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Abstract
We give an algorithm that, with high probability, maintains a (1− ϵ)-approximate s-t maximum
flow in undirected, uncapacitated n-vertex graphs undergoing m edge insertions in Õ(m + nF ∗/ϵ)
total update time, where F ∗ is the maximum flow on the final graph. This is the first algorithm to
achieve polylogarithmic amortized update time for dense graphs (m = Ω(n2)), and more generally,
for graphs where F ∗ = Õ(m/n).

At the heart of our incremental algorithm is the residual graph sparsification technique of Karger
and Levine [SICOMP ’15], originally designed for computing exact maximum flows in the static
setting. Our main contributions are (i) showing how to maintain such sparsifiers for approximate
maximum flows in the incremental setting and (ii) generalizing the cut sparsification framework of
Fung et al. [SICOMP ’19] from undirected graphs to balanced directed graphs.
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1 Introduction

The maximum s-t flow problem has been at the forefront of research in theoretical computer
science and combinatorial optimization. Algorithms developed for maximum s-t flow and its
dual problem, minimum s-t cut, have been highly influential due to their wide applicability [1]
and their use as subroutines in other algorithms [2, 25]. A long line of work has improved
our understanding of how efficiently maximum flow can be solved in the static setting. Two
landmark combinatorial results are the deterministic algorithm by Goldberg and Rao [14],
which achieves a running time of O(min{n2/3, m1/2} · m), and the randomized algorithm by
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48:2 Incremental Approximate Maximum Flow via Residual Graph Sparsification

Karger and Levine [21] which has a running time of Õ(m + nF ∗),1 where F ∗ is the value
of the maximum flow. More recently, efforts building upon a novel blend of continuous
optimization techniques, the Laplacian paradigm [30] and graph-based data structures have
led to even faster algorithms; notably, a randomized Õ(m/ϵ) time approximate maximum
flow algorithm on undirected graphs [26, 22, 24, 27], and a deterministic Ô(m) time exact
algorithm for min-cost flow (and thus maximum flow) even on directed graphs [7, 6], which
constitutes a major algorithmic breakthrough.

Recently, there has been growing interest in solving the maximum s-t flow problem in
the challenging dynamic setting, where the goal is to maintain a flow (or its value) under
edge insertions and deletions and answer queries about the maintained flow efficiently. For
directed graphs, there are strong conditional hardness results [8, 18] showing a lower bound
of Ω(n) and Ω(

√
m) amortized update time for maintaining exact maximum flow, assuming

the OMv conjecture. These strong polynomial lower bounds have motivated a shift in focus
toward maintaining approximate maximum flows.

Research on maintaining approximate maximum flows in the dynamic setting can be
categorized into the following three lines of works. The first line of work [5, 16, 31] deals
with the fully dynamic setting, supporting both edge insertions and deletions and is based
on dynamically maintaining tree-based cut approximations. However, these algorithms
require at least a logarithmic loss in the quality of the maintained flow. The second line of
work [19, 17, 15] is purely combinatorial and works by repeatedly finding augmenting paths
in an incremental residual graph together with a lazy rebuilding technique. While these
algorithms achieve sub-linear update time, it is not clear how to use them to go beyond the√

n barrier on the update time. To address this challenge, the third line of work [33, 32, 6, 31]
leverages continuous optimization techniques to maintain a (1 − ϵ)-approximate max flow in
the incremental (only edge insertions) and decremental (only edge deletions) settings in mo(1)

update time. Table 1 offers a detailed summary of the state-of-the-art results on dynamic
maximum flow algorithms.

Focusing on the (1−ϵ)-approximation regime, the recent partially dynamic maximum flow
algorithms suffer from the following two main drawbacks: (i) they depend on the powerful
yet intricate machinery of continuous optimization methods, such as interior point methods,
monotone multiplicative weight updates, and dynamic min-ratio cycle/cut problems, (ii) all
existing algorithms incur an mo(1) factor in the update time, a limitation that arises in many
modern dynamic graph-based data structures and appears difficult to overcome. This leads
to the following fundamental question:

Is there an incremental maximum flow algorithm that achieves (1 − ϵ) approximation
with polylogarithmic update time?

We answer this question in the affirmative for dense graphs that are undirected and
uncapacitated, as summarized in the theorem below.

▶ Theorem 1. Given any ϵ ∈ (0, 1), there is an incremental randomized algorithm that main-
tains a (1 − ϵ)-approximate maximum s-t flow f under edge insertions on an undirected unca-
pacitated n-vertex graph G with high probability in total time O(m log(n)α(n)+nF ∗ log3(n)/ϵ),
where m is the number of edge insertions, F ∗ is the value of the max flow after m insertions,
and α(n) is the inverse Ackermann function.

1 In this paper, we use Õ(X) to denote O(X polylog(X)) and Ô(X) to denote O(X1+o(1)).
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Setting Apx. Factor Flow/Value Directed Weighted Update Time Reference

Incremental

1 Flow Yes Yes O(F ∗) [19, 17]
1 Flow No No Õ(n2.5m−1) [15]

1 + ϵ Flow Yes No Ô(m0.5ϵ−0.5) [15]
1 + ϵ Flow Yes Yes Ô(n0.5ϵ−1) [33]
1 + ϵ Flow No Yes O(mo(1)ϵ−3) [32]
1 + ϵ Flow Yes Yes O(mo(1)ϵ−1) [6]
1 + ϵ Flow No No Õ(nF ∗m−1ϵ−1) Theorem 1

Decremental 1 + ϵ Value Yes Yes O(mo(1)ϵ−1) [31]

Fully dynamic
Õ(log n) Value No Yes Ô(n0.667) [5]

mo(1) Value No No mo(1) [16]
mo(1) Value No Yes mo(1) [31]

Table 1 Results on dynamic max flow. The “Flow/Value” column indicates whether the algorithm
maintains an actual flow or just the value of a flow. The update time stated is the amortized time
over all updates.

Note that in addition to dense graphs (m = Ω(n2)), our algorithm achieves polylogarithmic
amortized update time even for graphs with small flow value F ∗ = Õ(m/n), regardless of their
density. An important feature of our algorithm is that it builds upon arguably simple and
classic combinatorial techniques, such as residual graph sparsification and cut sparsification.

1.1 Technical Overview
The main idea underlying our result is to dynamize the static algorithm by Karger and
Levine [21] (abbrv. KL algorithm) that computes an exact max flow in Õ(m+nF ∗) time. We
start by reviewing their static construction and then identify the challenges in the dynamic
setting, along with our approach to overcome them. We present the algorithm and its analysis
in full in Section 3.

The KL algorithm proceeds by repeatedly sampling ρ = O(n log n) edges from the residual
graph, searching for an augmenting path in this sample, and then augmenting along this path
before resampling again. When the search fails to find an augmenting path, the number of
sampled edges is doubled to 2ρ and this process is repeated until the sampled graph becomes
as large as the original graph. Denoting the value of the maximum flow by F ∗, they show
that at least F ∗/2 of the augmentations are performed on the sparsest graph with ρ edges, at
least F ∗/4 of the augmentations are performed on the graph with 2ρ edges and so on. After
spending Õ(m) on pre-processing to compute the sampling probabilities, the total running
time thus adds up to ≈

∑
i(F ∗/2i) · 2i−1ρ, which gives the required Õ(m + nF ∗) bound.

Crucially, the last augmentation from F ∗ − 1 to F ∗ is performed on a graph of size Ω(m).
This final augmentation, which requires a sample of size Ω(m), effectively invalidates any

attempts to use the KL approach for obtaining an incremental exact max flow algorithm. To
understand why, observe that after every edge insertion, the algorithm needs to check if this
edge insertion creates a new s → t augmenting path in the sampled graph. As we discuss
below, this can be done in two ways, but both lead to algorithmic dead ends.

We could try to use an incremental single source reachability data structure (e.g., the
one by Italiano [20]) to detect augmenting paths in the sampled graph, but since the actual
augmentation reverses the direction of edges, we would need to reinitialize the incremental
data structure on the sample after each augmentation. Since F ∗ augmentations are performed
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48:4 Incremental Approximate Maximum Flow via Residual Graph Sparsification

on samples of size Ω(m), this leads to a time bound of Ω(mF ∗). As a concrete example,
consider an initially empty bipartite graph G = (S ∪ T, ∅), with s ∈ S and t ∈ T . In the first
phase, insert all edges between S × T \ {t}, then in the second phase, insert all the remaining
edges of the type {(v, t)}v∈S . Each edge insertion in the second phase increases the max flow
by 1, and any algorithm based on a KL-type approach with an incremental reachability data
structure needs to check an Ω(m)-edge graph to perform each augmentation.

The second approach would be to use a fully dynamic directed s → t reachability data
structure. This would solve the above problem, as an augmentation in the residual graph
can be simulated using O(n) directed edge deletions and insertions. However, fully dynamic
s → t reachability is known to admit strong conditional lower bounds – for any η > 0, no
algorithm can achieve O(n1−η) worst-case update time and O(n2−η) worst-case query time,
assuming the OMv conjecture [18].

Interestingly, we show that the first approach can be extended to the incremental setting if
we relax our algorithm to maintain a (1− ϵ)-approximate s-t max flow instead of an exact one.
The high-level reason why is as follows: To show that at least F ∗/2i of the augmentations
are found in the sampled graph of size 2i−1ρ, Karger and Levine prove that when at least
F ∗/2i of the max flow still remains to be augmented, a sampled graph of size 2i−1ρ suffices
to preserve the existence of an augmenting path whp. For our setting, if we want to maintain
a (1 − ϵ)-approximate max flow, the above claim with i = log(1/ϵ) tells us that it suffices
to maintain a sparsifier with just O(n log(n)/ϵ) edges incrementally. This then removes
the need to augment on an Ω(m)-edge graph which lets us circumvent the above barrier.
While incrementally maintaining the sparsifier used by Karger and Levine would be highly
non-trivial, we show that we can both efficiently maintain a different sparsifier incrementally,
and that the new sparsifier is powerful enough to recover the guarantees required for the KL
approach to work (at the cost of a log n factor in the sparsifier size).

The challenge of incrementally maintaining the KL sparsifier is due to its fragility under
edge insertions. The KL sampling depends on a parameter called the strong connectivity of
an edge [3], and in the incremental setting, a single edge insertion could modify the strong
connectivities (and thus the sampling probabilities) of all other edges of the graph. As a result,
no existing algorithm can even just maintain the sampling probabilities, let alone maintain
an actual sample from the corresponding distribution. The same issue arises for other well-
known connectivity measures used for sampling such as edge-connectivity [12] and effective
resistances [28], and even maintaining approximations to them is quite involved [9, 10, 5, 13].
Instead, our key observation is to use Nagamochi-Ibaraki (NI) indices [23] for our sampling
because of their resilience to incremental updates.

While the other connectivity parameters mentioned are unique for an edge, the NI index
is determined by the forest packing constructed, and different packings gives rise to different
indices. This flexibility in choosing the index allows us to maintain the same value even
under edge updates, which we crucially use to maintain the sampling probabilities. The
resilience property we use is as follows: when inserting an edge, the NI index of all other
edges remains the same, and our task is to only determine the NI index of the newly inserted
edge efficiently (which then doesn’t change in the future). Efficient maintenance of NI indices
is discussed in Section 4.

While we now maintain a set of sampling probabilities using NI indices, it is unclear
how they can be used to replace strong connectivity in the KL algorithm. We extend the
general result of Fung et al. [12] on using a wide variety of connectivity parameters for cut
sparsification on undirected graphs to showing that the same parameters also lead to cut
sparsification on balanced directed graphs, which cover residual graphs that arise in our
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algorithm as a special case. Their results sample each edge independently, which in our
setting leads to a prohibitive Ω(m) time for sampling. We adapt this to repeated sampling
from a probability distribution, where we only spend O(log n) time per edge for a total
O(n log2(n)/ϵ) edges sampled. We present this result in full detail in Section 5.

Finally, we simplify our algorithm by not maintaining an exact sample from the distribution
at each time step, but an oversample. Specifically, we obtain a sample of the correct size
(O(n log2(n)/ϵ)) right after an augmentation, but between two augmentations, we add edges
directly to the sample instead of trying to maintain the distribution. This could blow up the
number of edges in the sample to Ω(m) at some time steps, but since each edge is added this
way to at most one sample throughout the algorithm, the total time bound of Õ(m + nF ∗/ϵ)
still holds.

2 Preliminaries

2.1 Graphs and Flows
Flows Our algorithmic results are on undirected uncapacitated graphs G = (V, E). We
denote n = |V | and m = |E|. For two vertices s, t ∈ V , an s-t flow f ∈ Rm assigns a value fe

to each edge such that
∑

e∼v fe = 0 for all v ≠ s, t with |fe| ≤ 1 ∀e. The value of a flow f is
F (f) =

∑
e∼s fe, and the maximum flow f∗ = argmaxs-t flows f F (f), with value F ∗ = F (f∗).

We use F without the argument f when the flow is clear from context. For any α ≤ 1, an
s-t flow f is an α-approximate flow if F ≥ α · F ∗. If α > 1, then the statement holds with
α′ = 1/α.

Model In the incremental model, we start with an empty graph with no edges, and the
graph is revealed as a sequence of edge insertions e1, e2, . . ., leading to graphs G1, G2, . . .. Our
goal is to maintain, after each edge insertion ei, an s-t flow f that is a (1 − ϵ) approximation
to the max s-t flow f∗

i in the current graph Gi. We use F ∗
i to denote the value of the flow

f∗
i , and we use F ∗ to denote the final max s-t flow value after all edge insertions.

Directed graphs We denote by G⃗ = (V, E⃗) a directed (multi-)graph without edge capacities.
An edge of integer capacity x ∈ Z+ is represented using x parallel edges. For any subset of
vertices S ⊆ V , S̄ = V \S is the complement of S, and ∂G⃗(S) denotes the set of edges leaving
S, which is also denoted by C⃗(S) = ∂G⃗(S). Similarly, we use ⃗C(S) = ∂G⃗(S̄) to denote the
set of edges entering S. We use C⃗ and ⃗C without the argument S when the subset is clear
from context. The capacity u(C⃗) = |C⃗| of the cut C⃗ is the number of edges in C⃗.

Underlying undirected graph For any directed (multi-)graph G⃗, we denote by G the
underlying undirected (multi-)graph obtained from G⃗ by forgetting edge orientations, and
∂G(S) is the set of edges leaving S, which is also denoted by C(S) = ∂G(S). For a directed
cut C⃗ = ∂G⃗(S), we use C = ∂G(S) to denote the underlying undirected cut in G.

Residual graph For any undirected, uncapacitated graph G, the corresponding residual
graph for the zero flow f = 0m is given by G0m where each edge (u, v) in G is replaced by
two directed edges u⃗v and v⃗u. For any G and a non-zero flow f , the residual graph Gf is
constructed the following way: start with the graph G0m as above, and for every edge e that
carries flow in the direction u → v, replace the edge u⃗v in G0m with the edge v⃗u. In that
case there are two edges v⃗u in Gf . A flow f∗ is a maximum flow if and only if Gf∗ contains
no s → t paths.

ICALP 2025



48:6 Incremental Approximate Maximum Flow via Residual Graph Sparsification

2.2 Sampling Parameters

We define our importance parameter for sampling edges next. Since the residual graph has
multiple edges between the same vertex pairs, we consider multi-graphs (which allow parallel
edges) for the following definition.

▶ Definition 2 (NI index [23]). Given an undirected, unweighted (multi-)graph G, an ordered
sequence of edge-disjoint spanning forests T1, T2, . . . of is said to be an NI forest packing of G

if each Ti is a maximal spanning forest on G \ ∪1≤j<i{Tj}, and ∪i{Ti} is a partition of all
the edges of G. The NI index ℓe of an edge e is the index i of the forest Ti that e belongs to.

While the NI indices are the connectivity parameters that we will use for our sampling
scheme due to their resilience to incremental graph updates, the following connectivity
parameter is required for our directed sparsification proofs and cut-counting.

▶ Definition 3 (Edge-connectivity). Given an undirected unweighted (multi-)graph G and
two vertices u and v, the edge connectivity between u and v is defined to be the value of
the minimum cut (and thus also the maximum flow) between u and v in G. For an edge
e = (u, v), we define the edge-connectivity of e to be the edge connectivity between u and v.

As we perform non-uniform sampling of the edges, we maintain connectivity parameters λe

that influence the sampling probabilities. The NI index of an edge and the edge-connectivity
of an edge are examples of such connectivity parameters. We will show concentration bounds
for classes of edges whose λes are close to each other, which motivates the following definition.

▶ Definition 4 (Connectivity class). Given an undirected graph G and connectivity parameters
λe for each edge, taking Λ = maxe ⌈log λe⌉ + 1, the connectivity classes F = {Fi : 1 ≤ i ≤ Λ}
are given by

Fi = {e : 2i−1 ≤ λe ≤ 2i − 1}.

For any connectivity class Fi, the graph (V, Fi) does not have the same edge-connectivity
properties that G = (V, E) did. An edge e ∈ Fi could have edge-connectivity Ω(n) in G and
1 in (V, Fi), e.g., a graph with a single (s, t) edge and Ω(n) parallel paths from s to t of
length two. The following definitions from [12] are used to construct a subgraph of G that is
slightly larger than Fi that certify connectivity properties of edges in Fi.

▶ Definition 5 (Π-connected decomposition [12]). Given an undirected graph G and connec-
tivity parameters λe, a decomposition G = (Gi = (V, Ei))1≤i≤Λ is a sequence of subgraphs
of G that satisfy Fi ⊆ Ei for all i with Λ = maxe ⌈log λe⌉ + 1. Further, for a sequence of
parameters Π = (πi)1≤i≤Λ, the decomposition satisfies Π-connectivity if all edges e ∈ Fi have
edge-connectivity at least πi in Gi for all i.

Note that the same edge is allowed to appear in multiple sets Ei.

▶ Definition 6 (γ-overlap [12]). For any γ ≥ 1, an undirected graph G and its Π-connected
decomposition G satisfies γ-overlap if for all i and for all cuts C = ∂G(S),

Λ∑
i=0

u(C ∩ Ei) · 2i−1

πi
≤ γ · u(C)
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2.3 Balance and Cut Counting
Imbalance of directed graphs Preserving various graph properties by subsampling is
difficult on general directed graphs. However, sampling algorithms can be successfully
applied when the directed graph exhibits some nice structure, for example, they have a
similar number of edges crossing a cut in both directions. Eulerian graphs have exactly the
same number of edges crossing any cut in both directions, and more pertinently, the residual
graph of a flow that is not a (1 − ϵ) approximate max flow has at least an O(ϵ) fraction of
edges crossing any cut in one direction over the other.

▶ Definition 7 (balance [11]). Given a directed (multi-)graph G⃗ = (V, E⃗), the (im)balance of
a cut C⃗ = ∂G⃗(S) is defined as

β(C⃗) = u(C⃗)
u( ⃗C)

where ⃗C = ∂G⃗(S̄) is the set of edges in the other direction of the cut.

Counting cut projections Karger shows that there are at most n2α distinct cuts whose
size is ≤ αλ, where λ is the global mincut. We, like Fung et al. [12], look at larger cuts in
the graph and require a tighter bound than the one given by Karger, which requires the
following definition.

▶ Definition 8 (directed k-projection). Let G⃗ = (V, E⃗) be a directed (multi-)graph and let G

be the corresponding undirected graph. The k-projection of any cut C⃗ = ∂(S) in G⃗ is C⃗ ∩ Hk

where

Hk =
{

e⃗ ∈ E⃗ : the edge-connectivity of e in G is at least k
}

2.4 Data Structures
We also need three classic data structures for our results, which we produce here.

▶ Fact 1 (UnionFind [29]). There is a data structure that supports the following operations
Add(u): Adds {u} to the set of sets in O(1) time.
Find(u): Finds the representative of the set that u belongs to in amortized O(α(n)) time.
Union(u, v): Replaces the sets that u and v belong to with their union in O(1) time.

where n is the number of elements present at that time, and α(n) is the inverse Ackermann
function.

▶ Fact 2 (SingleSourceReachability [20]). There is a data structure that supports the
following operations on a graph G⃗ with n vertices

Initialize(G⃗, s): Initializes a data structure on G⃗ with special vertex s in O(m + n)
time.
Insert(e = u⃗v): Inserts the directed edge {e = u⃗v} into G⃗ in amortized O(1) time.
Reachable(t): Returns “True” if t is reachable from s in G⃗ in amortized O(1) time.
GetPath(t): Returns a directed s → t path in G⃗ in time proportional to the length of
the path.

▶ Fact 3 (BinarySearchTree). There is a data structure that supports the following
operations

Initialize: Initializes the binary search tree data structure.

ICALP 2025



48:8 Incremental Approximate Maximum Flow via Residual Graph Sparsification

Insert(e, x): Inserts the key e with value x in amortized O(log n) time.
Search(x): Returns the largest key e with value ≤ x in amortized O(log n) time.

where n is the number of items inserted into the data structure at time of operation.

High probability bounds Finally, we say that an algorithm satisfies a guarantee with high
probability if the guarantee holds with probability at least 1 − 4/n.

3 Incremental Maximum Flow

Our main result in this section is the following:

▶ Theorem 1. Given any ϵ ∈ (0, 1), there is an incremental randomized algorithm that main-
tains a (1 − ϵ)-approximate maximum s-t flow f under edge insertions on an undirected unca-
pacitated n-vertex graph G with high probability in total time O(m log(n)α(n)+nF ∗ log3(n)/ϵ),
where m is the number of edge insertions, F ∗ is the value of the max flow after m insertions,
and α(n) is the inverse Ackermann function.

Algorithm 1 Algorithm for incremental approximate maximum flow on undirected,
uncapacitated graphs

1 Function Initialize(ϵ):
2 ρ← 5390 · n log2(n)/ϵ

3 f ← ∅, F ← 0, Gf ← (V, ∅), H ← Gf

4 D ← SingleSourceReachability.Initialize(H, s)
5 K ← IncNISample.Initialize ▷ Algorithm 4

6 Function Insert(e = (u, v)):
7 Add u⃗v and v⃗u to H and D

8 K.Insert(e)
9 if D.Reachable(t) then

10 p← D.GetPath(t)
11 update f and Gf by augmenting along p, and update F ← F + 1
12 reset H ← (V, ∅)
13 for i = 1, 2, . . . , ρ do
14 (u, v)← K.Sample
15 for a⃗b ∈ {u⃗v, v⃗u} do
16 if a⃗b ∈ Gf then
17 Add a⃗b to H

18 reinitialize D ← SingleSourceReachability.Initialize(H, s)
19 Function Query(flow/value):
20 if query = flow then return f else return F

We present the algorithm achieving the guarantees in Algorithm 1. The algorithm works
in phases. At the start of a new phase, we sample O(n log2(n)/ϵ) edges from the residual
graph using a specific probability distribution which we will discuss later, and add them to
the sampled graph H. On top of H, we run an incremental directed single-source reachability
algorithm, called D, starting from s. At the beginning, and after each edge insertion, we
query D if there exists an s → t path in the sample. As long as D does not return “Yes”,
for each edge insertion e = (u, v), we add edges u⃗v and v⃗u to D. When D returns “Yes”,
this corresponds to an s → t path in the residual graph, and we retrieve this path from D,
augment along this path in Gf , and start a new phase.
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We need to argue about the time bounds and the correctness. For correctness, we show
that whenever an edge insertion increases the max flow to a value larger than a (1 − ϵ)−1

factor over the current flow maintained by the algorithm, the existence of an s → t path in
the sampled graph H is guaranteed with high probability. Since H is a subsample of the
residual graph Gf , this provides us an augmenting path in Gf along which we augment the
flow. With a union bound over the at most n times when this can happen (since the max flow
value is at most n and each augmentation increases the flow by 1), this will imply that at
the end of every time step, the algorithm maintains a valid (1 − ϵ)-approximate s-t flow with
high probability. To show this claim, we first show that an extension of Fung et al.’s high
probability result [12] on independent sampling for cut sparsification on undirected graphs
also extends to repeated sampling for cut sparsification on balanced directed graphs. When
combined with the fact that the residual graph of a flow that is not a (1 − ϵ)-approximate
max flow is Ω(ϵ)-balanced, this shows that sampling approximately n log2(n)/ϵ edges based
on the probability distribution discussed below will preserve directed cuts, and thus also the
existence of an augmenting path in residual graphs of non-(1 − ϵ)-approximate flows. Our
initial sample at the beginning of a phase already satisfies the size requirement above, and
since we add further edges directly to the maintained sample, we always oversample the rate
required for the augmenting path preservation guarantee.

For the time bounds, assuming that the sampling can be done in time approximately
O(log n) per sample and that the reachability data structure runs in total time proportional
to the number of edges in D, we will show that the algorithm runs in Õ(m + nF ∗/ϵ) time.
If we had maintained the size of the sampled graph at Õ(n/ϵ) throughout a phase, then
the claimed time bound would follow since D runs on a graph of size Õ(n/ϵ) in each phase,
at the end of which the value of the flow increases by 1, and the max flow is bounded by
F ∗ which bounds the number of phases by F ∗ as well. However, the size of the sampled
graph could increase to Ω(m) if no paths are found by D over all edge insertions, so this
argument does not immediately work. The bound follows from a slight modification to the
above argument: in each phase, denote an edge to be “old” when it is inserted into H due to
sampling, and “new” when it is inserted into H directly on insertion in G. Then the claimed
time bound follows since each edge appears as “new” in at most one phase throughout the
algorithm, and the previous argument still holds for the “old” edges of each phase since there
are at most Õ(n/ϵ) of them per phase.

Finally, we maintain NI indices incrementally for the probability distribution, which we
discuss in Section 4. We use the following definition in our proofs.

▶ Definition 9 (Phase). Let t0 = 0, and let ti be the time step when the ith augmenting
path is found. Let mk be the number of edges inserted in time steps (tk−1, tk]. Phase k

refers to the computations performed after the (k − 1)th augmentation finishes until the kth

augmentation ends.

We also use the following two statements directly, whose proofs can be found in Section 4
and Section 5 respectively.

▶ Lemma 10. There is an incremental data structure that maintains an NI forest packing
(and thus the NI index ℓe of each edge) of an undirected graph under edge insertions in total
time O(m · log m · α(n)) where α(n) is the inverse Ackermann function and m is the number
of edges in the final graph. At any point of time, it also allows querying for an edge sampled
from the probability distribution

{
ℓ−1

e /L
}

e∈E
where L =

∑
e ℓ−1

e in amortized time O(log n)
for each sample.
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Algorithm 2 Algorithm for directed balanced sparsification

Input: Directed graph G⃗ = (V, E⃗), connectivity parameters {λe}e∈E , parameters β, γ ≥ 1,
and ϵ < 1

Output: Sparsified graph H⃗ = (V, F⃗ , w)
1 ρ← 128γ(β+1) ln n

0.38ϵ2 ·
∑

e∈E
λ−1

e

2 H⃗ ← (V, ∅, w)
3 for i ∈ 1, 2, . . . , ρ do
4 Sample an edge e from the probability distribution {pe = λ−1

e /
∑

e
λ−1

e }
5 Insert e into H⃗ with weight we = (ρ · pe)−1 (additively increasing its weight if e already

exists in H⃗)

▶ Theorem 11. Let G⃗ = (V, E⃗) be any directed (multi-)graph, and G be the underlying
undirected graph. Let {λe}e∈E be some connectivity parameters in G, and β, γ ≥ 1 and ϵ < 1
be input parameters. Let H⃗ = (V, F⃗ , w) be the random graph with O

(
γβ ln(n) ·

∑
e∈E λ−1

e /ϵ2)
edges generated as in Algorithm 2.

If there exists a Π-connected decomposition G = {Gi = (V, Ei) : 1 ≤ i ≤ Λ} of G

that satisfies γ-overlap, then for all cuts C⃗ = ∂G⃗(S) of balance at least β−1 in G⃗, it holds
simultaneously with probability ≥ 1 − 4/n2 that

(1 − ϵ) · u(C⃗) ≤ w(C⃗) ≤ (1 + ϵ) · u(C⃗).

3.1 Running Time
▶ Lemma 12. Phase k takes total time O(mk log(n)α(n) + n log3(n)/ϵ), where mk is the
number of edges inserted in Phase k and α(n) is the inverse Ackermann function.

Proof. Phase k starts with sampling O(n log2(n)/ϵ) edges from the sampler, where each
sample takes time O(log n) by Lemma 10. D has a total of mk + O(n log2(n)/ϵ) many edges
added to it in its entire lifetime, which gives a total update time of O(mk + n log2(n)/ϵ).
Inserting each edge into the sampler takes amortized time O(log m · α(n)) by Lemma 10.
Augmenting along a path takes time proportional to the length of the path, which is ≤ n. ◀

▶ Lemma 13. The algorithm takes total time O(m log(n)α(n) + n log3(n)F ∗/ϵ) where F ∗ is
the value of the final max flow after all edge insertions.

Proof. Let K be the total number of phases in the algorithm. Then K ≤ F ∗ since each
phase increases the value of the flow by 1. Since the set of edges inserted in each phase are
disjoint,

∑
k mk = m. By Lemma 12, phase k takes time O(mk log(n)α(n) + n log3(n)/ϵ).

Together, all phases take time

K∑
k=1

O(mk log(n)α(n) + n log3(n)/ϵ) = O
(
m log(n)α(n) + n log3(n)F ∗/ϵ

)
◀

3.2 Correctness
We first collect a few general statements that will be useful in the final proof.

▶ Lemma 14. Let f be any s-t flow in an undirected graph G of value F , and let Gf be its
corresponding residual graph. Suppose F ≤ (1 − ϵ)F ∗, where F ∗ is the value of the maximum
flow. Then every cut in Gf is at least ϵ/2-balanced.
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Proof. For any cut C⃗ = ∂(S) that is not an s-t cut (or a t-s cut), the net flow out of S in
Gf is zero, and thus C⃗ is 1-balanced. All t-s cuts are ≥ 1-balanced since the residual graph
has more flow in the s → t direction and thus more capacity in the t → s direction. Consider
an s-t cut C⃗. Let c be the capacity of the underlying undirected cut C. Since F units of flow
cross C in the forward direction s → t, the forward capacity across C in Gf is c − F , and
the backward capacity is thus c + F since the total capacity is 2c. Using (in order) c ≥ F ,
c ≥ F ∗, and F ≤ (1 − ϵ)F ∗, we get

β(C⃗) = u(C⃗)
u( ⃗C)

= c − F

c + F
≥ c − F

2c
= 1

2 ·
(

1 − F

c

)
≥ 1

2 ·
(

1 − F

F ∗

)
≥ ϵ

2 ◀

▶ Lemma 15. Let {ℓe}e∈E be a set of NI indices for an undirected (multi-)graph G with m

edges. Then
∑

e ℓ−1
e ≤ 2n log m.

Proof. Consider the NI forest packing T1, T2, . . . corresponding to the NI indices ℓe. Since
each forest contains at least one edge, the total number of forests is at most m. As each edge
e in Ti has ℓe = i, the sum of NI indices of all edges in forest i contributes at most n−1

i to
the total sum. Thus,∑

e∈E

ℓ−1
e =

∑
1≤i≤m

∑
e∈Ti

ℓ−1
e ≤

∑
1≤i≤m

n − 1
i

≤ (n − 1) · (2 log m) ≤ 2n log m

where 1 + 1
2 + 1

3 + · · · + 1
m is the m-th harmonic number, which is upper bounded by

2 log m. ◀

Since we work with the residual graph which has two copies of each edge of G, we prove
the following lemma to show that an NI forest packing of G can be easily transformed into
an NI forest packing of the undirected residual graph.

▶ Lemma 16. Let {ℓe}e∈E be a set of NI indices for an undirected, simple graph G = (V, E).
Let E′ be a copy of the edges in E. Then, for the multigraph H = (V, E ∪ E′) which doubles
the edges in E, assigning he = 2ℓe − 1 and he′ = 2ℓe is a set of NI indices for H.

Proof. If T1, T2, . . . forms an NI forest packing of G, then T1, T1, T2, T2, . . . forms an NI forest
packing of H. Letting e be the edge in the first copy of Ti and e′ be the edge in the second
copy gives the lemma. ◀

▶ Lemma 17 ([12]). Let T1, T2, . . . be an NI forest packing of an undirected graph G leading
to NI indices ℓe, and let F = {Fi} be the corresponding connectivity classes. Then E1 = F1
and Ei = Fi−1 ∪ Fi for i ≥ 2 is a decomposition that satisfies Π-connectivity and γ-overlap
for πi = 2i−1 and γ = 2, i.e., for all i and for all cuts C = ∂G(S),

Λ∑
i=0

u(C ∩ Ei) ≤ 2 · u(C).

Using these, we will first show that sampling Ω(n log2(n)/ϵ) edges from the residual graph
of a non-(1 − ϵ)-approximate flow preserves an augmenting path with high probability.

▶ Lemma 18. Consider an undirected, uncapacitated graph G with some s-t flow f of value
F and a max s-t flow of value F ∗ such that F ≤ (1 − ϵ)F ∗. Let ℓe be a NI index of edge e. If
a sample of 5390 · n log2(n)/ϵ edges is chosen i.i.d. with probability

{
ℓ−1

e /
∑

e ℓ−1
e

}
e∈Gf

from
the residual graph Gf , then there exists an augmenting path in the sample with probability
1 − 4/n2.
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Proof. We will first argue that sampling the mentioned number of edges and reweighting
them as in Algorithm 2 gives a (weighted) cut sparsifier H⃗ = (V, F⃗ , w) of Gf . We show that
this implies the presence of an augmenting path in H⃗. Then, we note that the property of
presence of an augmenting path holds regardless of the presence of weights. Since the sample
chosen in the lemma is an unweighted version of H⃗, the lemma follows.

Since there are at most
(

n
2
)

edges in a simple graph G (and thus at most n2 edges in a
residual graph), Lemma 15 gives that that

∑
e∈E ℓ−1

e ≤ 4n log n. By Lemma 17, there is a
decomposition for NI indices that satisfies Π-connectivity and γ-overlap for πi = 2i−1 and
γ = 2. Thus, if one runs Algorithm 2 with ρ = 5390 · n log2(n)/ϵ edges, then by Theorem 11
one obtains a weighted (1 + ϵ′)-sparsifier H⃗ = (V, F⃗ , w) of the residual graph Gf where the
parameters are set as ϵ′ = 1/2, γ = 2, β = 2/ϵ, and

∑
e ℓ−1

e ≤ 4n log n. Since every cut in
the residual graph of a flow with F ≤ (1 − ϵ)F ∗ has balance at least ϵ/2 (Lemma 14), we
have that the weighted sparsifier H⃗ = (V, F⃗ , w) from Theorem 11 satisfies

w(C⃗) ≥ u(C⃗)
2 > 0

for all directed cut C⃗ = ∂(S) simultaneously with probability 1 − 4/n2. In particular, this
also means that at least one edge from S to S̄ is sampled in H⃗ for every directed s-t cut
(S, S̄). This implies that an s-t augmenting path exists in H⃗ with probability 1 − 4/n2.

Defining H ′ = (V, F⃗ ) to be the unweighted graph obtained from H⃗ by dropping the edge
weights, the existence of an augmenting path holds in H ′ as well with probability 1 − 4/n2.
Since the sampled graph stated in the lemma is generated exactly as in H ′, the lemma
follows. ◀

We will now show that at any fixed time step, the augmenting path guarantee holds with
high probability.

▶ Lemma 19. At the beginning of any phase k, if F ≤ (1 − ϵ)F ∗
tk−1

, then there exists an
augmenting path in H with probability 1 − 4/n2. Here, F ∗

i is the max flow at time i, and
tk−1 is the time step when the (k − 1)-th augmentation ends.

Proof. At the beginning of the phase, the sample has just been performed and no new edges
have been inserted. Since we sample an undirected edge and put in both directions into
the sample, this is an oversample of the rate required by Lemma 18. The lemma follows by
guarantees of Lemma 18. ◀

▶ Lemma 20. At each time step i, whenever F < (1 − ϵ)F ∗
i , there exists an augmenting path

in H with probability 1 − 4/n2. Here, F ∗
i is the value of the max flow at time i.

Proof. At the beginning of a phase, this follows from Lemma 19. Else, there has been at
least one edge insertion into H. On edge insertions, the total sampling weight of the graph,
which is

∑
e ℓ−1

e , strictly increases. The NI index of every existing edge, on the other hand,
stays the same. Thus adding the new edge directly to H is an oversample of the rate required
by Lemma 18 to guarantee the existence of an augmenting path, both for the already existing
edges and for the new edge. Using the guarantees of Lemma 18 gives the lemma. ◀

Finally, we take a simple union bound to extend the guarantee to all time steps.

▶ Lemma 21. Algorithm 1 maintains a (1 − ϵ)-approximate s-t max flow at all times with
probability 1 − 4/n.
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Proof. Whenever F < (1 − ϵ)F ∗
i , we use Lemma 20 to argue the existence of an augmenting

path in the sample with probability ≥ 1 − 4/n2. Each time an augmenting path is found,
F increases by 1. Thus, we need to invoke Lemma 20 at most F ∗ ≤ n times. Taking a
union bound over all times that F increases, we get that the approximation guarantee holds
throughout the entire insertion sequence with probability 1 − 4/n as required. ◀

4 Incremental Nagamochi-Ibaraki Indices

In this section, we show how to incrementally maintain (and sample from) Nagamochi-Ibaraki
indices ℓe for each edge e. The main result of this section is the following:

▶ Lemma 10. There is an incremental data structure that maintains an NI forest packing
(and thus the NI index ℓe of each edge) of an undirected graph under edge insertions in total
time O(m · log m · α(n)) where α(n) is the inverse Ackermann function and m is the number
of edges in the final graph. At any point of time, it also allows querying for an edge sampled
from the probability distribution

{
ℓ−1

e /L
}

e∈E
where L =

∑
e ℓ−1

e in amortized time O(log n)
for each sample.

We maintain Nagamochi-Ibaraki indices instead of other sampling parameters because of
their stability under incremental updates. When an edge e = (u, v) is inserted into a graph G,
it could change other connectivity parameters (such as edge-connectivity, strong-connectivity,
or the effective resistance) of every existing edge in the graph. However, the NI index of
every other edge remains the same on edge insertion, which is a very desirable property for
dynamic algorithms. This happens because while other graph properties are unique for an
edge in a given graph, the NI index depends heavily on the particular forest packing used.
It could vary wildly for the same edge, and could range from 1 up to n depending on the
packing.

The incremental algorithm involves maintaining a collection of forests, where each forest
is a union-find data structure on the vertices currently in that forest. On an edge insertion,
we binary search across the forests to find the first one where its endpoints are disconnected,
and insert the edge into that forest (and also adding the endpoints to the forest or initializing
a new forest if necessary).

Due to the subtleties of implementing this, we present the data structure in full detail
below. In particular, if we naively “initialized” a new forest by inserting all the vertices
into the forest, then this would lead to a running time of Ω(n) per forest, which could be
prohibitive. For the extreme case where n parallel edges are inserted between the same two
vertices u and v, this necessitates initializing Ω(n) forests, which leads to Ω(n2) total time
for the naive implementation, as opposed to adding a vertex to a forest only when necessary
(as done below with the last_tree variable).

▶ Lemma 22. Algorithm 3 maintains the NI forest packing at all times, and runs in total
time O(m · log m · α(n))

Proof. We first argue about correctness by induction. It is clearly true before any edge
insertions. Suppose it was true until k insertions. Let e = (u, v) be the (k + 1)-th inserted
edge. If i is the index of the tree returned by FindTree, then it satisfies the property that
for all j < i, vertices u and v are connected in forest tree[j], and that they are not connected
in forest tree[i]. Thus connecting u and v in forest tree[i] and setting the index of the edge
to i maintains correctness after the (k + 1)-th edge as well.

Next, we argue about the time taken by the algorithm. If there are m edges in the
graph currently, then the algorithm maintains ≤ m forests. Thus the binary search takes
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Algorithm 3 Maintaining Incremental Nagamochi-Ibaraki Indices (IncNIIndex)

1 Function Initialize:
2 k ← 0 ▷ Number of forests maintained

3 tree← [] ▷ Collection of forests

4 last_tree[v]← 0 for all v ∈ V ▷ last forest that v belongs to

5 Function Insert(e = (u, v)):
6 i←FindTree(u, v, min(last_tree(u), last_tree(v)))) ▷ find correct forest for e

7 if i > k then k += 1, tree[i]← UnionFind.Initialize ▷ add new forest

8 for x ∈ {u, v} do
9 if i > last_tree(x) then last_tree[x] += 1, tree[i].Add(x) ▷ add x to forest i

10 tree[i].Union(u, v) ▷ connect u and v in forest i

11 return i

12 Function FindTree(u, v, upper_bound):
13 L← 0, R← upper_bound

14 while L ≤ R do
15 M ← ⌊(L + R)/2⌋ ▷ binary search for forest

16 if IsConnected(u, v, M) then L←M + 1 else R←M − 1
17 return L

18 Function IsConnected(u, v, i):
19 if i = 0 then return True else return tree[i].Find(u) = tree[i].Find(v)

Algorithm 4 Incremental Nagamochi-Ibaraki sampling (IncNISample)

1 Function Initialize:
2 X ← IncNIIndex.Initialize
3 Y ← BinarySearchTree.Initialize
4 L← 0
5 Function Insert(e = (u, v)):
6 ℓe ← X.Insert(e)
7 Y.Insert(e, L)
8 L← L + ℓ−1

e

9 Function Sample:
10 z ← uniform random number in [0, L]
11 e← Y.Search(z)
12 return e

O(log m) iterations. In each iteration, it queries a union-find data structure if two vertices
are connected, which takes O(α(n)) amortized time. Union of two elements in, insertion
of new elements into, and initialization of a union-find data structure takes constant time.
Thus the algorithm runs in total time O(m · log m · α(n)). ◀

We quickly recall an example of a binary search tree insertion sequence before we prove the
next lemma. In a binary search tree, if there are three consecutive insertions of (key, value)
pairs (a, 0), (b, 1/3), and (c, 1/2), then searching for any z ∈ [0, 1/3) returns a, searching for
z ∈ [1/3, 1/2) returns b, and searching for z ∈ [1/2, ∞) returns c.

▶ Lemma 23. Algorithm 4 maintains a sample from the correct distribution at all times,
each insertion takes time O(log(m)α(n)) and each sample takes time O(log n).

Proof. Let e1, . . . , em be the sequence of edge insertions performed, and let ℓei
be their

corresponding NI indices obtain from Algorithm 3. The ℓe values obtained from Algorithm 3
are correct by the guarantees of Lemma 22. Define s1 = 0 and si =

∑
1≤j<i ℓ−1

ej
be the sum



G. Goranci, M. Henzinger, H. Räcke and A. R. Sricharan 48:15

of inverse NI indices of all edges inserted until ei−1. We will show that at any time k, for all
i ∈ {1, . . . , k}, searching for any z ∈ [si, si+1] ⊆ [0, sk+1] returns key ei in the binary search
tree. This then gives correctness of the algorithm since, after the k-th insertion, the edge ei

is sampled with probability (si+1 − si)/L = ℓ−1
ei

/sk+1 since L = sk+1 after k edge insertions.
The statement is clearly true after the first edge insertion. Suppose it was true until k − 1

insertions. Since the key ek−1 had value sk−1, searching for any z ∈ [sk−1, ∞) would have
given key ek−1. Let ek be the k-th inserted edge, which is inserted with value sk. Thus, for
all z ∈ [sk, ∞), the search returns key ek, and for z ∈ [sk−1, sk), the search returns key ek−1.
As sk − sk−1 = ℓ−1

ek−1
, sk+1 − sk = ℓ−1

ek
, and the other edges ej for j < k − 1 are not affected

by this insertion, the claim follows.
For time bounds, note that each edge insertion into Algorithm 3 takes time O(log(m)α(n)),

each insertion into the binary search tree with length ℓ−1
e takes time O(log n), and each

sample takes time O(log n) as well, given that the random number is generated in time
O(log n). ◀

Lemma 10 now follows from Lemma 22 and Lemma 23.

5 Balanced Sparsification

We remark that while Cen et al. [4] obtain a cut sparsification result for balanced directed
graphs, their result only works with strong connectivity and cannot be used with NI indices,
which we need for our algorithm. In this section, we show the following result.

▶ Theorem 11. Let G⃗ = (V, E⃗) be any directed (multi-)graph, and G be the underlying
undirected graph. Let {λe}e∈E be some connectivity parameters in G, and β, γ ≥ 1 and ϵ < 1
be input parameters. Let H⃗ = (V, F⃗ , w) be the random graph with O

(
γβ ln(n) ·

∑
e∈E λ−1

e /ϵ2)
edges generated as in Algorithm 2.

If there exists a Π-connected decomposition G = {Gi = (V, Ei) : 1 ≤ i ≤ Λ} of G

that satisfies γ-overlap, then for all cuts C⃗ = ∂G⃗(S) of balance at least β−1 in G⃗, it holds
simultaneously with probability ≥ 1 − 4/n2 that

(1 − ϵ) · u(C⃗) ≤ w(C⃗) ≤ (1 + ϵ) · u(C⃗).

This is an extension of the result of [12] to balanced directed graphs, with the sampling
scheme changed from sampling each edge independently with probability ≈ polylog(n)/(λeϵ2)
to sampling ≈ O(n polylog(n)/ϵ2) edges with probability distribution proportional to λ−1

e .
The proof proceeds by reducing the problem to showing concentration for each connectivity
class where the connectivity parameters are close to each other. Inside each connectivity
class Fi, the cuts are then collected by the size of the underlying undirected cut in Gi

and concentration is shown for each collection separately. This involves combining the
concentration for each cut in the collection, along with a cut-counting argument similar to
the one on [12] (which is an extension of Karger’s cut-counting). Finally, the concentration
of each cut is shown using a standard Chernoff bound.

Concretely, we will show later that the following concentration holds for every connectivity
class.

▶ Lemma 24. It holds for all i ∈ [Λ] and for all cuts C⃗ = ∂G⃗(S) simultaneously with
probability at least 1 − 4/n2 that∣∣∣w(C⃗ ∩ Fi) − u(C⃗ ∩ Fi)

∣∣∣ ≤ ϵ

2 ·
(

u(C ∩ Ei) · 2i−1

πi · γ · (β + 1) + u(C⃗ ∩ Fi)
)
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where C = ∂G(S) is the underlying undirected cut of C⃗ in G.

We first use it to prove Theorem 11.

Proof of Theorem 11. We group the edges by the probability it is picked, and show concen-
tration for each such connectivity class separately. With probability ≥ 1 − 4/n2, we have for
all cuts C⃗ = ∂G⃗(S) of balance β−1,

∣∣∣w(C⃗) − u(C⃗)
∣∣∣ =

∣∣∣∣∣
Λ∑

i=0
w(C⃗ ∩ Fi) −

Λ∑
i=0

u(C⃗ ∩ Fi)

∣∣∣∣∣
≤

Λ∑
i=0

∣∣∣w(C⃗ ∩ Fi) − u(C⃗ ∩ Fi)
∣∣∣

≤ ϵ

2 ·

( Λ∑
i=0

u(C ∩ Ei) · 2i−1

πi · γ · (β + 1) +
Λ∑

i=0
u(C⃗ ∩ Fi)

)
(by Lemma 24)

≤ ϵ

2 ·
(

u(C)
β + 1 + u(C⃗)

)
= ϵ

2 ·

(
u(C⃗) + u( ⃗C)

β + 1 + u(C⃗)
)

≤ ϵ · u(C⃗) (since u( ⃗C) ≤ β · u(C⃗))

where the penultimate inequality follows since

Λ∑
i=0

u(C ∩ Ei) · 2i−1

πi · γ
≤ u(C)

by γ-overlap and

Λ∑
i=0

u(C⃗ ∩ Fi) = u(C⃗)

since F = {Fi} is a partition of E. ◀

To show Lemma 24, we partition the cuts in a connectivity class based on the size of the
underlying undirected cut, and show concentration in each of them separately. Formally, we
will show later that

▶ Lemma 25. Let Cij be the collection of all cuts C⃗ = ∂G⃗(S) such that for the corresponding
undirected cut C = ∂G(S) in G,

πi · 2j ≤ u(C ∩ Ei) ≤ πi · 2j+1 − 1

Then for all cuts C⃗ in Cij simultaneously, it holds with probability 1 − 2/n4·2j that

∣∣∣w(C⃗ ∩ Fi) − u(C⃗ ∩ Fi)
∣∣∣ ≤ ϵ

2 ·
(

u(C ∩ Ei) · 2i−1

πi · γ · (β + 1) + u(C⃗ ∩ Fi)
)

We first use this to prove Lemma 24.
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▶ Lemma 24. It holds for all i ∈ [Λ] and for all cuts C⃗ = ∂G⃗(S) simultaneously with
probability at least 1 − 4/n2 that∣∣∣w(C⃗ ∩ Fi) − u(C⃗ ∩ Fi)

∣∣∣ ≤ ϵ

2 ·
(

u(C ∩ Ei) · 2i−1

πi · γ · (β + 1) + u(C⃗ ∩ Fi)
)

where C = ∂G(S) is the underlying undirected cut of C⃗ in G.

Proof. We will show that the statement holds for any fixed i with probability at least 1−4/n4.
Since F = {Fi} is a partition of the edges, and since there are at most n2 edges in the graph,
a union bound over all i with non-empty Fi gives the lemma.

Fix any i ∈ [Λ]. For all cuts C⃗ with no edge in class Fi, the claim holds with probability
1. In what follows, we only consider cuts that have at least one edge in class Fi.

We concentrate on the graph Gi, and only consider cuts that contain at least πi edges
since every edge in Fi has connectivity at least πi in Gi by Π-connectivity. Let Cij be the
collection of all cuts C⃗ = ∂G⃗(S) such that for the corresponding undirected cut C = ∂G(S)
in G,

πi · 2j ≤ u(C ∩ Ei) ≤ πi · 2j+1 − 1

Then by Lemma 25, for all C⃗ ∈ Cij , it holds with probability at least 1 − 2/n4·2j that∣∣∣w(C⃗ ∩ Fi) − u(C⃗ ∩ Fi)
∣∣∣ ≤ ϵ

2 ·
(

u(C ∩ Ei) · 2i−1

πi · γ · (β + 1) + u(C⃗ ∩ Fi)
)

Thus the probability that there exists a j for which there exists a cut C⃗ ∈ Cij where the
bound does not hold is at most

2
n4 ·

(
1

n20 + 1
n21 + . . .

)
≤ 4

n4

as required. ◀

To show Lemma 25, we need the bound for a single cut as in Lemma 26 and use this
with a directed cut counting argument as in Lemma 27. We defer the proofs of both of these
lemmas to the full version.

▶ Lemma 26. For any single cut C⃗ in Cij, it holds with probability 1 − 2/n8·2j that∣∣∣w(C⃗ ∩ Fi) − u(C⃗ ∩ Fi)
∣∣∣ ≤ ϵ

2 ·
(

u(C ∩ Ei) · 2i−1

πi · γ · (β + 1) + u(C⃗ ∩ Fi)
)

▶ Lemma 27. Let G⃗ = (V, E⃗) be a directed (multi-)graph, and G be the underlying undirected
graph. Let k ≥ λ be any real number, where λ is the value of the global minimum cut in G.
Consider all the cuts C⃗ = ∂G⃗(S) in G⃗ such that u(C) ≤ αk for the corresponding undirected
cut C = ∂G(S), and let C↓k

α be the set of all directed k-projections of these cuts. Then
|C↓k

α | ≤ 2 · n2α.

We use them to show Lemma 25.

▶ Lemma 25. Let Cij be the collection of all cuts C⃗ = ∂G⃗(S) such that for the corresponding
undirected cut C = ∂G(S) in G,

πi · 2j ≤ u(C ∩ Ei) ≤ πi · 2j+1 − 1

Then for all cuts C⃗ in Cij simultaneously, it holds with probability 1 − 2/n4·2j that∣∣∣w(C⃗ ∩ Fi) − u(C⃗ ∩ Fi)
∣∣∣ ≤ ϵ

2 ·
(

u(C ∩ Ei) · 2i−1

πi · γ · (β + 1) + u(C⃗ ∩ Fi)
)
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Proof. For any single cut C⃗ in Cij , Lemma 26 shows that with probability at least 1−2/n8·2j ,∣∣∣w(C⃗ ∩ Fi) − u(C⃗ ∩ Fi)
∣∣∣ ≤ ϵ

2 ·
(

u(C ∩ Ei) · 2i−1

πi · γ · (β + 1) + u(C⃗ ∩ Fi)
)

At this point, we would like to take a union bound over all the cuts in Cij . Ideally, we would
like the number of cuts in this set to grow as nc·2j . However, the number of directed cuts C⃗

that arise might be much larger than that. However, note that the inequality only depends
on C⃗ ∩ Fi, and not C⃗. We thus focus on working with the distinct subsets C⃗ ∩ Fi that arise,
and use these to prove our claim.

We first show that the number of distinct directed cuts C⃗ ∩ Fi that are encountered is
still O(nc·2j ) using Lemma 27. In particular, we apply Lemma 27 on the graph Gi = (V, Ei),
setting k = πi and αk = πi · 2j+1 − 1. The total number of distinct subsets C⃗ ∩ Hk that arise
from cuts in Cij is at most

2n2α < 2n4·2j

where Hk is the subgraph of Gi of all edges with edge-connectivity at least πi. Since each
edge in Fi has edge-connectivity at least πi by Π-connectivity, we have that Fi ⊆ Hk. Every
non-empty subset of the form C⃗ ∩ Fi has a corresponding subset of the form C⃗ ∩ Hk that is
counted above, and for every C⃗ ∩ Hk counted above, there is at most one non-empty subset
of the form C⃗ ∩ Fi, which proves the claim.

To simplify notation, we use the following definition for the next claim. Call a subset of
directed edges R⃗ ⊆ E⃗ to be bad for a directed cut C⃗ ⊆ E⃗ if C⃗ ∩ Fi = R⃗ and∣∣∣w(R⃗) − u(R⃗)

∣∣∣ >
ϵ

2 ·
(

u(C ∩ Ei) · 2i−1

πi · γ · (β + 1) + u(R⃗)
)

Note that if R⃗ is bad for any particular directed cut C⃗, then it is also bad for

D⃗ = argmin
C⃗′:(C⃗′∩Fi=R⃗)∧(C⃗′∈Cij)

u(C ′ ∩ Ei)

since∣∣∣w(R⃗) − u(R⃗)
∣∣∣ >

ϵ

2 ·
(

u(C ∩ Ei) · 2i−1

πi · γ · (β + 1) + u(R⃗)
)

≥ ϵ

2 ·
(

u(D ∩ Ei) · 2i−1

πi · γ · (β + 1) + u(R⃗)
)

where the first inequality is because R⃗ is bad for C⃗, and the second inequality is by choice of
D⃗.

Thus, the probability we need to bound is

Pr[∃ a cut C⃗ ∈ Cij such that C⃗ ∩ Fi is bad for C⃗]

= Pr[∃ an R⃗ ⊆ E⃗ and a cut C⃗ ∈ Cij such that R⃗ is bad for C⃗]

≤
∑

R⃗⊆E⃗

Pr[∃ a cut C⃗ ∈ Cij such that R⃗ is bad for C⃗]

=
∑

R⃗⊆E⃗

Pr[R⃗ is bad for D⃗ = argmin
C⃗′:(C⃗′∩Fi=R⃗)∧(C⃗′∈Cij)

u(C ∩ Ei)]

≤ 2n4·2j

· 2
n8·2j ≤ 4

n4·2j

where the penultimate inequality holds because the number of distinct R⃗s that can be of the
form C⃗ ∩ Fi is at most 2n4·2j , and for each R⃗, the probability that R⃗ is bad for D⃗ is at most
2/n8·2j by Lemma 26. ◀
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