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ABSTRACT Accurate model selection is essential in predictive modelling across various domains,
significantly impacting decision-making and resource allocation. Despite extensive research, the model
selection process remains challenging. This work aims to integrate the Minimum Description Length
principle with the Multi-Criteria Decision Analysis to enhance the selection of forecasting machine
learning models. The proposed MDL-MCDA framework combines the MDL principle, which balances
model complexity and data fit, with the MCDA, which incorporates multiple evaluation criteria to address
conflicting error measurements. Four datasets from diverse domains, including software engineering (effort
estimation), healthcare (glucose level prediction), finance (GDP prediction), and stock market prediction,
were used to validate the framework. Various regression models and feed-forward neural networks were
evaluated using criteria such asMAE,MAPE, RMSE, andAdjustedR2.We employed the Analytic Hierarchy
Process (AHP) to determine the relative importance of these criteria. We conclude that the integration
of MDL and MCDA significantly improved model selection across all datasets. The cubic polynomial
regression model and the multi-layer perceptron models outperformed other models in terms of AHP score
and MDL criterion. Specifically, the MDL-MCDA approach provided a more nuanced evaluation, ensuring
the selected models effectively balanced complexity and predictive accuracy.

INDEX TERMS Multicriteria decision analysis, minimummodel length, machine learning, model selection
prediction, MDL-MCDA.

I. INTRODUCTION
Accurate model selection is essential in predictive mod-
elling across various domains. The efficacy of predictive
models influences decision-making processes and resource
allocation. Despite extensive studies comparing multiple
predictive models, the model selection approach still needs
to be explored. Model selection is intrinsically tied to
the objectives of prediction and understanding, with its
essence captured through the formalisation of loss and risk,
as declared by Petropoulos et al. [1] and by Friedman [2].
The issues of model selection lie in navigating through the
complex relationship between independent variables and
the dependent variable underpinned by both observable and
unobservable factors. The literature identifies two broad
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categories of variables influencing dependent variables:
explanatory variables, which are observable, and unobserv-
able variables, which include factors such as measurement
errors or omitted independent variables. This issue has been
discussed in various problem domains.

A. HOW MODELS CAN BE SELECTED: MAIN ISSUES
Model selection is a crucial challenge within all prediction
tasks, bridging the gap between theoretical constructs and
practical applications. This section describes the core aspects
of model selection, covering the fundamental issues, model
evaluation and construction methodologies, and the selection
process. The multicriteria approach, assumptions underly-
ing model selection strategies, and the interplay between
explanatory variables and unobservable factors influencing
the outcome variable are essential to our discussion. The
evaluated datasets are often more complex because they
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contain more features, allowing more independent variables
to be used. Issues in model selection are mainly related
to selecting a model that will fit data well, keep a
complexity level low, and provide a reasonable, accurate
prediction. For each prediction task, the following is to be
evaluated [3]:

• Complexity level – The existing methods of assessing
model quality are often based on assumptions of
randomness of variables and may, therefore, be sensitive
to extreme values. On the contrary, some methods make
few assumptions about randomness, but their inherent
generality may alter their results. This means that while
assumption-based methods can be very accurate under
ideal conditions, they may fail with non-ideal data,
whereas assumption-light methods are more flexible but
can sometimes offer less precise insights.

• Class of models for a specific system – It is also
important to use a good set of predictive models and
select the most relevant method for model construction.

• Evaluation criteria – Selecting the most relevant
evaluation criteria for prediction models is crucial.
A model evaluation criterion, based on its distance to
the theoretical quantity, assesses the performance in
predicting amodel. Also, criteria can often be in conflict.

The prediction task is challenging due to unknown relation-
ships between the variables involved. A common approach
is to create multiple models that represent these relationships
differently. The task then becomes evaluating and comparing
these models to select the best one, where the ‘‘best’’ is task-
specific. Four benchmark problem domains were chosen to
validate the proposed evaluation methods: effort estimation,
predicting glucose levels, gross domestic product (GDP)
prediction, and stock price prediction. These domains require
accurate predictions in both technical and financial fields and
the versatility and robustness of the proposed MCDA-MDL
evaluation framework is demonstrated in our work. The
first prediction task is in software engineering, focusing
on predicting software development efforts. This task is
crucial for project management because accurate estimates
help to plan, budget, and allocate resources. Simple and
accurate predictive models are valuable as they are easier
for project managers and stakeholders to understand and
use, ensuring better project control and success. The second
prediction task is from the medical and health science,
explicitly predicting glucose levels. Accurate glucose level
predictions are essential for managing diabetes, as they help
to monitor and maintain optimal glucose levels and prevent
complications. This task represents a broader challenge in
medical research, where accurate predictions are necessary
for effective patient care and treatment planning.

The third prediction experiment is related to the gross
domestic product prediction. Those predictions are essential
for company financial planning and life cost prediction.
Knowing the gross domestic product prediction is mandatory
for many businesses and public administration.

The fourth domain is related to stock market prediction.
This was included as being a typical representation of the
time series. Also, this is an important task in economic and
financial analysis.

By choosing these four significant problem domains,
the study aims to show the versatility and robustness of
the proposed MCDA-MDL evaluation framework over data
science applications. The software engineering, medical and
financial analysis/economic tasks highlight the need for
practical and easy-to-use models in each field.

B. OBJECTIVES OF THE WORK
Model selection simplifies the process by reducing the
number of possible models to a limited set. However,
it remains a challenging problem because it requires defining
what makes a good model and how to measure its quality.
These definitions should align with the primary goal of the
study. Although this seems straightforward, in practice, the
methods used to create and evaluate models often need to
align better with the study’s objectives.

To address the challenges of model selection in the
presence of conflicting error measurements, we propose the
integration of Minimum Description Length (MDL) and
Multi-Criteria Decision Analysis (MCDA).

The MDL principle [4], [5] helps balance the model’s
complexity with its ability to fit the data. By minimizing the
minimal description length, MDL provides a robust way to
prevent overfitting and select models that generalize well to
new data. Integrating the MCDA approach is essential when
error measurements conflict. MCDA helps to incorporate
an error score, which fuses more than one error criterion.
MCDA score can be understood as a goodness-of-fit part
of MDL. By combining MDL and MCDA, we can enhance
the model selection process, ensuring that the selected model
fits the data well and effectively meets the task’s objectives.
This integrated approach provides a structured framework to
navigate the complexities of model evaluation and selection.

C. RESEARCH QUESTIONS
For this work, the following research questions have been set:

• RQ1: How does the Minimum Description Length
(MDL) and Multi-Criteria Decision Analysis (MCDA)
integration affect predictive model selection?

• RQ2: What advantages does the MDL-MCDA have
compared to the MDL-RSS1 in predictive model selec-
tion?

D. MAIN CONTRIBUTIONS OF THE WORK
In this paper, we address critical challenges in predictive
modeling and model selection by introducing a novel
methodological framework that integrates the strengths of
the Minimum Description Length (MDL) principle with
Multi-Criteria Decision Analysis (MCDA). While traditional

1MDL-RSS is the common MDL having the residual sum of squares at
the goodness-of-fit criterion.
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MDL relies on Residual Sum of Squares (RSS) as a measure
of goodness-of-fit, this approach often falls short in scenarios
where multiple, conflicting error criteria must be balanced,
particularly in complex, real-world datasets. By integrating
MDL with MCDA, we extend the scope of model evaluation
beyond a single error metric, allowing for a more robust
and nuanced assessment that accounts for multiple evaluation
criteria. This innovation not only enhances the reliability of
model selection but also addresses critical gaps in traditional
MDL approaches. Below, we detail the specific contributions
that underscore the novelty and practical value of our
proposed framework:

• MDL andMCDA Integration: Introduces a novel inte-
gration of Minimum Description Length (MDL) with
Multi-Criteria Decision Analysis (MCDA) to improve
predictive model selection by resolving conflicting error
measurements.

• Comparative Analysis: Evaluates MDL-AHP vs.
MDL-RSS integrations for better handling of complex
datasets, showing practical benefits.

• Domain Applications: Assesses the methodology
across multiple domains.

• Benchmark Datasets: Validates the framework using
datasets from software engineering, medical, and
finance domains.

• Enhanced Selection Framework: Demonstrates that
MDL-MCDA improves model selection by balancing
complexity and accuracy.

• Impact of MDL-MCDA: MDL-MCDA outperforms
traditional MDL or MCDA in model selection across
datasets.

• MDL-MCDA vs. MDL-RSS: Shows MDL-MCDA
selects models with better generalization compared to
MDL-RSS.

These contributions advance the understanding and imple-
mentation of model selection methodologies, offering to
applyMDLwithMCDA to various domains requiring precise
and reliable predictive modelling.

E. PAPER ORGANIZATION
The rest of the paper is organised as follows. Section II
provides a comprehensive overview of existing research and
methodologies related to model selection, MDL, MCDA,
AHP, and RSS. Section III details the methods used in
our work, including data preparation, model implementation,
evaluation measures, and the integration of MDL and
MCDA. Section IV presents the results of the experiments
using various datasets and predictive models. It includes a
comparison of the performance of different models based
on AHP, MDL with AHP, and MDL with RSS. Section V
discusses the implications of the results, the effectiveness
of the integrated approach, and its applicability to different
problem domains. Finally, Section VI summarizes the study’s
main findings, highlights the contributions, and suggests
directions for future research.

II. RELATED WORK
A wide range of viable prediction models are available
across different industries, making it difficult to determine
the optimal one, especially when faced with conflicting
error measures. The Minimal Description Length (MDL)
was introduced to address this issue in [4]. MDL is an
alternative to the Akaike Information Criterion (AIC), which
was introduced as a recognised method for automatic
model selection [6]. While the Akaike Information Criterion
(AIC) is highly efficient in selecting models within the
same class and comparing non-nested models, such as
linear and non-linear models, it cannot automatically choose
models from different prediction model classes, such as
exponential smoothing and autoregressivemodels. To address
this limitation, the Bayesian information criterion (BIC) from
Schwarz was introduced, which, in the same vein as AIC,
evaluates the fit of the data with a complexity penalty.
However, the BIC imposes a more substantial penalty for
complexity than the AIC. Nevertheless, this method still
requires further development to assess models within the
same class. Villegas et al. [7] suggest employing support vec-
tor machines (SVM) to identify the most suitable prediction
model from a range of alternatives, given that model variables
(such as the degree of accuracy and the fitted parameters)
may change over time. The researchers discovered that
utilising SVM leads to a greater overall predictive accuracy.
Ghobbar and Friend [8] devised a predictive error forecasting
technique for assessing demand prediction models in the
airline manufacturing sector based on their factor levels.
They employed mean absolute percentage error (MAPE) as
the criterion for evaluation but did not account for hybrid
prediction models that incorporate personal information.
Oh and Morzuch [9] assessed eight demand prediction
models using six performance measures that evaluate bias
and forecast error, including MAPE, MAE, RMSE, AIC, and
BIC. Their study revealed that the choice of prediction model
varied based on the performance measures employed. Taylor
and McSharry [10] evaluated six distinct prediction models
to estimate electricity demand across ten European countries.
They used MAPE and MAE as evaluation measures and
discovered that the rankings generated conflicting outcomes,
except for the top-performing model, which consistently
ranked first. Petropoulos et al. [1] and Han et al. [11]
investigated the use of subjective expert judgment in pre-
diction model selection, revealing that the chosen models
outperformed those selected throughAIC based on evaluation
measures such as MAE, MAPE and MASE. Furthermore,
it has been shown that collective judgment is superior to a
single decision and statistical selection methods. Davydenko
and Fildes [6], for instance, explored the effectiveness of
MAPE and median average percentage error (MdAPE) in
assessing judgmental adjustments to statistical prediction.
They concluded that relying solely on MAPE to determine a
model’s performance is insufficient due to inconsistent results
betweenMAPE and other error measures. The study suggests
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that future research should develop an approach for selecting
the optimal model when evaluating multiple error measures,
particularly in the face of conflicting results. Multiple-
criteria decision analysis (MCDA) is a widely-used approach
for addressing complex problems involving multiple, often
conflicting, objectives [12]. Selecting predictive models
using MCDA can be particularly useful when different
error measures, such as mean squared error and mean
absolute error, provide conflicting guidance on the optimal
model. Comparing AHP and TOPSIS, two prominent MCDA
methods, we consider how they can be applied in this
model selection context. The Analytic Hierarchy Process
(AHP) [13] is a structured technique for organizing and
analyzing complex decisions. AHP involves decomposing a
problem into a hierarchy of goals, objectives, and alternatives
and then using pairwise comparisons to derive priorities
for the alternatives. In the model selection domain, AHP
could be used to establish a hierarchy with the overall
goal of minimizing prediction error, with sub-objectives
of minimizing MSE, MAE, and potentially other relevant
measures. Each candidate model would then be evaluated
against these criteria, with AHP providing a composite score
to guide the final model selection [14], [15], [16], [17]. The
perceptron, a fundamental building block of neural networks,
has also been explored for effort estimation. A study
by [18] demonstrated the potential of perceptron-based
models to capture non-linear relationships, characteristic for
effort estimation problems and the potential to improve
traditional estimation techniques. While neural network
and deep learning models have shown promising results,
their performance is heavily dependent on the quality and
characteristics of the input data. Proper feature engineering,
data preprocessing, and hyperparameter tuning are crucial
for achieving reliable and accurate effort estimation using
these advanced techniques. Hyperparameter optimization can
significantly impact the model’s predictive capabilities and
generalisation, such as the number of hidden layers, neurons,
and the learning rate.

Neural networks and deep learning models promise
to improve software effort estimation. Their ability to
model complex, non-linear relationships in data makes
them well-suited for this task. Continued advancements in
neural network architectures, training algorithms, and hybrid
modelling approaches will likely enhance their accuracy and
applicability in software engineering.

Various methods for evaluating prediction models in
different domains, primarily using error measures and
information criteria like AIC and BIC. However, employing
AIC and BIC to assess models restricts the comparison to
models within the same class. Moreover, further research is
needed to determine an appropriate approach to evaluating
multiclass demand prediction models based on several
interdependent error measures and to select the best model
based on the simultaneous use of multiple error meas-
ures [19].

III. METHODOLOGY
A. RESEARCH DESIGN
This work evaluates the integration of minimum description
length (MDL) and multi-criteria decision analysis (e.g. AHP)
in selecting predictive models. To achieve this, a series of
steps were taken during experimental work. This involves
data preparation, model implementation, evaluation, and
comparison.

We employ four datasets covering software engineering,
medical and financial problem domains. These cover several
domains and sizes and are also a combination of natural
and synthetic samples. The considered model classes include
multiple linear regression (MLR), Ridge regression, Lasso
regression, Elastic net regression, quadratic and cubic
regression (i.e. polynomial regression with degrees 2 and 3),
and a feed-forward neural network (FF-NN) with various
configurations, which will be specified.

The performance of these models will be evaluated using
criteria: Mean Absolute Error (MAE), Mean Absolute Per-
centage Error (MAPE), Root Mean Squared Error (RMSE),
Adjusted R-squared (adjR2), Prediction at 25% (Pred(0.25)),
and Weighted Quantile Loss (WQL). Additionally, we will
apply the Analytic Hierarchy Process (AHP) and Minimum
Description Length (MDL) principles to aid in model
selection. The procedure will involve several steps (Figure 1).
First, a dataset is prepared and processed by handling missing
values, normalising data, and splitting them into training and
test sets. Then, the predictive models are trained using the
training data. After training, they evaluate each model using
the specified criteria on testing data. The MDL principle
will help quantify the complexity and goodness-of-fit for
each model, focusing on the total description length, which
includes the model structure, parameters, and data encoding.
MCDA, specifically AHP, will evaluate models based on
multiple criteria. This involves making pairwise comparisons
to determine the relative importance of each criterion in the
final score for model selection.

Finally, the models selected using traditional methods will
be compared with those chosen through the integrated MDL
and MCDA approach. This comparison will determine if the
combined approach improves predictive accuracy and model
simplicity.

The expected outcomes of this work include identifying
the impact of integrating MCDA methods (e.g. AHP) for
MDL and comparing to selection using AHP only, or MCDA
with RSS. Moreover, we obtain insights into how MDL and
MCDA can improve model selection and understand the
impact of different variables on model performance.

B. EVALUATING MEASURES
The evaluation and comparison of models involve a detailed
analysis of various models’ performance, focusing on their
ability to predict or explain the dependent variable accurately.
Let us consider a sample D = {(xi, yi), i = 1, . . . , n}, of
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FIGURE 1. Model design flowchart.

variable values yi and ŷi, where yi represents the actual value
and ŷi is the predicted value.
Mean Absolute Percentage Error (MAPE) is a measure of

prediction accuracy of a forecasting method, expressing the
accuracy as a percentage. It is defined as:

MAPE =
1
n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ × 100. (1)

Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE) are common evaluationmeasures assessing the
average magnitude of prediction errors. MAE is defined as:

MAE =
1
n

n∑
i=1

∣∣yi − ŷi
∣∣ (2)

and RMSE is defined as:

RMSE =

√√√√1
n

n∑
i=1

(yi − ŷi)2. (3)

The Median Absolute Percentage Error (MdMAPE) pro-
vides a robust measure by focusing on the median of the
percentage errors, defined as:

MdMAPE = median
(∣∣∣∣yi − ŷi

yi

∣∣∣∣ × 100
)

(4)

The Adjusted Coefficient of Determination (Adjusted R2)
is an enhancement of the regular R2 metric that adjusts for

the number of predictors in the model. It provides a more
accurate measure of goodness of fit than R2 by considering
model complexity. Adjusted R2 is defined as:

Adjusted R2 = 1 −
(1 − R2)(n− 1)

n−k − 1
(5)

where n is the number of observations, k is the number
of predictors, and R2 is the coefficient of determination on
set D.
Pred(0.25) evaluates the proportion of predictions that fall

below a specified error threshold, such as 25%. It is useful
for assessing the overall model’s predictive accuracy within
an acceptable error range. Pred(0.25) is calculated as

Pred(0.25) =
1
n

n∑
i=1

I
(∣∣∣∣yi − ŷi

yi

∣∣∣∣ < 0.25
)

(6)

where I is an indicator function that equals 1 if the condition
is true and 0 otherwise.

The Weighted Quantile Loss (WQL) [20] measures how
well a predictive model performs across different quantiles
of the target variable’s distribution. It is particularly useful
in scenarios where it is important to understand the model’s
performance across various data distribution segments. The
WQL is given by:

wQL(τ ) =

∑N
i=1 Lτ (yi, ŷi(τ ))∑N

i=1 |yi|
(7)

where τ is the quantile level (e.g., quartils), yi is the observed
value at the i-th data point, and ŷi(τ ) is the predicted
quantile value at the i-th data point for the quantile level
τ . The quantile loss function, Lτ (yi, ŷi(τ )), is defined as
Lτ (yi, ŷi(τ )) = (τ − 1{yi < ŷi(τ )})(yi − ŷi(τ )), where 1{yi <

ŷi(τ )} is an indicator function that equals 1 if yi < ŷi(τ ) and
0 otherwise.

1) DISCUSSION ON EVALUATION MEASURES
Model performance is assessed using various criteria:
Mean Absolute Percentage Error (MAPE), Mean Absolute
Error (MAE), Root Mean Squared Error (RMSE), Median
Absolute Percentage Error (MdMAPE), Adjusted R2, and
Predictions Level (Pred(0.25)). Each criterion offers a distinct
perspective on model evaluation, capturing different facets
of accuracy, robustness, or complexity. However, these
measures may occasionally produce conflicting results,
necessitating careful interpretation.

The selection of these criteria reflects their ability to
balance accuracy, robustness to outliers, and the trade-off
between model fit and complexity.

Accuracy-focused measures:
• MAPE measures percentage errors, providing an intu-
itive view of relative accuracy for stakeholders.

• MAE averages error magnitudes, offering a straightfor-
ward overall accuracy measure without outlier bias.

• RMSE highlights large errors, useful for significant
deviations but sensitive to outliers, potentially conflict-
ing with MAPE.
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Robustness against outliers:
• MdMAPE captures median percentage errors, ensuring
robustness to outliers and complementing RMSE and
MAE.

Model fit and complexity:
• Adjusted R2 measures variance explained, accounting
for predictors to balance fit and complexity.

• Pred(0.25) measures predictions within 25% error, pri-
oritizing consistent accuracy over complexity metrics.

Balancing these criteria is crucial for developing robust
models. Measures like MAPE, MAE, RMSE, MdMAPE,
and Pred(0.25) focus on predictive accuracy, while
complexity-oriented measures like Adjusted R2 provide
insights into generalizability. By evaluating multiple metrics,
a comprehensive understanding of the model’s strengths and
weaknesses emerges.

Evaluation measures can be grouped based on whether
they should be minimized, maximized, or zeroed for optimal
performance:

Minimization Criteria:
• Mean Absolute Percentage Error (MAPE): emphasizes
relative prediction errors.

• Mean Absolute Error (MAE): captures average error
magnitudes.

• Root Mean Squared Error (RMSE): penalizes larger
errors, highlighting extreme deviations.

• Median Absolute Percentage Error (MdMAPE): offers
robustness to outliers.

Maximization Criteria:
• Adjusted Coefficient of Determination (R2): balances
variance explanation and model complexity.

• Proportion of Predictions Below 25%Error (Pred(0.25)):
emphasizes practical predictive accuracy.

• Weighted Quantile Loss: ensures balanced performance
across quantiles.

This diverse set of evaluation criteria ensures the model
is both accurate and generalizable, meeting practical needs
while avoiding overfitting or overemphasis on specific error
types.

C. MINIMUM DESCRIPTION LENGTH
The Minimum Description Length (MDL) principle is a
formal method of inductive inference that balances the
model complexity and goodness of fit. This principle is
rooted in information theory and aims to avoid overfitting
by penalising model complexity. MDL was introduced by
Rissanen [4] and further developed by Rissanen et al. in e.g.
[21], [22], [23], and by Grünwald and Roos in [5] and [24].
MDL is based on the idea that the best model for a

given set of data is the one that allows for the shortest
overall description of the data and the model itself. The total
description length is the sum of the data and model encoding
lengths. Mathematically, the total description length L(D,M )
can be expressed as:

L(D,M ) = L(M ) + L(D|M ) (8)

where L(M ) is the length of the description of the model M
and L(D|M ) is the length of the description of the dataD given
the modelM .

MDL prefers models that balance simplicity (short model
description) and accuracy (short data description given the
model) in the sense that the best model D is minimizing
Eq. (8). This approach penalizes more complex models
unless they significantly improve the data fit. MDL can
bring advantages where overfitting is a concern and model
interpretability and simplicity are valued. MDL helps select
models that generalise well to new data by penalizing model
complexity.

MDL focuses on the total length of encoding both the
model and the data, ensuring that the model chosen is
the one that best compresses the data. This means MDL
inherently balances model fit and complexity by minimizing
the information required to describe the model and the data
it explains. Unlike AIC and BIC, which are derived from
statistical considerations, MDL directly addresses the issue
of overfitting by penalizing unnecessarily complex models,
thus often leading to models that generalize better to new
data. This makes MDL a robust criterion for selecting models
that are not only accurate but also parsimonious, enhancing
predictive performance and interpretability.

1) TWO-PART MDL CODES
The minimal description length as defined by Eq. (8) is in the
literature called a two-part MDL. We point in the beginning,
since MDL is a principle, there can be various encodings
of the models from a class of models and thus there can be
various MDL functions corresponding to the general scheme
from Eq. (8).
We will now come to a more formal explanation of the

MDL principle and its encodings. First we briefly explain the
orginal theory from Rissanen [4], [22] and his followers [5],
[24] as it was developed for the case that a conditional
probability distribution p(y|x) is known. Secondly we explain
MDL when we only know about the model, from which the
data are generated, that it is a member of a class of functional
models [25].

2) ENCODING OF MODELS WITH KNOWN PROBABILITY OF
THE DATA GENERATION PROCESS
We define a model for the prediction problem as a conditional
probability distribution p(y|x) over and input space X , i. e.
in other words,

∑
y∈Y p(y|x) = 1 (where the output space Y

can be theoretically also an infinite). A model class is a set of
models depending on a parameter vector θθθ , i.e.M = {pθθθ , θθθ ∈

222}. Usually, 222 is a subset of a multivariate Euclidean space.
Shannon in [26] proved the following fundamental statement
in information theory, known under the name Shannon-
Huffman code. If a sender and receiver agreed in advance
on a model p and both know the input xi, i = 1, . . . , n
then there exists code to transmit the values yi, i = 1, . . . , n
losslessly with codelength (up to at most one bit on the whole

VOLUME 13, 2025 19393



P. Silhavy et al.: MDL and Multi-Criteria Decision Analysis in Predictive Modeling

sequence)

Lp(y|x) = −

n∑
i=1

log2 p(yi|xi) (9)

where y, x is a shortened notation for set y1, . . . , yn,
x1, . . . , xn, respectively (which are from Y , X respectively).
The one additional bit in the Shannon-Huffman code is
present only once for the whole data set [27] and with large
data sets is negligible. Thus it will be omitted from the
encodings.

We do no need to know the practical implementation of
compression algorithms but we consider only the theoretical
bit length of their associated encodings. We want to measure
the amount of information contained in the data, and how it
is represented by the model. So we will directly work with
codelength functions. Probability distribution function p can
be understood as the data generating process and in general it
is not known but can be approximated from the data.

To quantify the complexity of the computational models
for prediction (and in general for a supervised learning prob-
lem) can be done e.g. by parameter counting. An information-
theoretic way to use the Occam razor principle in terms of the
simplest model with a good generalization is the minimum
description length (MDL), introduced by Rissanen [4] and
further developed by Rissanen, Barron, Yu in e.g. [21], [22],
[23], and by Grünwald and Roos in [5], [24]. Encodings in
which the parameters of a model are at first transmitted to
the receiver and then the data using these parameters are
encoded, have been called two-part codes and introduced by
Grünwald [5].

Let Lparam(θθθ ) be any encoding scheme for parameters θθθ ∈

222 and let θθθ∗ be any parameter. The corresponding two-part
codelength is

Lθθθ∗ (y|x) = Lparam(θθθ∗) + Lpθθθ∗ (y|x)

= Lparam(θθθ∗) −

n∑
i=1

log2 pθθθ∗ (yi|xi). (10)

∑n
i=1 log2 pθθθ∗ (yi|xi) is called the goodness-of-fit. The

objective is to find θθθ∗ at the minimum of (10) over all
parameterizations.

3) ENCODING OF MODELS WITH KNOWN FUNCTIONAL
CLASS OF THE DATA GENERATING PROCESS
When p is known, it is clear that the minimum of (10)
is equivalent to the maximum likelihood estimate (MLE).
However, what makes the MDL principle so generic is that
it can be generalized to the functional cases, i.e. instead of p
probability, f as a general function can be considered about
which is only known to be a member of a class of candidate
models, see e.g. [25]. It means that about the model, from
which the data are generated, is only known to be a member
fl(.|θθθ l) of a class of models

M = {fl(.|θθθ l), θθθ l ∈ 222l, θlj ∼ πlj(θlj),

l = 1, . . . ,m, j = 1, . . . , kl} (11)

where m is the number o models in M , θθθ l = (θl1, . . . , θlkl )
is a kl-dimensional parameter vector associated with fl and
222l is a parameter space for θθθ l . πlj(θlj) is introduced merely
to simplify the encoding process as an artificial device to
minimize the description length. It is assumed that every fl is
known except for θθθ l , and that different fl may have different
number of parameters kl . Given a set of observed data, the
goal is to find the ‘‘true’’ fl fromM as well as to estimate the
parameter θθθ i associated with it. In this sense is (10) replaced
by

L(y) = L(θ̂θθ l) + L(y|θ̂θθ l) (12)

where L(θ̂θθ l), L(y|θ̂θθ l) are code lengths for encoding fl(.|θ̂θθ l) and
‘‘y conditioned on fl(.|θ̂θθ l)’’ respectively. L(y|θ̂θθ l) is called the
goodness-of-fit.

Rissanen in [21] proved that if θ̂lj is an MLE computed
from nj data points and if n is large, then the precision of
θlj can be effectively encoded with 1

2 log2 nj bits. Rissanen
derived a well-known form when all the parameters θlj are
to be estimated by using all data points of size n. For subset
selection in regression analysis, based on [22] it is

MDL(kl) = − log2 fl(y|θ̂θθ l) −

kl∑
j=1

log2 πlj(θ̂lj) +
kl
2
log2 n.

(13)

where kl is the number of the regressors. Moreover, for n
large, the choice of πlj(θ̂lj) is relatively unimportant, as the
resting summands in (13) are dominating [22]. So in practice
for high n, term πlj(θ̂lj) can be omitted for MDL.

4) MDL WITH MULTI-OBJECTIVE GOODNESS-OF-FIT
We propose to replace the goodness-of-fit measure, which are
commonly used in the MDL literature, namelyMAE ,MAPE
RMSE etc. by the multiobjective goodness-of-fit measure.
We will utilize this idea of both probabilistic and functional
representation of models described above.

If the probability function p is known: The second part
in Eq. (10) is a goodness-of-fit of the model ppθθθ∗ on data
set D. In this paper, we replace in the value Lpθθθ∗ (y|x) :=∑n

i=1 − log2 pθθθ∗ (yi|xi) by

L8θθθ∗ (y|x) = − log2 8θθθ∗ (y|x) (14)

where 8θθθ∗ (y|x) is a multi-objective criterion, and similarly,
as above, the first part Lparam(θθθ∗) is the encoding of the
selected model. The objective is to find θθθ∗ at the minimum
of (14) over all parameterizations.

If only function fl is known, the goodness-of-fit in (13)

L(y|x) := − log2 fl(y|θ̂θθ l) =

n∑
i=1

− log2 fl(yi|θ̂θθ l) (15)

will be replaced analogically by (14).
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5) CONSIDERED MACHINE LEARNING METHODS
Our work incorporated three types of machine learning meth-
ods which we call model classes: multiple linear regression
(LR), multiple linear regression with a penalization term
(penLR), polynomial regression (polREG) up to degree 3, and
feed-forward neural networks (FF-NN). In this work, multi-
layer perceptrons with two and three hidden layers are used.

In the following subsections, we construct the MDL
descriptions of the above models for the multi-objective
goodness-of-fit.

6) MDL FOR LINEAR REGRESSION WITH MULTI-OBJECTIVE
GOODNESS-OF-FIT
Giurcăneanu et al. in [28] constructed several information-
theoretic criteria for the variable selection by multiple linear
regression assuming that the noise follows a Gaussian distri-
bution. We will use their MDL derived from the stochastic
complexity [29]. However, we replace their goodness-of-fit
with the multi-objective goodness-of-fit. We denote k = |γγγ |

the number of non-zero values in the binary vector γγγ , i. e.
the number of regressors, and we can assume that k > 0.
Let βββγγγ ∈ Rk+1 be the vector of the unknown regression
coefficients within the γγγ -subset. The matrix Xγγγ is given by
the columns of X that correspond to the γγγ -subset and the
regression equation is

y = Xγγγβββγγγ + εγγγ , (16)

where y = (y1, . . . , yn) is the dependent variable and εγγγ are
Gaussian distributed with zero-mean and unknown variance
τγγγ . Under the assumption that matrix Xγγγ has full-rank, the
maximum likelihood (ML) estimates are

β̂ββγγγ = (X⊤
γγγ Xγγγ )−1X⊤

γγγ y (17)

and

τ̂γγγ = ∥y− Xγγγ β̂ββγγγ ∥
2
2/n (18)

where τ̂γγγ is a goodness-of-fit in Eq. (12) on regressor from
γγγ . Paper [28] evaluated MDL of these regressions with
independent variables indexed by γγγ as functions depending
on vector y and γγγ as

MDLLR(y,γγγ ) =
n− k
2

log2 τ̂γγγ +
k
2
log2

∥Xγγγ β̂ββγγγ ∥
2
2

n

− log2 0(
n− k
2

) − log2 0(
k
2
) +

n
2
log2(nπ )

(19)

where 0 denotes the Euler integral of the second kind. In our
MDL, we propose to replace τ̂γγγ in (19) by a multi-objective
criterion 8

β̂ββγγγ
(yi|xi), i.e.

MDLLR8 (y,γγγ ) =
n− k
2

log2(
8̂

β̂ββγγγ
(y|x)

n
)

+
k
2
log2

∥Xγγγ β̂ββγγγ ∥
2
2

n

− log2 0(
n− k
2

)−log2 0(
k
2
) +

n
2
log2(nπ).

(20)

The objective is to find βββ∗ at the minimum of (20) over all
parameterizations β̂ββγγγ and combinations of γγγ .

7) MDL FOR PENALIZED LINEAR REGRESSION WITH
MULTI-OBJECTIVE GOODNESS-OF-FIT
We express the encoding of the penalization part in regression
as 1

2 log2 λ for fixed values of MLE of β̂ββ. We use the
same encoding of the regularization parameter for Lasso,
Ridge and Elastic penalization. However, we stress that MDL
minimization can be used only within the regression class
with the same penalization type and not within all penalty
types. Then

MDLpenLR(y,γγγ )

=
n− k
2

log2 τ̂γγγ +
1
2
log2 λ

+
k
2
log2

∥Xγγγ β̂ββγγγ ∥
2
2

n
− log2 0(

n− k
2

) − log2 0(
k
2
)

+
n
2
log2(nπ ). (21)

and

MDLpenLR8 (y,γγγ )

=
n− k
2

log2(
8̂

β̂ββγγγ (y|x)

n
)

+
1
2
log2 λ +

k
2
log2

∥Xγγγ β̂ββγγγ ∥
2
2

n

− log2 0(
n− k
2

) − log2 0(
k
2
) +

n
2
log2(nπ ). (22)

It is well-known that Lasso, Ridge, and Elastic net regression
can have various values for their regularization parameters.

8) MDL FOR POLYNOMIAL REGRESSION WITH
MULTI-OBJECTIVE GOODNESS-OF-FIT
Consider now setM as a set of polynomial regression models
of degree r ≤ r ′. Denote θ̂θθ = (â0, . . . , âr ) the set of
coefficients in the polynomial of degree r . Since each âs, s =

0, . . . , r is a real number estimated from n data points, each âs
requires 1

2 log2 n bits to encode, the same the code for degree
r . Thus

L(θ̂θθ ) = L(â0, . . . , âr ) =
r + 1
2

log2 n+
1
2
log2 n

=
r + 2
2

log2 n. (23)

The description of goodness-of-fit is

L(y|θ̂θθ) =
n
2
log2(

RSSr
n

) (24)

where RSSr =
∑n

i=1(yi − (â0 + â1xi + · · · + (ârxri ))
2. So the

MDL for a polynomial of degree r ≤ r ′ is

MDLpolREG(y, r) =
r + 2
2

log2 n+
n
2
log2(

RSSr
n

) (25)
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In our MDL, we propose to replace RSSr
n in (25) by a multi-

objective criterion 8
θ̂θθ
(y|x), i.e.

MDLpolREG8 (y, r) =
r + 2
2

log2 n+
n
2
log2(

8̂
θ̂θθ
(y|x)

n
). (26)

9) MDL FOR A FEED-FORWARD NEURAL NETWORK WITH
MULTI-OBJECTIVE GOODNESS-OF-FIT
We generally consider a feed-forward network (FF-NN) with
k ≥ 1 hidden layers, each having hs hidden units, s =

1, . . . , k and m input and p output units. We propose a
simple encoding for suchmodels where themodel description
considers the encodings based on the encoding of the
structure of the FF-NN and on the encoding of the learning
part.

a: THE ENCODING OF THE STRUCTURE
The structure will be encoded as number of weights. In all
hidden layers and in the output layer we considered ReLU
activation function, and this is fixed for all FF-NN models.

b: THE ENCODING OF THE LEARNING PART
We encode the learning part of the FF-NN models so that
we encode the learning rate lrt of the Adam optimizer, the
batch size bs and the number of Adam hyperparametersAhyp.
Denote the vector of all parameters defining a FF-NN by θθθ .
We do not encode the values of θθθ explicitely, but they are
implicitely given by using Adam for their computation. Then

MDLFF−NN (y, θθθ )

=
1
2
log2(m× h1)

+
1
2
log2(h1 × h2) + · · · +

1
2
log2(hk × p)

+
1
2
log2(lrt) +

1
2
log2(bs) +

1
2
log2(Ahyp)

+
n
2
log2(

RSSFF−NN

n
) (27)

where RSSFF−NN is the residual sum of squares on the output
of FF − NN and the values y and

MDLFF−NN
8 (y, θθθ )

=
1
2
log2(m× h1) +

1
2
log2(h1 × h2)

+ · · · +
1
2
log2(hk × p)

+
1
2
log2(lrt)+

1
2
log2(bs)+

1
2
log2(Ahyp)

+
n
2
log2(

8̂
θ̂θθ
(y|x)

n
). (28)

where 8
θ̂θθ
(y|x) is the multi-objective criterion applied on the

output of FF − NN and the values of y.

D. ANALYTIC HIERARCHY PROCESS (AHP)
The Analytic Hierarchy Process (AHP) is a structured tech-
nique (Multiple Criteria Decision Analysis) for organizing

and analyzing complex decisions [30]. It involves breaking
down a problem into a hierarchy of subproblems that can be
more easily comprehended and evaluated. The main steps in
AHP are [31]:

• To decompose the decision problem into a hierarchy.
• To compare the elements at each hierarchy level to
establish priorities.

• To synthesize these comparisons to determine weights
for each element.

The consistency ratio (CR) [17] is calculated to ensure
consistency in the comparisons:

CR =
CI
RI

(29)

where CI is the consistency index, and RI is the random index.
The consistency index (CI) measures the consistency of the

pairwise comparisons. It is calculated as follows:

CI =
λmax − n
n− 1

(30)

where λmax is the largest eigenvalue of the comparison
matrix, and n is the number of items being compared.
The random index (RI) is the average consistency index of

a randomly generated pairwise comparison matrix. The value
of the RI depends on the number of items being compared
and is used as a benchmark to assess the acceptability of the
calculated CI.

To implement AHP for model selection, we start by defin-
ing the criteria for model evaluation. For example, criteria
such as Mean Absolute Percentage Error (MAPE), Mean
Absolute Error (MAE), Root Mean Square Error (RMSE),
Median Absolute Percentage Error (MdMAPE), Adjusted
R-Squared (AdjR2), Prediction at 0.25 (Pred(0.25)), and
Weighted Quantile Loss (wQL) can be used. Each model
is evaluated based on these criteria through pairwise com-
parisons to determine their relative importance. The AHP
process helps to synthesise these comparisons to assign a
weight to each criterion, ultimately selecting themost suitable
prediction model based on a comprehensive, structured
evaluation. Each criterion has its own weight, which is set
empirically or experimentally.

IV. EXPERIMENTS
This chapter outlines the experiments conducted using
various regression model classes and two neural networks,
namely multi-layered perceptron model classes to predict
outcomes in the mentioned datasets. The experiments were
divided into two main groups: Regression models and
feed-forward neural networks. Each group utilized specific
models’ families, evaluated based on their performance
with the corresponding datasets. All experiments were
implemented using Python and libraries pandas, numpy,
sklearn, tensorflow and intertools.

A. DATASETS
The datasets employed in this research are widely acknowl-
edged and are publicly accessible. The historical data utilized
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in the study of software effort estimation is well established.
In this work, we employ a Use Case Points (UCP, DS1)
[32] and Glucose Level Prediction Dataset (GLP, DS2). The
UCP-based dataset was first used in [32] and can be found
in several following [33], [34], [35]. GLP dataset has been
adopted from [36]. The Gross Domestic Dataset (GDP, DS3)
has been used from [36], and finally, the Stock Market
Prediction (STOCK, DS4) has been adopted from [37]. UCP
and GLP datasets have been selected as they are are a
mixture of real and synthetic samples. Expansion by synthetic
samples is needed due to their small size. [36]. GDP a dataset
is small in size and contains only real samples. Also in for
STOCK dataset only real samples has been used, but there is
10,900 samples.

1) DS1-USE CASE POINTS DATASET
Use Case Points Dataset is based on ucp_71, which was first
used in [32] and can be found in several following papers [33],
[34], [35]. After removing outlier based on the interquartile
range approach (IQR) [38], the UCP dataset contains
4,912 samples, with characteristics described in Table 1.
Unadjusted ActorWeight (UAW)measures the complexity of
actors interactingwith a system. UnadjustedUse CaseWeight
(UUCW) assesses the complexity of use cases. Technical
Complexity Factor (TCF) evaluates the technical aspects
that affect a project’s complexity. Environmental Complexity
Factor (ECF) considers environmental factors impacting the
project. Effort refers to the total amount of work required
to complete a project, typically measured in person-hours
or person-months. These variables are used to estimate
and manage the scope and resources needed for software
development projects.

TABLE 1. UCP dataset characteristics.

2) DS2-GLUCOSE LEVEL PREDICTION DATASET
Selected GLP dataset [36] initially consists of 16,979
samples; after applying IQR cleaning [38], 15,942 samples
have been prepared for further use. The dataset represents ten
variables that describe various physiological and metabolic
parameters. GLP dataset characteristics are in Table 2. The
dependent variable is Blood Glucose Level (BGL), measured
in milligrams per deciliter (mg/dL). The independent variable
(predictor) is age (AGE), which records the age of individuals
in years. Blood pressure readings are split into Diastolic
Blood Pressure (DBP) and Systolic Blood Pressure (SDP),
measured in millimetres of mercury (mmHg). Heart Rate
(HR), expressed in beats per minute (bpm), reflects cardio-
vascular health. Body Temperature (TE), recorded in degrees
Fahrenheit, can indicate fever or hypothermia. Next is a

blood oxygen saturation (SPO2) as a percentage, highlighting
respiratory efficiency. The dataset also includes categorical
variables for sweating (SWE) and shivering (SHI), capturing
the presence of these symptoms. Both evaluate yes/no value.
Finally, the diabetic/non-diabetic (D/N) variable categorises
individuals based on their diabetic status.

TABLE 2. GLP dataset characteristics.

3) DS3-FEDERAL RESERVE BANK
In this dataset, gross domestic product and inflation data
from [39] with their basic descriptive statistics for the key
economic indicators are presented in Table 3. In total, there
are 97 samples (94 past quarters). The gross domestic product
(GDP), in dollars has an average value of 16,846.501 with
a median of 15,955.532, ranging from a minimum of
10,002.179 to a maximum of 27,956.998. Inflation, rep-
resented as an index, averages 225.936 with a median of
227.296, fluctuating between 169.300 and 307.531. The
Interest Rate shows a mean of 1.786%, a median of 1.080%,
and spans from 0.050% to 6.540%.

The Unemployment Rate has a mean of 5.805% and
a median of 5.250%, with values ranging from 3.40% to
14.80%. Consumer Sentiment averages at 83.580, with a
median of 86.450, and varies from a low of 51.500 to a high of
112.000. Industrial Production has an average of 96.974 and a
median of 98.580, with aminimum of 84.681 and amaximum
of 103.929.

Money Supply, another key economic indicator, has
an average of 10,893.520 and a median of 9,647.700,
with values ranging from 4,666.200 to 21,722.300. Finally,
Personal Income averages 14,248.143 with a median of
13,519.000 and spans from a minimum of 8,348.000 to a
maximum of 23,189.400.

4) DS4-STOCK PRICE
The fourth dataset is adapted from [37], and the dataset
characteristics of stock prices are summarized Table 4. The
table presents basic descriptive statistics of five key variables:
Date, Open, High, Low, and Close prices. Each variable’s
type is identified as Independent or Dependent, with Close
being the dependent variable. There are 10,900 samples in
total.

The Date variable, marked as Independent, is represented
in an ordinal format, signifying the timestamp of each record.
The market prices Open, High, and ‘Low’ are classified as
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TABLE 3. GDP dataset characteristics.

independent variables. The Open price has a mean value
of 82.350993, a median of 46.948750, a minimum value of
6.870357, and a maximum value of 453.070007. The ‘High’
price shows a mean of 83.178018, a median of 47.371250,
a minimum of 7.000000, and a maximum of 456.170013.
Similarly, the ‘Low’ price has a mean of 81.526316, a median
of 46.549999, a minimum of 6.794643, and a maximum of
451.769989.

The Close price, being the dependent variable, has a
mean of 82.388479, a median of 47.000000, a minimum of
6.858929, and a maximum of 452.850006.

B. REGRESSION MODEL CLASSES
1) MULTIPLE LINEAR REGRESSION MODEL CLASS
The linear regression models tested in this work utilized
various configurations. The multiple linear regression (LR)
model is tested for all combinations of available predictors.

The Ridge LR, Lasso and Elastic net model classes
were evaluated with different values for the regularization
parameter alpha (0.1, 1.0, 10.0, 100.0) and combination of
predictors.

Polynomial regression models were constructed to capture
non-linear relationships within the datasets. These models
were tested with two different polynomial degrees and
their respective hyperparameter parameters, i.e. vectors of
polynomial coefficients.

For quadratic regression models (i.e polynomial regression
up to degree, the hyperparameters included setting the
maximum polynomial degree up to 2. Similarly, cubic
polREG used the same configuration up to degree 3.

These configurations and the selected best parameters
allowed for a comprehensive evaluation of the data’s linear
and non-linear relationships, ensuring that the models could
capture the underlying patterns effectively.

C. FEED-FORWARD NEURAL NETWORK MODEL CLASS
Feed-forward neural network models (FF-NN) was selected
to address the prediction task in this experiment. The
model was designed sequentially, starting with an input
layer matching our feature set’s dimensionality. Multiple
configurations of hidden layers were tested, comprising
varying numbers of neurons and dropout rates to prevent
overfitting.

TABLE 4. Stock price dataset characteristics.

The architecture of FF-NN I consists of one input layer,
two hidden layers, and one output layer. The hidden layers
have 64 and 32 neurons, respectively. This setup is often used
in practice as it is simple yet powerful enough to capture
complex patterns in data without overfitting. A dropout rate
of 0.3 is used, effectively preventing overfitting by randomly
deactivating 30% of the neurons during training. Dropout is a
widely accepted regularisation technique that helps improve
the generalisation of neural networks [40].

A learning rate of 0.0001 is chosen for the training details,
allowing the model to converge smoothly to a minimum.
A lower learning rate helps fine-tune the weights more
accurately [41]. The Adam Optimiser was selected for its
efficiency and capability to adapt the learning rate during
training. Adam combines the advantages of both the AdaGrad
and RMSProp algorithms [42]. The model is trained for
200 epochs with a batch size 16, ensuring that the model sees
enough data instances for robust training while maintaining
computational efficiency. To prevent overfitting and ensure
optimal performance, early stopping is implemented. The
training stops if the validation loss does not improve
for 10 consecutive epochs, with the best model weights
restored [43].

The architecture of FF-NN II includes one input layer, three
hidden layers, and one output layer with neurons arranged as
[128, 64, 32]. The configuration is summarized in Table 5.
Each hidden layer utilised the ReLU activation function,
which is known for its efficiency in training deep networks
by mitigating the vanishing gradient problem. The dropout
layers were strategically inserted after each dense layer to
regularise the model and improve generalisation by randomly
setting a fraction of input units to zero during the training
phase. The output layer consisted of a single neuron with
a ReLU activation function, which was suitable for our
regression objective.
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TABLE 5. Multi-layered perceptron configuration.

D. LIMITATIONS AND INTERPRETATION OF THE RESULTS
This subsection discusses the limitations of our work and
cautions us in interpreting the results and conclusions.

1) LIMITATIONS
• Datasets vary in size and complexity; smaller datasets
like GDP may limit generalization. We added synthetic
samples and used holdout validation to enhance robust-
ness.

• Integrating MDL and MCDA with FF-NN models
requires significant resources and can hinder inter-
pretability. We used early stopping (10 epochs without
validation loss improvement) and documented model
details to address this.

• MCDA’s weighting of criteria introduces subjectivity.
We minimized this with established methods and
expert input, suggesting future studies explore objective
weighting.

• Neural network performance relies on hyperparameter
tuning. We used grid and random search with holdout
validation to ensure robustness.

2) CAUTION IN INTERPRETATION
• FF-NN models risk overfitting; we used holdout valida-
tion and early stopping to address this.

• Results may not generalize beyond the datasets used.
We included diverse datasets and suggested future
studies to test the MDL-MCDA framework on broader
datasets.

• Model selection may introduce bias. We tested various
models and recommend including emerging techniques
in future work.

• Data inaccuracies can affect performance. We ensured
data quality through trusted sources, outlier detection,
and handling missing values.

In summary, while our work demonstrates the potential
benefits of integrating MDL and MCDA for model selection,
the above issues highlight areas for caution.

V. RESULTS AND DISCUSSION
The results of all regression and FF-NNmodels are compared
and evaluated for all four tested datasets - problem domains.

Each model is assessed based on the AHP, MDLAHP and
MDLRSS . AHP score is constructed using measures described
in Section III-B. For regression models and FF-NN models,
results tables in Sections V-A and V-B contain the best
variants where, where models where MDLAHP reach its
minimal value for the highest value of AHP. Detailed results
and discussion are available in Appendix.

A. REGRESSION MODELS
The performance of regression models using the UCP dataset
is evaluated based on AHP, MDLAHP, and MDLRSS is
presented in In Table 6. The best regression model for
the UCP dataset is the Polynomial_3 model with UAW,
UUCW, and ECF predictors, achieving anAHP Score of 1.00,
MDLAHP of -12196.06, andMDLRSS of 52135.34.

For the GLP dataset the polynomial regression of degree
3 using AGE, DBP, SBP, TE, SPO2, SWE, HR, SHI, and
DN predictors achieves the highest AHP Score of 1.00, with
MDLAHP of −42044.46 and MDLRSS of 113114.61. In the
GDP dataset, the best regression model is the Polynomial
Regression of Degree 3 using Interest Rate, Industrial
Production, Money Supply, and Personal Income predictors,
with an AHP Score of 1.00, MDLAHP of 986.16, and
MDLRSS of 1858.92. For the STOCK dataset, the Polynomial
Regression of Degree 3 with Open, High, and Low predictors
achieves an AHP Score of 1.00,MDLAHP of −32230.31, and
MDLRSS of 22619.67.

B. FEED-FORWARD NEURAL NETWORK MODELS
Table 7 presents the performance of FF-NN models on the
UCP dataset. The best model is FF-NN II with UAW, UUCW,
TCF, and ECF predictors, achieving an AHP Score of 1.00,
MDLAHP of −30093.69, andMDLRSS of 35846.81.

For the GLP dataset FF-NN II with AGE, DBP, SBP, TE,
SPO2, HR, SHI, and DN predictors achieves the highest AHP
Score of 0.99, with MDLAHP of −111365.58 and MDLRSS
of 42619.76. In the GDP dataset, the best FF-NN model
is FF-NN II with industrial production + personal income
predictors, achieving an AHP Score of 1.00, MDLAHP of
−294.06, and MDLRSS of 849.81. For the STOCK dataset
FF-NN II with Low as the predictor achieves the highest
AHP Score of 1.00, MDLAHP of −73376.47, and MDLRSS
of−11413.85. Including market price predictors consistently
improved model performance across the various regression
techniques, as evidenced by higher AHP Scores and more
favourable MDLAHP and MDLRSS values compared to using
the Date predictor alone.

C. DISCUSSION
The final comparison is displayed in the two plots for FF-NN
models (Figure 2) and regression models (Figure 3). The
performance of three criteria: AHP, and MDLRSS across
four datasets: GLP, STOCK, UCP, and GDP for FF-NN
models and regression models are shown. The AHP criterion
is depicted in blue; the MDLAHP criterion is represented
in red; and the MDLRSS criterion is shown in green. The
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TABLE 6. Performance of regression models across datasets.

TABLE 7. Performance of FF-NN models across datasets.

comparison between regression models and feed-forward
neural networks FF-NN models reveals that FF-NN models
generally outperform regression models across all datasets in
terms ofMDLAHP.

FIGURE 2. Comparison of selected FF-NN models.

For instance, in the GDP dataset, the FF-NN II model
with Industrial Production and Personal Income predictors
achieved an MDLAHP of −294.06 compared to the Poly-
nomial Regression’s MDLAHP of 986.16. Similarly, for the
GLP dataset, FF-NN II achieved MDLAHP of −111365.58,
outperforming the Polynomial Regression’s MDLAHP of
−42044.46. The UCP and STOCK datasets show similar
trends, with FF-NN models consistently having better
MDLAHP values than regression models.
Across all datasets, MDLAHP consistently provides better

performance measure than MDLRSS . For example, in the
STOCKdataset, FF-NN II with Low as the predictor achieved
an MDLAHP of −73376.47 compared to its MDLRSS of
−11413.85, indicating a significant contrast. This trend is
observed across all datasets, suggesting that MDLAHP better

FIGURE 3. Comparison of selected regression models.

captures the trade-offs and multi-criteria evaluations inherent
in complex model selection compared toMDLRSS .

However, while FF-NNs provide significant advantages
due to their non-linearity and depth, they also come with
higher computational costs and complexity, which can
be a disadvantage regarding interpretability and ease of
implementation. However, it must consider that MDLAHP
may also involve more subjective judgment in determin-
ing weights for different criteria, which can introduce
bias.

VI. CONCLUSION
This work aimed to investigate the integration of the
Minimum Description Length (MDL) principle with
Multi-Criteria Decision Analysis (MCDA) to enhance model
selection for predictive tasks.

In conclusion, this study introduces a novel aproach that
integrates the MDL principle with the AHP, a form of
multi-criteria decision analysis, to address critical challenges
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in predictive modeling and model selection. The primary
motivation for combining MDL and AHP arises from the
limitations of traditional MDL approaches, which typically
rely on the Residual Sum of Squares (RSS) as a sole
measure of goodness-of-fit. By integrating MDL with AHP,
we extend the model evaluation process beyond a single error
metric, allowing for a more robust and nuanced assessment
that accounts for multiple evaluation criteria. Through a
comprehensive analysis, we addressed and contributed to
these research questions:

• RQ1: How do the Minimum Description Length
(MDL) andMulti-CriteriaDecisionAnalysis(MCDA)
integration affect predictive model selection?
The integration of MDL and MCDA has significantly
impacted model selection. The results across various
datasets demonstrated that the combined MDL-MCDA
approach consistently outperformed traditional model
selection methods based solely on MDL or MCDA.
Incorporating MCDA allowed for a balanced consider-
ation of multiple evaluation measures, addressing the
conflicting criteria inherent in predictive modelling.
This integration ensured a robust selection process,
improving the overall accuracy and reliability of the
predictive models.

• RQ2: What advantages does the MDL-MCDA have
compared to the MDL-RSS in predictive model
selection?
When comparing the MDL-MCDA method to the
traditional MDL-RSS approach, the findings indicated
a clear advantage of MDL-MCDA. The MDL-MCDA
method provided a more nuanced evaluation by incor-
porating multiple criteria and demonstrated superior
performance in selecting models that generalised well
to new data. The MDL-RSS approach, while effective
in some scenarios, often needed to improve in balancing
the complexity and fit of the models, leading to
suboptimal selections in datasets.

This work opens several directions for future research.
Firstly, further integration of multi-criteria methods can be
investigated. Exploring other multi-criteria decision-making
methods could provide additional insights and improvemodel
selection processes.

Secondly, an application to different domains should be
explored. Applying the MDL-MCDA framework to other
domains and datasets will help to further validate its
versatility and robustness across various predictive modelling
tasks.

Thirdly, developing automated methods for determining
the weights of evaluation criteria in MCDA could reduce
subjective bias and enhance the objectivity of the model
selection process.

In conclusion, the integration ofMDL andMCDA presents
a promising approach to model selection for predictive
tasks, offering a balanced and comprehensive framework that

addresses the inherent complexities and conflicting criteria of
predictive modelling.

APPENDIX
DETAILED RESULTS TO REGRESSION MODELS AND
NEURAL NETWORK MODELS
All regression and FF-NN models’ results are compared and
evaluated for all four tested datasets - problem domains. Each
model is assessed based on the AHP,MDLAHP andMDLRSS .
AHP score is constructed using measures described in the
Section III-B. For regression models in the tables included,
the best variants according to one of the criteria - a model
where AHP is maximal then a model where MDLAHP or
MDLRSS is minimal.

A. REGRESSION MODELS
In Table 8 the Analytical Hierarchy Process (AHP) score, the
Minimum Description Length based on AHP (MDLAHP), and
the Minimum Description Length based on Residual Sum of
Squares (MDLRSS ) is presented.

The predictors for each model are also specified, providing
insight into the input variables considered for the regression
analysis.

The ElasticNet model with the UAW predictor achieved
an AHP Score of 0.66, an MDLAHP of −14096.66, and
an MDLRSS of 56886.55. This indicates a moderate AHP
score but relatively high MDL values, suggesting potential
overfitting.

Models incorporating the UAW, UUCW, and ECF pre-
dictors generally exhibited higher performance measures.
The Lasso, LinearRegression, Polynomial_2, Polynomial_3,
and Ridge models with these predictors achieved an AHP
Score of 0.70 or higher. Notably, the Polynomial_3 model
achieved the highest AHP Score of 1.00, with anMDLAHP of
−12196.06 and anMDLRSS of 52135.34, indicating superior
performance in capturing the underlying patterns in the
dataset.

The models using TCF as the sole predictor (ElasticNet,
Lasso, LinearRegression, Polynomial_2, Polynomial_3, and
Ridge) uniformly resulted in an AHP Score of 0.59. However,
these models exhibited varying MDLAHP and MDLRSS
values, with Polynomial_3 again showing a relatively better
performance with anMDLAHP of−14069.16 and anMDLRSS
of 58082.99.

When examining the combination of UAW and ECF
predictors, the ElasticNet model achieved an AHP Score
of 0.66, an MDLAHP of −14097.32, and an MDLRSS
of 56885.56. This result is comparable to the model’s
performance with UAW alone, suggesting that ECF may not
significantly enhance the model’s predictive capability in this
context.

In summary, for UCP, the Polynomial_3 model with UAW,
UUCW, and ECF predictors consistently outperforms other
models, achieving the highest AHP Score and the lowest
MDL values. The results underscore the importance of
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TABLE 8. AHP , MDLAHP and MDLRSS for regression models with UCP dataset.

TABLE 9. AHP , MDLAHP and MDLRSS for regression models with GLP dataset.

selecting appropriate predictors and model complexity to
enhance the regression model’s performance.

Table 9 presents AHP, MDLAHP and MDLRSS for GLP
Dataset. The model with the highest AHP Score is the
Polynomial Regression of Degree 3, with a score of 1.00,
using the predictors AGE, DBP, SBP, TE, SPO2, SWE, HR,
SHI, and DN. This indicates that this model performs best
regarding AHP among the models.

When considering MDLAHP, the Polynomial Regression
of Degree 3 again shows the best performance with a value
of −42044.46. However, the Linear Regression and Ridge
Regression models, both using the predictors AGE, DBP,
SBP, TE, SPO2, SWE, HR, SHI, and DN, also show strong
performance withMDLAHP values of −51369.50.
For MDLRSS , the Linear Regression model with the

predictors AGE, DBP, SBP, TE, SPO2, SWE, HR, SHI, and
DN performs best with the lowest value of 106125.93. The
Ridge Regression model using the same predictors shows an
identical performance inMDLRSS with a value of 106125.92.

Overall, the Polynomial Regression of Degree 3 with the
predictors AGE, DBP, SBP, TE, SPO2, SWE, HR, SHI,
and DN is the best model when considering both AHP

and MDLAHP. The Linear Regression and Ridge Regression
models are the best when MDLRSS is considered. Therefore,
if all three criteria are considered, the Polynomial Regression
of Degree 3 emerges as the most optimal model due to its
superior performance in two out of three measures.

Table 10 presents AHP, MDLAHP and MDLRSS for GDP
Dataset. The model with the highest AHP Score is the
Polynomial Regression of Degree 3 using the predictors
of Interest Rate, Industrial Production, Money Supply, and
Personal Income, achieving an AHP Score of 1.00. This
indicates that this model performs the best in AHP among
all evaluated models.

In terms ofMDLAHP, the Polynomial Regression of Degree
2 using the predictors’ Unemployment Rate, Consumer Sen-
timent, Industrial Production, Money Supply, and Personal
Income shows the highest value of 1419.81, suggesting it
is the best model based on this criterion. However, the
Polynomial Regression of Degree 3 with predictors Interest
Rate and Personal Income also shows strong performance
with aMDLAHP value of 986.16.

Regarding MDLRSS , the Linear Regression model with
the predictors of Industrial Production and Personal Income
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TABLE 10. Regression results for AHP and MDL on GDP.

performs best with the lowest value of 1066.64, indicating
it has the least residual sum of squares. The Lasso and
ElasticNet models using similar predictors also demonstrate
competitive performance in this measure.

The Polynomial Regression of Degree 3with the predictors
of Interest Rate, Industrial Production, Money Supply, and
Personal Income is the best model when considering the AHP
Score. The Polynomial Regression of the Degree 2 model
stands out in terms of MDLAHP, and the Linear Regression
model excels in MDLRSS . Thus, if all three criteria are taken
into account, the Polynomial Regression of Degree 3 is
the most optimal model due to its superior performance
in AHP Score and competitive performance in MDLAHP
and MDLRSS .

Table 11 presents AHP,MDLAHP andMDLRSS for STOCK
Dataset. The models tested include ElasticNet, Lasso, Linear
Regression, Polynomial Regression (of degree 2 and 3), and
Ridge Regression. Each model was evaluated with different
predictors, specifically Open+High+Low and Date.

The ElasticNet model, when using Open+High+Low as
predictors, achieved an AHP Score of 0.52, an MDLAHP
of −37733.67, and an MDLRSS of 67881.56. When using
Date as the predictor, the AHP Score dropped to 0.04,
whileMDLAHP andMDLRSS were −57585.61 and 98004.58,
respectively. The Lasso model with Low as the predictor had
an AHP Score of 0.80,MDLAHP of −34271.85, andMDLRSS
of 32672.06, whereas with Date as the predictor, the AHP
Score was 0.04, MDLAHP was −57584.76, andMDLRSS was
98005.44.

Linear Regression using Open+High+Low predictors
achieved perfect AHP Scores of 1.00 with MDLAHP of
−32535.83 andMDLRSS of 22562.16, while with Date as the
predictor, theAHP Score was 0.04,MDLAHP was−57584.69,
and MDLRSS was 98005.51. Polynomial Regression models
(degrees 2 and 3) with Open+High+Low predictors also
achieved perfect AHP Scores of 1.00, with MDLAHP and
MDLRSS values of −32444.69 and 22851.12 for degree 2,
and −32230.31 and 22619.67 for degree 3. Including the
Date predictor alongside Open+High+Low in Polynomial
Regression (degree 3) yielded similar results.

The Ridge Regression model with Open+High+Low
predictors had anAHP Score of 0.93,MDLAHP of−33062.29,
and MDLRSS of 25693.66. Using Date as the sole predictor
resulted in an AHP Score of 0.04, MDLAHP of −57584.69,
and MDLRSS of 98005.51.

B. FEED-FORWARD NEURAL NETWORKS-MULTI-LAYER
PERCEPTRON
Table 12 summarizes the performance of FF-NN models on
the UCP dataset, evaluated through the AHP, MDLAHP, and
MDLRSS . Two models, FF-NN I and FF-NN II, are compared
using different combinations of predictors.
The performance of FF-NNmodels on theUCP dataset was

compared across various configurations of predictors. The
results are summarised in Table 12. FF-NN I and FF-NN II
models were evaluated with different predictors.
For FF-NN I, when using the predictors UAW, UUCW,

and ECF, the model achieved an AHP score of 0.71, with
an MDLAHP of −31298.04 and an MDLRSS of 39384.06.
However, when using TCF and ECF as predictors, the AHP
score for FF-NN I dropped to 0.60, with MDLAHP and
MDLRSS values of −31921.90 and 40464.73, respectively.
In contrast, FF-NN II with the predictors UAW, UUCW,

TCF, and ECF achieved the highest AHP score of 1.00,
indicating a perfect performance with an MDLAHP of
−30093.69 and an MDLRSS of 35846.81. When using only
TCF as the predictor, FF-NN II had an AHP score of 0.62, and
the MDLAHP and MDLRSS were −31764.88 and 40195.76,
respectively.
Comparing the models, FF-NN II consistently outper-

formed FF-NN I across all measures and predictor sets.
This suggests that the additional complexity and parameters
in FF-NN II provide a better fit for the UCP dataset.
The combination of UAW, UUCW, TCF, and ECF yielded
the best results for FF-NN II, achieving the highest AHP
score and the lowest MDLRSS . This combination captures
the relevant information more effectively than the other
tested sets of predictors. The significant difference in
performance measures between the two models and their
predictor combinations Table 13 presents the performance
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TABLE 11. AHP , MDLAHP and MDLRSS for regression models with stock dataset.

TABLE 12. AHP, MDLAHP , MDLRSS for FF-NN models with UCP dataset.

of FF-NN models using different predictors combinations on
the GLP dataset, evaluated using the AHP score, MDLAHP,
and MDLRSS . The models compared are FF-NN I and FF-
NN II.For FF-NN I, when using the predictors AGE, DBP,
SBP, TE, SPO2, HR, SHI, and DN, the model achieved an
AHP score of 0.89, with an MDLAHP of −112604.29 and an
MDLRSS of 44842.89. However, when using only DN as the
predictor, the AHP score for FF-NN I dropped to 0.56, with
MDLAHP and MDLRSS values of −117876.50 and 50788.08,
respectively.

In contrast, FF-NN II with the predictors AGE, DBP,
SBP, TE, SPO2, HR, and SHI achieved an AHP score of
0.99, indicating near-perfect performance with an MDLAHP
of−111319.67 and anMDLRSS of 42684.87. FF-NN II had an
AHP score of 0.50 when using only DN as the predictor, and
the MDLAHP and MDLRSS were −119184.98 and 50616.86,
respectively. Additionally, when using all predictors (AGE,
DBP, SBP, TE, SPO2, HR, SHI, and DN), FF-NN II achieved
an AHP score of 0.99, with an MDLAHP of −111365.58 and
an MDLRSS of 42619.76.

Comparing the models, FF-NN II consistently outper-
formed FF-NN I across all measures and predictor sets. This
suggests that the additional complexity and parameters in
FF-NN II provide a better fit for the GLP dataset. The com-
bination of AGE, DBP, SBP, TE, SPO2, HR, and SHI yielded
the best results for FF-NN II, achieving the highest AHP

score and the lowest MDLRSS . This combination captures
the relevant health-related information more effectively than
the other tested sets of predictors. The significant difference
in performance measures between the two models and their
predictor combinations highlights the importance of selecting
appropriate predictors. The predictors AGE, DBP, SBP, TE,
SPO2, HR, and SHI combined provide a robust model
capable of accurately predicting the desired health outcomes
in the GLP dataset.

These results demonstrate the efficacy of using a more
complex FF-NN model with a comprehensive set of predic-
tors for superior performance in the GLP dataset.

The next dataset GDP resulst are summarised in Table 14.
The measures evaluated include the AHP Score, MDLAHP,
and MDLRSS. The models were assessed based on different
sets of predictors.

For FF-NN I, when using the predictors Interest Rate,
Unemployment Rate, Industrial Production, Money Supply,
and Personal Income, the model achieved an AHP score
of −2.86, with an MDLAHP of 12.86 and an MDLRSS
of 1255.61. However, when using only Interest Rate as the
predictor, the AHP score for FF-NN I remained at −2.86,
with MDLAHP and MDLRSS values of 12.86 and 1255.71,
respectively.

In contrast, FF-NN II, with the predictors of Industrial
Production and Personal Income, achieved the highest AHP
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TABLE 13. AHP, MDLAHP , MDLRSS for FF-NN models with GLP dataset.

TABLE 14. AHP, MDLAHP , MDLRSS for FF-NN models with GDP dataset.

TABLE 15. AHP, MDLAHP , MDLRSS for FF-NN models with STOCK dataset.

TABLE 16. Selected FF-NN models per dataset and performance comparison.

score of 1.00, indicating perfect performance with an
MDLAHP of −294.06 and an MDLRSS of 849.81. When
using Consumer Sentiment as the predictor, FF-NN II had an
AHP score of 0.17, and the MDLAHP and MDLRSS were
−415.77 and 1100.61, respectively.

Comparing the models, FF-NN II consistently outper-
formed FF-NN I across all measures and predictor sets.
This suggests that the additional complexity and parameters
in FF-NN II provide a better fit for the GDP dataset.
The combination of Industrial Production and Personal
Income yielded the best results for FF-NN II, achieving
the highest AHP score and the lowest MDLRSS . This
combination captures the relevant economic information
more effectively than the other tested sets of predictors. The
significant difference in performance measures between the
two models and their predictor combinations highlights the
importance of selecting appropriate predictors. The Industrial
Production and Personal Income predictors provide a robust
model capable of accurately predicting the desired economic
outcomes in the GDP dataset.

These results demonstrate the efficacy of using a more
complex FF-NN model with a comprehensive set of predic-
tors for superior performance in the GDP dataset.

For the last dataset (STOCK) the resulst are in Table 15.
Resulst again constisting of scores for the AHP, MDLAHP,
and MDLRSS

For FF-NN I, when using the predictors High and Low, the
model achieved an AHP score of 0.83, with an MDLAHP of
−74826.91 and an MDLRSS of −2659.22. However, when
using Open, High, and Low as predictors, the AHP score
for FF-NN I dropped to 0.73, with MDLAHP and MDLRSS
values of −75867.69 and 7134.96, respectively.
In contrast, FF-NN II with the predictor Low achieved the

highest AHP score of 1.00, indicating perfect performance
with an MDLAHP of −73376.47 and an MDLRSS of
−11413.85.When usingDate andOpen as predictors, FF-NN
II had an AHP score of 0.83, and theMDLAHP andMDLRSS
were −74826.41 and −2457.73, respectively.
Comparing the models, FF-NN II consistently outper-

formed FF-NN I across all measures and predictor sets. This
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TABLE 17. Selected regression models per dataset and performance comparison.

suggests that the additional complexity and parameters in
FF-NN II provide a better fit for the STOCK dataset. The
predictor Low yielded the best results for FF-NN II, achieving
the highest AHP score and the lowest MDLRSS . This com-
bination captures the relevant stock price information more
effectively than the other tested sets of predictors. The sig-
nificant difference in performance measures between the
two models and their predictor combinations highlights the
importance of selecting appropriate predictors. The predictor
Low provides a robust model that accurately predicts the
desired stock price outcomes in the STOCK dataset.

These results demonstrate the efficacy of using a more
complex FF-NN model with a comprehensive set of predic-
tors for superior performance in the STOCK dataset.

C. DETAILED DISCUSSION
The comparison between regression models and Multi-Layer
Perceptron (FF-NN) models reveals several significant
insights across different datasets, as highlighted in Tables 16
and 17. For the GDP dataset, the FF-NN II model achieved an
MDLAHP of −415.77, substantially outperforming the Ridge
regression model with Interest_Rate+Consumer_Sentiment
predictors, which had an MDLAHP of −97.24. Simi-
larly, the FF-NN II model with ‘‘Industrial_Production,
Personal_Income’’ showed superior performance with an
MDLAHP of −294.06, compared to the Linear Regression
model using Interest_Rate+Industrial_Production + Per-
sonal_Income, which had anMDLAHP of 10.55.

In the GLP dataset, the FF-NN II model with DN as the
sole predictor demonstrated an MDLAHP of −119184.98,
significantly better than the Ridge regression model with
AGE, which had an MDLAHP of −57652.15. When multiple
health indicators were used as predictors, FF-NN II again out-
performed the Ridge regression model, achieving MDLAHP
values of −111365.58 compared to −51369.50, respectively.
For the STOCK dataset, FF-NN I, using Open, High, Low
predictors, achieved an MDLAHP of −75867.69, much better
than the Linear Regression’s −32535.83. The FF-NN II
model using Low alone also performed exceptionally well
with an MDLAHP of −73376.47, surpassing the ElasticNet
regression model using ‘‘Date,’’ which had an MDLAHP of
−57585.61.

In the UCP dataset, FF-NN models consistently outper-
formed regression models. FF-NN I with TCF, ECF achieved

an MDLAHP of −31921.90, better than ElasticNet with the
same predictors, which had an MDLAHP of −14485.98. The
FF-NN II model with UAW, UUCW, TCF, ECF showed an
MDLAHP of −30093.69, outperforming ElasticNet and any
other regression models tested.
This analysis shows that FF-NN models generally out-

perform regression models across all datasets in terms of
MDLAHP. This suggests that FF-NNs are more capable of
capturing complex relationships within the data, which sim-
ple regression models might miss. However, while FF-NNs
provide significant advantages due to their non-linearity
and depth, they also come with higher computational costs
and complexity, which can be a disadvantage regarding
interpretability and ease of implementation.
Across all datasets and models, MDLAHP consistently

provides better performance measure than MDLRSS . For
instance, in the GDP dataset, the MDLAHP for FF-NN II
with−415.77, whileMDLRSS is 1100.61, showing a contrast.
This trend is observed across all datasets, underscoring that
MDL with AHP is a better method for model selection.
It better captures the trade-offs and multi-criteria evaluations
inherent in complex model selection, which MDLRSS may
oversimplify. However, one must consider that MDLAHP
may also involve more subjective judgment in determining
weights for different criteria, which can introduce bias.
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