
Rule-Based Assessment of Reinforcement Learning
Practices Using Large Language Models

Evangelos Ntentos∗, Stephen John Warnett∗†, Uwe Zdun∗
∗Faculty of Computer Science, Research Group Software Architecture, University of Vienna, Vienna, Austria

†UniVie Doctoral School Computer Science DoCS, University of Vienna, Vienna, Austria
firstname.lastname@univie.ac.at

Abstract—In the fast-evolving field of artificial intelligence,
Reinforcement Learning (RL) plays a crucial role in develop-
ing agents that can make decisions. As these systems become
increasingly complex, the need for standardized and automated
training methods becomes apparent. This paper presents a rule-
based framework that integrates Large Language Models (LLMs)
and heuristic-based code detectors to ensure compliance with
best practices in RL training pipelines. We define a set of
architectural rules that target best practices in important areas
of RL-based architectures, such as checkpoints, hyperparameter
tuning, and agent configuration. We validated our approach
through a large-scale industrial case study and ten open-source
projects. The results show that LLM-based detectors generally
outperform heuristic-based detectors, especially when handling
more complex code patterns. This approach effectively identifies
best practices with high precision and recall, demonstrating its
practical applicability.

Index Terms—Reinforcement Learning, Best Practices, Ma-
chine Learning, Architecture Rules, Case Studies, LLMs

I. INTRODUCTION

In RL systems, an agent’s success in reaching its goals relies
heavily on the training strategies used [17]. These strategies
include balancing exploration and exploitation, shaping re-
wards, and applying algorithms such as Q-learning or policy
gradients for policy optimization [13], [10]. Effective training
methods are essential to improving learning efficiency and
overall system performance.

Several common best practices or patterns are part of these
training methods. For example, checkpoints [7], [2] are used
to save the model’s state at regular intervals during training,
allowing recovery from interruptions, which helps maintain
efficiency. Similarly, hyperparameter tuning [3] involves ad-
justing parameters like learning rates and batch sizes. Tuning
their values can increase performance. Single-agent versus
multi-agent training [14], [5], [19] could be considered based
on the complexity of a task. A single agent is a simpler
approach, but it has limitations when scaling up. At the
same time, with multi-agents, behavior can be competitive or
collaborative and is more adaptive for environments that are
dynamic or subject to possible changes.

We developed a rule-based approach that uses LLMs to
address the challenge of assessing such best practices in RL
training pipelines. Our approach defines 31 architectural rules
to evaluate RL training practices, realizes an approach and
flow-based software architecture for LLM-based detection,
and provides LLM-based detection components for each of

the 31 rules. Additionally, we compare them with typical
heuristic-based code detectors, which are mainly focused on
straightforward code patterns.

Heuristic-based detectors are effective for quickly identi-
fying common code structures, such as specific operations
for checkpoint implementations or function calls. However,
they struggle with identifying more intricate or non-standard
code structures or code in polyglot settings where multiple
languages or technologies are used. This challenge is where
LLM-based detection can become valuable, as it can interpret
the broader context and intent behind the code or deal with
unforeseen code structures.

In complex case studies, combining both approaches can
be particularly effective. For instance, heuristic-based code
detectors can detect common code patterns, while LLMs can
provide deeper analysis where needed, particularly when rules
are implemented in less direct ways. Using these detection
techniques, our approach can ensure that RL training strategies
are aligned with best practices, even with complex or non-
standard code structures or in polyglot environments.

This paper aims to answer the following research questions:
• RQ1: How effectively can LLMs assess best practices in

RL training pipelines compared to heuristic-based code
detectors?

• RQ2: What are the key architectural rules required for
compliance with the best practices for checkpoints, hyper-
parameter tuning, training/agent configuration, and single
vs. multi-agent RL in RL-based systems?

We tested the effectiveness of our approach through a
large-scale industrial case study that uses RL in a Cyber-
Physical System (CPS) for production automation, as well
as ten open-source RL systems. The industrial case study
aims to monitor several CI/CD pipelines across production
facilities. This comprehensive evaluation allowed us to assess
the successful implementation of our approach in different RL
environments and training workflows.

The paper is organized as follows: Section II introduces
RL practices. Related work is described in Section III. The
methodology and specifics of automatic rule checking are
discussed in Section IV. Case studies are presented in Section
V. The quantitative evaluation and case study are discussed in
Section VI. Section VII interprets the results, while Section
VIII addresses potential validity threats. Section IX concludes
the paper.



II. BACKGROUND ON REINFORCEMENT LEARNING
PRACTICES

This section provides background on the RL practices that
are central to this work, specifically covering checkpoints,
hyperparameter tuning, and training and agent configuration.

Checkpoints [7], [2] are essential in RL, as they save the
agent’s learning state at intervals. Checkpoints allow training
to resume from specific points, protecting against data loss
and allowing adjustments without needing to restart from
scratch. Regular checkpoints also enable progress tracking
and fine-tuning based on intermediate results, which is key
to improving the learning process.

Hyperparameter tuning [3] is an important practice in RL.
The success of RL algorithms often relies on choosing the right
hyperparameters, such as learning rates and discount factors.
Adjusting these settings correctly can significantly increase
the speed and effectiveness of the learning process. Popular
methods for tuning include grid search, random search, and
more sophisticated approaches like Bayesian optimization.

A key difference in RL is between single-agent [5] and
multi-agent [14], [20] systems. Single-agent setups involve one
agent learning to make the best decisions by interacting with
its environment. In contrast, multi-agent systems consist of
several agents that might work together or against each other,
adding layers of complexity to the learning process. Multi-
agent RL (MARL) faces extra challenges like non-stationarity,
where the environment evolves as other agents learn and take
action, demanding more sophisticated strategies.

III. RELATED WORK

In this section, we discuss the studies that focus on RL
practices and rule-based detection methods, and we compare
them with our work.

Many studies have focused on and addressed different
aspects of RL methodologies. For instance, Lee et al. [8]
investigate the evolution of RL algorithms, pointing out the
transition from single-agent systems to multi-agent configura-
tions that depend on distributed optimization. Canese et al. [1]
analyze multi-agent algorithms, emphasizing crucial elements
like scalability, non-stationarity, and observability, which are
all vital in multi-agent RL contexts.

Eimer et al. [3] provide an in-depth analysis of hyper-
parameter tuning approaches, covering techniques like grid
search, random search, and Bayesian optimization. Li et al. [9]
propose the Hyperband method for hyperparameter optimiza-
tion, which efficiently reduces computational demands while
identifying optimal parameters. Our work builds on top of
these studies by incorporating automated detection of hyper-
parameter tuning in RL using a rule-based assessment that
leverages LLMs and heuristics.

Chen et al. [2] explore the use of checkpoints in training
processes, presenting methods to improve model performance
by periodically saving and validating models. Similarly, Eisen-
man et al. [4] explore checkpointing systems in training recom-
mendation models, outlining how checkpoints can be utilized
to boost training efficiency. Our approach aligns with these

studies by emphasizing the significance of checkpoints. Still,
it additionally applies automation of the checkpoint validation
process directly through source code, using LLM-based and
heuristic-based analysis of specific architectural rules.

Hernandez-Leal et al. [6] present a comprehensive review
of multi-agent deep RL, addressing the challenges of non-
stationarity, scalability, and agent cooperation. Our work ad-
dresses these challenges by formulating rules relevant to multi-
agent training and validating them using LLM-based and
heuristic-based methods.

Zhang et al. [19] provide an extensive overview of MARL
algorithms, focusing on cooperative and competitive dynamics,
underscoring the need for strong training practices. Our work
complements these insights by implementing rules for multi-
agent systems and validating their use in real-world systems.

Schneider et al. [12] present a rule-based approach focusing
on verifying compliance related to security in microservice
architectures. While their work centers on security, the rule-
based detection system they describe shares similarities with
our approach. However, our approach combines rule-based
detection with LLM-based and heuristic-based methods to
ensure RL systems adhere to best practices.

IV. APPROACH

This section describes the research methods followed in this
study and our rule-based assessment approach, which uses
LLMs and heuristics to ensure conformance to best practices
in RL training code. The data used in and produced as part of
this study have been made available online for reproducibility1.

A. Research Methods

Figure 1 outlines the research methodology employed in
this study. We initially reviewed various knowledge sources
on RL-specific best practices, including research papers[15],
[11], [18], [3], [7], web resources and open-source reposito-
ries. Subsequently, we conducted a qualitative analysis using
Grounded Theory coding methods [16], such as open and
axial coding, to analyze the collected data and extract relevant
practices (described in Section II). We closely followed estab-
lished pattern catalogs, such as those by Lakshmanan [7], for
comprehensive insights into ML concerns. We then, based on
this analysis, formulated 31 architectural rules and developed
the corresponding heuristic-based detectors and LLM-based
detectors. Moreover, we analyzed the case studies using the
detectors and we evaluated our approach measuring the preci-
sion, recall and F1 score metrics. More specifically, the main
steps after data analysis were:

Step 1. Definitions of Architectural Rules: In the first
step, we identified key aspects of RL training that focus on
checkpoints, hyperparameter tuning, and training and agent
configuration. Our approach established specific rules to en-
sure consistent and correct application of best practices in
RL training code. For example, rules were set for saving
model states at regular intervals with metadata for integrity

1https://doi.org/10.5281/zenodo.14051965

https://doi.org/10.5281/zenodo.14051965


Research Papers Analyze Data Define Architectural Rules

Analyze Case Studies

Evaluate the Approach

Develop Heuristic-Based Rule
Detectors

Develop LLM-Based
Detectors

Search 
Repositories

Search Web
Resources

Fig. 1. Overview of the research method followed in this study

checks. Hyperparameter tuning rules were defined to validate
and adjust parameters essential for performance. Furthermore,
additional rules focus on training configurations, managing
multi-agents to ensure compatibility, and clearly defining state
and action spaces.

Step 2. Development of Heuristic-Based Code Detectors:
In this step, we designed a set of heuristic-based code detectors
that strictly comply with the rules described in Step 1. These
detectors parse the RL training code and verify its compliance
with the architectural rules. Every code detector is created to
recognize practices such as checkpoints, hyperparameter tun-
ing, and agent configurations. The detectors function within a
service that combines the outputs of these automatic detections
to create structured reports in JSON format.

Step 3. Development of LLM-Based Detector: We devel-
oped a framework that uses LLMs to handle specifications
within the RL training pipeline. This framework enables
users to define queries without writing extensive code, as the
LLMs interpret these descriptions and generate corresponding
answers. By utilizing LLMs, the framework can adapt to
project-specific requirements and complex representations of
RL training practices. The LLM-based detection system can
work in addition to the heuristic-based code detectors. This
approach simplifies the process for non-expert users while
maintaining rigorous validation standards.

Step 4. Application to Case Studies and Validation: The
final step of our approach involved applying the heuristic-
based code detectors and the LLM-based detectors to a number
of RL systems for evaluation. This process included extensive
validation across one industrial case study and ten open-source
RL systems.

B. Architecture of the Heuristic-Based Code Detection Ap-
proach

Heuristic code-based detector consists of several key mod-
ules, each contributing to validating RL training practices. A
central service serves as an Orchestrator, processing the source
code and managing the analysis workflow to ensure that all
necessary validation tasks are executed. Rule-Based Detectors
are used to assess the RL code against best practices, with
Heuristic-Based Detectors identifying general patterns and

common issues. The Code Analyzer parses the source code,
applies these detectors, and evaluates the code’s compliance
with best practices, identifying any rule violations. Once the
analysis is complete, the Result Report component compiles
the findings into JSON reports. This service functions within
an MLOps Pipeline or as a standalone tool. Figure 2 visually
represents the system architecture.

C. Architecture of LLM-Based Detection Approach

"Does the Python file reinforcement learning project contain
checkpoints? Look for specific keywords or phrases that
indicate a checkpoint is being created. For instance, if a "save"
on a model object is found, that could be a checkpoint. Or if
code contains the phrase "checkpoint".

The LLM-based detection approach is designed to automate
the detection of best practices in RL-based systems. The
architecture shown in Figure 3 works in the same context
as the heuristic-based approach, i.e., it can also be used
standalone or as part of an MLOps Pipeline. It also generates a
detailed Result Report. The core component, LLM Code Flow
Executor, manages the execution of the assessment process or
a specific validation task. It runs the workflow, defined via the
LLM Code Flows component, to execute the required detection
and validation steps. LLM is a component that abstracts and
wraps different supported LLMs. It defines LLM parameters
such as model name and token limits, enabling the use of
various models, including GPT-3.5, GPT-4o, or Llama. LLM’s
class Conversation handles the interactions with the LLMs,
keeping track of ongoing conversations and guiding the code
detectors based on the context. These conversations are used
in the LLM Code Flows.

The LLM-based Detectors component realizes all detec-
tion tasks, and it contains classes to realize the different
rules described in this paper, such as those of checkpoints
and hyperparameter tuning. The code flow provides a Data
Transfer Object, LLM Code Flow DTO, to each executed
detector in the workflow. It carries essential information such
as project metadata, source directories, and validation status
reports. As this object is passed through various filters (i.e.,
different detectors), it creates a report of the detected rules
incrementally.



«CI/CD Pipeline»
MLOps Pipeline

«Service»
Orchestrator

«Component»
Code Analyzer

«Component»
Rule-Based Detectors

«Component»
Result Report

runs in the MLOps 
pipeline stages

analyzes input code

uses detectors to 
analyze code

generates a result report

Fig. 2. Architecture of the Heuristic-Based Detector

«CI/CD Pipeline»
MLOps Pipeline

«Service»
LLM Code Flow Executor

«Component, 
Wrapper»

LLM

«Component, 
Flow Orchestrator»
LLM Code Flows

«Component»
Result Report

runs in the MLOps 
pipeline stages

detection flow

generates a result report

uses and abstracts LLMs

«Component, 
Detector»

LLM-Based Detectors

executes

uses selected
LLM and 

conversations

«Component, 
Data Transfer Object»
LLM Code Flow DTO

provides

uses to
pass data

Fig. 3. Architecture of the LLM-Based Detector

D. Rules and Detectors

a) Rules: Table I outlines the rules defined in this study.
Each rule is binary, meaning it can either be true or false.
A rule is true if the corresponding architectural guideline is
observed in the application’s source code. Conversely, a rule
is false if the source code contradicts the architectural rule or
lacks relevant insights.

In the example shown in Figure 4, the RL code for creating
a checkpoint adheres to the rule “R02: Implement adjustable
checkpoint intervals to accommodate varying training dura-
tions and system performance”, as this parameter is directly
implemented within the CheckpointCallback method. In con-
trast, the architectural rule “R11: Define all hyperparameters
clearly and categorize them based on functionality and model
components.” does not hold because there are no indications
of defining and grouping hyperparameters.

b) Heuristic-Based Code Detectors: The detectors were
implemented using Python, with regular expressions and
pattern-matching techniques to identify specific code struc-
tures and consist of functions designed to analyze code
and verify compliance with architectural rules. Using regular
expressions and parsing methods, they identify patterns like
agent configuration or environment management. For example,
in RL code that creates checkpoints (see Figure 4), heuristic-
based detectors look for keywords like checkpoint or .save() to
identify general patterns or more concrete keywords to iden-
tify saving frequency (save_frequency) and saving directory
(checkpoint_directory). However, they may mistakenly capture

unrelated functions.
c) LLM-Based Detectors: LLM-based detectors use

LLMs to inspect source code, spot patterns, and check if spe-
cific rules are followed. Unlike traditional rule-based methods,
these detectors interpret code more flexibly, making it possible
to find patterns that don’t strictly fit set rules. Our LLM-
Based Detectors are highly modular, meaning each checks
a specific occurrence of code fragments, realizing a part of
a rule rather than checking multiple aspects simultaneously.
This modularity helps to, firstly, get precise and relatively
predictable results from the LLMs and, secondly, establish
traceability between the rule and the places in the source code
where the code fragments realizing the rule occur.

For example, when dealing with checkpoints, the LLM
gets instructed to examine the code for ‘save()’ functions or
keywords like ‘checkpoint’ and then determines if they align
with the specified rules. In the RL code shown in Figure 4,
the LLM would recognize key parts of the code, such as
‘model.save()’ calls, and assess if they meet rule R02 by
considering how checkpoint intervals are managed.

LLM-based detectors provide more detailed analysis in
cases where more detailed detection is needed, such as check-
ing that checkpoints are saved in the right folder. They can
track the creation of directories and connect it to checkpoint
storage, as shown in the custom detection example in Figure 4.
This analysis ensures that even complex rules are followed
correctly.

The detection process follows several steps: first, the LLM-
based approach checks the code for possible issues; then, it



compares what it finds with the set architectural rules; and
finally, it organizes the results in a clear format. This method
provides a complete review of the code, giving insights into
rule compliance and improving validation accuracy. Please
note that the LLM is only one of many components required
to realize these steps.

Figure 5 shows a conversation template that establishes a
process for interacting with an LLM to review the Python
code of an RL project, specifically focusing on the presence
of checkpoint functionalities2. It begins by setting up a system
message that instructs the assistant to assist a junior developer
in analyzing RL code. The assistant is tasked with searching
for checkpoint-related code in the provided Python file, with
instructions on how to respond if such code is identified.
The script includes an example of Python code demonstrating
checkpoint functionality, along with a sample response that
highlights the relevant sections. The corresponding function
constructs the conversation by combining the system message,
a checkpoint-related query, the example code and response,
and the target code to be analyzed. This structured approach,
with clear instructions and examples, helps improve the ac-
curacy and relevance of the LLM’s analysis of checkpoint
implementations in the target Python code.

from stable_baselines3.common.callbacks import CheckpointCallback

checkpoint_directory = "checkpoints"
os.makedirs(checkpoint_dir, exist_ok=True)

checkpoint_callback = CheckpointCallback(
    save_frequency=1000,  # Save the model every 1000 steps
    save_path=checkpoint_directory,
    name_prefix=env.unwrapped.metadata.get('name'))
model.save(f"{env.unwrapped.metadata.get('name')}_
                           {time.strftime('%Y%m%d-%H%M%S')}")

Fig. 4. Source Code Example of Checkpoint Implementation (Taken from
CS1)

V. CASE STUDIES

In this section, we describe the case studies used to evaluate
our approach and test the performance of the rule detection.
We studied one large-scale industry case study and ten open-
source RL-based systems. The case studies are summarized in
Table II.

A. Industrial Case Study

To validate the effectiveness of our rule-based assessment
approach, we applied our ML pipeline insights service to a
comprehensive industrial case study. This case study revolves
around a sophisticated single-agent and MARL framework that
facilitates extensive testing and optimization of AI policies
across diverse environments. The industrial system, developed
by a global provider of production automation solutions, is an
advanced platform that features several key components:

2See detailed conversations and prompts in LLM-Based Detectors source
files in https://doi.org/10.5281/zenodo.14051965

• Agent Management Modules: These modules enable
efficient simulation of agent behaviors and learning pro-
cesses, allowing for the detailed study of multi-agent
interactions and dynamics.

• Customizable Training Environments: Tools within the
system allow for precise adjustments to training scenar-
ios, creating varied learning environments that can be
tailored to specific strategic tasks.

• Centralized and Decentralized Learning Approaches:
The platform supports centralized and decentralized
learning, optimizing training effectiveness through adapt-
able policy definitions and performance tuning.

• Hyperparameter Tuning and Optimization Strategies:
The system includes advanced capabilities for hyperpa-
rameter tuning and employs sophisticated optimization
strategies crucial for refining AI behaviors and achieving
peak performance.

• Production Automation Application: The MARL
framework is used for automating production processes,
with components such as sophisticated simulators, AI
optimizers, and training and inference modules.

The Heuristic code-based detector is integrated into the
MLOps pipelines of this system, using a service-based ar-
chitecture to provide real-time feedback on the training and
inference processes. This integration ensures that the training
methods follow best practices, improving the reliability and
performance of AI agents.

The LLM-based detector is also embedded within the
MLOps pipelines of this system using a framework to assess
RL training practices implemented in the system. This setup
enables more nuanced detection of best practices by interpret-
ing complex code patterns and natural language specifications.

The platform was created by a diverse team of experts and is
intended for use on factory shop floors. It aims to standardize
and improve production processes by utilizing the advanced
MARL framework to address different operational challenges,
ultimately boosting efficiency. For this reason, it is crucial for
ML specialists and software architects to have a standardized
approach to gaining insights into software architectures across
different customer projects, especially within the context of
their MLOps pipelines. Through this industrial case study, we
aim to demonstrate the real-world application and effectiveness
of our rule-based assessment tool.

B. Open-source Case Studies

The open-source case studies in Table II (CS1 - CS10)
cover different RL algorithms, including Proximal Policy
Optimization (PPO), Deep Q-Network (DQN), and Multi-
Agent Deep Deterministic Policy Gradient (MADDPG). These
systems vary widely in scope, from multi-agent platforms for
different types of experiments to advanced PPO setups with
complex neural networks. While the open-source projects used
in this study represent a range of RL algorithms, they do not
fully capture the complexity of polyglot or highly complex
industrial systems. Each system has a specific focus, such
as self-play for competitive games or tasks within defined

https://doi.org/10.5281/zenodo.14051965


Contex Initializer Role Setter

Query Formulator Checkpoint Detector

Instruction specification for checkpoint detection

Python Code Example Response Example

Conversation Combinator Template Builder

System message set up 

Construction of complete conversation function

Example code and sample response provisioning for n-shot prompting

Fig. 5. Conversation Template of the LLM-Based Detector for Checkpoints

TABLE I
ARCHITECTURAL RULES FOR REINFORCEMENT LEARNING SYSTEM ARCHITECTURES

Rule Description

Rules on Checkpoints

R01 Maintain a single, dedicated directory for storing all checkpoints.
R02 Implement adjustable checkpoint intervals to accommodate varying training durations and system performance.
R03 Each checkpoint must include detailed metadata such as environment specifics, training steps, and timestamp.
R04 Validate the integrity and completeness of each checkpoint post-save using checksums or similar methods.
R05 Ensure that checkpoints are fully compatible with the training policies used, including versions and configurations.
R06 Maintain a history of checkpoints based on configurable retention policies.
R07 Implement mechanisms to compress or selectively store only significant differences between consecutive checkpoints.
R08 Regularly test the recoverability of checkpoints in a controlled environment.
R09 Automate the cleanup of outdated checkpoints based on retention policies.
R10 Checkpoints are created without considering the dependencies or the state of the training environment.

Rules on Hyperparameter Tuning

R11 Define all hyperparameters clearly and categorize them based on functionality and model components.
R12 Validate hyperparameters before usage to ensure they fall within reasonable and effective ranges.
R13 Employ evolutionary algorithms to explore the parameter space systematically.
R14 Tune hyperparameters considering their interdependencies.
R15 Implement automated tuning systems like grid search, random search, or Bayesian optimization.
R16 Integrate continuous hyperparameter tuning within the training process.
R17 Monitor the impact of hyperparameter changes on model performance continuously.
R18 Apply version control practices to hyperparameter tuning experiments.
R19 Optimize resource allocation during hyperparameter tuning.
R20 Conduct sensitivity analyses to identify impactful hyperparameters.

Rules on Training and Agent Configuration

R21 Maintain a clear distinction between training parameters and hyperparameters.
R22 Include configurable training options like total timesteps, n_steps, and epochs.
R23 Use consistent seeding across all random number generators.
R24 Track key performance metrics like rewards, losses, and evaluation scores.
R25 Configure individual policies for each agent based on specific roles or tasks.
R26 Ensure compatibility across all agents and their policies.
R27 Define consistent observation/action spaces for all agents.
R28 Track performance metrics for each agent individually.
R29 Assign unique identifiers to each agent.
R30 Define a shared interactive environment for all agents.
R31 Clearly define the state and action spaces for each agent.

environments. Some systems are designed to be flexible, en-
abling dynamic interactions in varying settings. Many of these
systems also aim to enhance decision-making by employing
techniques like action masks in PPO, which assist in managing
restricted or undesirable actions in specific situations.

VI. VALIDATION

In this section, we validate our approach by demonstrating
the applicability and effectiveness of the defined rules in
ensuring best practices in RL systems. Our validation uses the
larger industrial case study and ten open-source case studies
of RL systems as subjects, introduced in Section V. This
comprehensive evaluation allows us to assess the practical



TABLE II
OVERVIEW OF PYTHON-BASED SYSTEMS AND THEIR FUNCTIONALITIES

ID Description
ICS This system focuses on an advanced framework for single-agent and MARL. It enables thorough testing and

optimization of AI policies in diverse environments (See Section V-A for details).
CS1 In this system, zombies originate at the top border of the screen and move downward along varying, unpredictable

trajectories until they reach the bottom border. https://pettingzoo.farama.org/tutorials/sb3/kaz/
CS2 In this system, Waterworld, the simulation revolves around archaea organisms navigating their environment in a quest

for survival. https://pettingzoo.farama.org/tutorials/sb3/waterworld/
CS3 This system is a Chess example. It uses the observation and action spaces similar to the AlphaZero method, with

slight modifications. https://pettingzoo.farama.org/tutorials/sb3/connect_four/
CS4 This system is a game that uses a physics-based challenge where the objective is to guide a ball to the left wall of

the game’s boundary. https://pettingzoo.farama.org/tutorials/rllib/pistonball/
CS5 This system is a game where two players must connect four of their tokens vertically, horizontally, or diagonally.

https://docs.agilerl.com/en/latest/tutorials/pettingzoo/dqn.html
CS6 This system is a classic Atari game, where there are two ships controlled by two players who are each trying to

maximize their score. https://pettingzoo.farama.org/tutorials/agilerl/MADDPG/
CS7 This system trains AI agents to play Tic-Tac-Toe using the PettingZoo environment. https://github.com/Farama-

Foundation/PettingZoo/blob/master/tutorials/Tianshou/3_cli_and_logging.py
CS8 In this system, there are two agents: the ‘speaker’ and the ‘listener’. The ‘speaker’ agent possesses the ability

to communicate verbally but lacks the capability to move autonomously.https://docs.agilerl.com/en/latest/tutorials/
pettingzoo/matd3.html#matd3-tutorial

CS9 This system is also a classic Atari game similar to CS6. https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_
pettingzoo_ma_atari.py

CS10 This system is similar to CS1. It trains agents in the “Knights-Archers-Zombies” environment using the Black Death
wrapper to handle agent deaths effectively. https://pettingzoo.farama.org/tutorials/sb3/kaz/

implementation of our rules across diverse RL environments
and training practices.

A. Validation Setup

The ground truth for the validation was established by
manually inspecting the source code of each case study and
annotating the presence or absence of the architectural rules.
This manual inspection was conducted by the authors and
cross-verified by RL experts to ensure accuracy

The validation was conducted by applying our two kinds
of detectors across multiple case studies. The source code of
each RL system was analyzed, and the detectors were used
to verify whether the code adhered to the defined rules (see
Table I). This setup allowed for a comprehensive and accurate
validation of our approach using heuristic-based and LLM-
based detection methods.

GPT-3.5 Turbo, version 0613, was selected to validate our
LLM-based detectors due to its robust performance, mak-
ing it suitable for analyzing complex code patterns in RL
training pipelines. It balances computational efficiency and
performance, offering high accuracy and flexibility without the
significantly higher costs associated with larger models such
as GPT-4 or GPT-4o. In addition, GPT-3.5 Turbo is currently
in LLM benchmarks close to the best non-commercial LLMs3.
These factors are important to consider as many organizations
do not want to or cannot use cloud-hosted, commercial LLMs.
Thus, we opted for GPT-3.5 Turbo as there are equally good
open alternatives.

We employed standard evaluation metrics to measure the
accuracy of our approach. For measuring the accuracy, True

3See, e.g., https://www.trustbit.tech/en/llm-leaderboard-juli-2024 and
https://klu.ai/llm-leaderboard

Positives (TP) are instances where the rule-checking mecha-
nism correctly identifies a source code instance as compliant
with the best RL training practices. False Positives (FP)
are instances where a source code instance is identified as
compliant when it is not. False Negatives (FN) are instances
where the method fails to find a compliant code instance.
True Negatives (TN) are not considered in our validation, as
our ground truth inspection only marks up the TPs, not all
true negative code instances. We use the following metrics to
measure accuracy:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F1-score = 2×
(

Precision × Recall
Precision + Recall

)
B. Results

In the remainder of this section, we present the validation
results, summarized in Tables III and IV, assessing the accu-
racy of the rule-based detectors.

1) Industrial Case Study Results: In Table III, we observe
the performance of both detectors across the architecture rules.
For rules on checkpoints, the LLM-based detectors identified
seven true positives and missed only one, achieving a precision
of 1.0, recall of 0.88, and an F1 score of 0.933, indicating high
effectiveness in accurately detecting checkpoints. In contrast,
the heuristic-based detectors detected three true positives and
missed five, yielding a precision of 1.0, recall of 0.7, and an
F1 score of 0.769, showing reliable precision but lower recall,
as some instances were not captured.

For hyperparameter tuning, the LLM-based detectors
showed strong results with five true positives and one false
negative, resulting in a precision of 1.0, recall of 0.83, and an
F1 score of 0.9, reflecting both high precision and sensitivity.

https://pettingzoo.farama.org/tutorials/sb3/kaz/
https://pettingzoo.farama.org/tutorials/sb3/waterworld/
https://pettingzoo.farama.org/tutorials/sb3/connect_four/
https://pettingzoo.farama.org/tutorials/rllib/pistonball/
https://docs.agilerl.com/en/latest/tutorials/pettingzoo/dqn.html
https://pettingzoo.farama.org/tutorials/agilerl/MADDPG/
https://github.com/Farama-Foundation/PettingZoo/blob/master/tutorials/Tianshou/3_cli_and_logging.py
https://github.com/Farama-Foundation/PettingZoo/blob/master/tutorials/Tianshou/3_cli_and_logging.py
https://docs.agilerl.com/en/latest/tutorials/pettingzoo/matd3.html#matd3-tutorial
https://docs.agilerl.com/en/latest/tutorials/pettingzoo/matd3.html#matd3-tutorial
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_pettingzoo_ma_atari.py
https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/ppo_pettingzoo_ma_atari.py
https://pettingzoo.farama.org/tutorials/sb3/kaz/
https://www.trustbit.tech/en/llm-leaderboard-juli-2024
https://klu.ai/llm-leaderboard


The heuristic-based detectors identified four true positives
with two false negatives, yielding a precision of 1.0, recall
of 0.66, and an F1 score of 0.8, demonstrating good accuracy
but a slightly lower ability to detect all instances.

For training and agent configuration, the LLM-based detec-
tors achieved five true positives and missed only one, resulting
in a precision of 1.0, recall of 0.8, and an F1 score of 0.9,
indicating good performance. On the other hand, the heuristic-
based detectors detected three true positives but missed three,
resulting in a precision of 1.0, recall of 0.5, and an F1 score
of 0.66, indicating precise detections but limited sensitivity.

2) Open-Source Case Studies Results: Across all case
studies (see Table IV) for checkpoint rules, both heuristic-
based detectors and LLM-based detectors showed strong per-
formance in several instances, with high F1 scores indicating a
balance between precision and recall. Notably, both detectors
achieved perfect F1 scores of 1.0 in case studies such as CS4,
CS5, CS6, and CS8 for the LLM-based detectors and CS1 for
both detector types, demonstrating robust detection accuracy.

There were instances where performance varied. For ex-
ample, in CS5, the heuristic-based detectors achieved an F1
score of 0.4, which showed they had trouble detecting all
relevant instances. Similarly, both types of detectors struggled
in CS9, with the heuristic-based detectors recording an F1
score of 0.25, while the LLM-based detectors performed better
at 0.833, although they still fell short of a perfect score.
In cases like CS10, where the LLM-based detectors reached
an F1 score of 0.5, some issues with detection accuracy
were noted. Nevertheless, the LLM-based detectors generally
showed higher accuracy in more complex scenarios, while the
heuristic-based detectors faced certain limitations.

For hyperparameter tuning (see Table V), the heuristic-
based detectors showed variable performance across the case
studies. For example, in CS2, CS3, CS5, CS6, CS8, and CS10,
they achieved F1 scores between 0.667 and 1.0, indicating
effective detection in those instances. However, in cases like
CS4 and CS7, the heuristic-based detectors struggled, with
lower F1 scores of around 0.571 or even 0.0, reflecting their
limitations in identifying true positives consistently.

The LLM-based detectors, on the other hand, generally
demonstrated stronger performance, with perfect F1 scores of
1.0 in CS2 and CS10 and high scores in other instances like
CS4 (0.889) and CS9 (0.857), suggesting reliable detection
across most cases. However, similar to the heuristic-based
detectors, there were a few instances where the LLM-based
detectors showed decreased accuracy, such as in CS1, where
the F1 score was 0.667.

For training and agent configuration (see Table VI),
heuristic-based detectors displayed varying levels of effective-
ness across the case studies. In some instances, such as CS1,
they recorded relatively low F1 scores of 0.286, mainly due
to many false negatives. Even when performance improved
in cases like CS5 and CS6, the heuristic-based detectors
only managed F1 scores of 0.667, which suggests moderate
effectiveness.

On the other hand, LLM-based detectors demonstrated bet-
ter overall results, achieving higher F1 scores across several
case studies. For instance, CS6, CS7, and CS8 achieved F1
scores of 0.909, 0.923, and 0.923, respectively, showing a good
balance between precision and recall. Furthermore, the LLM-
based detectors recorded an F1 score of 0.857 in both CS4
and CS5, highlighting their effective detection capabilities.

VII. DISCUSSION

This section discusses how the research questions were
addressed.

RQ1: The findings across the case studies and the industrial
case show that LLM-based detectors are generally better than
heuristic-based detectors at checking best practices in RL
training pipelines.

For checkpoints (see Table IV), LLM-based detectors
achieved high F1 scores in several cases, with perfect scores
in CS4, CS5, CS6, and CS8, and an F1 score of 0.933 in the
industrial case study. These F1 scores indicate strong accuracy,
as they could detect checkpoints with both high precision and
recall, even in more complex scenarios. In comparison, while
heuristic-based detectors had high precision, they often missed
instances, as seen in cases like CS5 and CS9 and the industrial
case, where they scored 0.769 due to missed true positives.

For hyperparameter tuning (see Table V), LLM-based de-
tectors consistently performed better, with high F1 scores,
including perfect scores in CS2, CS3, and CS10, and an F1
score of 0.9 in the industrial study. Heuristic-based detectors
showed more mixed results, with lower F1 scores in some
cases and missed true positives in scenarios like CS7, showing
their limitations with more complex patterns.

For training and agent configuration (see Table VI), LLM-
based detectors again showed higher performance, with strong
F1 scores in cases like CS6, CS7, and CS8 and an F1 score of
0.9 in the industrial study, compared to 0.66 for heuristic-based
detectors. These values suggest that LLMs can handle more
detailed rules in training settings, maintaining good precision
and recall.

As explained earlier, we deliberately report the results for
GPT-3.5 Turbo in our validation, as it is currently on par
with the top non-commercial LLMs. We have also performed
tests with the most recent GPT-4o model, which shows further
moderate improvements.

Overall, LLM-based detectors proved more effective, flexi-
ble, and accurate than heuristic-based detectors for assessing
best practices in RL training pipelines. Their ability to handle
complex code patterns and varied rules across case studies and
industrial contexts makes them a stronger choice for ensuring
best practices are met in RL training environments.

While LLM-based detectors have shown significant advan-
tages over heuristic-based detectors in evaluating best prac-
tices in RL training pipelines, some notable limitations and
considerations must be taken into account. LLMs, especially
large models such as GPT-3.5 Turbo and GPT-4o, require sig-
nificant computational resources, resulting in high operational
costs and substantial energy consumption. In many scenarios,



TABLE III
PRECISION, RECALL AND F1 SCORES FOR THE INDUSTRIAL CASE STUDY

Rules on Checkpoints
True Positives False Negatives Precision Recall F1 Score

Heuristic-Based Rule-Based Detectors 3.0 5.0 1.0 0.7 0.769
LLM-Based Rule-Based Detectors 7.0 1.0 1.0 0.8 0.933
Rules on Hyperparameters Tuning

True Positives False Negatives Precision Recall F1 Score
Heuristic-Based Rule-Based Detectors 4.0 2.0 1.0 0.66 0.8
LLM-Based Rule-Based Detectors 5.0 1.0 1.0 0.83 0.9
Rules on Training and Agent Configuration

True Positives False Negatives Precision Recall F1 Score
Heuristic-Based Rule-Based Detectors 3.0 3.0 1.0 0.5 0.66
LLM-Based Rule-Based Detectors 5.0 1.0 1.0 0.8 0.9

TABLE IV
PRECISION, RECALL, AND F1 SCORES FOR HEURISTIC-BASED AND LLM-BASED DETECTORS

Case Study Heuristic-based Detectors LLM-based Detectors
Precision Recall F1 Score Precision Recall F1 Score

Rules on Checkpoints
CS1 1.0 1.0 1.0 0.75 1.0 0.857
CS2 1.0 0.5 0.667 1.0 0.5 0.667
CS3 1.0 0.5 0.667 1.0 0.5 0.667
CS4 1.0 0.5 0.667 1.0 1.0 1.0
CS5 1.0 0.25 0.4 1.0 1.0 1.0
CS6 1.0 0.5 0.667 1.0 1.0 1.0
CS7 1.0 0.5 0.667 1.0 0.5 0.667
CS8 1.0 0.5 0.667 1.0 1.0 1.0
CS9 1.0 0.143 0.25 1.0 0.714 0.833
CS10 1.0 0.667 0.8 1.0 0.333 0.5

TABLE V
PRECISION, RECALL, AND F1 SCORES FOR HEURISTIC-BASED AND LLM-BASED DETECTORS ON HYPERPARAMETER TUNING

Case Study Heuristic-based Detectors LLM-based Detectors
Precision Recall F1 Score Precision Recall F1 Score

Rules on Hyperparameter Tuning
CS1 1.0 0.5 0.667 1.0 0.5 0.667
CS2 1.0 1.0 1.0 1.0 1.0 1.0
CS3 1.0 1.0 1.0 1.0 1.0 1.0
CS4 1.0 0.4 0.571 1.0 0.8 0.889
CS5 1.0 0.5 0.667 1.0 0.667 0.8
CS6 1.0 0.6 0.75 1.0 0.6 0.75
CS7 1.0 0.4 0.571 1.0 0.8 0.889
CS8 1.0 0.5 0.667 1.0 0.667 0.8
CS9 1.0 0.5 0.667 1.0 0.75 0.857
CS10 1.0 0.5 0.667 1.0 1.0 1.0

TABLE VI
PRECISION, RECALL, AND F1 SCORES FOR HEURISTIC-BASED AND LLM-BASED DETECTORS ON TRAINING AND AGENT CONFIGURATION

Case Study Heuristic-based Detectors LLM-based Detectors
Precision Recall F1 Score Precision Recall F1 Score

Rules on Training and Agent Configuration
CS1 1.0 0.167 0.286 1.0 0.5 0.667
CS2 1.0 0.4 0.571 1.0 0.8 0.889
CS3 1.0 0.375 0.545 1.0 0.5 0.667
CS4 1.0 0.5 0.667 1.0 0.75 0.857
CS5 1.0 0.5 0.667 1.0 0.75 0.857
CS6 1.0 0.5 0.667 1.0 0.833 0.909
CS7 1.0 0.571 0.727 1.0 0.857 0.923
CS8 1.0 0.571 0.727 1.0 0.857 0.923
CS9 1.0 0.5 0.667 0.857 0.75 0.8
CS10 1.0 0.6 0.8 1.0 0.833 0.909



heuristic-based detectors may be sufficient, especially for
simpler, well-defined tasks. Sometimes, a combination of both
approaches makes sense. Our LLM-based detectors are highly
modular, with each module designed to check specific occur-
rences of code fragments. This task would require significant
development effort compared to using the LLM directly. Still,
this modularity enables precise and predictable interactions
with LLMs and ensures that each query is focused and relates
directly to a part of a rule.

RQ2: To answer RQ2, we established thirty-one architecture
rules in key areas of RL. These areas included, in particular,
checkpoints, hyperparameter tuning, and training and agent
configuration, including handling single or multi-agent setups.

For checkpoints, we defined ten rules that include aspects
such as using a specific directory for storage, setting flexible
intervals for saves, adding details about the training environ-
ment, and performing checks to ensure data integrity. These
help keep track of progress and facilitate the recovery of the
training process.

Hyperparameter tuning includes ten rules with an emphasis
on defining and organizing parameters clearly, using efficient
methods to find the best values, and monitoring how changes
impact model performance.

For training and agent configuration, we defined eleven rules
with a focus on separating training and tuning parameters,
using consistent settings, and tracking each agent’s perfor-
mance to improve repeatability and clarity. These rules also
include single versus multi-agent configurations focusing on
simpler configurations when possible for single agents and
adaptable strategies for multi-agent systems to handle changes
and interactions between agents.

VIII. THREATS TO VALIDITY

In this section, we discuss the potential threats to validity
and the steps taken to mitigate these threats.

Internal validity addresses the accuracy of the results and
whether they can be attributed to specific interventions rather
than other influences. We ensured internal validity by clearly
defining and consistently applying rules with our assessment
framework. Detection algorithms were carefully implemented
and verified to identify true and false positives. All authors
cross-checked results to reduce biases, verifying that no RL-
specific anti-patterns were introduced by the assessment tool,
thus preserving internal validity.

External validity refers to the extent to which our findings
can be generalized to other contexts or groups. Our study
included a large industrial case and ten open-source case
studies covering different RL systems. To further enhance
the generalizability of our results, future work will include
testing a wider range of RL systems across multiple domains.
Although the diversity of case studies in this validation min-
imizes threats to external validity, expanding the dataset will
strengthen the broader applicability of our findings.

Construct validity evaluates whether the study accurately
measures the intended concepts. In this work, it is very much
linked to the clear specification and accurate detection of RL

training best practices. To mitigate potential threats, we based
our rule definitions on a thorough review of relevant literature
and established practices. Aware that different interpretations
and levels of expertise might affect how rules are defined, we
refined them by engaging with RL experts from our industrial
partner to ensure they truly reflect field standards.

A threat regarding LLM-based detectors is the lack of clarity
in some instances, which may lead to their inaccuracy in
picking out RL-related practices. Since these detectors are used
on broad datasets, they might not always correctly understand
specialized RL systems. Their effectiveness depends signifi-
cantly on the clarity of the prompts; ambiguous prompts can
result in missed or incorrect detections. Also, applying the
prompts to different projects might produce different results
and rule interpretations by the LLMs. Moreover, frequent
updates to models can introduce inconsistencies, as newer
versions may interpret data differently.

IX. CONCLUSIONS AND FUTURE WORK

This work introduces a method for evaluating best practices
in RL training using LLMs and heuristic-based detectors. Key
areas of focus include checkpoints, hyperparameter tuning, and
agent configuration. We applied this approach across various
RL systems, covering both industrial applications and open-
source projects.

Our findings indicate that LLM-based detectors generally
provide better results than heuristic-based ones, especially
when working with more complex code patterns. In multiple
case studies, the LLM approach achieved greater precision
and recall, successfully identifying best practices within RL
training pipelines. The modular design of our framework,
with many supporting components and rather small modular
detectors, is essential for ensuring precision and traceability
in the detection process. This modularity is also advantageous
in settings with multiple RL projects and CI/CD pipelines,
enabling ongoing monitoring and improvements. It is impor-
tant to consider the limitations associated with LLM-based
detectors. These include the high computational cost and
energy consumption. Furthermore, while LLMs offer superior
performance in complex scenarios, heuristic detectors may still
be sufficient for simpler tasks and provide a cost-effective and
efficient alternative that can also be used in combination with
LLM-based detectors. Future work will include more diverse
and complex case studies to further validate the framework.
Future work will build on this approach to accommodate
more diverse and complex case studies to further validate the
framework. We will refine current rules and create new ones
tailored to different algorithms and frameworks. Furthermore,
we plan to incorporate this rule-based evaluation into contin-
uous integration and deployment pipelines, allowing for real-
time validation of RL practices to enhance the reliability and
efficiency of these systems.

X. ACKNOWLEDGMENTS

This work was supported by the FFG (Austrian Research
Promotion Agency) project MODIS (no. FO999895431).



REFERENCES

[1] Canese, L., Cardarilli, G.C., Di Nunzio, L., Fazzolari, R., Giardino,
D., Re, M., Spanò, S.: Multi-agent reinforcement learning: A review
of challenges and applications. Applied Sciences 11(11), 4948 (2021)

[2] Chen, H., Lundberg, S., Lee, S.I.: Checkpoint ensembles: Ensemble
methods from a single training process. arXiv preprint arXiv:1710.03282
(2017)

[3] Eimer T., Lindauer M., R.R.: Hyperparameters in reinforcement learn-
ing and how to tune them. In: International Conference on Machine
Learning. pp. 9104–9149 (2023)

[4] Eisenman, A., Matam, K.K., Ingram, S., Mudigere, D., Krishnamoorthi,
R., Annavaram, M., Nair, K., Smelyanskiy, M.: Check-n-run: A check-
pointing system for training recommendation models. arXiv preprint
arXiv:2010.08679 5 (2020)

[5] Hao, J., Yang, T., Tang, H., Bai, C., Liu, J., Meng, Z., Liu, P.,
Wang, Z.: Exploration in deep reinforcement learning: From single-
agent to multiagent domain. IEEE Transactions on Neural Networks
and Learning Systems (2023)

[6] Hernandez-Leal, P., Kartal, B., Taylor, M.E.: A survey and critique of
multiagent deep reinforcement learning. Autonomous Agents and Multi-
Agent Systems 33(6), 750–797 (2019)

[7] Lakshmanan, V., Robinson, S., Munn, M.: Machine Learning Design
Patterns. O’Reilly Media, Inc. (October 2020)

[8] Lee, D., He, N., Kamalaruban, P., Cevher, V.: Optimization for rein-
forcement learning: From a single agent to cooperative agents. IEEE
Signal Processing Magazine 37(3), 123–135 (2020)

[9] Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hy-
perband: A novel bandit-based approach to hyperparameter optimization.
Journal of Machine Learning Research 18(185), 1–52 (2018)

[10] Mnih, V., Kavukcuoglu, K., Silver, D., et al.: Human-level control
through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

[11] Samsami, M.R., Alimadad, H.: Distributed deep reinforcement learning:
An overview. arXiv preprint arXiv:2011.11012 (2020)

[12] Schneider, S., Quéval, P.J., Milánkovich, Á., Díaz Ferreyra, N.E., Zdun,
U., Scandariato, R.: Automatic rule checking for microservices: Sup-
porting security analysis with explainability. Available at SSRN 4658575
(2023)

[13] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017)

[14] Schwartz, H.M.: Multi-agent machine learning: A reinforcement ap-
proach. John Wiley & Sons (2014)

[15] Sharma, R., Davuluri, K.: Design patterns for machine learning appli-
cations. In: 2019 3rd International Conference on Computing Method-
ologies and Communication (ICCMC). pp. 818–821 (2019)

[16] Stol, K.J., Ralph, P., Fitzgerald, B.: Grounded theory in software
engineering research: a critical review and guidelines. In: Software
Engineering (ICSE), 2016 IEEE/ACM 38th International Conference on.
pp. 120–131. IEEE (2016)

[17] Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction.
MIT Press (2018)

[18] Washizaki, H., Khomh, F., Guéhéneuc, Y.G., Takeuchi, H., Natori, N.,
Doi, T., Okuda, S.: Software-engineering design patterns for machine
learning applications. Computer 55(3), 30–39 (2022)

[19] Zhang, K., Yang, Z., Başar, T.: Multi-agent reinforcement learning: A
selective overview of theories and algorithms. Handbook of reinforce-
ment learning and control pp. 321–384 (2021)

[20] Zhang, K., Yang, Z., Başar, T.: Multi-agent reinforcement learning: A
selective overview of theories and algorithms. Handbook of reinforce-
ment learning and control pp. 321–384 (2021)


	Introduction
	Background on Reinforcement Learning Practices
	Related Work
	Approach
	Research Methods
	Architecture of the Heuristic-Based Code Detection Approach
	Architecture of LLM-Based Detection Approach
	Rules and Detectors

	Case Studies
	Industrial Case Study
	Open-source Case Studies

	Validation
	Validation Setup
	Results
	Industrial Case Study Results
	Open-Source Case Studies Results


	Discussion
	Threats to Validity
	Conclusions and Future Work
	Acknowledgments
	References

