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Abstract—In the domain of Industry 4.0 Cyber-Physical Pro-
duction Systems (CPPSs), Reinforcement Learning (RL) has
gained momentum as an effective strategy for training intelligent
agents in digital twins. Whilst the practice of Machine Learning
Operations (MLOps) has become established as a holistic ap-
proach to automating workflows in supervised and unsupervised
Machine Learning (ML), the extent to which MLOps practices
are applicable to RL, particularly due to major differences
between ML and RL concerning model deployment and model
training, are not currently well-understood. The literature on
RLOps as a paradigm is scarce. We tackle this open question
by conducting an exploratory, qualitative, deductive-inductive
industry case study on a CPPS, performing content analysis
of CPPS artefacts, such as architectural schematics and source
code, and understanding their relation to 22 known Architectural
Design Decisions and 86 associated decision options through
classification into four distinct emergent categories. Our findings
help bridge the gap between MLOps and RLOps architectures,
contributing novel insights into understanding the application of
MLOps to RL and providing practical insights and inspiration
for further research.

Index Terms—MLOps, RLOps, machine learning, reinforce-
ment learning, architectural design decisions, industry 4.0, cyber-
physical production systems

I. INTRODUCTION

Industry 4.0 [1] has revolutionised manufacturing by inte-
grating disparate digital technologies, resulting in the devel-
opment of Cyber-Physical Production Systems (CPPSs) [2],
which mix physical and computational elements to improve
efficiency, flexibility and customisation [3]. Within this set-
ting, Reinforcement Learning (RL) [4] has emerged as an
effective technique for training intelligent agents in digital
twins, allowing for real-time decision-making and process
optimisation [5], [6]. MLOps (Machine Learning Operations)
has become a standard method for automating workflows
in supervised and unsupervised Machine Learning (ML),
including data processing, model training, deployment and
maintenance [7]. However, the application of MLOps concepts
to RL – a burgeoning practice known as RLOps [8] – is
largely unexplored. The potential applicability of MLOps to
RL is unclear due to fundamental differences between ML and
RL, for instance, in model deployment and training. Whilst
ML models are usually trained on static datasets, RL models
learn by interacting with dynamic environments, necessitating

continual adaptation and real-time decision-making, facing
their own set of challenges [9].

The scarcity of scientific literature on RLOps creates a
gap in our understanding of how to integrate RL into the
MLOps paradigm successfully. Addressing this gap is critical
for improving CPPS capabilities and realising the full promise
of Industry 4.0 [10]. We intend to bridge the knowledge gap
between MLOps and RLOps by performing an exploratory,
qualitative industry case study on a CPPS.

Our objectives are to evaluate the applicability of ML-
specific Architectural Design Decisions (ADDs) to RL and
RLOps, investigate the relationship between MLOps tech-
niques and RL in a CPPS and offer a reference for practitioners
as well as a framework for future study. The results should
add to the expanding body of knowledge regarding Industry
4.0, MLOps and RLOps, aiding practitioners in improving
the efficiency and adaptability of CPPSs and providing fresh
perspectives on integrating RL into MLOps.

We carried out an exploratory, qualitative industry case
study on a CPPS. We used content analysis [11] to determine
how 86 decision options derived from 22 architectural design
decisions related to 15 CPPS artefacts such as source code
and architectural schematics, which we describe in more detail
in Section IV-D. We aimed to answer the following research
questions:

• RQ1 To what extent are known MLOps and RL ADDs
applicable to RL in a CPPS context?

• RQ2 Which ADD decision options typically used in
MLOps and RL apply directly to a real-world CPPS that
utilises RL?

• RQ3 Is it necessary to adapt ADD decision options
typically used in MLOps for use with RL in a CPPS
context?

We make three main contributions in this paper. Firstly,
we conduct a qualitative industry case study on ML and RL
practices in a real-world CPPS, modelling 15 system artefacts
to establish the use of relevant ADDs, decision options,
practices and patterns. Secondly, we interpret our findings,
deriving four categories of ADD decision options in an RL
context. Finally, we identify ML practices that, at first sight,
may not appear applicable to RL but can be easily adapted. In



summary, we reduced the knowledge gap between MLOps and
RLOps, providing insights and a reference for practitioners.

The rest of the paper is structured as follows: in Section II,
we describe the concepts of ADDs, ML, RL, MLOps, Industry
4.0 and CPPSs. Section III compares our work with related
studies. In Section IV, we describe the case study and our
approach. Section V details our results, which we discuss in
Section VI. We consider threats to validity in Section VII, and
Section VIII concludes and suggests ideas for future work.

II. BACKGROUND

A. Architectural Design Decisions

ADDs are a crucial aspect of software development that
represent architectural decisions made during the design pro-
cess [12], [13]. ADDs and their associated decision options
encapsulate the rationale behind the choice of architectural
elements, their relationships, and the trade-offs (in terms of
forces or decision drivers) considered to meet functional and
quality requirements [14].

Table I, which is discussed in more detail in Sections V
and VI, lists the ADDs and decision options of relevance
to this study. A central ADD is whether to adopt MLOps
as a holistic approach. Other ADDs are mostly concerned
with data processing (e.g. Automatic Data Processing, Data
Ingestion, Data Versioning), triggers (e.g. Pipeline/Orchestra-
tor Triggers), Model Building (e.g. Model Building Pipeline
Tasks, Training Strategy) and model deployment (e.g. Delivery
Pipeline Tasks, Model Version Deployment).

Automation is represented as a high-level ADD (i.e. whether
AutoML is used) and as a cross-cutting concern that can be
considered in the context of decision options in practices
related to data processing, pipeline and orchestrator triggering,
pipeline tasks, model training, model building, model integra-
tion and delivery. The ADDs associated with RL are related
exclusively to model architecture, training and distribution
strategies. Specifically. the Model Architecture and Model
Training variations specifying single agent [15] vs multi-
agent [16], [17] training, the use of Checkpoints, whether
Transfer Learning is utilised, the Distribution Strategy adopted
and the use of RL Hyperparameter Tuning.

B. ML, RL, MLOps and RLOps

ML and RL differ in their methodologies and applications.
Whereas ML employs supervised or unsupervised learning
techniques that learn from data to make predictions or clas-
sifications, RL focuses on learning optimal actions through
interactions with an environment and feedback in the form of
rewards or penalties for prior actions.

Given this distinction, one might assume the necessity of
different operational frameworks for automating ML and RL.
MLOps, already very well established, involves practices and
tools for data processing and management, model training,
deployment, management and maintenance in production.
RLOps, an RL-equivalent operational framework for RL that
has only been sparsely documented in the literature, must
address the unique challenges associated with the RL workflow

and production environments, particularly the differences in
data processing, model architecture, training, distribution and
the complexities of real-time decision-making and dynamic
environments.

C. Industry 4.0 and Cyber-Physical Production Systems

Industry 4.0 [1] represents a paradigm shift in manufac-
turing due to its integration of digital technologies such as
the Internet of Things (IoT), Artificial Intelligence (AI) and
Cloud Computing to create smart factories. Smart factories are
interconnected systems enabling real-time data exchange and
autonomous decision-making, enhancing efficiency, flexibility
and customisation [10].

CPPSs, which merge physical (e.g. tools, robots and sen-
sors) and computational (e.g. communication networks, data
analytics and AI) elements, are central to Industry 4.0. CPPSs
monitor, control and optimise manufacturing operations [5],
[6]. Seamless interaction between the physical and digital
realms using digital twins can improve production quality,
reduce costs and simplify maintenance [18], [19].

III. RELATED WORK

RLOps is sparsely mentioned in the scientific literature,
appearing more commonly in practitioner sources online,
such as code repositories, libraries, commercial platforms and
frameworks supporting RLOps. This disparity indicates that
RLOps is a relatively new field that is becoming established
in practice but demonstrates a knowledge gap from a scientific
perspective. Indeed, we could not find any Industry 4.0 case
studies focusing on RLOps.

Li et al. [8] study RL as applied to open radio access
networks (O-RAN). They highlight the differences between
ML and RL, providing a taxonomy of the ML/RL model
lifecycle challenges and suggesting best practices for RLOps.
They also design and implement a data analytics platform for
O-RAN. As with our study, they recognise the differences
between ML and RL and consider how MLOps can be applied
to RL. Unlike our study, they focus on the model lifecycle
rather than a wide range of ADDs, consider O-RAN rather
than Industry 4.0 and do not conduct a case study.

Del Real Torres et al. [20] conduct a review of deep
RL approaches for smart manufacturing in Industry 4.0 and
5.0 [21], noting the relevance of edge devices and cyber-
physical systems. They consider a range of deep RL algorithms
and their applicability in manufacturing processes, providing
common guidelines for developing and improving factories.
Similarly to our study, they consider RL in an Industry 4.0
context. Unlike our study, they conduct a literature review
rather than a case study and focus on algorithms rather than
MLOps and architectural aspects.

Kegyes et al. [22] conduct a systematic literature review
of RL applications and methods used in Industry 4.0. As in
our study, their work serves as an overview and reference.
However, they focus on the theoretical underpinnings of RL
and implementation details rather than architectural decisions



and MLOps. Unlike our study, they survey the literature rather
than conduct a case study.

Zhou et al. [23] recognise the need for MLOps as an
application of DevOps [24], [25] principles to unify ML
system development and operation and to address the unique
challenges faced when developing and deploying ML appli-
cations. They build an ML platform using DevOps and then
measure its performance, providing a reference ML pipeline
platform. Despite using a system as a case study, their example
is not a real-world case study of an Industry 4.0 application
and does not consider RL.

Our study examines the relevance of MLOps ADDs in an
Industry 4.0 setting as applied to RL. It aims to bridge the gap
between theory and practice in understanding how associated
practices apply in that context. To our knowledge, ours is the
first study to do so.

IV. CASE STUDY

This section provides a detailed description of the case study
design and research process, which is depicted in Figure 1.
Our research methodology adheres to the case study guidelines
outlined by Runeson and Höst [26], and Yin [27].

Identification of 
Unit of Analysis

Collection of Relevant
ADDs and Decision

Options

Recovery/Identification
of ADDs and Decision
Options from Unit of

Analysis

Content AnalysisModelling of Unit of
Analysis

Inductive Data Organisation

Fig. 1: An overview of the research process we followed in
this study.

The study was conducted within the framework of a pre-
viously established academia-industry project collaboration
between the authors and a large multinational technology
company that provides production automation solutions. The
project was chosen due to its relevance to the academic and
industrial partners involved in the collaboration. The focus of
the project is an RL-based CPPS solution being developed by a
team of experts at the company for automating manufacturing
processes in factories.

A. Research Process

The first step was the Collection of Relevant ADDs
and Decision Options, which we sourced from our prior
work [28], [29], [30], where we had derived them from practi-
tioner grey literature using Straussian Grounded Theory [31].
The following four steps (collectively the Inductive Data
Organisation) were performed iteratively until the entire study
object (see Section IV-C) had been covered. The Identification
of Unit of Analysis step involved finding the next potential

unit of analysis (see Section IV-D). Recovery/Identification
of ADDs and Decision Options from Unit of Analysis was
a check to see if the current unit of analysis evidenced the use
of a decision option. If so, Content Analysis of the unit of
analysis, as described in Section IV-E was performed. Finally,
if the unit of analysis evidenced the use of a decision option,
Modelling of Unit of Analysis (see Section IV-F) involved
writing component, pipeline and process models in Python and
generating their UML visualisations.

B. Approach

Our study employs an empirical and qualitative design,
examining contemporary phenomena within their context [27].
Unlike action research [26], which aims to effect change,
our approach is observational, aiming for a high degree of
realism at the expense of control. We focus on studying and
analysing project artefacts and are interested in theory building
and discovering how practitioners have applied ADDs. We aim
to avoid influencing practitioners or introducing bias, e.g. via
interviews, and we always strive to maintain a neutral frame
of reference.

Despite the study’s observational nature, practical uses of
our findings are discussed in Sections VI and VIII. This
exploratory study aims to investigate the implementation of
the study object (see Section IV-C), gain new insights and
understanding, address our research questions and generate
ideas for future research.

Additionally, the study serves as a descriptive study, provid-
ing a detailed portrayal of a specific situation and its associated
phenomena. The study design incorporates the flexibility to
effectively manage “the complex and dynamic characteristics
of real-world phenomena, like software engineering” [26].

C. Study Object

The focus of our research (the study object) is an innovative,
proprietary software system developed by domain and RL
experts within a large multinational technology company. This
advanced solution integrates RL with a CPPS, leveraging
MLOps and RLOps practices for an Industry 4.0 manufac-
turing environment. The system’s task is to automate various
aspects of industrial product manufacturing, including physical
modification and assembly of components.

D. Units of Analysis and Data Collection

The units of analysis are those data sources within the
study object that are related to ML, RL, MLOps and RLOps.
A range of disparate data sources enabled the triangulation
of the phenomena we encountered. Specifically, we practised
third-degree data collection, which involves the independent
analysis of work artefacts that are already available. We made
use of project source code, CI/CD pipeline definitions and con-
figuration files, high-level schematics, informal architectural
diagrams, UML diagrams, presentations by team members
and associated slide decks, and observation of team behaviour
practices (e.g. source repository commits and their comments)



to gain an understanding of the system and to model relevant
parts.

Since we did not conduct formal interviews, and this is
not an ethnographic study where, for instance, cultural aspects
within an organisation are studied, there are no human subjects
in that sense. However, informal discussions and meetings with
project partners throughout the normal course of our project
collaboration helped with clarification and disambiguation
when understanding the system and practices.

E. Content Analysis

Using the ML and RL ADDs from Table I as an or-
ganisational framework, we systematically analysed the data
sources to identify and gather evidence of the use of any
of the ADDs, along with associated decision options in the
form of architectural patterns and practices. This aspect of the
study was deductive in that we started with knowledge and
understanding of the ADDs from the literature relevant to the
domain and research questions that we deemed a reasonable
starting point. Still, we had no predefined hypotheses or
assumptions about what we expected to find.

We conducted a content analysis of the data source based
on DeFranco and Laplante [11], which is a method well-
suited for systematically examining software engineering data.
This flexible inductive data organisation approach involves
selecting suitable sources and employing coding techniques
to categorise data. The method can facilitate the analysis of
various software engineering artefacts and yield rich insights
grounded in project-specific data, in our case study regarding
the application of ADDs within a software system.

We identified patterns and themes and coded contextual
information and findings to support sensemaking [27]. We
developed broader categories for the discovered architectural
properties of the system. We consulted additional literature
to aid and validate our understanding of the encountered
phenomena as necessary. Our methodology was an iterative,
continuous process of ADD recovery and identification, inter-
pretation, categorisation and modelling.

F. Modelling

Following the content analysis, we modelled relevant parts
of the system using the same technique as in prior work [32],
[33]. We used Codeable Models1, a Python tool for specifying
metamodels and model instances. These formal architectural
models consist of nodes and connectors that represent compo-
nents, pipeline and process steps and their relationships, and
can be rendered in UML using PlantUML2. Figure 2 depicts
a component view of part of the modelled RL system, and
Figure 3 a process view.

Modelling the system during content analysis enhances the
clarity and effectiveness of our case study. Simultaneously, the
modelling process provides a technical reference, facilitates
transparency and traceability of our process, and helps us
relate our findings to the source material. A further advantage

1https://github.com/uzdun/CodeableModels
2https://plantuml.com

of modelling during our analysis is that it can be used for
validation. By formalising our understanding of the system and
use of ADDs, we provide an additional way of checking that
we correctly understand the system in combination with the
clarification and disambiguation provided by industry experts
during our discussions.

Due to confidentiality agreements, the sources, that is, the
study object itself and its units of analysis, cannot be shared.
However, by generating UML visualisations of modelled as-
pects of the CPPS, we can communicate the salient aspects of
the system architecture without violating confidentiality. Note
that we did not model the entire system, but only those units
of analysis that provided evidence for the use of ADDs and
decision options. Our models were simplified to the minimal
level of detail required to understand the units of analysis.
Likewise, specific technologies were mostly omitted. Some
aspects, such as component names, were renamed to protect
intellectual property. For replicability and transparency, our
models, model visualisations, and an overview of our chain
of evidence from the ADDs to our findings are available in
our replication package [34]. We continuously validated our
results through triangulation across the range of source units of
analysis and models, cross-checking among the author team.
Finally, we provided our results to our project partners for
evaluation as an additional means of validation.

G. Ethical Considerations

Confidentiality and the handling of sensitive data were
maintained at all times. There was no direct human participa-
tion in the case study beyond the usual working relationship
with the project partner. The project partner provided informed
consent and had the opportunity to review, correct and give
feedback on this paper and its artefacts. No inducements were
offered, and there are no known conflicts of interest.

V. RESULTS

In this section, we report our results, describing our findings
for each ADD. Table I shows the findings of our compre-
hensive analysis of ADDs for the study object and provides
significant insights into the application of ML and RL ADDs
in this context.

A. MLOps

A major ADD is whether MLOps should be applied as a
holistic approach throughout a project. MLOps touches on
many other ADDs covered in this study, such as strategies
for automating and streamlining data processing, rapid model
training, deployment and performance monitoring. The units
of analysis clearly shows that the decision to adopt an MLOps
approach was made. However, the findings below indicate that
for many related ADDs, MLOps as a practice needs to be
adapted to accommodate the distinct demands of RL, leading
to a modified form of MLOps for RL termed RLOps.

https://github.com/uzdun/CodeableModels
https://plantuml.com


TABLE I: Summary of the Applicability and Use of Architectural Design Decisions in the System.

ADD/Decision Option ADD/Decision Option

MLOps ✓ M [28]

No MLOps ~
Apply MLOps ✓ E

AutoML ~ M [29]

No AutoML ✓

Use AutoML ~
Automatic Data Processing ✓ M [29]

No data processing automation ~
Data pipeline ✗

ETL pipeline ✗

Data processing component ✓

Data Processing Pipeline Tasks ✓ M [29]

Data extraction ✗

Data transformation ✗

Data preparation ✗

Data validation ✗

Data selection ✓

Feature engineering ✓ E

Data processing hyperparameter tuning ✗

Feature Storage ✓ M [29]

Data store ~
Feature store ✓

Data Ingestion ✓ M [29]

Streamed data ingestion ~
Data ingestion by request ✗

Data ingestion in batches ✓

Manual data ingestion ✗

Pipeline/Orchestrator Triggers ✓ M [28], [29]

On-demand ~
Commit ~
Scheduled ✓

New training data ✓ E

Model performance degradation ✓ E

Data distribution changes ✗

Model Building ✓ M [29]

In development tool ✓ E

Model building pipeline ✓ E

Model builder component ✓

Model Building Pipeline Tasks ✓ M [28], [29]

Model training ✓

Data splitting ✗

Data checkpoints ✓ E

Model validation ✓

Model selection ✓

Train multiple model versions ✓

Model packaging ~
Model hyperparameter tuning ✓ E

Development tool facade ~
Development tool export ~

Training Strategy ✓ M [29]

Batched ~
Incremental ✓

Batch-based/incremental hybrid ~
Model Deployment ✓ M [28]

Manual deployment ~
Pre-prepared pipelines ~
CI/CD pipeline automation ✓

Data Processing ✓ M [29]

Batched ✓

Real-time, stream-based ~
Automated Integration/Delivery ✓ M [28]

None ~
Build and deployment scripts ~
CI/CD pipeline ✓

Machine learning orchestrator ✓

Delivery Pipeline Tasks ✓ M [28]

Packaging ~
Testing ~
Building ~
Deployment ✓

Containerisation ✓

Data Versioning ✓ M [28]

None ~
Data repository ✓

Code repository ✓

Model Version Deployment ✓ M [28]

Single model in production ~
N versions in production ✓

Model version rollback ✓

Model Architecture ✓ R [30]

Monolithic model using single-agent RL ~
Specialised models + multi-agent coordination via shared rewards ✓

Specialised models + multi-agent market-based coordination ~
Specialised models + coordinator specialist + hierarchichal models ~
Specialised models + coordinator specialist ~

Model Training ✓ R [30]

Single-agent RL with parallel training of a single agent ~
Market-based multi-agent RL ~
Centralised training and execution multi-agent RL ~
Centralised training and decentralised execution multi-agent RL ✓

Distributed multi-agent RL ~
Hierarchical RL ~

Checkpoints ✓ R [30]

No checkpoints ~
Use checkpoints ✓

Transfer Learning ✓ R [30]

No transfer learning ~
Use transfer learning ✓

Distribution Strategy ✓ R [30]

No distribution strategy ~
Custom distribution framework for each RL algorithm ~
Versatile distribution frameworks ✓

Distributed control-based distribution style ~
Logically centralised control distribution style ✓

Hierarchically parallel task distribution style ~
RL Hyperparameter Tuning ✓ R [30]

No RL hyperparameter tuning ~
Use RL hyperparameter tuning ✓

✓, ~ and ✗ represent an ADD or a decision option that was applied, not applied and not applicable to the study object respectively.
E represents an ML decision option that has an RL equivalent.
M represents an ADD that is associated with ML.
R represents an ADD that is RL-specific.
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Fig. 2: An example component model UML diagram for a unit of analysis of the study object.

: Initial Node

Start CPPS Simulator Task : Pipeline Node

automatic = True
runs in = Agent Launcher Process
invokes = [Start CPPS Simulator Task]
environments = [Simulation Environment]

Start CPPS Optimiser Task : Pipeline Node

automatic = True
runs in = Agent Launcher Process
invokes = [Start CPPS Optimiser Task]
environments = [Simulation Environment]

Load Learning Configuration Task : Pipeline Node

automatic = True
runs in = Agent Launcher Process
invokes = [Load Learning Configuration Task]
environments = [Simulation Environment]

Launch Policy Server and Restore Checkpoint Task : Pipeline Node

automatic = True
runs in = Agent Launcher Process
invokes = [Launch Policy Server and Restore Checkpoint Task]
environments = [Simulation Environment]

RL Orchestrator Launches Agents and Run Simulation Task : Pipeline Node

automatic = True
runs in = Agent Launcher Process
invokes = [RL Orchestrator Launches Agents and Run Simulation Task]
environments = [Simulation Environment]

«Pipeline Decision Node»
Simulation Finished and Orchestrator Terminated? : Pipeline Decision Node

automatic = True

: Final Node
[yes]

Fig. 3: An example process model UML diagram for a unit of analysis of the study object.

B. AutoML

AutoML automates several ML practices that would oth-
erwise be done manually, such as data preparation, feature
engineering, model training, hyperparameter tuning, model
validation and model selection. It uses search algorithms to
find optimal solutions for the various phases of the ML
pipeline. In the study object, AutoML was not applied.

C. Automatic Data Processing

Deciding how to process the data used for model building
automatically is central. Neither data pipelines nor ETL
pipelines are suited to RL since RL models are trained
based on environmental data and rewards rather than training
datasets. In the study object, a data processing component
in the form of an environment interpreter, which provides
environment data to agents, is used, supporting Automatic
Data Processing. An alternative implementation considered
for a future version of the system is the replay buffer [4].
Replay buffers are a widely used practice to retain and replay
old data so that it is not lost. This alternative would process
production data and provide it to the training process.

D. Data Processing Pipeline Tasks

Deciding on Data Processing Pipeline Tasks is a follow-on
ADD from Automatic Data Processing if, for instance, a data
pipeline or data processing component was used. In RL,
tasks related to ML-specific training data, such as extraction,
transformation, preparation, validation, and data process-
ing hyperparameter tuning are not applicable. During man-
ual experimentation, data selection of environment features is
used. This data is used for offline RL [35] and an RL-adapted
form of feature engineering, which focuses on creating an
effective state representation for imitation learning [4]. Offline
RL is when an agent learns from past data without interacting
with the environment, and imitation learning develops a policy
based on datasets from expert demonstrations, potentially
surpassing their performance.

E. Feature Storage

The Data Processing Pipeline Tasks decision option of
feature engineering, as applied during manual experiments,
prompts the architect to consider Feature Storage options.
These include a simple data store or a specialised feature



store, the latter of which was applied in the study object. A
feature in the context of RL is a specific attribute or property
of the environment that the agent can use to make decisions.
The feature store option facilitates persistence and access to
feature data and, in the study object, the data flows back from
the environment interpreter to the feature store via a trigger
(see the Pipeline/Orchestrator Triggers ADD in Section V-G)
to be used for offline RL and imitation learning.

F. Data Ingestion

Another key ADD is Data Ingestion to enable Data Pro-
cessing and consequently Model Training. In this RL-based
CPPS case, data ingestion by request and manual data
ingestion are irrelevant since it only makes sense to ingest
data when there has been a change in model performance
or the environment (such as the factory layout) – see the
Pipeline/Orchestrator Triggers ADD in Section V-G. Thus,
it only remains to be decided whether data is streamed or
batched. Both are feasible, but the batched option has been
applied. Data resulting from exploring the action space is
provided via a trigger, saved in a feature store for offline
RL and imitation learning, and is then fed into an automated
pipeline in batches for model training.

G. Pipeline/Orchestrator Triggers

ML pipelines, orchestrators, and model-building compo-
nents can be started via Pipeline/Orchestrator Triggers. Trig-
gers can be on-demand – not used in this project – or based
on external events, such as a commit to the code base, which
is not used either. In RL, triggering on changes to the data
distribution does not make sense since the system does not
deal with labelled datasets with a given distribution, as in
supervised learning. In our case study, a modified version of
the new training data trigger was applied based on action
space (e.g. after agent actions or when robot characteristics
are otherwise updated) or environment changes (e.g. when
the factory layout changes). Model performance degradation
also triggers pipelines in the study object and is achieved via
agent performance monitoring (necessitating an RL-specific
adaptation), triggering a training pipeline or component, or
when a better model becomes available, triggering a deploy-
ment pipeline or model serving component. A model serving
component is also triggered according to a schedule.

H. Model Building

A core ADD is Model Building in an ML project. Options
include using development tools like computational note-
books. Alternatives are to use a model building pipeline or a
model builder component. The study object uses all three –
a development tool is used for running manual experiments,
and a model building pipeline and manual experimentation
use a model builder component to perform model training.

I. Model Building Pipeline Tasks

If a model building pipeline is chosen for the Model
Building ADD, as in our case study, then the Model Build-
ing Pipeline Tasks ADD is for deciding which tasks are

performed in that pipeline. The model building pipeline and
other components perform model validation, model selection
from an RL model registry, training of multiple model
versions and an RL version of hyperparameter tuning (see
the RL Hyperparameter Tuning ADD in Section V-V). Model
building components perform model training and use data
checkpoints (although modified for use in offline RL). Data
splitting (e.g. into training and test data) does not apply to this
project since it does not use datasets for supervised/unsuper-
vised learning. Model packaging is not applied here because
models are loaded directly from an RL model repository
and into an agent via an orchestrator component. Finally,
neither a development tool facade nor export are used since
development tools are not integrated into the automated flow.

J. Training Strategy

Model training, discussed with the Model Building Pipeline
Tasks ADD in Section V-I, entails a follow-on decision on
which Training Strategy to adopt. The training strategy may
be batched, incremental or a hybrid of the two. In our case
study, models are built incrementally following automatic
triggers described for the Pipeline/Orchestrator Triggers ADD
in Section V-G.

K. Model Deployment

Once a model is trained, it needs to be deployed for use.
Our case study does not use manual deployment nor semi-
automated pre-prepared pipelines – though it is possible to
use them, neither of these practices is ideal for an Industry
4.0 CPPS. Instead, CI/CD pipeline automation is used to
automate a model serving component.

L. Data Processing

Data Processing is paramount in ML. It involves taking data
that was already ingested and providing it to, e.g. a model
builder component for use in model training. Processing can
occur in batches when required for training, as in the study
object where data is provided in batches with triggers and read
in batches for offline and imitation learning, or in real-time
as a stream, which is not implemented in our case study.

M. Automated Integration/Delivery

Automated Integration/Delivery involves deciding on the
level of automation for integration and delivery. The most
straightforward choice, no integration or delivery automa-
tion, is not applied, nor is manually performing deployments
using build and deployment scripts. Instead, the system
makes use of a CI/CD pipeline (for building and deployment)
and an ML orchestrator. The orchestrator loads models from
a model repository into agents. It executes the agent and
evaluates its actions, observations and rewards in a simulator.

N. Delivery Pipeline Tasks

If CI/CD pipelines are used, as they are in the study object,
then Delivery Pipeline Tasks are a consideration. Typical tasks
include packaging (e.g. of models), testing delivery tasks (e.g.
for A/B tests or canary tests), building (e.g. of executables),



the deployment of artefacts into a target environment and con-
tainersation (e.g. of models or components). In our case study,
the evaluation of the model is part of a training pipeline but
not a delivery pipeline. Model building is part of the training
pipeline and not the delivery pipeline. Our case study uses
deployment tasks as specified in a deployment configuration
to deploy a simulator and a model builder component. It also
performs containerisation of Docker images and stores them
in a container registry.

O. Data Versioning

Part of data management involves Data Versioning. ML or
RL-relevant data can be stored and versioned in a dedicated
data repository. Likewise, ML or RL code can be stored in a
code repository like GitLab. In the study object, both practices
were applied with source code stored in a code repository,
environment data stored in the feature store described in
Section V-E, model metadata stored in an ML metadata store
and models stored in a model registry.

P. Model Version Deployment

Fundamental to more detailed ADDs (e.g. Model Architec-
ture for RL in Section V-Q) is deciding on Model Version
Deployment. We note that a single model in production was
not applied since the system uses multi-agent RL. On the
other hand, the system was designed to support n versions in
production – to support staged releases and upgrade subsets
of cyber-physical production units – and also model version
rollback with the use of a model registry.

Q. Model Architecture

In RL, the correct choice of Model Architecture is more
complex than in ML. One can either make use of a single
monolithic model for centralised decision-making or multiple
specialised models with various forms of coordination. Coor-
dination may be achieved with shared rewards, be market-
based or can be achieved with a coordinator specialist. If
specialised models and a coordinator specialist are selected,
then hierarchacal models may also be used. Our analysis
shows that the study object uses specialised models with
multi-agent coordination via shared rewards.

R. Model Training

For the Model Training ADD, decision options include
patterns and practices incorporating a range of combinable
strategies including single-agent RL, multi-agent RL, hi-
erarchical RL, market-based RL, parallel training and
centralised/decentralised training and execution. In our
study, the system makes use of centralised training and
decentralised execution multi-agent RL – the models are
centrally trained in a model-building component (see the
Model Building ADD discussed in Section V-H) and multiple
decentralised digital twin agents are executed.

S. Checkpoints

Checkpoints are a binary choice and applied in the study
object to facilitate resumable training. Resumable training
requires saving training parameters, state and data at given in-
tervals during training, allowing for the resumption of training
later. This practice can aid training robustness by allowing the
training process to recover with minimal waste of resources if
interrupted and allows for model versioning during training.

T. Transfer Learning

Transfer Learning is a binary ADD representing a technique
for using knowledge gained from solving one problem to solve
a related but different task. In the study object, it is used
by fetching pre-trained models from the model registry and
retraining them to reduce overall training time.

U. Distribution Strategy

A suitable RL Distribution Strategy can aid training effi-
ciency and scalability and reduce training times. Depending
on specific needs, various combinations of factors characterise
the decision options, including frameworks, methods of control
and levels of parallelisation. The study object uses versatile
distribution frameworks with logically centralised control
distribution.

V. RL Hyperparameter Tuning

In RL, as in ML, the practitioner can apply RL Hyperpa-
rameter Tuning, which is considered distinct from the data
processing hyperparameter tuning decision option described
in Section V-D since despite the common overall goal of
optimising model performance, there are some key differences,
such as the optimisation of a reward function or policy
over time across multiple episodes rather than a performance
metric, with distinct training runs producing a completely new
model. Our case study applies hyperparameter tuning during
base training, i.e. in the agent’s initial training phase.

VI. DISCUSSION

In this section, we assess, interpret and discuss the results
of our rigorous qualitative case study regarding the research
questions defined in Section I.

RQ1 To what extent are known MLOps and RL ADDs ap-
plicable to RL in a CPPS context? After analysing the system,
modelling 15 units of analysis and considering 22 ADDs with
86 decision options from the literature, we discovered evidence
for 21 ADDs and 37 design decisions used in a concrete, RL-
based Industry 4.0 CPPS. Only one ML ADD was not applied
(but could have been). The most important observation is that
all ML ADDs were applicable, and all bar one were indeed
applied, indicating a high level of cross-compatibility between
ML and RL practices. All six RL-specific ADDs were applied
in the study object, closely corresponding to our understanding
of the application of RL-specific ADDs.

In practice, the only ADD out of the 16 top-level MLOps
ADDs that was not applied was AutoML, although it is not
unsuited to RL and still could have been used in specific



circumstances [36], [37]. Practitioners should evaluate whether
AutoML could offer benefits in their specific use cases,
particularly for tasks that do not require highly specialised
models. In our case study, it was not applied, but that does
not preclude its applicability in other systems.

More generally, understanding the reasons for choosing cer-
tain options and not selecting alternative options is considered
outside the scope of this study. We only considered project
artefacts and known and evidenced ADDS, but this does not
rule out other decision options or as-yet-unknown ones to be
implemented over the lifetime of the system.

RQ2 Which ADD decision options typically used in MLOps
and RL apply directly to a real-world CPPS that utilises RL?
We considered a total of 86 decision options, 63 of which
were ML-related and 23 RL-specific. Out of 63 ML decision
options, 22 were directly applied, 22 ML decision options
were not applied (but could have been), and 11 ML decision
options were not applicable (however, see RQ3 below for a
discussion on the remaining eight ML decision options, which
were applicable with modification). These results suggest that
many existing MLOps practices can be transferred to RL-based
industrial systems without modification. Out of 23 RL-specific
decision options, seven were applied, 16 were not applied (but
could have been), and zero were not applicable. These results
indicate that the study object conformed closely to our prior
knowledge of RL decision options and exhibited a high degree
of compatibility and relevance regarding known practices.

Noteworthy is the varying emphasis placed on certain
decision options, evident in Table I, depending on whether
the system is geared more towards ML or RL. For instance,
ML decision options that are not suited to RL tend to be data-
centric, such as with Automatic Data Processing practices (e.g.
use of a data or ETL pipeline), Data Processing Pipeline
Tasks (e.g. data extraction, transformation, preparation and
validation). RL-specific decision options tend to focus on
Model Architecture (agents and their specific roles), Model
Training (centralised/decentralised training and execution)
and model Distribution Strategy (centralised or distributed).
These differences are evidenced in the units of analysis and
are thus relevant when planning resource allocation (e.g.
developers’ time and effort).

RQ3 Is it necessary to adapt ADD decision options typically
used in MLOps for use with RL in a CPPS context? Out
of 63 ML decision options, eight ML decision options were
applied in the form of an RL-equivalent, that is, a version
of the original option modified to suit RL-specific needs.
An interesting observation is that some of these decision
options include practices that at first glance may not appear
to have an RL-analogue, such as feature engineering and
Pipeline/Orchestrator Triggers on new training data.

Given that all top-level ADDs from the literature were
applicable in some way, the main differences are noticeable
on the level of the decision options. Categories emerge at
this level of granularity regarding their RL compatibility. We
derived four categories to aid understanding of the use of ML
and RL ADDs in CPPSs: inapplicable ML decision options,

unused ML decision options, ML decision options with RL
equivalents and directly applied ML decision options. The
rationale for our classification can be independently verified
via Table I and our replication package [34].

1) Inapplicable ML Decision Options are marked with ✗ in
Table I, for example data pipeline, data distribution changes
and data splitting. In total, we identified 11 such decision
options. These decision options can be disregarded early in
the architectural design process since they are not compatible
with RL and do not provide for an RL-adapted equivalent.
Recognising inapplicable options helps practitioners focus
their efforts on relevant solutions, but it is crucial to reassess
these options as technology and requirements evolve regularly.

2) Unused ML Decision Options, denoted by ~ in Table I,
include use AutoML, data store and model packaging. 22
such decision options were found. These decision options are
compatible with RL without RL-specific modification but were
unused in the study object. They represent potential opportu-
nities for future improvements or extensions of the system.
Practitioners should maintain awareness of these options and
regularly reconsider their applicability as systems mature.

3) ML Decision Options with RL Equivalents are marked
with E in Table I, for instance, new training data, model
building pipeline and data checkpoints. Eight of these
decision options were identified. These decision options may
appear at first glance to be incompatible with RL and, there-
fore, prematurely disregarded. However, practitioners should
note that they can be modified to become more suitable. The
fact that all eight ML decision options were modified and
used for RL highlights the need for flexibility. Practitioners
should be prepared to adapt standard MLOps practices to
fit the RL paradigm. This category is particularly valuable
for practitioners transitioning from traditional ML to RL in
industrial settings. It provides a bridge between familiar ML
practices and RL-specific requirements.

4) Directly Applied ML Decision Options are indicated
by ✓ in Table I, and include data processing component,
model performance degradation and use checkpoints. We
noted 30 such decision options. Practitioners should be aware
that the MLOps-related decision options in this category are
directly compatible with RLOps. They should be encouraged
to use them where appropriate, adapting their MLOps practices
to accommodate RL-specific requirements. The application of
all 6 RL-specific ADDs indicates the importance of consider-
ing RL’s unique characteristics in industrial settings. These
decision options also offer the most straightforward path
to implementation. Practitioners should consider prioritising
them to achieve rapid benefits and establish a foundation for
more complex integration later in the system’s lifecycle.

Our results demonstrate that RL practitioners wishing to
implement RLOps have a rich set of architectural decisions
at their disposal. This breadth of choice allows for tailored
solutions that can address the unique challenges of RL in
Industry 4.0 CPPS environments. By carefully considering
the applicability of various ADDs and decision options and
addressing RL’s unique challenges in industrial settings, prac-



titioners can leverage these technologies to enhance efficiency,
adaptability and decision-making in their operations. Practi-
tioners are recommended to maintain flexibility and contin-
ually reassessment options, and a commitment to ongoing
adaptation is recommended in this rapidly evolving field.

VII. THREATS TO VALIDITY

In this section, we consider threats to validity according to
Wohlin et al. [38] and Yin [27].

A. Internal Validity

Our selection of the study object and its context (for
instance, its domain), as well as its level of MLOps/RLOps
maturity, could have invalidated or skewed our results. How-
ever, we consider the study object to be representative of the
broader industry, and this assertion is supported by the broad
range of MLOps/RLOps practices evidenced in the case study.

If a software project is still in development at the time of
a study, changes over time within the study object, e.g. in
team composition, system architecture, or technologies, could
influence findings. We do not consider this threat significant
since the project was in an advanced stage of development, and
any relevant architectural decisions had already been made. In
any case, this factor applies to any project since all devel-
opment and production systems evolve until decommissioned.
Our case study represents an accurate temporal snapshot, and
it is worth noting that none of the documented practices or
ADDs contradict or are incompatible with one another.

B. External Validity

The generalisability of our findings is a potential threat to
external validity if the study object is not representative of the
broader industry or use of MLOps/RLOps in practice – the
findings may not be applicable to other contexts. Despite the
novel nature of the system, we were provided with many data
sources for triangulation and the study object represents the
state of the art. We consider the study object a typical case for
the study and in other contexts, again due to the broad range
of evidenced practices discovered. We expect our results to
be relevant to other cases with common characteristics and
expect our findings also to be relevant to those cases. Still, it
would be interesting to conduct other case studies in similar
and differing contexts for comparison (see Section VIII).

C. Construct Validity

We set out to understand how MLOps ADDs are applied
in practice and how they relate to RLOps. Our definitions
and understanding of MLOps/RLOps ADDs might not be in
concordance with their use within the study object, leading
to inconsistent interpretations and less convincing results. To
mitigate this threat, we clearly, consistently and comprehen-
sively defined all technical terms as we understood them, used
standardised terminology and ensured the author team and
project partners had a shared understanding. We also formally
modelled the relevant parts of the system and generated UML
visualisations of our models for comparison, documentation

and validation. Our findings indicate that our understanding
of the ADDs matched their use in the study object, thus
underscoring their relevance and the validity of the study.

D. Reliability
A further risk is that the methods used in our prior work

described in Section IV-A to identify practices, ADDs and
decision options may not have accurately captured the nuances
of relevant practices in the real world. The same applies to
the translation of our understanding of concepts from our
prior work, such as ADDs, into concrete practical use in the
case study. To mitigate this threat, we triangulated all sources
of project information as a confirmatory measure and, when
necessary, asked project partners for clarification. In doing so,
we successfully mapped the ADDs to phenomena encountered
within the study object, which confirms the overall validity of
the ADDs and the reliability of the study.

VIII. CONCLUSION AND FUTURE WORK

We explored the application of ML ADDs in a real-world
RL CPPS. Our research questions examine the applicability
of known ML and RL ADDs, the decision options directly
applied to RL, and the adaptation requirements for ML deci-
sion options to RL in a CPPS context. This study, the first of
its kind, provides actionable insights into the use of MLOps
and RLOps practices in Industry 4.0. It provides guidance and
a reference for practitioners, linking theoretical concepts and
real-world applications in the field of RL-driven CPPSs and
informing architectural design in Industry 4.0.

We categorised ADD decision options into four emergent
groups: Inapplicable ML Decision Options, Unused ML De-
cision Options, ML Decision Options with RL Equivalents
and Directly Applied ML Decision Options. This classifica-
tion provides insights into applying ADDs from the literature
to real-world RLOps systems. The findings show that many
MLOps practices are directly applicable or adaptable to RL,
contributing to a better understanding of RLOps architecture
design and aiding RL practitioners in implementing effective
practices. These insights may be of particular interest and
encouragement to project teams when implementing similar
Industry 4.0 CPPSs to the study object, particularly to those
who are unaware that many MLOps practices are applicable
to RL during architectural decision-making.

This study on ML and RL ADDs in the Industry 4.0 CPPS
domain also lays the groundwork for future studies. Ideas
include exploring RLOps ADDs across various industries,
longitudinal studies on RLOps ADD evolution and performing
quantitative impact analyses. Such studies could reveal sector-
specific practices and new ADDs, track the maturation of
RLOps practices over time, and provide empirical evidence of
their effectiveness. Collectively, such studies could enhance
understanding of RLOps practices in different contexts and
their impact on organisational performance.
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