Fully Dynamic Algorithms for Transitive Reduction

Gramoz Goranci¹ Adam Karczmarz² Ali Momer

Ali Momeni³ Nikos Parotsidis⁴

¹University of Vienna

²University of Warsaw

³UniVie Doctoral School Computer Science DoCS, University of Vienna

Definition

Definition. A minimal subgraph H of G that preserves reachability:

there is an $x \to y$ path in $G \iff$ there is an $x \to y$ path in H.

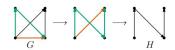


Figure 1. An example of computing H.

Combinatorial Algorithm

Main idea: maintain redundant edges in G.

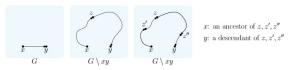


Figure 2. Edge xy is redundant in G.

1. For Directed Acyclic Graphs (DAGs)

Lemma 1. Edge xy is redundant in G iff one of the cases in Figure 3 below happens.

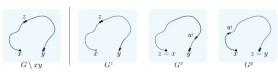


Figure 3. The info we need to declare xy redundant.

The data structure:

- For every vertex $v \in V$, maintains a graph G^v .
- After an insertion around v in G, G^v is reset as the snapshot of G.
- After edge deletions in G, the deletions are passed to G^v .

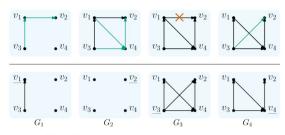


Figure 4. How data structure maintains the info.

Two variables:

- 1. Counter c(xy): number of $z \notin \{x,y\}$ with $xy \in E^z$, $x \in Anc^z$, and $y \in Desc^z$ in G^z .
- 2. Binary value t(xy): is set to 1 if
- vertex x has an out-neighbor $z \in \operatorname{Anc}^y \setminus y \in G^y$, or
- vertex y has an in-neighbor $z \in \text{Desc}^x \setminus x \in G^x$.

Invariant. Edge xy belongs to H iff c(xy) = 0 and t(xy) = 0.

Theorem 2. Our deterministic data structure maintains a transitive reduction H of a DAG G in $\mathcal{O}(m)$ amortized update time for extended updates.

2. For General Graphs

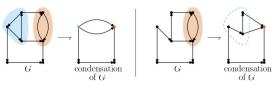


Figure 5. The challenge when G is a general graph.

Theorem 3. Our deterministic data structure maintains a transitive reduction H of a general digraph G in $\mathcal{O}(m+n\log n)$ amortized update time for extended updates.

Algebraic Algorithm

⁴Google Research

Main idea: maintain the inverse of a matrix A associated with G.

1. For Directed Acyclic Graphs (DAGs)

A: the adjacency matrix of G, where $A_{u,v} = 1$ iff $uv \in E$.

Fact. $A_{u,v}^k$: number of walks $u \to v$ of length k.

$$(I-A)\underbrace{(I+A+\cdots+A^{n-1})}_{\text{whole number of walks}} = I-A^n = I$$

Invariant. Edge xy belongs to H iff $(I - A)_{uv}^{-1} = 1$.

2. For General Graphs

 \tilde{A} : a symbolic adjacency matrix from $(\mathbb{F}(X))^{n \times n}$, where

$$\tilde{A}_{u,v} = \begin{cases} x_{u,v} & \text{if } uv \in E, \\ 0 & \text{otherwise.} \end{cases}$$

We add self-loops to G, ensuring $\det(\tilde{A}) \neq 0$.

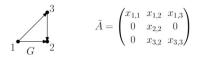


Figure 6. An example of \tilde{A} .

Theorem 4. Let $F = \{u_i v_i : i = 1, ..., k\}$ be a group of parallel inter-SCC edges between SCCs R, T of G. Let r, t be arbitrary vertices of R, T, respectively. The group F is redundant iff:

$$\tilde{A}_{r,t}^{-1} \not\equiv -\sum_{i=1}^{k} (-1)^{u_i + v_i} \cdot x_{u_i,v_i} \cdot \tilde{A}_{r,u_i}^{-1} \cdot \tilde{A}_{v_i,t}^{-1}.$$

A: entries' evaluated for some uniformly random substitution $\bar{X}: X \to \mathbb{Z}/p\mathbb{Z}$, where p is a prime number $p = \Theta(n^{3+c}), \ c > 0$.

Lemma 5. With high probability, A is invertible and group F of parallel inter-SCC edges is redundant iff:

$$A_{r,t}^{-1} + \sum_{i=1}^{k} (-1)^{u_i + v_i} \cdot \bar{x}_{u_i,v_i} \cdot A_{r,u_i}^{-1} \cdot A_{v_i,t}^{-1} \neq 0.$$

Theorem 6. Our randomized (Monte Carlo) data structure maintains a transitive reduction H of a general digraph G in:

- 1. $\mathcal{O}(n^2)$ worst-case update time for extended updates, and
- 2. $\mathcal{O}(n^{1.528} + m)$ worst-case update time for single-edge updates.

The initialization time of the data structure is $\mathcal{O}(n^{\omega})$.

References

[AGU72] A. V. Aho, M. R. Garey, and J. D. Ullman. The Transitive Reduction of a Directed Graph. SIAM Journal on Computing 1.2, pages 131–137, 1972.

[D105] Camil Demetrescu and Giuseppe F. Italiano. Trade-offs for fully dynamic transitive closure on DAGs: breaking through the $O(n^2)$ barrier. J. ACM 52.2, pages 147–156, 2005.

[KS02] Valerie King and Garry Sagert. A Fully Dynamic Algorithm for Maintaining the Transitive Closure. J. Comput. Syst. Sci. 65.1, pages 150-167, 2002.

[RZ08] Liam Roditty and Uri Zwick. Improved Dynamic Reachability Algorithms for Directed Graphs. SIAM J. Comput. 37.5, pages 1455–1471, 2008.

[RZ16] Liam Roditty and Uri Zwick. A Fully Dynamic Reachability Algorithm for Directed Graphs with an Almost Linear Update Time. SIAM Journal on Computing 45.3, pages 712–733, 2016.

[San04] Piotr Sankowski. Dynamic Transitive Closure via Dynamic Matrix Inverse (Extended Abstract). In: 45th FOCS, pages 509–517, 2004.

[San05] Piotr Sankowski. Subquadratic Algorithm for Dynamic Shortest Distances. In: 11th International Computing and Combinatorics Conference (COCOON). Vol. 3595, pages 461–470, 2005.