The Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25)

Crossfire: An Elastic Defense Framework for
Graph Neural Networks Under Bit Flip Attacks

Lorenz Kummer'?, Samir Moustafa'?, Wilfried Gansterer!', Nils Kriege'->

'Faculty of Computer Science, University of Vienna, Vienna, Austria
2Doctoral School Computer Science, University of Vienna, Vienna, Austria
3Research Network Data Science University of Vienna, Vienna, Austria
{lorenz.kummer, samir.moustafa, wilfried.gansterer, nils.kriege} @univie.ac.at

Abstract

Bit Flip Attacks (BFAs) are a well-established class of adver-
sarial attacks, originally developed for Convolutional Neu-
ral Networks within the computer vision domain. Most re-
cently, these attacks have been extended to target Graph Neu-
ral Networks (GNNs), revealing significant vulnerabilities.
This new development naturally raises questions about the
best strategies to defend GNNs against BFAs, a challenge
for which no solutions currently exist. Given the applications
of GNNss in critical fields, any defense mechanism must not
only maintain network performance, but also verifiably re-
store the network to its pre-attack state. Verifiably restoring
the network to its pre-attack state also eliminates the need for
costly evaluations on test data to ensure network quality. We
offer first insights into the effectiveness of existing honeypot-
and hashing-based defenses against BFAs adapted from the
computer vision domain to GNNs, and characterize the short-
comings of these approaches. To overcome their limitations,
we propose Crossfire, a hybrid approach that exploits weight
sparsity and combines hashing and honeypots with bit-level
correction of out-of-distribution weight elements to restore
network integrity. Crossfire is retraining-free and does not re-
quire labeled data. Averaged over 2,160 experiments on six
benchmark datasets, Crossfire offers a 21.8% higher probabil-
ity than its competitors of reconstructing a GNN attacked by
a BFA to its pre-attack state. These experiments cover up to
55 bit flips from various attacks. Moreover, it improves post-
repair prediction quality by 10.85%. Computational and stor-
age overheads are negligible compared to the inherent com-
plexity of even the simplest GNNs.

Introduction

Graph Neural Networks (GNNs) are effective machine
learning methods for processing structured data in graph for-
mat, consisting of nodes and edges. They demonstrate ver-
satility by enabling the application of deep learning in di-
verse domains such as finance, social networks, medicine,
chemistry, and biological data analysis (Lu and Uddin 2021;
Cheung and Moura 2020; Sun et al. 2021; Wu et al. 2018;
Xiong et al. 2021). As GNNs become more widely used,
it is crucial to examine their potential security vulnerabili-
ties. Conventional adversarial attacks on GNNs primarily in-
volve manipulating input graph data (Wu et al. 2022). These

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

17990

attacks include poisoning, which leads to the learning of
flawed models (Ma, Ding, and Mei 2020; Wu et al. 2022),
and evasion strategies, which use adversarial examples to
impair inference. Such attacks on GNNs, which involve al-
tering node features, edges, or introducing new nodes (Sun
et al. 2020; Wu et al. 2022), as discussed in prior stud-
ies (Ma, Ding, and Mei 2020), can be either targeted or
untargeted. Targeted attacks reduce the model’s prediction
quality on specific instances, whereas untargeted attacks af-
fect the model’s overall performance (Zhang et al. 2022a).
For a thorough overview of graph poisoning and evasion at-
tacks, along with defenses and relevant algorithms, refer to
the detailed reviews by Jin et al. (2021) and Dai et al. (2022).

Recent research on GNN vulnerability has expanded be-
yond poisoning and evasion attacks on input graphs, now en-
compassing systematic attacks that directly manipulate net-
work weights through malicious bit flips during inference.
While such attacks are well-understood for Convolutional
Neural Networks (CNNs) in computer vision (Rakin, He,
and Fan 2019; Qian et al. 2023; Khare et al. 2022), under-
standing GNN vulnerability to BFAs is a relatively new area
of study. Currently, only one dedicated BFA for GNNs has
been described by Kummer et al. (2024), and existing de-
fenses against BFAs (Khare et al. 2022) have not been eval-
uated for GNNSs. To the best of our knowledge, the topic of
defending GNNs against BFAs has not yet been addressed
in the literature.

Given the fundamental differences between GNNs and
CNNs — such as GNNs’ reliance on the message-passing al-
gorithm (MP) to process graph-structured data and the lack
of vulnerable convolutional filters (Hector et al. 2022) — as
well as distinct properties like expressivity that can be ex-
ploited by attackers (Kummer et al. 2024), it is essential to
explore whether existing CNN defenses against BFAs are
applicable to GNNs. Moreover, it is crucial to develop de-
fenses specifically designed for GNNs, given the importance
of their applications across multiple domains.

In the following, we assume a white-box threat model to
evaluate CNN defenses against BFAs on GNNs and intro-
duce our approach, considering an attacker who can pre-
cisely manipulate bits without budget constraints.

Related Work The BFA initially presented in Rakin, He,
and Fan (2019), targets a quantized CNN by conducting

a single forward-backward pass using a randomly selected
training data batch, without updating the weights. It identi-
fies the top-k binary gradient bits as potential bit-flip can-
didates. These bits are then flipped iteratively to maximize
the loss (using the same loss function as in training) until the
desired network degradation is achieved. This original BFA
is termed Progressive BFA (PBFA). We use BFA to refer to
a broader range of attacks that systematically induce mali-
cious bit flips in a neural network’s weights and biases, and
refer the interested reader to the comprehensive survey for
BFAs on CNNs by Qian et al. (2023). For GNNs, only a sin-
gle dedicated BFA has been explored so far, termed Injectiv-
ity Bit Flip Attack (IBFA), which exploits certain properties
related to GNN expressivity by Kummer et al. (2024).

To defend against BFAs on CNNs, several approaches
have been proposed. Network hardening methods, such as
adversarial (He et al. 2020; Li et al. 2020a) and perturbation-
resilient training (Chitsaz et al. 2023), as well as gradi-
ent obfuscation strategies (Zhang et al. 2022b; Wang et al.
2023a) , focus on resisting gradient-based bit search at-
tacks. However, they may require (re)training, which limits
their ex-post deployment, and they do not necessarily rectify
compromised neurons. Detection-focused methods leverage
hashing (Javaheripi and Koushanfar 2021; Li et al. 2021) or
output code matching (Ozdenizci and Legenstein 2022) for
efficient bit flip detection and consistently achieve high de-
tection rates in the computer vision domain. These methods
often wrap around existing pre-trained networks and can be
applied ex-post. However, their restoration capabilities are
limited, often necessitating retraining or pruning of manip-
ulated weights. Proactive defenses take a different approach
by anticipating attacks through analyzing assumed underly-
ing attack mechanisms (Liu et al. 2023; Li et al. 2020a).
These methods prioritize weight restoration over pruning,
aiming to revert the network to its pre-attack configuration
(Liu et al. 2023), or use statistical approximation to address
compromised weights (Li et al. 2020a). For an overview of
defense mechanisms, see the review by Khare et al. (2022).

Challenges and Limitations Existing defenses against
BFAs face shared challenges and limitations. First, they lack
mechanisms to ensure full network restoration after attacks;
while prediction quality may recover, network integrity is
not guaranteed. Reloading a clean model or delegating con-
trol to a backup system after attack detection is often ineffi-
cient and delay-prone (Li et al. 2021). Second, reliance on a
single defense mechanism leaves these approaches suscepti-
ble to loophole-exploiting BFAs (Liu et al. 2023).

Moreover, the transferability of defense strategies from
CNNs to GNNs remains unexplored. Given GNNs’ criti-
cal roles in applications like medical diagnosis (Li et al.
2020b; Lu and Uddin 2021), health record modeling (Liu
et al. 2020; Sun et al. 2021), and drug development (Xiong
etal. 2021; Cheung and Moura 2020), ensuring their authen-
ticity post-attack is essential. A robust defense strategy must
integrate multiple protective layers and incorporate efficient,
low-cost verification.

17991

Contribution

(1) We study two state-of-the-art BFA defense methods
based on honeypots (Liu et al. 2023) and hashing (Li et al.
2021), which were initially developed for CNNs, and as-
sess their effectiveness for GNNs, identifying notable weak-
nesses in their application to this domain. (2) We propose an
innovative honeypot selection method using unlabeled data
to enhance detection rates and validate GNN reconstruc-
tion using a robust, well-known and studied, yet lightweight
hash function. (3) Moreover, we build upon existing work
and introduce an efficient weight group-based checksum ap-
proach to detect hits in non-honeypot weights, addressing
the limitation of solely relying on honeypots. This approach,
together with the bit-level correction of out-of-distribution
(OOD) weight elements as well as the careful exploitation
of the relationship between BFAs and GNN weight sparsity,
allows us to reconstruct the network in certain cases even
when hits on the preselected honeypots are avoided by a dili-
gent attacker.

Our work establishes a strong and dependable defense
framework, obviating the need for post-reconstruction qual-
ity verification of the GNN.

Preliminaries

This section provides an overview and detailed description
of the key elements essential to our research: GNNs, BFAs,
the threat scenario, as well as the honeypot-based Neu-
roPots (Liu et al. 2023) and the hashing-based runtime Ad-
versarial Weight Attack Detection and Accuracy Recovery
(RADAR) defense methods (Li et al. 2021).

Graph Neural Networks GNNs leverage graph structure
and node features to derive representation vectors for spe-
cific nodes, denoted as h,, for node v, or for the entire graph
G, denoted as h¢. Contemporary GNNs use a neighborhood
aggregation or message-passing approach, where the repre-
sentation of a node is iteratively updated by aggregating the
representations of its neighboring nodes. Upon completion
of k layers of aggregation, the representation of a node en-
capsulates the structural information within its k-hop neigh-
borhood (Xu et al. 2019; Welling and Kipf 2016). The kth
layer of a GNN computes the node features h” as defined by

a¥ = AGGREGATE" ({h*™! |u e N(v)})

h¥ = ComBINE" (hE™1 ak)

with node neighborhood N (v) and multiset {{ }}. Initially, h?
represents the features of node v in the given graph. As the
choice of AGGREGATE" and COMBINE® in GNNGs is critical,
several variants have been proposed (Xu et al. 2019).

Quantization Quantization reduces the precision or
adopts efficient representations for weights, biases, and ac-
tivations, decreasing model size and memory usage (Jacob
et al. 2018; Kummer et al. 2023).

In accordance with the typical setup chosen in related
work on BFA, we apply scale quantization to map FLOAT 32
tensors to the INT8 range. Such a quantization function Q

and its associated dequantization function O lare
QW') = W) = clip(|W'/s], a,b),

— 1
QW) =W =W/ xs. M

Here, s denotes the scaling parameter, clip(x,a,b)
min(max(z, a), b) with ¢ and b the minimum and maximum
thresholds (also known as the quantization range), |. .. | de-
notes nearest integer rounding, W' is the weight of a layer [
to be quantized, qu its quantized counterpart and ... indi-
cates a perturbation, i.e., rounding errors in the case of (1).
Similar to other works on BFA that require quantized tar-
get networks such as (Rakin, He, and Fan 2019), we ad-
dress this issue of non-differentiable rounding and clipping
functions present in Q by using Straight Through Estimation
(STE) (Bengio, Léonard, and Courville 2013).

Bit Flip Attacks PBFA, introduced in the seminal work by
Rakin, He, and Fan (2019), uses a quantized trained CNN &
and progressive bit search (PBS) to identify bits for flipping.
PBS starts with a forward and backward pass, performing
error backpropagation without updating weights on a ran-
domly selected batch X of training data with a target vec-
tor t. It then selects the weights corresponding to the top-k
largest binary encoded gradients as potential candidates for
bit flipping. These candidate bits are iteratively tested across
all L layers to find the bit that maximizes the difference be-
tween the loss £ of the perturbed CNN and the loss of the
unperturbed CNN,

max £((X; {(WihE,), t) — £(@(Xs (WiHy), ¢)

(Wi}
whereby the same L is used that was minimized during train-
ing, e.g., (binary) cross entropy (B)CE for (binary) classifi-
cation). Using ¢; or Kullback-Leibler-Divergence (Kullback
and Leibler 1951) for £, the variant IBFA by Kummer et al.
(2024) dedicated to GNNs instead optimizes

min £(@(Xai {WiH,), e(Xp {WEIE,))
{wi}
via PBS and uses a unique input data selection process re-
lated to its theoretical fundament given by

arg maxC(CIJ(Xa; {Wé}le)a D (Xp; {Wé}f:1)>

{Xa 7Xb}

IBFA targets specific mathematical properties of GNNs that
are crucial for graph learning tasks requiring high structural
expressivity. Kummer et al. (2024) demonstrate IBFA’s effi-
cacy in exploiting GNN expressivity, rendering GNNs indif-
ferent to graph structures and compromising their predictive
quality in tasks that require structural discrimination.

NeuroPots Liu et al. (2023) introduce NeuroPots, a proac-
tive defense mechanism for CNNs that embeds honey neu-
rons as vulnerabilities to lure attackers and facilitate fault
detection and model restoration. The proportion of honey
neurons per layer is controlled by the hyperparameter p, in-
dicating the percentage of neurons modified. The framework
uses a checksum-based detection method, anticipating that

17992

most bit flips will target these trapdoors, and uses trapdoor
refreshing to recover the model’s prediction quality.

NeuroPots provides two methods: retraining-based and
heuristic. The retraining approach, suitable for those with
ample training data, is data-intensive. The heuristic method
is more efficient, enhancing specific neuron activation for
trapdoor embedding and adjusting adjacent weights to main-
tain its contribution to the next layer. This method is ideal
for full-precision models, though it may cause minor quan-
tization errors. It can be applied to any layer, including di-
rect modifications of honey neuron activations in the input
layer (Liu et al. 2023). The one-shot encoding process used
by NeuroPots can be described as follows:

) Goh)

TLl 1
1+1 l 1 l 1 l
0; —E wji~0j—w0i-00+---—|—(—~whi
J=1 v

where o, denotes the honey neuron at layer [, w!; de-
notes the associated honey weights, and ~y the rescaling fac-
tor. For a typical neuron, its influence on the output of the
next layer in the presence of BFAs can be formulated as
ot = (w+ Aw) - o', where Aw denotes the weight distor-
tion arising from bit flips. Conversely, considering the one-
shot trapdoor as an example, the impact of a honey neuron
on the subsequent layer can be represented as:

—-w+ Aw) -0l = (w+Aw)-o'+(y—1)-Aw-o!

1
|

v

Obviously, o' ! experiences an increase of (y — 1) - Aw - o!
in comparison to a regular neuron. Furthermore, attackers
tend to flip the most significant bits of weights, leading to
a substantial perturbation Aw. Consequently, the impact of
the honey neuron on o'*! becomes more pronounced, partic-
ularly for larger values of ~y. This alteration propagates and
accumulates across subsequent layers, causing a substantial
shift in the model’s output.

NeuroPots, despite its novelty, has limitations. Random
honeypot selection may overlook key neurons or include
inactive ones, while a global scaling parameter -y ignores
neuron-specific roles. Critically, it can not certify restoration
to the pre-attack state, requiring post-recovery evaluation, as
it fails to detect changes in non-honeypot neurons.

RADAR RADAR (Li et al. 2021) is designed to protect
CNN weights from PBFA. It organizes weights into groups
within each layer and uses a checksum-based algorithm to
generate a 2-bit to 3-bit signature per group. During run-
time, this signature is computed and compared with a stored
reference to detect BFAs. If detected, the weights in the af-
fected group are zeroed to minimize prediction quality loss.
RADAR is integrated into the inference computation stage.

RADAR efficiently detects most bit flips, including ran-
dom ones, but only partially restores prediction quality by
zeroing attacked weight groups. It cannot fully revert the
network to its pre-attack state, requiring test data evalua-
tion to confirm recovery. For large numbers of bit flips, zero-
ing further degrades the network and impacts non-attacked
weights, causing collateral damage.

Threat Scenario In line with the general trend in litera-
ture on BFAs for CNNs, e.g., (Yao, Rakin, and Fan 2020;
Rakin, He, and Fan 2019; He et al. 2020; Li et al. 2020a,
2021; Liu et al. 2023; Javaheripi and Koushanfar 2021) as
well as IBFA (Kummer et al. 2024), we assume that the tar-
get network is INT8 quantized. Furthermore, we adopt the
assumption which is common in related work that the at-
tacker has the capability to exactly flip the bits chosen by the
bit-search algorithm through mechanisms such as RowHam-
mer (Mutlu and Kim 2019), NetHammer (Lipp et al. 2020)
or others (Breier et al. 2018). For a detailed discussion on the
technical aspects of implementing arbitrary flips of the iden-
tified vulnerable bits in hardware, we refer to Wang et al.
(2023a).

To test the reliability of our framework under worst-case
conditions, we assume that the attacker is not subjected to
budget considerations (Hector et al. 2022), although typi-
cally, flipping more than 25 bits is considered difficult for
an attacker (Yao, Rakin, and Fan 2020) and 50 bits is con-
sidered an upper boundary (Wang et al. 2023a). Moreover,
we assume that some amount of training data as well as
information on the network structure is available to the at-
tacker, which is a typical assumption in related work on
BFAs, e.g., Liu et al. (2023). This information can be ac-
quired through methods such as side-channel attacks (Yan,
Fletcher, and Torrellas 2020; Batina et al. 2018). Together,
these typical assumptions amount to a white box threat
model, whereby the attacker’s goal is to crush a well-trained
and deployed quantized GNN via BFA.

In our defense strategy, we presume the presence of un-
labeled data and secure storage of original honey weights
and hashes in an inaccessible location for potential attack-
ers. Similar to (Liu et al. 2023), we argue that such a secure
storage can be realized via trusted execution environments
(TEE) like Intel SGX (McKeen et al. 2016) or ARM Trust-
zone (Pinto and Santos 2019; ARM 2009).

The Crossfire Defense Mechanism

Crossfire is a rapid detection and recovery method that re-
stores model prediction quality and verifies if the recovered
model matches the pre-attack state, eliminating the need for
test data. It operates in three stages: initialization, monitor-
ing, and reconstruction. In initialization, Crossfire processes
a fully trained, quantized GNN, inducing sparsity through
dequantization and ¢; pruning. Honeypots and scaling pa-
rameters are computed from gradients and network depth,
followed by re-quantization and generation of hashes for
layers, rows, and columns. During monitoring, layer hashes
detect alterations, triggering the reconstruction phase. In re-
construction, altered weights are identified via row and col-
umn hashes and are either restored with honeypots, cor-
rected at the bit level (if OOD), or zeroed if the other options
fail. The induced sparsity increases the likelihood that zero-
ing resets the GNN to its pre-attack state, with layer hashes
finally verifying the GNN’s integrity.

Inducing sparsity We exploit that BFAs are prone to flip
most significant bits of near-zero weights (Qian et al. 2023;
Li et al. 2021) by inducing sparsity via ¢;-magnitude prun-

17993

ing, setting w € W/ to zero if |w|< T, where T is the p-th
quantile A, (|W'|), pruning p-100% of the smallest weights:

1

This increase in the attack surface will steer attackers to-
ward neurons with high sparsity and help mask the most im-
portant neurons by increasing the number of potential target
weights, saturating the network with zero weights. Theoret-
ical insights from (Frankle and Carbin 2018; Malach et al.
2020) suggest that introducing a limited amount of sparsity
to a neural network does not significantly reduce its predic-
tion quality. Further, by guiding attackers towards ¢;-pruned
weights, subsequent checksum-based zeroing will allow re-
construction to the pre-attack state. While a sophisticated
attacker might avoid targeting zeroed weights, this strategy
reduces the attack’s efficacy by narrowing viable options as
sparsity increases, forcing less optimal bit flips.

0 if|w|<T,
w otherwise.

Honeypot Selection Focusing on the heuristic approach
due to the need for labeled data in Liu et al. (2023)’s re-
training method, we observe some critical aspects. Ran-
domly selecting neuron honeypots, as proposed to counter
activation-ranking attackers, ignores slight variations in neu-
ron activation across batches. Effective deployment would
thus require dynamic -y and honeypot adjustment or a batch-
averaging strategy. However, dynamic adjustment risks ex-
posing honeypots via network changes, while batch averag-
ing distributes honeypots across rankings, enhancing effec-
tiveness even against advanced attackers.

Thus to improve honeypot selection, we employ a two-
fold method: First, we create predictions for a small subset
of unlabeled data S. We derive classes from these predic-
tions to form a set P of tuples (t, X), where X is the input
data (batch) and t are the predicted classes (arg max of class
probabilities), serving as pseudo labels for backpropagation.

j

For each (t,X) € P, we conduct one pass of backpropa-
gation through the GNN to obtain gradients for the weights
W! using an appropriate loss function, e.g, (B)CE loss for
(binary) classification. For each W', the gradients obtained
for each data batch are accumulated and represented as G,
which is defined as

P= {(LX) |t = argmax (B(X; {W'}E,),X € S

aris=1

wo x 2L(eX (W))
a OW! '

(t,X)eP

For each layer, we select the set of honeypot neurons N }C
from all neurons N by choosing the indices of the top-
k largest sums of accumulated absolute neuron gradients,
where k = n! - p. Here, n! is the number of neurons in
the layer, p is the base percentage of honeypot neurons,
and axis = 1 indicates per-neuron summation. Note, that
access to unlabeled data is a conservative assumption. La-
beled data could enhance the defense by improving gradient-
based identification of vulnerable weights. Notably, BFAs

also rarely use labeled data; IBFA, the only GNN-specific
BFA, avoids labeled data entirely (Kummer et al. 2024).

N,i—{argtopk< >}
axris=1

> 16

Choice of Scaling Parameters Liu et al. (2023) high-
light that neuron rescaling can introduce quantization errors,
with each neuron’s unique weight distribution requiring tai-
lored rescaling to minimize these errors. Such quantization-
induced perturbations propagate through matrix multiplica-
tions , with their impact on network performance depend-
ing on each neuron’s contribution to classification (Xiaoqin
Zeng and Yeung 2001; Xiang et al. 2019). A uniform scal-
ing parameter for all honeypots, as suggested by Liu et al.
(2023), is thus suboptimal.

We propose individualized scaling for each neuron to bet-
ter minimize quantization error and preserve classification
performance. Initially, we augment the scaling factor ~y pro-
portionally to the network’s depth using a scaling factor
A > 1 to obtain a layer’s scaling v! = ~ - AL. This approach
offers two benefits. First, it generally reduces propagated er-
ror as deeper layers are scaled higher. In GNNGs, this favors
distinguishing between nodes based on local neighborhoods,
as it directs attackers towards deeper layers. Given that the
evaluated GNNs may be shallower than the graph diameter,
this strategy is consistent with using shallow architectures to
prevent overfitting (Morris, Fey, and Kriege 2021) and over-
smoothing (Liu, Gao, and Ji 2020).

Further, we do not use ~' directly to rescale the honey
neurons. Instead, we compute a saliency vector 8 for each
layer that considers the accumulated gradients magnitude

)
,Sl: Z |G‘l]V,z€|

axis=1

(s' —min(s!)) - (' — 1
max(s!) — min(s')

st=1+

The saliency vector s! is then multiplied with the honeypots
N} using per-column division, Wf; n¢ ©1 8" and the inputs
Vg

are scaled using per-row product XlNl o Si.
k

Out of Distribution Weights Quantization can lead to
limited range, i.e. for INT8 (stored in two’s complement)
I U, —128 < L < min(Wé) A max(Wé) < U<
127. BFAs typically target zero or near-zero weights and flip
the most significant bit (MSB) of such weights (Li et al.
2020a), which has a high likelihood of creating an OOD
element within that particular weight tensor. That is, if we
choose L' = min(W') and U' = min(WY), it holds that
Vﬁ}\ij S qu,wij S Wé|Ll > ’l/l}\ij v Ut < ’L/U\ij = ’L/U\l'j 7é
w;, indicating that w;; was subjected to a bit flip pushing it
out of Wfl range. Under the assumption that double flips in
a single w;; are uncommon and that an attacker flips the (or
one of the) MSBs, potentially iteratively unsetting MSB-n
bits in @;; until L! < @;; < U’ will either entirely undo
the attacker’s bit flips or at least reduce their effect. For ex-
ample, if we observe L! = —50 (11001110), U' = 60
(00111100) and w;; = —58 (11000110), iteratively un-
setting w;;’s two MSB’s will lead to 70 (01000110) and

17994

6 (00000110), which, under the assumption an attacker
preferably flips MSBs in near zero weights, could be a cor-
rect reconstruction for w;;. Naturally, this approach has its
own limitations, as, e.g. w;; = 14 (00001110) would
neither have been detected nor corrected for above U', L.
However, as it is only complementary to our honeypots and
checksum-based detection approach, it allows for a degree
of reconstruction that would not be possible by simply re-
placing non-honeypot weights by zeros (Li et al. 2021) or
statistical approximations of w;; (Li et al. 2020a).

Attack Detection and Reconstruction For attack detec-
tion and network verification, we opted for Blake2b (Au-
masson et al. 2013), a widely recognized hash function with
established security analyses (Guo et al. 2014; Rao and
Prema 2019) and documented resource constraints (Sug-
ier 2017). Blake2b excels in speed and security, outper-
forming SHA-3. Its parallel compression and adaptable pa-
rameters make it versatile for various applications, confirm-
ing its importance in contemporary cryptographic practices.
Specifically, we compute the d-byte hashes for each row and
column of a matrix WY, of size n x m with d = 2

and store them in vectors rhl, ch!. The storage overhead for
this is negligible relative to the storage costs of the network.
If desired, d (to which we, in this context, refer to as cross
digest) can also be chosen dynamically by, e.g., matrix size,

d = min (max (1, 22™)) A7) with M denoting the

desired maximum number of bytes. Our hashing approach
allows us to pinpoint changes to single elements in the ma-
trix and surgically correct or remove them. This provides
an advantage over RADAR, which can only detect changes
in an entire group of weights and subsequently zeros them
out, and it surpasses NeuroPots by enabling the detection of
changes in non-honeypot weights. If we compute rh!, ch!
for sz and, at some point after an attack on qu, obtain

—~1 I — ~ —~1

rh ,ch for W), then R! = {i | i € l[l,n],rhé # rh,}
and C' = {i | i € [I,m],ch! # ch;} will be the row
and column indices of perturbed elements in qu. For the
elements located at these indices, repair mechanisms are ex-
ecuted. They are either replaced with honeypot weights (if
they were a honeypot), have their distribution repaired by
unsetting MSBs (if they were OOD), or are zeroed if none
of the other options leads to positive layer verification. Note

the initial sparsity induction via pruning increases the likeli-
hood that zeroing resets weights to their pre-attack state.

ColumnHash(j, d) = Blake2b (Z w!

q,ij
i=1

RowHash(i,d) = Blake2b | W/ .,
j=1

Post Reconstruction Verification All weight matrices are
hashed using the Blake2b hash function with a digest
size of 4 bytes (referred to as layer digest). This setup de-
tects changes in the weights matrix with high reliability, as

IN
(=]

—— CF (1/4-bytes, 0%)
CF (2/4-bytes, 0%)

CF (3/4-bytes, 0%)
—— CF (4/4-bytes, 0%)

N
IS

=== NP (1%)

Hash Storage
Overhead (%)
Total Storage
Overhead (%)

N

¥

250 500 750 1000 1250 1500 1750 2000
Matrix size (square)

o

500

—— CF (2/4-bytes, 1%)
CF (2/4-bytes, 2%)
CF (1/4-bytes, 1%)

750 1000 1250 1500 1750 2000
Matrix size (square}

-~ NP (2%)

—= RADAR (g=16, 2-bit) E 142
—:= RADAR (g=16, 3-bit) 5

RADAR (g=8, 2-bit) € 1.1

E 10

=== GNN Layer (5 nodes)

= GNN Layer (10 nodes)
9100 CF (@1-4/4-bytes, 0%)
500 750 1000 1250 1500 1750 2000

Matrix size (square)

250

Figure 1: Storage overhead of Crossfire (CF) hashes relative to matrix size (INT8), varying cross digest sizes (left). Storage
overhead of CF relative to matrix size, varying cross digest sizes and honeypot percentages (%) compared to RADAR and
NeuroPots (NP) (center). Average hashing times (milliseconds) for CF across different cross digest sizes, plotted against the
time complexity of a simple INT8 GNN layer (right) for 5 and 10 node graphs. Layer digest sizes fixed at 4 bytes.

Name Graphs Nodes Edges Tasks Metric
pcba 4379k 26.0 28.1 128 AP

muv 93.1k 24.2 26.3 17 AP

hiv 41.1k 25.5 27.5 1 AUROC
tox= g6k 185 193 617 AUROC
cast

tox21 7.8k 18.6 19.3 12 AUROC
bace 1.5k 34.1 36.9 1 AUROC

Table 1: Overview of the six OGB (Hu et al. 2020) bench-
mark ogbg-mo1 datasets used: number of graphs and tasks,
average number of nodes, edges and recommended metric.

we demonstrate experimentally below. Although Blake2b
with a 4-byte digest is more computationally expensive than
simpler hashes used by, e.g., RADAR, it is only executed to
detect an attack, triggering Crossfire’s simpler, more granu-
lar mechanisms, and to verify post-attack reconstruction.

Experiments

Our experiments' are designed to test the following hypothe-
ses regarding Crossfire’s performance on GNNs: (a) Cross-
firc has a higher chance of detecting bit flips compared to
other methods, (b) Crossfire can repair the GNN so that it
is indistinguishable from its pre-attack state, (c¢) Crossfire
results in a smaller difference between pre-attack and post-
reconstruction GNN performance, and (d) Crossfire does not
increase the vulnerability of GNNs to evaluated BFAs.

We cvaluate Crossfire against basic PBFA as well as
IBFA, an attack specifically designed for GNNs with no
known defense. In the context of our experiments, an attack
is considered detected if a single bit flip is identified by the
detection mechanism of the respective defense strategy (i.e.,
RADAR, NeuroPots, or Crossfire). A network is considered
reconstructed if applying the B1ake2b hash function with a
4-byte digest to all weight matrices indicates they are iden-
tical to their pre-attack state. We optimize Crossfire’s and
NeuroPots’ hyperparameters via grid search for the num-
ber of honeypots p € {0.01,0.05,0.1} (given as percentage
of the number of neurons) and the (initial) rescaling factor
v € {1.33,1.66,2.0}. We fix Crossfire’s depth rescaling pa-
rameter at A = 1.1 and ¢; pruning ratio at 75% and com-
pute gradients from 10 random samples from each dataset’s

"https://github.com/lorenz0890/crossfireaaai2025

17995

training split. Note that, while the assumption of having un-
labeled data falling into the same distribution as the original
training data may not always hold in practice, selecting sam-
ples approximating the original training distribution might
be a feasible substitute. For RADAR, we used group size 16
and 2-bit hashes, as recommended by its authors.

Datasets and Models The same six Open Graph Bench-
mark (OGB) graph classification benchmark datasets are
chosen for evaluation as in Kummer et al. (2024)’s work
on IBFA. The goal in each dataset is to predict properties
based on molecular graph structures, such that the datasets
are consistent with the underlying assumptions of IBFA de-
scribed by Kummer et al. (2024). The datasets are split us-
ing a scaffold-based strategy, to ensure structural diversity
between subsets (Wu et al. 2018; Hu et al. 2020). Dataset
characteristics are summarized in Table 1. Area under the
receiver operating characteristic curve (AUROC) or average
precision (AP) are used to measure prediction quality, as rec-
ommended by Hu et al. (2020).

To remain consistent with Kummer et al. (2024), we use
5-layer Graph Isomorphism Networks (GIN) quantized to
INT8 via scale quantization. GIN is widely adopted, inte-
grated into popular frameworks (Fey and Lenssen 2019), and
applied in research (Wang et al. 2023b; Gao et al. 2022).

Results

We conducted an extensive evaluation of Crossfire, consist-
ing of 2,160 individual experiments across six datasets, us-
ing a system with a NVIDIA GTX 1650 GPU (4GB VRAM)
and an Intel(R) i7-10750H CPU (64GB RAM).

Attack Detection and Mitigation For basic PBFA, Cross-
fire, NeuroPots, and RADAR achieved nearly 100% attack
detection across all datasets. Crossfire demonstrated supe-
rior detection of individual bit flips, outperforming competi-
tors in most cases (Figure 2). Notably, Crossfire repaired
damage to the GNN in over 50% of the cases for up to 25
bit flips, significantly outperforming NeuroPots. By design,
RADAR cannot reverse bit-flip-induced damage to restore a
GNN to its pre-attack state. While selecting honeypots based
on gradients could theoretically guide BFAs toward vulner-
able areas and potentially lower post-attack GNN prediction
quality, this effect was not significant (see below). Crossfire
compensates with exceptional restoration performance, re-
liably restoring prediction quality to 100% for up to 25 bit
flips and outperforming the best competing method, which

=
o

= ==

15 25 35

Bit Flips

45 55

w

15 25 35

Bit Flips

45

55

g T @ cL omT b} > ° > °

© o Lo 4_,10 ° ° oo ° Qo B _ B

5 R ? N = b5 - & ., ==1.0
< FPivTage | R ET T Or
TS0l : £ 205 %S 05 80 B B
580'5 B RADAR B Crossfie =z G 8%' ° ° S% ‘

° [NeuroPots 5 = & [G) : q? 3 Q 0.8 ‘

[©w 0.0 — - - - — ° 4 ° °

©10 5 - -8 8 .= - , 210 1.0 ° e s e

BB R RT Tt BV W - T]
et B - 8= £s 28 |, .
£S5 &sos £305 g%o0s T
2H 57| Q =0 8z 52 0
CDB ZE E °|£| . az 82

3 ORool - B & 0 8 B Og = 2%00 .

25 35 55

Bit Flips

55 5 15 25 35

Bit Flips

45

Figure 2: Post-BFA and reconstructed GNN prediction qualities (with pre-attack normalized to 100% to account for different
scale quality metrics AP and AUROC), reconstruction, and detection rates for GNNs under PBFA (top row) and IBFA (bottom
row) with varying amounts of bit flips, defended by NeuroPots, RADAR and Crossfire. In each subplot, a box represents data
aggregated from 6 datasets, with 10 runs per dataset, totaling 1080 runs for each IBFA and PBFA at optimal hyperparameters.

reached 98.6%. Crossfire also restored prediction quality up
to 98.1% for up to 55 PBFA-induced bit flips.

Regarding IBFA (Figure 2), Crossfire’s performance is
slightly degraded compared to the PBFA attacker but still
outperforms competitors by a large margin. While attack
detection is near 100% for all defenses, only Crossfire de-
tects over 90% of bit flips across datasets and restores over
99% of the GNN’s prediction quality for up to 55 bit flips.
Moreover, Crossfire’s reconstruction capabilities far exceed
its weaker competitors. For example, for 15 bit flips, Cross-
fire achieves a 41% average reconstruction rate, well out-
performing its closest competitor, NeuroPots, which only
achieves 5%. This trend of superiority is maintained for
up to 55 bit flips. Note that, while full recovery for large
numbers of bit flips is modest (though significantly better
than baselines), near-100% attack detection probabilities for
fewer flips makes a BFA unlikely to cause undetected dam-
age, as inducing 25 consecutive flips would already require
hours (Wang et al. 2023a).

To formalize our findings, we conducted Welch’s t-test to
compare Crossfire’s performance with that of NeuroPots and
RADAR, testing the hypotheses formulated at the beginning
of this section for p < 10~3. For hypothesis (a), we found a
highly significant improvement in Crossfire’s bit flip detec-
tion ratio (t = 9.8, p = 10~ '®). For hypothesis (b), Crossfire
significantly outperformed its competitors in GNN recon-
struction ratio (t = 7.1, p = 2-1071Y). Regarding hypothesis
(c), Crossfire yielded a significantly smaller difference be-
tween pre-attack and post-reconstruction AP/AUROC (¢t =
4.7, p = 5-1075). For hypothesis (d), we found no signif-
icantly increased vulnerability in Crossfire-defended GNNs
to the evaluated BFAs (t = 2.8, p = 5-1073).

Overhead and Reliability For estimating relative compu-
tational overhead, we assume an INT8 quantized simplis-
tic message passing network operating over adjacency ma-
trix A, feature matrix X and weight matrix W, computing
AXWT We evaluate for batch size 32 and a randomly con-
nected graph with 5 or 10 nodes (i.e. A € {0,1}(>*%) or
A ¢ {0,1}(19%10)) T practice, the number of nodes is
higher (Table 1), so overhead can be assumed to be even
lower. We run hashing sequentially to simulate the worst
case of a system where parallelism is not possible. As shown

17996

in Figure 1, right, Crossfire requires one order of magnitude
less computation time than even our simplistic GNN layer.
The average runtime stays low even for large matrices and
decreases relative to the GNN layer’s computational demand
as matrix sizes increase, demonstrating Crossfire’s scalabil-
ity. Comparing the CPU-based hashing with the INT8 quan-
tized GNN’s complexity is appropriate, as INT8 quantized
models are typically run on CPUs on edge devices. The stor-
age overhead scales effectively with increasing matrix sizes
(Figure 1, left). Depending on the digest sizes and honeypot
percentages, Crossfire was more efficient than NeuroPots
and RADAR (Figure 1, center).

To test Blake2b’s reliability for post-attack verification,
we induced 1, 5, and 10 random consecutive bit flips in uni-
formly initialized square INT8 matrices of sizes ranging
from 100 to 1000 (in increments of 100). We then tested
the probability that a bit flip goes undetected for layer digest
sizes of 1, 2, and 3. The experiment was repeated 100 times
for each combination of the above parameters. We found that
a digest size of 1 failed to detect 0.66%, 0.44%, and 0.22%
of the 1, 5, and 10 bit flip sequences, respectively. However,
any digest size > 2 achieved a 100% detection rate, high-
lighting Blake2b’s usefulness for integrity verification.

Conclusion

We introduced Crossfire, the first defense framework de-
signed to protect GNNs from BFAs which is robust and
retraining-free. Tested on six datasets accross 2,160 exper-
iments, Crossfire surpasses existing methods in both de-
tection and recovery performance. Crossfire achieves near-
perfect attack and bit-flip detection and typically restores
prediction quality to pre-attack levels. On average, Crossfire
offers a 21.8% higher probability of full reconstruction and
improves post-repair prediction quality by 10.85% over its
competitors. Crossfire’s computational and storage overhead
is negligible compared to the inherent complexity of the sim-
plest GNNs. The innovative use of hashing and honeypots,
combined with leveraging sparsity and the systematic unflip-
ping of bits in OOD weights, enables identification and re-
pair of perturbed elements with minimal overhead. Crossfire
addresses a critical gap in GNN security, offering a scalable
solution to safeguard GNN’s in adversarial scenarios.

Acknowledgments

This work was supported by the Vienna Science and Tech-
nology Fund (WWTF) [10.47379/VRG19009].

References

ARM, A. 2009. Security technology building a secure sys-
tem using trustzone technology (white paper). ARM Limited.

Aumasson, J.-P.; Neves, S.; Wilcox-O’Hearn, Z.; and Win-
nerlein, C. 2013. BLAKE?2: simpler, smaller, fast as MDS5.
In Applied Cryptography and Network Security: 11th Inter-
national Conference, ACNS 2013, Banff, AB, Canada, June
25-28, 2013. Proceedings 11, 119-135. Springer.

Batina, L.; Bhasin, S.; Jap, D.; and Picek, S. 2018. CSI neu-
ral network: Using side-channels to recover your artificial
neural network information. CoRR, abs/2204.07697.

Bengio, Y.; Léonard, N.; and Courville, A. C.2013. Estimat-
ing or Propagating Gradients Through Stochastic Neurons
for Conditional Computation. CoRR, abs/1308.3432.

Breier, J.; Hou, X.; Jap, D.; Ma, L.; Bhasin, S.; and Liu, Y.
2018. Practical Fault Attack on Deep Neural Networks. In
Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, CCS *18, 2204-2206.
New York, NY, USA: Association for Computing Machin-
ery.

Cheung, M.; and Moura, J. M. 2020. Graph neural networks
for covid-19 drug discovery. In 2020 IEEE International
Conference on Big Data (Big Data), 5646-5648. IEEE.

Chitsaz, K.; Mordido, G.; David, J.-P.; and Leduc-Primeau,
F. 2023. Training DNNs Resilient to Adversarial and Ran-
dom Bit-Flips by Learning Quantization Ranges. Transac-
tions on Machine Learning Research.

Dai, E.; Zhao, T.; Zhu, H.; Xu, J.; Guo, Z.; Liu, H.; Tang, J.;
and Wang, S. 2022. A comprehensive survey on trustwor-
thy graph neural networks: Privacy, robustness, fairness, and
explainability. CoRR, abs/2204.08570.

Fey, M.; and Lenssen, J. E. 2019. Fast Graph Representation
Learning with PyTorch Geometric. In ICLR Workshop on
Representation Learning on Graphs and Manifolds.

Frankle, J.; and Carbin, M. 2018. The lottery ticket hy-
pothesis: Finding sparse, trainable neural networks. CoRR,
abs/1803.03635.

Gao, Y.; Hasegawa, H.; Yamaguchi, Y.; and Shimada, H.
2022. Malware Detection by Control-Flow Graph Level
Representation Learning With Graph Isomorphism Net-
work. IEEE Access, 10: 111830-111841.

Guo, J.; Karpman, P.; Nikoli¢, I.; Wang, L.; and Wu, S.
2014. Analysis of BLAKE2. In Topics in Cryptology—CT-
RSA 2014: The Cryptographer’s Track at the RSA Confer-
ence 2014, San Francisco, CA, USA, February 25-28, 2014.
Proceedings, 402-423. Springer.

He, Z.; Rakin, A. S.; Li, J.; Chakrabarti, C.; and Fan, D.
2020. Defending and Harnessing the Bit-Flip Based Ad-
versarial Weight Attack. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 14083—
14091.

17997

Hector, K.; Moéllic, P.-A.; Dumont, M.; and Dutertre, J.-
M. 2022. A Closer Look at Evaluating the Bit-Flip Attack
Against Deep Neural Networks. In 2022 IEEE 28th Inter-
national Symposium on On-Line Testing and Robust System
Design (IOLTS), 1-5.

Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B;
Catasta, M.; and Leskovec, J. 2020. Open graph benchmark:
Datasets for machine learning on graphs. Advances in neural
information processing systems, 33: 22118-22133.

Jacob, B.; Kligys, S.; Chen, B.; Zhu, M.; Tang, M.; Howard,
A.; Adam, H.; and Kalenichenko, D. 2018. Quantiza-
tion and Training of Neural Networks for Efficient Integer-
Arithmetic-Only Inference. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2704-2713.

Javaheripi, M.; and Koushanfar, F. 2021. HASHTAG: Hash
Signatures for Online Detection of Fault-Injection Attacks
on Deep Neural Networks. In 2021 IEEE/ACM Interna-
tional Conference On Computer Aided Design (ICCAD), 1-
9.

Jin, W,; Li, Y.; Xu, H.; Wang, Y,; Ji, S.; Aggarwal, C.; and
Tang, J. 2021. Adversarial attacks and defenses on graphs.
ACM SIGKDD Explorations Newsletter, 22(2): 19-34.

Khare, Y.; Lakara, K.; Inukonda, M. S.; Mittal, S.; Chan-
dra, M.; and Kaushik, A. 2022. Design and Analysis of
Novel Bit-flip Attacks and Defense Strategies for DNNs. In
2022 IEEE Conference on Dependable and Secure Comput-
ing (DSC), 1-8.

Kullback, S.; and Leibler, R. 1951. On information and suf-
ficiency. The annals of mathematical statistics, 22: 79-86.

Kummer, L.; Moustafa, S.; Kriege, N.; and Gansterer, W.
2024. Attacking Graph Neural Networks with Bit Flips:
Weisfeiler and Lehman Go Indifferent. ACM SIGKDD 24
(Accepted Preprint, CoRR, abs/2311.01205).

Kummer, L.; Sidak, K.; Reichmann, T.; and Gansterer, W.
2023. Adaptive Precision Training (AdaPT): A dynamic
quantized training approach for DNNs. In Proceedings of
the 2023 SIAM International Conference on Data Mining
(SDM), 559-567. SIAM.

Li, J.; Rakin, A. S.; He, Z.; Fan, D.; and Chakrabarti, C.
2021. RADAR: Run-time Adversarial Weight Attack De-
tection and Accuracy Recovery. In 2021 Design, Automa-
tion and Test in Europe Conference and Exhibition (DATE),
790-795.

Li, J.; Rakin, A. S.; Xiong, Y.; Chang, L.; He, Z.; Fan,
D.; and Chakrabarti, C. 2020a. Defending Bit-Flip Attack
through DNN Weight Reconstruction. DAC.

Li, Y.; Qian, B.; Zhang, X.; and Liu, H. 2020b. Graph neural
network-based diagnosis prediction. Big Data.

Lipp, M.; Schwarz, M.; Raab, L.; Lamster, L.; Aga, M. T.;
Maurice, C.; and Gruss, D. 2020. Nethammer: Inducing
rowhammer faults through network requests. EuroS&PW.
Liu, M.; Gao, H.; and Ji, S. 2020. Towards deeper graph neu-
ral networks. In Proceedings of the 26th ACM SIGKDD in-

ternational conference on knowledge discovery & data min-
ing, 338-348.

Liu, Q.; Yin, J.; Wen, W.; Yang, C.; and Sha, S. 2023. Neu-
roPots: Realtime Proactive Defense against Bit-Flip Attacks
in Neural Networks. pre-print accepted at USENIX Security.

Liu, Z.; Li, X.; Peng, H.; He, L.; and Philip, S. Y. 2020. Het-
erogeneous similarity graph neural network on electronic
health records. Big Data.

Lu, H.; and Uddin, S. 2021. A weighted patient network-
based framework for predicting chronic diseases using graph
neural networks. Scientific reports, 11(1): 22607.

Ma, J.; Ding, S.; and Mei, Q. 2020. Towards More Practi-
cal Adversarial Attacks on Graph Neural Networks. In Ad-
vances in Neural Information Processing Systems (NIPS),
volume 33, 4756-4766. Curran Associates, Inc.

Malach, E.; Yehudai, G.; Shalev-Schwartz, S.; and Shamir,
0. 2020. Proving the lottery ticket hypothesis: Pruning is all
you need. In International Conference on Machine Learn-
ing, 6682-6691. PMLR.

McKeen, F.; Alexandrovich, L.; Anati, I.; Caspi, D.; Johnson,
S.; Leslie-Hurd, R.; and Rozas, C. 2016. Intel® software
guard extensions (intel® sgx) support for dynamic mem-
ory management inside an enclave. In Proceedings of the
Hardware and Architectural Support for Security and Pri-
vacy 2016, 1-9.

Morris, C.; Fey, M.; and Kriege, N. 2021. The Power of
the Weisfeiler-Leman Algorithm for Machine Learning with
Graphs. In Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI-21, 4543-4550.
International Joint Conferences on Artificial Intelligence Or-
ganization.

Mutlu, O.; and Kim, J. S. 2019. Rowhammer: A retrospec-
tive. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 39(8): 1555-1571.

Ozdenizci, O.; and Legenstein, R. 2022. Improving Robust-
ness Against Stealthy Weight Bit-Flip Attacks by Output
Code Matching. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
13388-13397.

Pinto, S.; and Santos, N. 2019. Demystifying arm trustzone:
A comprehensive survey. ACM computing surveys (CSUR),
51(6): 1-36.

Qian, C.; Zhang, M.; Nie, Y.; Lu, S.; and Cao, H. 2023.
A Survey of Bit-Flip Attacks on Deep Neural Network and
Corresponding Defense Methods. Electronics, 12(4): 853.

Rakin, A. S.; He, Z.; and Fan, D. 2019. Bit-Flip Attack:
Crushing Neural Network With Progressive Bit Search. In
2019 IEEE/CVF International Conference on Computer Vi-
sion (ICCV), 1211-1220.

Rao, V.; and Prema, K. V. 2019. Comparative Study of
Lightweight Hashing Functions for Resource Constrained
Devices of IoT. 1In 2019 4th International Conference
on Computational Systems and Information Technology for
Sustainable Solution (CSITSS), 1-5.

Sugier, J. 2017. Memory resources in hardware implemen-
tations of BLAKE and BLAKE?2 hash algorithms. Journal
of Polish Safety and Reliability Association, 8(1).

17998

Sun, Y.; Wang, S.; Tang, X.; Hsieh, T.-Y.; and Honavar,
V. 2020. Adversarial Attacks on Graph Neural Networks
via Node Injections: A Hierarchical Reinforcement Learn-
ing Approach. 673—683.

Sun, Z.; Yin, H.; Chen, H.; Chen, T.; Cui, L.; and Yang, F.
2021. Disease Prediction via Graph Neural Networks. IEEE
Journal of Biomedical and Health Informatics, 25(3): 818—
826.

Wang, J.; Zhang, Z.; Wang, M.; Qiu, H.; Zhang, T.; Li, Q.;
Li, Z.; Wei, T.; and Zhang, C. 2023a. Aegis: Mitigating Tar-
geted Bit-flip Attacks against Deep Neural Networks. In
32nd USENIX Security Symposium (USENIX Security 23),
2329-2346.

Wang, Z.; Lin, Z.; Li, S.; Wang, Y.; Zhong, W.; Wang, X.;
and Xin, J. 2023b. Dynamic Multi-Task Graph Isomorphism
Network for Classification of Alzheimer’s Disease. Applied
Sciences, 13(14): 8433.

Welling, M.; and Kipf, T. N. 2016. Semi-supervised clas-
sification with graph convolutional networks. In J. Inter-
national Conference on Learning Representations (ICLR
2017).

Wu, L.; Cui, P; Pei, J.; Zhao, L.; and Song, L. 2022. Graph
Neural Networks: Foundations, Frontiers, and Applications.
Springer.

Wu, Z.; Ramsundar, B.; Feinberg, E. N.; Gomes, J.; Ge-
niesse, C.; Pappu, A. S.; Leswing, K.; and Pande, V. 2018.
MoleculeNet: a benchmark for molecular machine learning.
Chemical science, 9(2): 513-530.

Xiang, L.; Zeng, X.; Niu, Y.; and Liu, Y. 2019. Study of
Sensitivity to Weight Perturbation for Convolution Neural
Network. IEEE Access, 7: 93898-93908.

Xiaoqin Zeng; and Yeung, D. S. 2001. Sensitivity analysis
of multilayer perceptron to input and weight perturbations.
IEEE Transactions on Neural Networks, 12(6): 1358-1366.
Xiong, J.; Xiong, Z.; Chen, K.; Jiang, H.; and Zheng, M.
2021. Graph neural networks for automated de novo drug
design. Drug Discovery Today, 26(6): 1382—1393.

Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
Powerful are Graph Neural Networks? In 7th International
Conference on Learning Representations, ICLR.

Yan, M.; Fletcher, C.; and Torrellas, J. 2020. Cache telepa-
thy: Leveraging shared resource attacks to learn DNN archi-
tectures. In USENIX Security Symposium.

Yao, F.; Rakin, A. S.; and Fan, D. 2020. Deephammer: De-
pleting the intelligence of deep neural networks through tar-
geted chain of bit flips. In 29th USEN I X Security Sympo-
sium (USENIX Security 20).

Zhang, S.; Chen, H.; Sun, X.; Li, Y.; and Xu, G. 2022a. Un-
supervised graph poisoning attack via contrastive loss back-
propagation. In Proceedings of the ACM Web Conference
2022, 1322-1330.

Zhang, Z.; Wang, M.; Chen, W.; Qiu, H.; and Qiu, M. 2022b.
Mitigating Targeted Bit-Flip Attacks via Data Augmenta-
tion: An Empirical Study. In Knowledge Science, Engineer-
ing and Management: 15th International Conference, KSEM
2022.

