Madeyski, L., Budgen, D., Keung, J., Brereton, P., Charters, S., Gibbs, S.,
Pohthong, A., 2016. Robust statistical methods for empirical software engineering.
Empir. Softw. Eng. 22 (2), 579–630, URL: http://dro.dur.ac.uk/18658/.

Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., Emam, K., Rosenberg, J.,
2002. Preliminary guidelines for empirical research in software engineering. IEEE
Trans. Softw. Eng. 28, 721–734. http://dx.doi.org/10.1109/TSE.2002.1027796.

Kolmogorov, A.N., 1933. Sulla determinazione empirica di una legge didistribuzione.
Giorn Dell’ Inst Ital Degli Att 4, 89–91.

Labunets, K., Paci, F., Massacci, F., Ruprai, R., 2014. An experiment on comparing
textual vs. Visual industrial methods for security risk assessment. In: 2014 IEEE
4th International Workshop on Empirical Requirements Engineering EmpiRE 2014
- Proceedings. http://dx.doi.org/10.1109/EmpiRE.2014.6890113.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521 (7553), 436–444.
Lilliefors, H.W., 1967. On the Kolmogorov-Smirnov test for normality with mean and

variance unknown. J. Amer. Statist. Assoc. 62, 399–402.
Mohd Razali, N., Yap, B., 2011. Power comparisons of Shapiro-Wilk, Kolmogorov-

Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2.
Paulweber, P., Simhandl, G., Zdun, U., 2021. On the understandability of language con-

structs to structure the state and behavior in abstract state machine specifications:
A controlled experiment. J. Syst. Softw. 178, 110987.

Pouyanfar, S., Sadiq, S., Yan, Y., Tian, H., Tao, Y., Reyes, M.P., Shyu, M.-L., Chen, S.-
C., Iyengar, S.S., 2018. A survey on deep learning: Algorithms, techniques, and
applications. ACM Comput. Surv. 51 (5), 1–36.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W.,
Liu, P.J., 2023. Exploring the limits of transfer learning with a unified text-to-text
transformer. arXiv:1910.10683.

Runeson, P., 2003. Using Students as Experiment Subjects – An Analysis on Graduate
and Freshmen Student Data. In: Proceedings 7th International Conference on
Empirical Assessment & Evaluation in Software Engineering. p. 95–102.

Salman, I., Misirli, A.T., Juzgado, N.J., 2015. Are students representatives of pro-
fessionals in software engineering experiments? In: 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering. vol. 1, pp. 666–676.

Shapiro, S.S., Wilk, M.B., 1965. An analysis of variance test for normality (complete
samples). Biometrika 52, 591–611.

Siegmund, J., Kästner, C., Apel, S., Liebig, J., Schulze, M., Dachselt, R., Papendieck, M.,
Leich, T., Saake, G., 2012. Do background colors improve program comprehension
in the #ifdef hell? Empir. Softw. Eng. 18, 1–47. http://dx.doi.org/10.1007/s10664-
012-9208-x.

Svahnberg, M., Aurum, A., Wohlin, C., 2008. Using students as subjects - an empirical
evaluation. In: Proceedings of the Second ACM-IEEE International Symposium
on Empirical Software Engineering and Measurement. ESEM ’08, Association for
Computing Machinery, New York, NY, USA, pp. 288–290, URL: https://doi.org/10.
1145/1414004.1414055.

Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C., 2018. A survey on deep transfer
learning. In: International Conference on Artificial Neural Networks. Springer, pp.
270–279.

Valliappa Lakshmanan, M.M., 2021. Machine Learning Design Patterns. O’Reilly.
Warnett, S.J., Zdun, U., 2024. On the understandability of MLOps system architectures.

IEEE Trans. Softw. Eng. http://dx.doi.org/10.1109/TSE.2024.3367488.
Winder, P., 2021. Reinforcement Learning, Industrial Applications of Intelligent Agents.

O’Reilly.
Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A., 2012.

Experimentation in Software Engineering. Springer, Germany, http://dx.doi.org/
10.1007/978-3-642-29044-2.

Zdun, U., Navarro, E., Leymann, F., 2017. Ensuring and assessing architecture confor-
mance to microservice decomposition patterns. In: Maximilien, M., Vallecillo, A.,
Wang, J., Oriol, M. (Eds.), Service-Oriented Computing. Springer International
Publishing, Cham, pp. 411–429.

Zhu, Z., Lin, K., Jain, A.K., Zhou, J., 2023. Transfer learning in deep reinforcement
learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 45 (11), 13344–13362.
http://dx.doi.org/10.1109/TPAMI.2023.3292075.

http://dx.doi.org/10.1080/01621459.1954.10501232
https://www.tandfonline.com/doi/abs/10.1080/01621459.1954.10501232
https://www.tandfonline.com/doi/abs/10.1080/01621459.1954.10501232
https://www.tandfonline.com/doi/abs/10.1080/01621459.1954.10501232
http://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/01621459.1954.10501232
http://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/01621459.1954.10501232
http://arxiv.org/abs/https://www.tandfonline.com/doi/pdf/10.1080/01621459.1954.10501232
http://dx.doi.org/10.2307/2346101
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb6
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb6
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb6
http://www.jstor.org/stable/1170422
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb8
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb8
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb8
http://arxiv.org/abs/2009.13003
http://arxiv.org/abs/2211.12005
http://arxiv.org/abs/2211.12005
http://arxiv.org/abs/2211.12005
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb11
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb11
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb11
http://dx.doi.org/10.1207/s15327906mbr3103_4
http://dx.doi.org/10.1207/s15327906mbr3103_4
http://dx.doi.org/10.1207/s15327906mbr3103_4
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb13
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb13
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb13
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb13
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb13
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb14
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb14
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb14
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb14
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb14
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb15
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb15
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb15
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb15
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb15
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb16
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb16
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb16
http://arxiv.org/abs/2010.08679
http://dx.doi.org/10.1007/s10664-017-9523-3
http://dx.doi.org/10.1007/s10664-017-9523-3
http://dx.doi.org/10.1007/s10664-017-9523-3
http://arxiv.org/abs/2104.02144
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb20
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb20
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb20
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb20
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb20
http://dx.doi.org/10.1109/QUATIC.2014.19
http://dx.doi.org/10.1109/QUATIC.2014.19
http://dx.doi.org/10.1109/QUATIC.2014.19
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb22
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb22
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb22
http://dx.doi.org/10.1023/A:1026586415054
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb24
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb24
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb24
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb25
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb25
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb25
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb25
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb25
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb25
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb25
http://dx.doi.org/10.1007/978-1-84800-044-5_8
http://dx.doi.org/10.1007/978-1-84800-044-5_8
http://dx.doi.org/10.1007/978-1-84800-044-5_8
http://dx.doi.org/10.1007/978-1-4757-3304-4
http://dx.doi.org/10.1007/978-1-4757-3304-4
http://dx.doi.org/10.1007/978-1-4757-3304-4
http://dro.dur.ac.uk/18658/
http://dx.doi.org/10.1109/TSE.2002.1027796
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb30
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb30
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb30
http://dx.doi.org/10.1109/EmpiRE.2014.6890113
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb32
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb33
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb33
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb33
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb34
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb34
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb34
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb35
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb35
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb35
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb35
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb35
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb36
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb36
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb36
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb36
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb36
http://arxiv.org/abs/1910.10683
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb38
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb38
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb38
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb38
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb38
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb39
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb39
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb39
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb39
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb39
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb40
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb40
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb40
http://dx.doi.org/10.1007/s10664-012-9208-x
http://dx.doi.org/10.1007/s10664-012-9208-x
http://dx.doi.org/10.1007/s10664-012-9208-x
https://doi.org/10.1145/1414004.1414055
https://doi.org/10.1145/1414004.1414055
https://doi.org/10.1145/1414004.1414055
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb43
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb43
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb43
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb43
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb43
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb44
http://dx.doi.org/10.1109/TSE.2024.3367488
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb46
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb46
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb46
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2
http://dx.doi.org/10.1007/978-3-642-29044-2
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb48
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb48
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb48
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb48
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb48
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb48
http://refhub.elsevier.com/S0164-1212(25)00011-1/sb48
http://dx.doi.org/10.1109/TPAMI.2023.3292075

	On the understandability of machine learning practices in deep learning and reinforcement learning based systems
	Introduction
	Structure of this Paper

	Background
	Design Patterns
	ML Scripts and Pipeline Models

	Related Work
	Experiment Planning
	Goals
	System Description
	Context and Design
	Participants
	Material and Tasks
	Variables and Hypotheses

	Experiment Execution
	Preparation
	Pilot Test
	Procedure

	Analysis
	Data-Set Preparation
	Participant Demographics
	Normality Assessment
	Descriptive Statistics
	Hypothesis Testing
	Observation

	Discussion
	Interpretation of the Results

	Threats to Validity
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

