Fully Dynamic Algorithms for Transitive Reduction
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Algebraic Algorithm

Definition. A minimal subgraph H of G that preserves reachability:

there is an © — y path in G <= there is an x — y path in H.
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Figure 1. An example of computing H .

Combinatorial Algorithm

Main idea: maintain redundant edges in G.

x: an ancestor of 2,2/, 2"
y: a descendant of z, 2/, 2"
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Figure 2. Edge zy is redundant in G.

1. For Directed Acyclic Graphs (DAGs)

Lemma 1. Edge xy is redundant in G iff one of the cases in Figure 3 below happens.
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Figure 3. The info we need to declare zy redundant.

The data structure:

For every vertex v € V, maintains a graph G".
After an insertion around v in G, G is reset as the snapshot of G.
After edge deletions in G, the deletions are passed to G*.
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Figure 4. How data structure maintains the info.
Two variables:

1. Counter ¢(zy): number of z ¢ {z,y} with zy € E*, 2 € Anc?, and y € Desc® in G*.
2. Binary value t(zy): is set to 1 if

vertex x has an out-neighbor z € Anc? \ y € G¥, or

vertex y has an in-neighbor z € Desc” \ z € G”.

Invariant. Edge xy belongs to H iff «(xy) = 0 and t(zy) = 0.

Theorem 2. Our deterministic data structure maintains a transitive reduction H of
a DAG G in O(m) amortized update time for extended updates.

2. For General Graphs
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Figure 5. The challenge when G' is a general graph.

Theorem 3. Qur deterministic data structure maintains a transitive reduction H of
a general digraph G in O(m + nlogn) amortized update time for extended updates.

Main idea: maintain the inverse of a matrix A associated with G.

1. For Directed Acyclic Graphs (DAGs)
A: the adjacency matrix of G, where A, , =1 iff uv € E.

Fact. A - number of walks u — v of length k.

(I-AT+A+-+A" ) =T-A"=1]
~ —_—
whole number of walks

Invariant. Edge vy belongs to H iff (I — A), L =1.

2. For General Graphs

A: a symbolic adjacency matrix from (F(X))"*", where

A o LTy
Aup = { 0

We add self-loops to G, ensuring det(A) # 0.

ifuv € E,
otherwise.
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Figure 6. An example of A.

Theorem 4. Let F = {uv; : i = 1,...,k} be a group of parallel inter-SCC edges
between SCCs R, T of G. Let r,t be arbitrary vertices of R, T, respectively. The group
F is redundant iff:

k

A1 witv; -1 A-1

A it 'fzé - § (_1) * Ly, AI'JL, : AU,AI'
i=1

A: entries’ evaluated for some uniformly random substitution X : X — Z/pZ, where p
is a prime number p = O(n**), ¢ > 0.

Lemma 5. With high probability, A is invertible and group F of parallel inter-SCC
edges is redundant iff:
E
A;.t,l + Z(_l)uﬁu' Ty, ATT.IIL, ) Aalt, #0.

i=1

Theorem 6. Our randomized (Monte Carlo) data structure maintains a transitive
reduction H of a general digraph G in:

) O(n2) worst-case update time for extended updates, and

2 O(TLI“m + m) worst-case update time for single-edge updates.

The initialization time of the data structure is O(n®).
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