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Abstract—This paper proposes the Compressed Binary Ma-
trix (CBM) format, a novel, computation-friendly compression
scheme for binary matrices. CBM not only reduces the memory
footprint of the matrix but also enables faster matrix multiplica-
tion between binary and dense, real-valued matrices. The CBM
format can be applied to accelerate various graph-related tasks,
where the (binary) adjacency matrix of the graph is repeatedly
multiplied by another matrix, such as during inference and
training of various types of Graph Neural Networks (GNNs).
The format is evaluated on a shared-memory architecture in
both serial and parallel settings. Experimental results show that
CBM can reduce the memory footprint of real-world graphs
up to 11×, and that the parallel matrix multiplication using
CBM is more than 5× faster than state-of-the-art sparse-dense
matrix multiplication kernels. Furthermore, when applied to
the inference stage of Graph Convolutional Networks (GCNs),
the CBM format achieves speedups close to 2.5× compared to
inference using other parallel matrix multiplication kernels.

Index Terms—Binary Matrix Product, Graph Compression,
Graph Neural Networks

I. INTRODUCTION

Let A ∈ {0, 1}n×n be an n × n binary matrix. Matrix
products involving A are a fundamental building block and a
major execution hot-spot in many graph algorithms, when A
represents the graph’s adjacency matrix. An important example
that we use to motivate this work, is the inference and training
of various Graph Neural Network (GNN) architectures where
A is repeatedly multiplied with the current nodes’ embedding.

Graphs commonly encountered in GNN applications, such
as social or collaboration networks, tend to be large and
very sparse. Therefore, popular machine learning frameworks
represent matrix A in standard sparse matrix formats, such as
Coordinate List (COO) or Compressed Sparse Row (CSR),
to accelerate GNN inference and training. These formats
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only represent the non-zero elements in A, allowing us to
store the matrix in space proportional to its number of non-
zero elements, i.e., O(nnz(A)) space. More importantly,
standard sparse formats enable efficient sparse-dense matrix
multiplication kernels that only require O(p · nnz(A)) scalar
operations, where p represents the number of columns of the
dense operand matrix.

While standard sparse matrix formats reduce memory and
computational cost compared to dense matrix representations,
previous work show that there are more efficient computation-
friendly compression schemes for binary matrices [1]–[3]. In
other words, it is possible to compress a binary matrix A
beyond what sparsity alone allows, and still perform the com-
putation of the matrix product in a number of scalar operations
proportional to the size of the compressed representation, i.e.,
less than nnz(A). In this work we propose the Compressed
Binary Matrix (CBM) format, a new computation-friendly
compression scheme for binary matrices. The key advantage
of CBM is that it only represents the elements that differ
(or deltas) from a row of A with respect to another similar
row of the same matrix, which for many use cases tends to
be substantially smaller than nnz(A). This property makes
CBM particularly well-suited for compressing and accelerating
matrix products involving the adjacency matrix of social and
collaboration networks, where neighboring nodes often share
very similar neighborhoods. This makes the CBM format
particularly interesting for various graph algorithms, including
the inference and training of several GNN architectures.

A. Our Contributions

In this paper, we propose the Compressed Binary Matrix
(CBM) format, an efficient computation-friendly compression
scheme for binary matrices A ∈ {0, 1}n×n. We also show
that our format can be easily extended to represent matrices
that can be factorized as AD or DAD, where D ∈ Rn×n

is a diagonal matrix. Then, we show how to carry out fast
matrix multiplication between the various types of matrices
that can be represented in CBM format and a dense real-
valued matrix, in sequential and in parallel shared-memory
environments. Additionally, we prove that the number of scalar
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operations required for matrix multiplication using the CBM
format is never greater than that required when using standard
sparse matrix formats.

We implemented the CBM format and corresponding matrix
multiplication kernels in C++ and OpenMP in such a way
that they can be used together with PyTorch [4], a state-
of-the-art Deep Learning framework. Experimental evaluation
using real-world datasets demonstrates the effectiveness of our
approach. Our format reduced the memory footprint of the
original adjacency matrix by up to 11×, resulting in a speedup
above 5× compared to state-of-the-art sparse dense kernels
in parallel shared-memory CPU architectures. Finally, matrix
multiplication using the CBM format, together with PyTorch,
reduced the inference time of a two-layer GCN by 2.48×. Our
implementation is available at https://github.com/cbm4scale.

As far as we are aware, the CBM format is the first
computation-friendly compression scheme that considers the
parallel matrix product between a binary and dense real-valued
matrix. Furthermore, our format overcomes the limitations of
previous works (see Section VII) by exploiting compression
opportunities along complete rows of A, being able to be con-
structed in polynomial time, not requiring additional memory
during matrix multiplication, and ensuring that in the worst-
case scenario matrix multiplication with CBM does not require
more scalar operations than standard sparse formats.

II. MOTIVATION: GRAPH NEURAL NETWORKS (GNNS)

Currently, GNNs are the preferred tool to learn from graph-
structured data and thus are considered key for future arti-
ficial intelligence tasks including node-classification, graph-
classification, and link-prediction. The training and inference
time of many GNN architectures is dominated by long se-
quences of matrix products [5]–[7]. This is particularly evident
in GNNs that resort to message passing layers, where in
each layer the nodes of the graph aggregate the feature
vectors (embeddings) of neighboring nodes and adjust their
own embedding based on the information collected. In some
variants of GNNs, such as the widely used Graph Convolu-
tional Networks (GCNs) [5], Graph Isomorphism Networks
(GINs) [7], and GraphSAGE [8] the message produced in each
layer is essentially the product of the adjacency matrix of the
graph and its node’s embedding. Our work is motivated by
the potential impact of the CBM format on the inference and
training of these GNNs.

Without loss of generality, we demonstrate the efficacy of
our method by using it in the inference of a two-layer GCN,
where each node aggregates information from its neighbors,
which in their turn also aggregate information from their own
neighbors. Since the aggregation is done using summation,
this can be reduced to a sparse-dense matrix multiplication
between the graph’s adjacency and the embedding of the
current layer. The inference of a two-layer GCN requires two
sparse-dense matrix multiplications, two dense-dense matrix
multiplications and an element-wise activation function:

Â σ(ÂXW0)W1, (1)

where Â represents the normalized Laplacian adjacency ma-
trix of the graph, such that Â = D− 1

2 (A + I)D− 1
2 , D is

the degree diagonal matrix of the graph, σ denotes a ReLU
activation function, X is the matrix of node features, and W0

and W1 are learnable dense matrices for the first and second
layers [9]. During training, there is a sequence of sparse-
dense matrix multiplications between Â and the gradients as
well [10]. Note that (A + I) simply adds self-loops to the
nodes of the graph. Therefore, if the graph is unweighted,
(A+I) must be a binary matrix. In real scenarios, Â tends to
be much larger than both X and W, meaning it is reasonable
to assume that matrix products involving Â represent most of
the computational burden associated with inference [11]. This
suggests that, by representing Â in the CBM format, we will
be able to substantially accelerate matrix products involving
Â, consequently reducing the inference time of GCN models.

III. COMPRESSED BINARY MATRIX (CBM) FORMAT

Let A ∈ {0, 1}n×n be a binary matrix, and let Ai,: denote
the i-th row vector of A for i = 1, . . . , n. Additionally, assume
that Ai,: is represented as an adjacency list containing the
column indices of its non-zero elements. Then, it is clear that
any Ax,: can be expressed in terms of a another row vector
Ay,: and two sets of deltas (∆+

x,y and ∆−
x,y). These sets

indicate which column indices of Ay,: must be set to 1 or
0, respectively, to obtain Ax,::

Ax,: = (Ay,: ∪∆+
x,y) \∆−

x,y. (2)

Equation 2 suggests that representing Ax,: requires space
proportional to the number of deltas, when Ay,: is already
in memory. Assuming Ax,: and Ay,: are similar, then it is
likely that the number of deltas required to represent Ax,:

will be smaller than nnz(Ax,:). If this is the case, it would be
more efficient to represent Ax,: with respect to Ay,: than by
resorting to standard sparse formats.

The Compressed Binary Matrix (CBM) format leverages
the intuition provided in Equation 2 to reduce the memory
footprint of a binary matrix, such as A, beyond O(nnz(A)).
To achieve this objective, the compression algorithm of the
CBM format first identifies a suitable compression tree for
matrix A. This is, for each row Ax,: identify another row
Ay,: that characterizes the former, such that the number of
deltas required to represent Ax,: is both (1) minimized with
respect to Ay,:, and (2) does not exceed nnz(Ax,:).

Minimizing the number of deltas: To address point (1),
the CBM format must first measure the number of deltas
required to convert each row Ay,: into all other rows Ax,: of
A, i.e., measure the Hamming distance for each pair of matrix
rows. This step provides a global view of the dissimilarity
between the rows of the matrix A, and it can be modeled as a
fully-connected and undirected distance graph G. This graph
has n nodes, where each node represents a unique row of the
matrix, and the weight of each edge (y, x) corresponds to the
number of deltas required to represent Ax,: with respect to
Ay,:. To reduce the number of deltas required to compress
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the rows of A we can find a Minimal Spanning Tree (MST)
of G, which by definition spans G with the minimum sum
of edge weights possible. Naturally, any MST of the distance
graph, rooted in node x, defines a compression tree with as
many deltas as the weight of this tree plus the number of
non-zero elements of Ax,:. Therefore, any MST rooted in
the node corresponding to the row with the fewest non-zero
elements, defines a compression tree that satisfies point (1).

Worst-case guarantees: Note that the compression tree
obtained by finding an MST of G does not satisfy point (2),
as the weight of the lightest incoming edge of x possibly
exceeds nnz(Ax,:). In such cases, representing Ax,: with an
adjacency list is clearly more memory efficient. To avoid this
issue, we extended the distance graph G with a virtual node
0 which is connected to all other nodes of the graph, as
illustrated in Figure 1b. This virtual node corresponds to a
null-vector Ø⃗ ∈ {0}n, which ensures that the weight of each
edge connecting nodes 0 and x is equal to the number of non-
zero elements in Ax,:. The inclusion of this virtual node in the
distance graph G ensures that the issue described above cannot
occur, since the lightest incoming edge of any node x is now
at most as heavy as nnz(Ax,:). Therefore, any compression
tree characterized by an MST of G, rooted on node 0, is
guaranteed to satisfy points (1) and (2). These points ensure
that CBM format is competitive with standard sparse formats
from a theoretical standpoint, as the following property holds:

Property 1. The number of deltas required to represent a
binary matrix A ∈ {0, 1}n×n in Compressed Binary Matrix
(CBM) format does not exceed nnz(A).

To finalize the construction of the CBM format for matrix
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Fig. 1: Construction of the CBM format for (a) matrix A:
(b) shows the Minimum Spanning Tree (MST) of the extended
distance graph G for matrix A, where 0 denotes the virtual
node and each node is identified by its corresponding row in
A; (c) presents the resulting compression tree along with the
associated sets of deltas.

A, as shown in Figure 1c, we just have to traverse our
compression tree in topological order, while computing the
sets of positive and negative deltas required to convert Ay,:

into Ax,: for each edge visited.
The CBM format can be easily extended to represent

matrices that can be factorized into AD, where D ∈ Rn×n is
a diagonal matrix. Note that AD is a column-scaled matrix,
meaning that all non-zero elements of the j-th column of A
will be scaled by entry Dj,j . Therefore, to represent AD in
CBM format we just need to store the diagonal of D alongside
with the compression tree of A and the corresponding sets of
positive and negative deltas.

A. Time and Space Analysis

Lemma 1. Any binary matrix A ∈ {0, 1}n×n can be rep-
resented with Compressed Binary Matrix (CBM) format in
O(n · nnz(A) + n2 · log n) time.

Proof. To construct the extended distance graph G of matrix
A, we need to compute n(n + 1)/2 Hamming distances
between all row pairs (Ay,:,Ax,:). Each distance can be deter-
mined by the set intersection of Ay,: and Ax,:, which requires
O(nnz(Ax,:)+nnz(Ay,:)) operations. Consequently, the time
required to measure all Hamming distances is bounded by:

n∑
x=0

n∑
y=0

(
nnz(Ax,:) + nnz(Ay,:)

)
= (n+ 1) nnz(A).

Finding a MST of G using algorithms like Prim or Kruskal
requires O(E log V ) operations, where E is the number of
edges and V is the number of nodes. For G, this is O(n2 ·
log n). Thus, the time required to represent matrix A in CBM
format is bounded by:

O(n · nnz(A) + n2 · log n). (3)

Note that the sequence of intersections between Ax,: and
Ay,: required to compute the sets of positive and negative
deltas can be computed alongside with the Hamming distance
of each node pair. Therefore, the construction of the 2n sets
of deltas is already accounted for in Equation 3.

Lemma 2. Representing matrix A ∈ {0, 1}n×n in Com-
pressed Binary Matrix (CBM) format requires at most O(n+∑n

x=0(|∆+
x,rx |+ |∆

−
x,rx |)) space, where rx is the index of the

row selected to compress row Ax,:.

Proof. Assuming A is represented in CBM format, then this
matrix is composed by a compression tree and corresponding
sets of deltas. The compression tree is obtained by computing
the MST of a fully-connected graph with n nodes. This
implies that the size of the compression tree is proportional to
the number of edges, and thus bounded by O(n). Similarly,
the space occupied by all sets of deltas is also proportional
to the combined number of elements across all lists, which
corresponds to O(

∑n
x=0(|∆+

x,rx |+ |∆
−
x,rx |)).



IV. FAST MATRIX PRODUCTS WITH CBM FORMAT

Let v⃗ ∈ Rn be a real-valued vector, and ∆⃗+
x,y and ∆⃗−

x,y

represent the indicator vectors1 for the sets of positive and
negative deltas, respectively. Based on equation Equation 2,
we can use the dot-product Ay,: · v⃗ to compute Ax,: · v⃗ as:

Ax,: · v⃗ = Ay,: · v⃗ + (∆⃗+
x,y − ∆⃗−

x,y) · v⃗. (4)

Equation 4 shows that dot-product Ax,: · v⃗ can be computed
in 2 · (|∆+

x,y| + |∆−
x,y|) scalar operations once Ay,: · v⃗ is

known. Again, if Ax,: and Ay,: are similar, this value is
likely to be smaller than 2 · nnz(Ax,:) − 1, the number of
scalar operations required to compute the same dot product
when Ax,: is represented in a standard sparse format. This
intuition suggest that the product between a binary matrix
A and a dense real-value vector v⃗ can be more efficiently
computed than by resorting to sparse formats. To do so, our
kernel must compute the dot-product between each row vector
of A and v⃗ in an order where: (1) each dot-product Ax,: · v⃗ is
calculated with respect to the dot-product Ay,: · v⃗ that results
in the minimum overall number of scalar operations, and (2)
the result of Ay,: · v⃗ must be known before computing Ax,: · v⃗.

By definition, the compression tree of the CBM format
already imposes an order that satisfies both points when Ax,:

is compressed with respect to Arx,:. The design of fast matrix-
vector multiplication kernels with CBM becomes possible by
traversing the compression tree of A in topological order,
and for each edge (rx, x) visited during the traversal compute
ux ← Ax,: · v⃗ as

ux ← urx + (∆⃗+
x,rx − ∆⃗−

x,rx) · v⃗, (5)

where u⃗ ∈ Rn is the result vector and entry urx = Arx,: · v⃗.
As observed in Section III, the number of deltas required

to represent any row vector Ax,: with CBM format is known
to not exceed nnz(Ax,:). If the number of deltas needed to
represent Ax,: is strictly smaller than nnz(Ax,:), then the cost
of computing the dot-product Ax,: · v⃗ cannot be greater than
nnz(Ax,:) scalar operations. However, when the number of
deltas required to represent Ax,: equals nnz(Ax,:), our dot-
product exceeds the cost of standard sparse formats by 1. To
avoid the second scenario, the CBM format can be engineered
to ignore this type of compression opportunities, and instead
compress Ax,: with respect to the virtual node 0 which is
equivalent to represent Ax,: with its adjacency list. Since the
number of scalar operations needed to compute Ax,: · v⃗ with
CBM format is always smaller than, or equal to, the number
of non-zero elements in Ax,: for x = 1, . . . , n, the following
property becomes evident:

Property 2. The number of scalar operations required to
compute matrix-vector products based on the Compressed
Binary Matrix (CBM) format is never greater than those
required to compute matrix-vector products based on classic
sparse formats.

1Vector u⃗ ∈ {0, 1}n is an indicator of set S if, and only if, uk = 1 when
k ∈ S, and uk = 0 when otherwise.

Algorithm 1: Matrix-Matrix product using CBM

Input: A ∈ {0, 1}n×n, B ∈ Rn×p, C ∈ Rn×p, d⃗ ∈ Rn

for (rx, x) ∈ TopologicalOrder(A) do
for k = 1, . . . , p do

if rx = 0 then
for j ∈ ∆+

rx,x do
Cx,k ← Cx,k + (dx · dj ·Bj,k)

else
for j ∈ ∆+

rx,x do

Cx,k ← dx

(
Crx,k

drx

+ dj ·Bj,k

)
for j ∈ ∆−

rx,x do

Cx,k ← dx

(
Crx,k

drx

− dj ·Bj,k

)
return C

Additionally, note that the matrix-vector product using the
CBM format does not require the allocation of additional
memory. In Equation 5, the result of each dot-product Ax,: · v⃗,
and consequently Arx,: · v⃗, is only stored in u⃗. Thus, the
following property is observed:

Property 3. The amount of memory required to compute
matrix-vector products based on the Compressed Binary Ma-
trix (CBM) format is proportional to the size of its operands
and remains constant during execution of this algorithm.

Finally, note that matrix-vector product with CBM can be
easily extended to u⃗← AD · v⃗, where D ∈ Rn is a diagonal
matrix. The key observation is that the j-th column of AD is
obtained by scaling the j-th column A by the diagonal entry
Dj,j . If the diagonal entries of D are stored in a vector d⃗,
where dj = Dj,j for j = 1, . . . , n, the dot-product between
the x-th row vector of AD and v⃗ is given by:

ux ← urx + (d⃗⊙ (∆⃗+
x,rx − ∆⃗−

x,rx)) · v⃗,

where ⊙ represents the element-wise multiplication. Similarly,
matrix-vector product with our format can be extended to
compute u⃗← DAD· v⃗, which will be crucial to accelerate the
inference stage of different GCNs. Here, the key observation
is that the x-th row of vector DAD · v⃗ is obtained by scaling
the x-th row of AD · v⃗ by Dx,x or dx for x = 1, . . . , n. Thus,
the dot-product between the x-th row vector of DAD and v⃗
can be written as:

ux ← dx

(
urx

drx
+ (d⃗⊙ (∆⃗+

x,rx − ∆⃗−
x,rx)) · v⃗

)
. (6)

Note that the entry urx must first be divided by drx , since it
was previously scaled by drx during the computation of the
rx-th row of DAD · v⃗.



A. Matrix-Matrix Products with CBM

Building on the different forms of matrix-vector products
described above, we designed fast matrix-matrix multiplication
kernels based on the CBM format that also meet Properties 2
and 3. Our matrix-matrix multiplication kernel is implemented
by performing matrix-vector products between a matrix in
CBM format and each column of the right-hand-side operand
matrix. Algorithm 1 describes our approach for computing
C ← DADB with CBM format, where both B ∈ Rn

and C ∈ Rn are dense, real-valued matrices. To adapt this
strategy for products of the form C ← ADB, simply omit
the operations involving dx and drx . For matrix products of
the form C ← AB omit operations involving dj in addition
to dx and drx .

V. IMPLEMENTATION DETAILS AND OPTIMIZATIONS

A. Leveraging High-Performance Numerical Libraries

Up to this point, the CBM format was conceptualized as a
compression tree, where each edge (rx, x) is associated with
two sets of deltas (∆+

x,rx and ∆−
x,rx ). As is, matrix multiplica-

tion with the CBM format presents sub-optimal performance,
because this operation is structured as a sequence of dot-
products between sparse indicator vectors (∆⃗+

x,rx and ∆⃗−
x,rx )

and the column vectors of the right-hand side operand matrix.
To accelerate our multiplication kernels, we need to cast this
sequence of dot-product as a single sparse matrix dense matrix
product, for which efficient and high-performance implemen-
tations already exist.

Let A′ ∈ {−1, 0, 1}n×n be the matrix of deltas of A:

A′ =

 ∆⃗+
1,r1
− ∆⃗−

1,r1
...

∆⃗+
n,rn − ∆⃗−

n,rn

 .

Assume we would like to multiply matrices A and B, where
B:,j is the j-th column vector of B for j = 1, · · · , n. By
definition, all dot-products (∆⃗+

x,rx − ∆⃗−
x,rx) ·B:,j required to

calculate AB using the CBM format can be now obtained in
a single matrix multiplication:

A′B =

 (∆⃗+
1,r1
− ∆⃗−

1,r1
) ·B1,: · · · (∆⃗+

1,r1
− ∆⃗−

1,r1
) ·Bn,:

...
. . .

...
(∆⃗+

n,rn − ∆⃗−
n,rn) ·B1,: · · · (∆⃗+

n,rn − ∆⃗−
n,rn) ·Bn,:

 .

To obtain matrix AB from A′B we must traverse the com-
pression tree in topological order, and for each edge (rx, x)
visited compute:

(A′B)x,: ← (A′B)rx,: + (A′B)x,:.

Once all edges of the compression tree are updated the value of
A′B is guaranteed to be equal to AB. Given that Property 1
ensures that the matrix of deltas A′ is at least as sparse as
A, we opted to represent A′ in CSR format to exploit its
sparsity, and we leverage Intel MKL’s sparse-dense matrix
multiplication kernels to accelerate the product A′B. It is
also important to highlight that the update stage of matrix
multiplication using the CBM format is a sequence of vector

additions. Hence, we accelerated this stage by using the axpy
implementation also offered by Intel MKL. Finally, note that
the sets of the deltas ∆+

x,rx and ∆−
x,rx previously associated

with each edge of the compression tree are no longer needed.
The information of these sets is now embedded in A′.

Extending our implementation of the CBM format to ma-
trices of the form AD and DAD, where D is a diagonal
matrix, was straightforward. To represent AD, and multiply
it with matrix B, using our format, we only need to define an
appropriate matrix of deltas:

(AD)′ =

 d⃗⊙ (∆⃗+
1,r1
− ∆⃗−

1,r1
)

...
d⃗⊙ (∆⃗+

n,rn − ∆⃗−
n,rn)

 ,

where vector d⃗ contains the diagonal entries of the matrix D.
Once the matrix of deltas (AD)′ is initialized, we multiply it
with B and update the resulting matrix as described before,
to accelerate the product ADB. Note that when multiplying
matrices of the form AD using the CBM format, the diagonal
matrix D, or its vector representation, does not need to
be stored in memory, as the necessary information is also
embedded in the matrix of deltas (AD)′. Furthermore, both
products (A)′B and (AD)′B present the same sparsity pattern
and require the same number of scalar operations, suggesting
that the performance of both operations should be similar.

To compute the product of a matrix of the form DAD with
B using the CBM format, in addition to constructing (AD)′

and multiplying it by B, we must also modify the update stage
to scale the rows of the resulting matrix by d⃗. For this type of
matrix, the update stage must traverse the compression tree,
and for each edge (rx, x), update the x-th row of the resulting
matrix according to Equation 6:

((AD)′B)x,: ← dx

(
((AD)′B)rx,:

drx
+ ((AD)′B)x,:

)
.

The update stage for DADX introduces two additional
floating-point operations per row element. To minimize this
overhead, we fused row scaling with row update, ensuring that
the rows of the matrix (AD)′B are not loaded more times than
necessary compared to the update stage of the CBM format
for A′B and (AD)′B. This type of matrix multiplication
also introduces some memory overhead, as the vector d⃗ must
remain in memory during the update stage. For simplicity,
we assumed that the left and right diagonal matrices are the
same. Nevertheless, the CBM format can be easily extended
to support matrices of the form D1AD2, where D1 and D2

are distinct real-valued diagonal matrices.

B. SIMD and Multi-Threading

In order to exploit the full performance potential of modern
processors and to ensure that our matrix multiplication strategy
is competitive with the state-of-the-art in sparse-dense matrix
multiplication, our solution must leverage both SIMD and
multi-threading parallelism. Intel MKL already leverages both



types of parallelism to accelerate its sparse-dense matrix mul-
tiplication and axpy kernels. While, multiplying either A′, or
(AD)′, with the right-hand side matrix B is already efficiently
parallelized by Intel MKL alone, the same is not observed for
the update stage of the CBM format. The update stage of our
format requires the execution of many axpy operations to
convert the matrix obtained in the multiplication stage into
AB, ADB, or DADB. Applying multi-threading within
the axpy kernel is too fine-grained, leading to sub-optimal
performance. To address this issue, we assign a set of axpy
operations to each thread available. However, it is important
to note that the update stage presents data-dependencies. The
compression tree needs to be traversed in topological order,
which means that a thread cannot begin the update for row
x until the update for row rx has been completed (possibly
by another thread). The key observation that allows us to
efficiently parallelize the update stage is that there are no
data-dependencies across the branches of the compression tree.
Therefore, to ensure the correctness and efficiency of our
parallel update stage, we assign to each thread one, or more,
lists containing all the edges that form a complete branch of
the compression tree. To avoid unnecessary overhead during
the traversal of each branch, we sort each list of edges in
topological order. At this point, it becomes straightforward
to parallelize the update stage with OpenMP. To do so, we
use the parallel for directive to create a parallel loop to
iterate over the lists of edges of each branch. Additionally,
we include the schedule(dynamic) clause to address
load-balancing issues caused by branches of different sizes.
Note that we could also resort to task-level parallelism to
accelerate the update stage of the CBM format. However, this
type of implementation would be more involved and incur
synchronization overheads.

C. Improving CBM with Edge Pruning

An important observation is that not all compression op-
portunities lead to space saving or faster multiplication ker-
nels when using the CBM format. If the number of deltas
needed to compress Ax,: in our format is close to nnz(Ax,:),
potential gains with respect to memory or performance may
be outweighed by the costs of representing and traversing
the compression tree. This observation becomes clear if we
consider the following example:

Example 1. Let Ax,: be compressed with respect to Arx,:

when A is represented in CBM format. Then, the number of
scalar operations saved by compressing Ax,: equals

|∆+
x,rx |+ |∆

−
x,rx | − nnz(Ax,:).

Now, assume that the number of deltas required to represent
Ax,: is nnz(Ax,:)− 1. In this case, the corresponding matrix
of deltas (either A′ or (AD)′) would contain one less non-
zero element. However, at least two integers would have to
be added to the compression tree to represent edge (rx, x).
Consequently, had this edge not been considered, the CBM
format would occupy less memory.

To avoid the scenario above we introduce a user-defined
threshold α, where α ∈ N0. This parameter is applied in the
construction of the CBM format, during the generation of the
distance graph G. Before any edge (y, x) is included in G,
we check whether |∆+

x,y| + |∆−
x,y| − nnz(Ax,:) < α. If this

condition evaluates to true, this edge is included in G and
considered during the construction of the MST. Otherwise,
it is immediately discarded. Naturally, this condition might
evaluate to true for only one edge direction, meaning that G is
now directed. Therefore, a suitable compression tree must now
be found with a Minimum Cost Arborescence (MCA) rooted
in the virtual node 0. Note that our compression algorithm
remains correct, since G contains an out-going edge from node
0 to all other nodes. For convenience, the MCA algorithm
employed to build the CBM format runs in O(n2 · log2 n).
However, there are more efficient algorithms that find an MCA
of G in O(n2 · log n) [12]. Consequently, the time complexity
of our compression algorithm remains the same, whether it
uses an MCA or an MST.

It is important to note that α serves an additional purpose.
As the value of α increases, so does the branching factor
of the virtual node 0 in the compression tree. Thus, by
increasing α we also increase the degree of parallelism during
the update stage of our matrix multiplication strategy. This
comes, however, at the expense of the quality of compression
of the CBM format. Additionally, as the value of α increases,
the MCA algorithm considers a smaller amount of candidate
edges, and therefore, a slight reduction in compression time
should be expected.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setting

The experiments found in this section were performed on
an Intel Xeon Gold 6130 (Skylake) CPU, a shared-memory
architecture with 16 physical cores, 2.1 GHz fixed clock
frequency, 32 KiB private L1 data cache, 1 MiB private
L2 cache and 22 MiB shared L3 cache. This machine runs
on CentOS Linux 7 (version 3.10.0) operating system. The
compression algorithm of the CBM format and corresponding
matrix multiplication kernels were implemented in C++, and
rely on Intel MKL (version 24.0.0) sparse CSR format and
corresponding single-precision (32 bits) sparse-dense matrix
multiplication kernels. The C++ code developed in this work
was compiled with GCC (version 10.5.0), and is called
from Python 3.11, via PyTorch C++ Extensions to closely
resemble common use-cases. Parallel experiments (with 16
cores) were implemented with OpenMP 4.5, and the threads
were pinned to physical cores with environment variable
GOMP_CPU_AFFINITY="0-15".

B. Evaluation Metrics

We evaluated the CBM format on various graphs using two
key metrics: compression ratio and speedup. Since the graphs
considered in our experiments are very sparse, we chose
the CSR format and the corresponding Intel MKL’s sparse
matrix multiplication kernels as our baselines. We did not



consider native PyTorch sparse matrix multiplication kernels
as a baseline, as preliminary experiments revealed a significant
slowdown compared to explicitly invoking the routines offered
by Intel MKL using PyTorch’s C++ Extensions.

Compression Ratio: is expressed as SCSR/SCBM, where
SCSR and SCBM correspond to the memory occupied by the
graph in MiB, when the graph is represented in CSR or CBM
format, respectively.

Speedup: is represented as the ratio TCSR/TCBM, where
TCSR and TCBM represent the average time of execution of
the same operation (averaged over 250 runs) with CSR and
CBM format, respectively. The operations considered in these
experiments are the different flavors of matrix multiplication
kernels proposed in this work, and the inference stage of a
two-layer GCN. The time needed to represent each graph in
either format was not included in the measurements of TCSR

and TCBM. The same way graphs are already offered in CSR,
or in other sparse formats, we assume that these graphs could
also be offered in CBM. In the spirit of transparency, Table II
shows the time needed to build our format for each graph.

We verified the correctness of our matrix multiplication
kernels by multiplying each graph’s adjacency matrix, in CBM
format, by 50 randomly generated matrices with 500 columns,
where each element is between 0 and 1. We confirmed that
the resulting matrices matched those of the baseline, across all
graphs tested, within a relative tolerance of 10−5, which we
consider satisfactory.

C. Datasets

To evaluate the advantages of the CBM format with respect
to compression ratio and speedup, we selected eight real-world
graphs of varying sizes and average degrees, as depicted in
Table I. The first seven graphs depict relationships between au-
thors and/or academic papers, where nodes tend to share many
neighbors in common. Cora and Pubmed [13] are both citation
networks, where each node represents an academic paper, and
an unweighted and undirected edge is placed between citing
and cited papers. ca-AstroPh and ca-HepPh [14] represent co-
authoring networks, where each node corresponds to an author,
and there is an unweighted and undirected edge between two
authors if they co-authored a paper together. COLLAB [15]
is collaboration network composed by the ego-networks of
several researchers. In this network, each node represents a
researcher, and there is an unweighted and undirected edge
between two researchers if they collaborated. coPapersDBLP
and coPapersCiteseer [16] are co-papers networks where each
nodes represents a paper, and two papers are connected by
an unweighted and undirected edge if they share at least one
author. The largest dataset that we considered was the ogbn-
proteins. This graph represents a protein-protein interaction
(PPI) network, where nodes represent proteins and edges in-
dicate biologically meaningful associations between proteins.
This dataset offered in Open Graph Benchmark (OGB) [17]
as an undirected graph with edge features. However, to be
able to represent this graph in our format we ignored the edge
weights, making the graph undirected and unweighted.

TABLE I: Networks selected to evaluate the CBM format.

Graph #Nodes #Edges
Average
Degree

SCSR
[MiB]

Cora 2708 10556 4.8 0.09
PubMed 19717 88648 5.4 0.75
ca-AstroPh 18772 396160 22.1 3.09
ca-HepPh 12008 237010 20.7 1.85
COLLAB 372474 24572158 65.9 188.89
coPapersDBLP 540486 30491458 57.4 234.69
coPapersCiteseer 434102 32073440 74.8 246.36
ogbn-proteins 132534 39561252 298.5 302.33

TABLE II: Compression analysis of the CBM format for
different datasets with α = 0 and α = 32. Time represents
the time needed to build the CBM format using 16 threads.

Graph Alpha Time [s] SCSR
[MiB]

SCBM
[MiB]

SCSR
SCBM

Cora α = 0
0.0035

(± 0.000) 0.09
0.09 1.04

α = 32
0.0024

(± 0.000)
0.09 1.00

PubMed α = 0
0.0359

(± 0.001) 0.75
0.72 1.04

α = 32
0.0145

(± 0.000)
0.74 1.00

ca-AstroPh α = 0
0.1105

(± 0.003) 3.09
1.80 1.72

α = 32
0.0728

(± 0.004)
2.44 1.27

ca-HepPh α = 0
0.0813

(± 0.005) 1.85
0.68 2.72

α = 32
0.0539

(± 0.003)
0.89 2.06

COLLAB α = 0
5.2422

(± 0.090) 188.89
17.18 11.0

α = 32
4.3964

(± 0.026)
32.49 5.81

coPapersDBLP α = 0
7.7507

(± 0.056) 234.69
39.34 5.97

α = 32
6.1038

(± 0.025)
62.76 3.74

coPapersCiteseer α = 0
8.7924

(± 0.126) 246.36
24.95 9.87

α = 32
7.1432

(± 0.115)
42.56 5.79

ogbn-proteins α = 0
44.3282

(± 0.0797) 246.36
24.95 2.14

α = 32
43.3534

(± 0.0507)
42.56 2.12

D. Graph Compression with the CBM Format

Table II presents the average time to convert each dataset
into CBM format and corresponding compression ratio for the
smallest and largest α values considered in our experiments.
For α = 0, our compression algorithm processes the graphs in
under 9 seconds, except for ogbn-proteins, which takes about
44 seconds. With α = 32, the compression time decreases for
every graph, confirming that our compression algorithm be-



comes faster as α increases. In most cases, converting a graph
to CBM format will take longer than matrix multiplication
with the CSR format, especially when the second operand
matrix has few columns. To achieve meaningful speedup in
matrix multiplication or GCN inference using our format, the
graph must first be made available in CBM format as a pre-
processing step. As it can be seen in Table II, the CBM format
reduced the memory footprint of every dataset compared to
CSR, though the extent of the improvement varied across
datasets. Representing both citation graphs with our format
leads to negligible compression gains with respect to CSR.
We suspect that the low average degree of the citation graphs
limits the compression ratio of our format. For these datasets,
the compression gains in A′ are likely to be too small to
offset the memory overhead of the compression tree. For both
co-authoring and PPI networks, the CBM format resulted in
substantial compression gains with an average compression
ratio of 2.19× for α = 0. The COLLAB and the co-papers
networks benefited the most from our format. For these graphs
our format achieves an impressive average compression ratio
of 8.95× for α = 0.

E. Matrix Multiplication Kernels using the CBM Format

In this section, the experiments focus on the performance of
matrix multiplication kernels for AX, ADX, and DADX.
In these operations, A represents the adjacency matrix of
each graph, X is a dense single-precision matrix with 500
columns, and D is a single-precision diagonal matrix. For
matrix multiplication using the CBM format, the variants of
the right-hand side operand matrices (A, AD, and DAD) are
represented in our format as described in Section V-A. For
the baseline, we assume that the right-hand operand matrices
are represented by a single CSR matrix. As previously stated,
the time required to represent these matrices in either CBM or
CSR formats is not accounted for in the following experiments.

As discussed in Section V-C, finding α is key to improve
the performance of matrix multiplication with the CBM
format. Adjusting this parameter not only reduces overhead
associated with traversing the compression tree, but also
exposes more parallelism opportunities since it increases the
out-degree of the virtual node 0. Given the importance of α
we first consider the case where α = 0 and our edge pruning
technique was not applied, and then we show how adjusting
this parameter impacts matrix multiplication with the CBM
format.

1) AX (α = 0): Figure 2 confirms that the speedup
achieved for matrix multiplication using the CBM format
is proportional to the compression ratio obtained by our
format. The lack of compression for both citation graphs
(Figs. 2a and 2b) naturally results in a slowdown for matrix
multiplication, as the compression gains in the matrix of
deltas do not offset the cost of traversing the compression
tree during matrix multiplication using CBM. While co-
authoring (Figs. 2c and 2d) and PPI networks (Fig. 2h)
present a significant average compression ratio of 2.19×,

matrix multiplication with these graphs resulted in an average
speedup of 1.79× in sequential and 1.45× in parallel settings.
The speedups obtained for these graphs are lower than we
would expect given the compression ratios presented. It is
also worth to point out that the co-authoring networks show
a significant performance gap between sequential and parallel
matrix multiplication. This disparity is not due to a lack of
scalability in our solution. Rather, the baseline scales better
because the original adjacency matrices do not fit in the L1
and L2 caches of a single core, but they do fit across the
combined L1 and L2 caches of 16 cores. As it should be
expected, the graphs that benefited the most from matrix
multiplication using the CBM format were the COLLAB
(Fig. 1e) and the co-papers networks (Fig. 1f and 1g), which
present an average compression ratio of 8.95×. These graphs
present an impressive average speedup of 3.32× in sequential
and 3.95× in parallel settings, highlighting the potential of
the CBM format to accelerate matrix multiplications involving
the adjacency matrix of real-world unweighted graphs.

2) AX (α > 0): Figure 2 confirms that adjusting the value
of α speeds up matrix multiplication with every graph, though
in varying degrees. For the citation graphs (Fig. 1a and 1b),
setting α ≥ 2 reduces the overhead associated with traversing
the compression tree, which negates the performance decay
observed for sequential matrix multiplication for α = 0. A
similar pattern is seen for parallel matrix multiplication with
Cora (Fig. 1a). It is also interesting to note that for these
graphs setting α = 1 increases the compression ratio obtained
with CBM, indicating that the scenario described in Example 1
occurs for many rows of these adjacency matrices. Setting
α = 4 results in the lowest execution times for sequential ma-
trix multiplication with both co-authoring networks (Figs. 1c
and 1d), slightly increasing the average speedups for these
datasets by 0.1. For parallel matrix multiplication the best
results are obtained when α = 8 for ca-AstroPh and when
α = 2 for ca-HepPh, increasing the average parallel speedup
by 0.09. In contrast to what was observed before, adjusting
α has little to no impact in sequential matrix multiplication
with the remaining networks (Figs. 2e to 2h). This behavior
occurs because most rows in the delta matrix A′ have at least
four fewer nonzero entries than the corresponding rows in
A. This observation is supported by the compression ratio
obtained for these networks, which remain relatively constant
up to α = 8. Another important observation is that increasing
the value of α promotes many parallelism opportunities in the
context of parallel matrix multiplication with these graphs.
This observation is supported by COLLAB (Fig. 2e) and
both co-papers (Figs. 2f and 2g) networks, where the parallel
speedup increases, while the compression ratio and sequential
speedup decrease sharply. Setting α = 16 results in the best
parallel speedup for COLLAB, while setting α = 32 leads to
the best parallel speedups for both co-paper networks. Fine-
tuning α for these graphs increases their average parallel
speedup by 0.31×. We would like to highlight that parallel
matrix multiplication with COLLAB achieved the highest
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Fig. 2: Impact of different values of α on matrix-matrix multiplication (AX) using the CBM format. These plots indicate
the speedup achieved by the CBM format, with respect to the CSR format, for sequential and parallel matrix multiplication.
Additionally, the plots present the compression ratio achieved by our format also with respect to the CSR format. The x-axis
shows the different values of α considered. The y-axis (left), shows speedup relative to Intel MKL’s sparse-dense matrix
multiplication kernels, where the graph is represented in CSR format; the y-axis (right) shows the compression ratio relative to
size of the same graph represented in CSR format. (Note: α is a parameter of our format, not the number of cores employed.)

average speedup of 5.25× with respect to the current state-
of-the-art.

To conclude this discussion, we note that identifying the
optimal values of α is relatively straightforward in the se-
quential case, as the best α appears to be mostly independent
from the graph we would like to compress. This observation
is supported by the experiments presented in Figure 2, which
indicate that α = 4 is the optimal choice for all graphs except
ca-AstroPh and ogbn-proteins. In contrast, finding the best
values of α in the parallel case is not as simple, since the
degree of parallelism associated with each α depends on the
compression tree obtained for each graph. Nevertheless, for
graphs that are as well compressed as COLLAB and co-papers,
any α between 8 and 32 seems to be a reasonable choice.

F. ADX and DADX

To finalize the experimental analysis of matrix multiplica-
tion using the CBM format, we evaluate the speedup achieved
by our kernels for ADX and DADX compared to Intel
MKL’s sparse-dense matrix multiplication kernels, which use
the CSR format. To keep this discussion concise, we only
consider the values α that yield the best speedup for AX.
The results of these experiments are presented in Table III. As
shown, the speedup achieved for matrix multiplication using
the CBM format for ADX and DADX does not exhibit
substantial slowdowns compared to AX across the selected

graphs for the different combinations of α and number of
threads. As explained in Section V-A, we did not anticipate
a significant difference in speedup between AX and ADX.
However, we were positively surprised to observe no signif-
icant differences in performance when moving from matrix
multiplication with AX to DADX.

G. GCN Inference with CBM Matrix Multiplication Kernels

To evaluate the potential impact of the CBM format on the
training and inference times of GNNs, we employed our matrix
multiplication strategy in the inference stage of the two-layer
GCN, previously described in Equation 1:

Â σ(ÂXW0)W1.

In our experiments, we represent the normalized Laplacian
adjacency matrix for each graph, Â = D− 1

2 (A + I)D− 1
2 ,

using CBM for matrices of the form DAD, and apply the
corresponding matrix multiplication kernels to compute the
two products involving Â that are present in Equation 1. The
node feature matrix, X, is a dense single-precision matrix
with 500 columns, while the learnable matrices, W0 and W1,
are dense, single-precision, square matrices with 500 rows.
These matrix dimensions were carefully chosen to reflect real-
world GCN workloads. The baseline for our experiments is
the same two-layer GCN, where Â is stored in CSR format
and matrix products involving this matrix are carried-out by



TABLE III: Performance analysis for different matrix multiplications using CSR and CBM formats. To keep the analysis
concise, we only consider the values of α that yielded the best speedups for AX when evaluating ADX and DADX.

Graph Alpha
(Cores)

AX ADX DADX

TCSR [s] TCBM [s]
TCSR
TCBM

TCSR [s] TCBM [s]
TCSR
TCBM

TCSR [s] TCBM [s]
TCSR
TCBM

ca-HepPh
α = 4

(1 Core)
0.0239

(± 0.0016)
0.0129

(± 0.0002)
1.8507 0.0235

(± 0.0006)
0.0132

(± 0.0008)
1.7882 0.0237

(± 0.0013)
0.0131

(± 0.0006)
1.8045

α = 1
(16 Cores)

0.0025
(± 0.0001)

0.0017
(± 0.0000)

1.4552 0.0025
(± 0.0001)

0.0017
(± 0.0000)

1.4769 0.0025
(± 0.0002)

0.0018
(± 0.0001)

1.4235

ca-AstroPh
α = 2

(1 Core)
0.0482

(± 0.0004)
0.0341

(± 0.0004)
1.4132 0.0480

(± 0.0005)
0.0341

(± 0.0003)
1.4090 0.0480

(± 0.0004)
0.0345

(± 0.0010)
1.3882

α = 8
(16 Cores)

0.0045
(± 0.0000)

0.0040
(± 0.0000)

1.1278 0.0045
(± 0.0000)

0.0040
(± 0.0000)

1.1286 0.0045
(± 0.0000)

0.0040
(± 0.0001)

1.1147

Cora
α = 2

(1 Core)
0.0011

(± 0.0000)
0.0011

(± 0.0000)
1.0217 0.0011

(± 0.0000)
0.0011

(± 0.0000)
1.0132 0.0011

(± 0.0000)
0.0011

(± 0.0000)
1.0225

α = 4
(16 Cores)

0.0002
(± 0.0000)

0.0002
(± 0.0000)

1.0478 0.0002
(± 0.0000)

0.0002
(± 0.0000)

1.0421 0.0002
(± 0.0000)

0.0002
(± 0.0000)

0.9690

PubMed
α = 4

(1 Core)
0.0169

(± 0.0003)
0.0168

(± 0.0002)
1.0044 0.0169

(± 0.0002)
0.0168

(± 0.0002)
1.0043 0.0170

(± 0.0007)
0.0169

(± 0.0002)
1.0059

α = 16
(16 Cores)

0.0020
(± 0.0000)

0.0020
(± 0.0000)

0.9856 0.0020
(± 0.0000)

0.0020
(± 0.0000)

0.9870 0.0020
(± 0.0000)

0.0020
(± 0.0000)

0.9835

COLLAB
α = 4

(1 Core)
1.2058

(± 0.0380)
0.3048

(± 0.0080)
3.9555 1.2117

(± 0.0801)
0.3061

(± 0.0116)
3.9582 1.2024

(± 0.0293)
0.3055

(± 0.0106)
3.9353

α = 16
(16 Cores)

0.2466
(± 0.0024)

0.0470
(± 0.0002)

5.2513 0.2462
(± 0.0016)

0.0470
(± 0.0002)

5.2369 0.2465
(± 0.0016)

0.0477
(± 0.0032)

5.1692

coPapersDBLP
α = 4

(1 Core)
2.1310

(± 0.0303)
0.8488

(± 0.0078)
2.5107 2.1334

(± 0.0381)
0.8513

(± 0.0082)
2.5062 2.1360

(± 0.0526)
0.8687

(± 0.0241)
2.4588

α = 32
(16 Cores)

0.4284
(± 0.0115)

0.1616
(± 0.0004)

2.6513 0.4370
(± 0.0014)

0.1608
(± 0.0005)

2.7177 0.4362
(± 0.0048)

0.1612
(± 0.0023)

2.7058

coPapersCiteseer
α = 4

(1 Core)
1.9633

(± 0.0328)
0.5510

(± 0.0139)
3.5629 1.9628

(± 0.0272)
0.5511

(± 0.0100)
3.5619 1.9632

(± 0.0362)
0.5600

(± 0.0170)
3.5058

α = 32
(16 Cores)

0.4583
(± 0.0161)

0.0939
(± 0.0006)

4.8817 0.4810
(± 0.0244)

0.0932
(± 0.0002)

5.1632 0.4783
(± 0.0246)

0.0937
(± 0.0020)

5.1046

ogbn-proteins
α = 8

(1 Core)
9.1808

(± 0.0016)
4.4460

(± 0.0079)
2.0650 9.1920

(± 0.0020)
4.4532

(± 0.0074)
2.0642 9.1954

(± 0.0223)
4.5027

(± 0.0496)
2.0422

α = 16
(16 Cores)

2.1987
(± 0.0011)

1.2400
(± 0.0032)

1.7732 2.1873
(± 0.0021)

1.2349
(± 0.0010)

1.7712 2.1910
(± 0.0011)

1.2381
(± 0.0060)

1.7697

Intel MKL’s sparse-dense matrix multiplication kernels. The
speedup achieved by the CBM format for the selected graphs
can be found in Table IV. Again, to keep the discussion
concise, we only consider the α values that yield the best
speedup for AX.

In general, we observed a substantial reduction in speedup
when comparing the performance of the CBM format in GCN
inference to its performance in matrix multiplication with
DAD. Since our format cannot optimize the matrix products
between X and W0, as well as between σ(ÂXW0) and
W1, these additional operations dilute the performance gains
that were previously observed. Nevertheless, the CBM format
still reduces the inference time of a GCN for all graphs,
except for the citation networks. For the last four networks of
Table IV, our format resulted in an average speedup of 1.6× in
sequential and 1.93× in parallel settings. In these experiments,
we observed an interesting result that seems counterintuitive
at first: while the CBM format presents the best performance
for DAD with COLLAB, the same is not verified for GCN
inference. Instead, the dataset that presents the best speedup

in the context of GCN inference is the coPapersCiteseer. The
sharper decline in performance from DAD to GCN inference
for COLLAB is primarily due to a memory effect caused by
the inclusion of matrices X, W0, and W1. These matrices
occupy additional cache space, resulting in COLLAB’s data
being evicted more frequently than when computing DAD,
where most of the graph fits across the combined private
levels of cache of 16 cores. We hypothesize that these memory
effects are less pronounced in CoPapersCiteseer as this graph
was already too large to be stored across the combined private
levels of cache during the computation of DAD.

H. Identifying Compressible Graphs

As discussed in Section VI-E, the performance of matrix
multiplication using the CBM format is strongly influenced by
the compression ratio obtained. To avoid compressing graphs
that are poorly suited to be represent in our format, it would
be useful to identify commonly available metrics that correlate
well to the graph’s compression ratio. We found the average
clustering coefficient to be a reasonable indicator. While our
sample size is limited, the values presented in Table V suggest



TABLE IV: Performance analysis of the inference stage
of a two-layer GCN using CSR and CBM formats. To
keep the analysis concise, we only consider the values of α
that yielded the best speedup for AX. The value below the
speedup indicates the difference in speedup between DADX
and the inference of a two-layer GCN when using our format.

Graph Alpha
(Cores)

GCN

TCSR [s] TCBM [s]
TCSR
TCBM

ca-HepPh
α = 4

(1 Core)
0.1252

(± 0.0006)
0.1049

(± 0.0012)
1.1941

(- 0.6103)
α = 1

(16 Cores)
0.0182

(± 0.0003)
0.0165

(± 0.0005)
1.1050

(- 0.3184)

ca-AstroPh
α = 2

(1 Core)
0.2286

(± 0.0006)
0.2018

(± 0.0031)
1.1330

(- 0.2551)
α = 8

(16 Cores)
0.0294

(± 0.0011)
0.0277

(± 0.0004)
1.0585

(- 0.0562)

Cora
α = 2

(1 Core)
0.0185

(± 0.0027)
0.0185

(± 0.0025)
1.0001

(- 0.0224)
α = 4

(16 Cores)
0.0034

(± 0.0001)
0.0034

(± 0.0001)
0.9799

(+ 0.0109 )

PubMed
α = 4

(1 Core)
0.1718

(± 0.0011)
0.1735

(± 0.0006)
0.9902

(- 0.0157 )
α = 16

(16 Cores)
0.0251

(± 0.0010)
0.0246

(± 0.0005)
1.0210

(+ 0.038)

COLLAB
α = 4

(1 Core)
4.9576

(± 0.0729)
3.1723

(± 0.0709)
1.5627

(- 2.3725)
α = 16

(16 Cores)
0.8271

(± 0.0052)
0.4100

(± 0.0054)
2.0171

(- 3.1521)

coPapersDBLP
α = 4

(1 Core)
8.0435

(± 0.0585)
5.4701

(± 0.0512)
1.4704
(- 0988)

α = 32
(16 Cores)

1.3449
(± 0.0060)

0.7964
(± 0.0053)

1.6888
(- 1.0170)

coPapersCiteseer
α = 4

(1 Core)
6.9310

(± 0.0023)
4.1237

(± 0.0417)
1.6808

(- 1.8250)
α = 32

(16 Cores)
1.3823

(± 0.0041)
0.5566

(± 0.0050)
2.4833

(- 2.6214)

ogbn-proteins
α = 8

(1 Core)
19.7282

( ± 0.0052)
10.9071

( ± 0.9411)
1.8088

(- 0.2334)
α = 1

(16 Cores)
4.5482

(± 0.0068)
2.9142

(± 0.0188)
1.5607

(- 0.2090)

a positive correlation between the graphs’ average clustering
coefficient and compression ratio. Nevertheless, there are cases
where this metric is not informative. For instance, both citation
networks have small average degrees, leading to poor compres-
sion ratios regardless of their average clustering coefficients.
Additionally, ogbn-proteins exhibits a better compression ratio
than ca-AstroPh, even though the latter presents a significantly
higher average clustering coefficient. Finally, it is important to
note that if the average clustering coefficient of a graph is not
readily available, measuring it may not be worthwhile, as the
time required to compute it is comparable to the time needed
to compress the graph in CBM format.

VII. RELATED WORK

The matrix-matrix and matrix-vector products have been
extensively studied [18]. A particular case is the product of a
binary sparse matrix by a real-valued vector or (dense) matrix,

TABLE V: Compression ratio and average clustering coeffi-
cient for different graphs. The compression ratio is obtained
by representing the graphs in CBM format with α = 0.

Graph Average
Degree

Average
Clustering
Coefficient

SCSR
SCBM

x
Cora 4.8 0.24 1.04
PubMed 5.4 0.06 1.04
ca-AstroPh 22.1 0.63 1.72
ogbn-proteins 298.5 0.28 2.14
ca-HepPh 20.7 0.61 2.72
coPapersDBLP 57.4 0.80 5.97
coPapersCiteseer 74.8 0.83 9.87
COLLAB 65.9 0.89 11.00

where the efficient representation of the binary matrix can
be exploited to improve both the memory footprint and the
operation running time. Although this was not expected in
some preliminary studies [19], and impossibility results exist
for more complex compression schemes [20], it works for
some representational compression schemes.

The Single Tree Adjacency Forest (STAF) [1] represents a
binary matrix by reversing and inserting the adjacency list of
each row into a trie data-structure, with common row suffixes
being represented exactly once. STAF enables fast matrix-
matrix products by traversing the trie in topological order,
while accumulating common partial sums. The number of op-
erations required to multiply a binary matrix represented by a
STAF and a real-valued vector is proportional to the size of the
trie and upper-bounded by the number of non-zero elements
of the binary matrix. STAF does not exploit however row-
wise similarities beyond common row suffixes, and authors
proposed to represent instead sets of columns, achieving a
significant speedup and memory footprint reduction against
CSR and the Eigen library.

Francisco et al. [2] explored how succinct representations
for binary matrices and graphs could speedup binary matrix
products. They consider both Webgraph [21] and Biclique
Extraction (BE) [22] representations, which exploit similarity
among rows and clustering effects found in real-world graphs
and matrices. Such methods allow to reduce the memory
footprint of binary matrices and accelerate the product of
compressed binary matrices and real-valued vectors. The key
observation is that, in both cases, we can reuse partial re-
sults from previous computations. These representations were
however designed with focus on achieving the best possible
compression ratio, employing more evolved representations
and requiring non-trivial pre-processing steps such as node re-
ordering through graph clustering methods or finding maximal
bicliques, an NP-hard problem in general.

Elgohary et al. [23] also addressed the problem that large-
scale machine learning algorithms are often iterative, using re-
peated read-only data access and I/O-bound matrix-vector mul-
tiplications, introducing Compressed Linear Algebra (CLA)



for lossless matrix compression. CLA also executes linear
algebra operations directly on the compressed representations,
but it is not focused on binary matrices and it only presents
performance gains when data does not fit into memory.

Our work is related to the work by Björklund and Lingas [3],
that considers a weighted graph on the rows of a binary
matrix where the weight of an edge between two rows is
equal to its Hamming distance, and then relies on a minimum
spanning tree of that graph to differentially compress the
rows. Authors consider however only the single product of
two binary matrices, and do not guarantee that the number
of scalar operations incurred by their method is less than or
equal to those of standard sparse formats. Additionally, the
authors do not consider the overhead imposed by operating
on a compressed representation of a binary matrix, as their
results are purely theoretical.

VIII. FINAL REMARKS

In this work we have proposed the Compressed Binary
Matrix (CBM) format which simultaneously reduces the mem-
ory footprint of unweighted graphs and row- and column-
scaled binary matrices, and enables the implementation of new
matrix multiplication kernels that are potentially much faster
than the current state-of-the-art. Experimental results showed
that our format achieves compression ratios of up to 11× for
real-world graphs compared to the widely-used CSR format,
boosting the performance of matrix multiplication above 5×
in parallel environments. Additionally, integrating the CBM
format into PyTorch reduced the inference time of a two-
layer GCN by 2.48×. We highlight that our format is future-
proof, since future optimizations to state-of-the-art sparse-
dense matrix multiplication kernels will also accelerate our
matrix multiplication kernels. We found that the CBM format
can be built in a reasonable amount time. However, to acceler-
ate matrix-matrix products, the graph’s adjacency matrix must
be previously stored in our format as a pre-processing step,
avoiding the construction overhead. Additionally, the average
clustering coefficient appears to be a decent metric to identify
which graphs are well-suited for our format.

The current implementation of the CBM format’s compres-
sion algorithm is not memory-efficient, limiting our ability
to compress networks that are larger than ogbn-proteins. This
issue arises because we compute AAT, where A is the graph’s
adjacency matrix, to accelerate the construction of the format.
While A is usually extremely sparse, matrix AAT might be
significantly denser and not fit in main-memory, meaning the
graph cannot be compressed. We observed this issue with the
Reddit dataset [14]. Although its CSR representation requires
only 0.9 GiB, the construction of the CBM format for this
graph utilized over 92 GiB of memory. Future work concerns
scaling the compression algorithm of the CBM format by
clustering similar rows of the graph’s adjacency matrix and
subsequently computing a partial CBM format for each cluster.
This strategy should not only reduce the memory requirements
of our compression algorithm, but also reduce the amount of
work and expose more parallelism opportunities. Additionally,

we plan to integrate and evaluate the CBM format in the
context of different GNNs architectures, and also targeting the
training stage of this networks. We also intend to implement
and evaluate our format and corresponding multiplication
kernels in GPU architectures.
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