
Performance Patterns for CI/CD Pipelines

Francesco Urdih1,2[0009−0000−3507−5043], Theodoros
Theodoropoulos1[0000−0002−4618−4891], and Uwe Zdun1[0000−0002−6233−2591]

1 University of Vienna, Faculty of Computer Science, Software Architecture Research
Group, Vienna, Austria

firstname.lastname@univie.ac.at
2 University of Vienna, Faculty of Computer Science, UniVie Doctoral School

Computer Science DoCS, Vienna, Austria

Abstract. Continuous Integration and Continuous Deployment (CI/CD)
pipelines constitute an important aspect of modern software develop-
ment, automating workflows to enable frequent integration, rapid feed-
back, and reliable software releases. The performance of these pipelines
directly influences the speed and efficiency of the software delivery life-
cycle, making optimization essential as development projects need to
scale. This paper explores 9 foundational performance patterns that ad-
dress key forces such as pipeline speed, resource efficiency, and scalability.
The patterns deal with, among other things, reducing inefficiencies when
running the pipeline and increasing the usage of available resources. One
common strategy employed in the patterns to address inefficiency is re-
ducing the number of tasks executed in the pipeline. Our pattern mining
study draws upon a dataset from an empirical analysis of 31 grey liter-
ature sources, exploring practitioner perspectives on enhancing CI/CD
pipeline performance. Furthermore, we analyze multiple mature GitLab
and GitHub repositories in-depth to find known uses of the presented
patterns.

Keywords: CI/CD · Continuous Integration · Continuous Delivery · Perfor-
mance · Patterns · Grounded Theory.

1 Introduction

Continuous Integration and Continuous Deployment (CI/CD) pipelines [22] are
automated workflows that streamline the building, testing, and deployment of
software. By promoting frequent integration and reliable delivery, CI/CD en-
ables development teams to receive faster feedback, improve software quality,
and maintain consistent release cycles [25,23,3]. These pipelines typically involve
several phases—including building, automated testing, artifact generation, and
deployment—that ensure every code change is validated and production-ready.
As such, CI/CD pipelines are a cornerstone of modern software engineering,
closely aligned with agile methodologies and DevOps principles to boost pro-
ductivity and system reliability.

2 F. Urdih et al.

In this context, pipeline performance becomes critical to accelerating the
software delivery lifecycle. CI/CD pipelines automate repetitive tasks, facili-
tating rapid feedback and dependable releases [18]. To maintain these benefits
at scale, performance considerations center on minimizing latency, maximizing
throughput, and optimizing resource utilization across pipeline activities. Ad-
dressing performance is not merely a matter of speed. Inefficient pipelines can
worsen system-related metrics, such as introducing serious bottlenecks, delaying
feedback, inflating infrastructure costs. Furthermore, they can also diminish de-
veloper productivity [26,8], by, among other things, making developers switch
context and activities while waiting for a pipeline run to complete. Ultimately,
slow builds can postpone the identification of integration issues, reducing de-
velopment velocity and slowing down time-to-market. Our proposed patterns
help mitigate such issues, offering actionable solutions rooted in real-world us-
age while still grounded in fundamental CI/CD principles.

A growing body of practices and strategies has emerged to address perfor-
mance challenges in CI/CD systems [24,27,7,1,15]. These strategies aim to en-
hance scalability and responsiveness by refining core aspects such as resource
allocation, task orchestration, and failure recovery. By emphasizing modular de-
sign, parallel execution, and efficient dependency management, teams can build
pipelines that are not only faster but also more resilient and adaptable.

In this paper, we organize these strategies into a set of performance patterns,
providing a structured lens through which to understand and apply performance
improvements in CI/CD workflows. While individual techniques may have been
discussed in prior work, they are rarely synthesized into reusable, high-level ab-
stractions. Our pattern-based approach bridges this gap by translating practical
experiences and scattered best practices into cohesive design guidance that can
be applied across various CI/CD tools and environments. We present a set of
foundational performance patterns for CI/CD systems, exploring their role in
improving pipeline efficiency and maintainability. We examine the underlying
forces driving the adoption of these patterns and demonstrate their application
through examples, primarily focused on GitLab CI/CD. Our goal is to provide
practical guidance for DevOps practitioners, software engineers, and system ar-
chitects aiming to enhance the performance of the leveraged CI/CD systems.

This article is structured to build a cohesive argument for the adoption of
performance patterns in CI/CD systems. Section 2 reviews the relevant scientific
literature, highlighting existing knowledge on CI/CD performance and identify-
ing gaps that our pattern-based approach addresses. Building on this foundation,
Section 3 outlines the methodology used to derive and validate the performance
patterns presented in this work. Section 4 illustrates how they can be applied
in practice to improve pipeline performance. Finally, Section 5 reflects on the
broader implications of our findings and offers recommendations for both prac-
titioners and future research.

Performance Patterns for CI/CD Pipelines 3

2 Related Work

Several works have focused on CI/CD patterns to speed up pipelines. For in-
stance, Gallaba et al. [7] proposed a tool that automatically leverages the caching
of dependencies across pipeline executions. Abdalkareem et al. [1] introduced
rule-based techniques for skipping pipeline runs. Machalica et al. [15] studied
metrics and indicators to select which tests to run and which to skip. However,
these studies focus on isolated patterns or techniques for speeding up pipelines
rather than providing a comprehensive perspective.

Other works have aimed at cataloging CI/CD patterns and practices more
broadly [6,13]. Giao et al. [5] have analyzed GitHub repositories to understand
the CI/CD technologies developers use. By leveraging the GitHub search API,
repositories using state-of-the-art CI/CD tools are identified and analyzed. Al-
though insightful, these efforts do not emphasize performance optimization.

Performance-related studies have also been conducted. For instance, Ghaleb
et al. [11] have studied several characteristics of CI builds that may be associated
with the long duration of CI builds by performing an empirical study on 104,442
CI builds from 67 GitHub projects. Furthermore, Yin et al. [27] list performance-
related CI patterns. Their study analyzed techniques developers use to speed up
CI pipelines, based on 2,896 open-source CircleCI3 jobs.

Our work focuses on CI/CD and is not limited to CI pipelines. Furthermore,
our patterns catalog is based on the grey literature we studied. Despite the value
offered by grey sources for software engineering investigations [9], none of the
previous studies employ them. Few other studies use grey literature regarding
CI/CD pipelines. Zampetti et al. [28] cataloged 79 CI bad smells relying on 2300
Stack Overflow posts. Contrary to them, we focused on CI/CD performance
patterns rather than generic CI bad practices. To conclude, after exploring the
corresponding scientific literature, it became apparent that there is a research
gap in terms of the identification and analysis of the various CI/CD performance
patterns. This study is geared towards mitigating this gap.

3 Research Method

This study aims to uncover and validate CI/CD performance-related patterns,
relying on grey literature and analysis of real-world repositories. Patterns of-
fer reusable solutions to common problems, enabling teams to implement best
practices and avoid pitfalls.

The primary knowledge sources utilized in this study were derived from an
extensive analysis of 31 grey literature sources, including materials such as blog
posts and system documentation [9]. We have employed grey literature given its
high value for research in software engineering [10]. These sources were exam-
ined in depth using practices and principles from Straussian Grounded Theory
(GT) [4], a systematic approach to derive theory from data. We follow the GT

3 https://circleci.com/docs/: accessed May 2025

https://circleci.com/docs/

4 F. Urdih et al.

process of open, axial, and selective coding. The constant comparison proce-
dure complemented coding to identify recurring patterns and relationships. To
gather sources, we relied on search engines (e.g., Google, DuckDuckGo) and used
queries such as “making CI/CD pipelines faster," “making CI/CD pipelines more
efficient," etc.

To augment our analysis, we also examined the 5 most popular (i.e., most
starred) public repositories on GitLab. We selected repositories by popularity,
given its high precision in finding mature candidates for software engineering
investigations [17]. All 5 repositories, listed in Table 1 alongside some of their
characteristics, presented a CI/CD workflow deemed mature for our investiga-
tion. We focused exclusively on repositories from the community, excluding the
ones maintained by the GitLab team. We have included the specific commit hash
we investigated to enable the replication of our analysis. All the commits were
pushed in December 2024 to the repository default branch. Table 2 summarizes
the employed patterns. Furthermore, when less than 3 of these repositories ap-
plied a presented pattern, we looked for additional known uses, employing both
search engines (e.g., Google, DuckDuckGo) and GitHub search API4.

Table 1: Most starred GitLab repositories from the community
Full

Name
Commit

Hash
Programming

Languages Stars Repository
Type

inkscape/inkscape 0be98cd8 C++ 3.5 k Image editor
CalcProgrammer1/openrgb c2215cbe C++ 3.0 k Universal light driver
fdroid/fdroidclient 140fdaa8 Java, Kotlin 2.3 k Android app manager
veloren/veloren 11f84d12 Rust 2.2 k Online game
baserow/baserow 727ab462 Python, Javascript 2.0 k SaaS

We defined specific methods for certain patterns to identify their presence in
a repository based on GitLab documentation. For example, while Comprehensive
Pipeline Automation is a broad concept, we narrowed our focus to fully auto-
matic pipelines. Similarly, we established rigorous criteria to determine whether
a specific pattern was applied. These definitions ensure clarity and consistency
in the methodology applied in this paper.

Our analysis primarily concentrated on the .gitlab-ci.yml file and related
YAML template files and scripts (e.g., Bash, Gradle) referenced within these
files. We thoroughly reviewed these files. We analyzed the remaining ones (e.g.,
source files, documentation, etc.) only with keyword searches. Additionally, we
analyzed pipeline job logs using keyword searches.

4 https://github.com/search/advanced: accessed May 2025

https://github.com/search/advanced

Performance Patterns for CI/CD Pipelines 5

Table 2: Usage of patterns in the analyzed GitLab repositories
Pattern inkscape openrgb fdroidclient veloren baserow

Task Parallelization X X X X X
CI/CD Architecture

Scaling Strategy
Pipeline Asset Caching X X X X X

Incremental Build X X
Pipeline Test

Ordering X

Selective Testing X
Conditional Pipeline
and Job Triggering X X X X X

Comprehensive Pipeline
Automation X X

Mocked External
Services X X

Besides analyzing these 5 repositories, we provide some source code examples
to apply the patterns proposed. All the examples5 have been tested on a public
GitLab repository6.

Towards contextualizing our approach, we leveraged a plethora of processes.
Hentrich et al. [12] provide a detailed account of how GT’s coding process can
be mapped to pattern mining. Riehle et al. [21] elaborate on various systematic
pattern mining methods, outlining key steps such as discovery, codification, eval-
uation, and validation of patterns [2]. These steps were integral to our methodol-
ogy, with GT-based pattern mining incorporating them directly into the coding
and constant comparison processes. Adopting these procedures ensures a rigor-
ous and systematic approach to identifying and validating CI/CD performance
patterns, enhancing the reliability and applicability of our findings.

All the grey literature sources, alongside some notes of our sources analysis
and repositories investigations, can be found in the replication package7. Em-
ploying the notes we elaborated after the three coding phases, we propose a
catalog of 9 patterns.

4 Performance Patterns

This section describes in depth the 9 patterns proposed in our work, which focus
on optimizing the speed and efficiency of CI/CD pipelines. An overview of these
performance optimization patterns is depicted in Table 3.
5 Note that the presented examples may partially differ from the ones tested (e.g.,

distinct job names, shell arguments) as the former are often simplified for higher
understandability.

6 https://gitlab.com/random_researcher/cd-performance-patterns
7 https://doi.org/10.5281/zenodo.14747351

https://gitlab.com/random_researcher/cd-performance-patterns
https://doi.org/10.5281/zenodo.14747351

6 F. Urdih et al.

Table 3: Overview of CI/CD Performance Optimization Patterns
Pattern Purpose

Task Parallelization Splits tasks into smaller, independent units
that can run concurrently, reducing total
pipeline time.

CI/CD Architecture
Scaling Strategy Dynamically adjusts resource allocation

based on workload to improve performance
and avoid over-provisioning.

Pipeline Asset Caching Reuses previously built assets (e.g., depen-
dencies, intermediate results) to reduce re-
dundant work.

Incremental Build Builds only modified parts of the system,
reducing build time and avoiding unneces-
sary computation.

Pipeline Test Ordering Prioritizes tests by importance or cost to
deliver faster feedback with reduced re-
source consumption.

Selective Testing Executes only tests relevant to the changes
made, minimizing time without sacrificing
coverage.

Conditional Pipeline and
Job Triggering Triggers only necessary pipeline phases or

tasks based on the nature of the change.
Comprehensive Pipeline

Automation Fully automates the pipeline for reliability,
consistency, and reduced manual interven-
tion.

Mocked External Services Replaces real external services with
lightweight mocks during testing to
increase speed and reduce dependency
overhead.

4.1 Pattern: Task Parallelization

Context CI/CD pipelines typically may execute tasks sequentially unless ex-
plicitly configured for concurrency. However, many tasks—such as independent
test suites, static analysis, or security scans—can be executed concurrently with-
out introducing conflicts. This pattern applies when the pipeline contains tasks
that are logically independent and can be safely executed in parallel. It also as-
sumes the existence of unused infrastructure (e.g., idle runners or unused CPU
cores) and a need for improved execution speed or feedback cycles.

Problem Many CI/CD jobs are executed sequentially, leading to inefficient use
of infrastructure. As a result, some runners may be idling even though other
tasks could already be executed in parallel, delaying feedback and increasing
overall pipeline duration.

Performance Patterns for CI/CD Pipelines 7

Forces
– Effective Resource Utilization vs Dependency Management: Em-

ploying all machines managed by the CI/CD orchestration tool to run as
many CI/CD jobs as possible ensures effective execution of pipeline tasks,
but this can increase the complexity of task coordination, particularly when
dependencies and shared resources are involved.

– Parallel Computations vs Data Consistency and Reliability: Ensur-
ing a consistent state of data —such as files and environment variables—is
important during build, test, and deployment phases. Failing to do so can
worsen the repeatability of pipeline executions, ultimately delaying feedback
when bugs appear. Nevertheless, the consistency requirement poses chal-
lenges when tasks are executed in parallel.

– Error Handling: Prompt termination of jobs upon detecting errors or fail-
ing to meet predefined quality thresholds helps conserve resources and main-
tain pipeline integrity. However, determining appropriate termination strate-
gies is difficult when task dependencies must be accounted for, as failure in
one task does not always justify halting the entire workflow.

Solution Enable concurrent execution of independent CI/CD tasks by leverag-
ing both inter-job and intra-job parallelism. Use dependency analysis to identify
which tasks can safely execute in parallel, and configure the pipeline to run them
concurrently, thereby reducing overall execution time and improving feedback
cycles.

Solution Details Begin by identifying all tasks in the pipeline and analyzing
their dependencies. Determine which jobs are independent and can be safely
executed in parallel without introducing conflicts. Explicitly define dependen-
cies where required, using orchestration features such as needs in GitLab or
equivalent mechanisms in other CI/CD tools.

Configure inter-job parallelism by placing independent tasks in the same
pipeline phase or explicitly marking them as non-dependent. For tasks that are
internally parallelizable (e.g., test runners or build tools), configure the tool to
utilize multiple threads or CPU cores using flags or environment variables.

Although infrastructure underutilization is assumed, it is important to as-
sess whether the available capacity can meet the increased demand of parallel
execution. Monitoring tools can help identify idle runners, underused cores, or
bottlenecks.

To reduce risks from concurrency, tasks should be designed to be stateless and
avoid reliance on shared data or global state. Where shared state is unavoidable,
synchronization mechanisms must be put in place to ensure consistency.

Example Figure 1 shows an example of a CI/CD pipeline in which the unit
tests are isolated and independent. Thus, parallel unit testing, as provided by
JUnit, can be enabled. Integration testing is then sequentially run after the unit

8 F. Urdih et al.

tests. The pipeline contains static code analysis and security scans as quality
controls. Both run in parallel to the basic tests and are invoked concurrently.
Performance and user acceptance testing are parallel pipeline tasks, as they have
no overlap. However, performing both in parallel may be a waste of resources
if one fails. Further, an analysis showed that users could perform manual User
Acceptance Testing (UAT) in parallel per system feature, with little overlapping
concerns that would require coordination among testers. Also, the usability tests
are performed in parallel. The UAT parallelization is performed in the UAT
coordination component (outside the pipeline).

Code Commit

Build
Compile Code

Performance Test
Setup Test Environment
Run Performance Tests

Shutdown Test Environment
Production Deployment
Setup Production Environment

Deploy Artifact
Run Smoke Tests

User Acceptance Test
Setup Test Environment

Run UATs
Shutdown Test Environment

Running unit tests in
parallel enabled

Run in parallel:
- Functional UAT for each Feature of the System
- Usability Testing

Test
Run Unit Tests

Run Integration Tests

Code Quality Controls
Run Static Code Analysis

Run Security Scans

Running
concurrently

Fig. 1: Test Parallelization to Support Task Parallelization and Pipeline Test
Ordering

In the following listing, part of the pipeline shown in Figure 1 has been imple-
mented with the GitLab CI tool. While these examples are GitLab-specific, the
concepts are generalizable and applicable to other CI/CD tools such as GitHub
Actions, CircleCI, and Jenkins. We have defined 4 phases and 7 jobs, 4 of which
are implemented. The basic_tests, static_analysis, and security_scans jobs
run all in parallel, while the unit tests are executed 4 per time.

For this scenario, it makes sense to design the pipeline using phases. Never-
theless, in other scenarios, explicit job dependencies using the needs8 keyword
may be more appropriate. With needs, jobs from one phase do not need to wait
for all the jobs from the previous phase to complete, but only specific ones.

image: gradle :8.1.1 -jdk11 -alpine

phases:
- build
- test_first_phase
- test_second_phase
- deploy

build_job:
phase: build
script:

- ./ gradlew assemble

8 https://docs.gitlab.com/ee/ci/yaml/index.html#needs: accessed May 2025

https://docs.gitlab.com/ee/ci/yaml/index.html#needs

Performance Patterns for CI/CD Pipelines 9

basic_tests:
phase: test_first_phase
script:

- ./ gradlew test --tests "tests.unit"
-DmaxParallelForks =4
- ./ gradlew test --tests "tests.integration"

static_analysis:
phase: test_first_phase
script:

- ./ gradlew staticAnalyzer

security_scans:
phase: test_first_phase
script:

- ./ gradlew securityAnalyzer

... remaining jobs ...

Consequences The application of the pattern Task Parallelization presents the
following consequences:
(+) The pipeline becomes faster thanks to multiple jobs running at the same

time, as well as jobs employing multithreading.
(+) The jobs can scale better when the workload is increased.
(+) Fewer machines will be idling, waiting to execute a job.
(+) When executing a job, this will employ more of the available resources (i.e.,

processor and memory).
(−) The tasks have to be initially adapted and continuously maintained to em-

ploy parallel computations. Special attention is required to identify depen-
dencies and handle errors while multiple tasks are executed at the same
time.

(−) The costs of operating more machines, as well as employing more resources
within a machine, increase.

Related Patterns Task Parallelization can be particularly effective when com-
bined with Pipeline Test Ordering. By categorizing and prioritizing tests, you can
parallelize the execution of critical and short-running tests, reduce bottlenecks,
and improve feedback times. Tests can be parallelized in the test framework or
via parallel pipeline phases.

Known Uses In GitLab, all jobs in the same phase run in parallel9 unless
dependencies are defined. For this reason, all the 5 repositories do apply inter-
job parallelism. Nevertheless, only 3 repositories (inkscape, openrgb, baserow)
9 Whether two jobs actually run in parallel also depends on the number of available

runners.

10 F. Urdih et al.

configure explicit job dependencies with needs. In the other two projects, a job
in stage B must wait for each job in stage A before starting, even if it doesn’t
depend on all of them.

In addition, we have found evidence for intra-job parallelism for 3 repositories:

– inkscape runs multiple make10 commands specifying to use 3 parallel threads.
Furthermore, the project employs ninja11, which, by default, attempts to use
as many threads as available cores.

– veloren uses cargo12 to build and test the Rust application. This tool uses
all available cores unless specified otherwise.

– baserow employs the pytest-split13 package to split Python tests based on
their expected execution time and then executes them in separate threads.

4.2 Pattern: CI/CD Architecture Scaling Strategy

Context Development teams encounter fluctuating workloads in their CI/CD
pipelines, with some phases experiencing surges in demand during peak devel-
opment periods.

Problem Fixed infrastructure allocation for CI/CD pipelines can lead to in-
efficient resource utilization, where resources are either underused during low
demand or insufficient during high demand. This imbalance impacts execution
times and increases costs.

Forces
– Performance Stability vs Operational Costs: The resource utilization

of CI/CD pipelines fluctuates over time—daily (day vs. night), weekly (week-
day vs. weekend), and monthly [20]—and the infrastructure must be capable
of sustaining baseline performance under these varying loads. Nevertheless,
ensuring such stability often requires overprovisioning or dynamic scaling
strategies, which introduce additional operational complexity.

– Efficiency vs Cost and Availability: Fleet configuration must minimize
wasted computational resources (e.g., during idle periods) and control overall
expenditures, but optimizing for cost efficiency can conflict with the need to
maintain performance headroom for peak workloads.

– Effectiveness vs Maintenance: A functional and reliable runner fleet
supports CI/CD operations effectively. However, it requires constant main-
tenance overhead and increases infrastructure complexity, especially when
tailored strategies are used to manage scaling, fault tolerance, and software
updates.

10 https://www.gnu.org/software/make/manual/make.html: accessed May 2025
11 https://ninja-build.org/manual.html: accessed May 2025
12 https://doc.rust-lang.org/cargo/: accessed May 2025
13 https://jerry-git.github.io/pytest-split/: accessed May 2025

https://www.gnu.org/software/make/manual/make.html
https://ninja-build.org/manual.html
https://doc.rust-lang.org/cargo/
https://jerry-git.github.io/pytest-split/

Performance Patterns for CI/CD Pipelines 11

Solution Implement dynamic scaling for pipeline resources based on workload
demand. Use cloud-native solutions, container orchestration platforms, or CI/CD
tools supporting auto-scaling capabilities to adjust resources dynamically.

Solution Details CI/CD Architecture Scaling Strategy involves real-time mon-
itoring of pipeline workloads and using scaling triggers to allocate or release
resources. For example:
– Use cloud-based runners or Kubernetes clusters with auto-scaling capabili-

ties.
– Implement thresholds for resource allocation based on pipeline metrics such

as task queue length, CPU, or memory utilization.
– Define policies to scale down resources during idle times to reduce costs.
– Ensure scaling mechanisms are robust to avoid delays during scaling up.

Use predictive scaling where historical data informs future demand patterns,
optimizing resource availability.

Example Figure 1 illustrates a CI/CD pipeline running on a Kubernetes cluster
with auto-scaling enabled. The cluster consists of three nodes, each one dedicated
to hosting a distinct part of the pipeline. Additional pods are spawned during
peak hours to handle concurrent tasks like builds, tests, and deployments. Off-
peak hours trigger resource downscaling. In the case of the corresponding figure,
this process is showcased using the testing part of the pipeline as an example.

Build Test

Node A Node B

Test

Kubernetes Cluster

Deploy

Node C

Fig. 2: A Kubernetes Cluster, Hosting a CI/CD Pipeline, Exhibiting Dynamic
Autoscaling.

Consequences The application of the pattern CI/CD Architecture Scaling
Strategy presents the following consequences:
(+) The pipeline becomes faster thanks to the architecture scaling to the re-

sources needed.

12 F. Urdih et al.

(+) Operational costs decrease when the scaling strategy focuses on efficiency,
keeping active only the machines currently executing tasks and shutting
down or hibernating the others.

(−) An architecture scaling to the pipelines’ needs adds maintenance overhead
and increases overall infrastructure complexity.

(−) Operational costs increase when the scaling strategy focuses on performance,
trying to match as much as possible the resource demands of the CI/CD
workflows.

Related Patterns CI/CD Architecture Scaling Strategy can be combined with
Task Parallelization to keep up with resource demands during parallel task ex-
ecution without over-provisioning resources. This ensures that, if the tasks are
designed to be run in parallel, they are actually run in parallel and they are not
queued because of a lack of machines.

Known Uses We could not determine whether the pattern is applied in the
investigated repositories since GitLab autoscaling capabilities14 are accessible
only with high-level repository roles. While searching for possible autoscaling
signatures (e.g., in the documentation and/or source files), we did not find any
evidence. Nevertheless, the pattern may still be implemented in each of them.

To provide examples of CI/CD Architecture Scaling Strategy, we focused on
ARC15, a GitHub action capable of autoscaling self-hosted machines for CI/CD
pipelines. We identified three popular repository where this technology is ap-
plied in one or more pipelines: mudler/LocalAI16, 0chain/zwalletcli17, ifooth/
devcontainer18.

4.3 Pattern: Pipeline Asset Caching

Context Development teams encounter fluctuating workloads in their CI/CD
pipelines, with some phases experiencing surges in demand during peak devel-
opment periods. This pattern is particularly relevant in environments where
scalable infrastructure (such as cloud platforms or container orchestration sys-
tems like Kubernetes) is available to dynamically provision and de-provision
resources.

In contrast, teams operating on fixed, self-managed infrastructure may face
limitations in applying this strategy. Without access to elastic resources, the
ability to respond to workload spikes is constrained, requiring careful provision-
ing and potentially leading to trade-offs between performance and resource cost.
Therefore, while the strategy is applicable in various deployment contexts, it is
most effective when some level of infrastructure scalability is available.
14 https://docs.gitlab.com/runner/runner_autoscale/: accessed May 2025
15 https://github.com/actions/actions-runner-controller: accessed May 2025
16 https://github.com/mudler/LocalAI/tree/e81ceff: accessed May 2025
17 https://github.com/0chain/zwalletcli/tree/0f11d2e: accessed May 2025
18 https://github.com/ifooth/devcontainer/tree/44d39d1: accessed May 2025

https://docs.gitlab.com/runner/runner_autoscale/
https://github.com/actions/actions-runner-controller
https://github.com/mudler/LocalAI/tree/e81ceff
https://github.com/0chain/zwalletcli/tree/0f11d2e
https://github.com/ifooth/devcontainer/tree/44d39d1

Performance Patterns for CI/CD Pipelines 13

Problem Constantly re-creating pipeline assets during different phases and
runs, including re-downloading dependencies, re-generating artifacts, and recon-
figuring environments, can significantly slow down the CI/CD process and in-
crease resource consumption.

Forces
– Pipeline Performance: CI/CD pipeline jobs often require either fetching

artifacts from external services or computing them locally. Caches remove the
need by saving the results of a pipeline run. Nevertheless, excessive usage of
caches can decrease pipeline speed when less time is required for re-processing
the artifacts than using the cache. This risk is present especially for heavy
artifacts in distributed cache systems, where network speed affects the time
for using artifacts.

– Efficiency vs Complexity and Consistency: Redundant computations
or repeated artifact downloads should be minimized to conserve resources,
but implementing effective caching and reuse mechanisms adds complexity
to pipeline design and management. Special attention should be put into the
consistency of the cached artifacts. These must accurately reflect the current
state of the codebase to ensure correct builds and tests.

– Reliability: When the result of a complex task (e.g., distributed computa-
tions) is cached, future pipelines have higher chances of success. However,
the pipeline must re-run all tasks if the cache is not consistent anymore with
the codebase state. Failing to do so can make the pipeline less predictable
and ultimately less reliable.

– Resource Usage: Caches reduce the number of computations required to
accomplish a task. Nevertheless, cached assets must be stored on disks man-
aged by the orchestration tool, which needs an adequately provisioned ca-
pacity.

Solution Implement pipeline asset caching for storing and reusing assets such
as dependencies, build artifacts, configurations, and environments. Configure the
CI/CD system to determine when cached assets can be reused and when they
need to be updated to ensure consistency.

Solution Details A caching strategy and realization should be derived for
each artifact that benefits from being reused across pipeline phases or runs. For
instance, consider typical solutions for the following types of assets:

– Dependencies: Use the cache functions of package managers, such as npm,
maven, and pip, to store locally the downloaded dependencies. Ensure that
the CI/CD pipeline reuses these caches unless there are changes in the de-
pendency list or version updates.

– Build Artifacts: Cache the build outputs to avoid redundant compilations.
Caching these artifacts can significantly reduce build times, especially for
large projects.

14 F. Urdih et al.

– Environments: Cache environments such as Docker images and layers or VM
snapshots. Use these cached setups to speed up environment provisioning.

– Other Artifacts: Include caching of additional artifacts such as configura-
tions, security scan reports, performance metrics, accuracy metrics, or gen-
erated documentation to avoid recreating these files when unnecessary.

In addition, developers should consider implementing cache invalidation strate-
gies to maintain the accuracy of assets. This can include tracking changes in the
code base, dependency updates, or configuration changes to decide when the
cache needs to be updated. Note that most tools can recognize whether a cache
is still valid or if it should be processed/downloaded again.

Other aspects of the caching pattern are essential for its effectiveness, such
as the assets availability: not all cached assets can or should be used in every
pipeline. Specifically, some assets can be cached only for the duration of a specific
pipeline and deleted as soon as this terminates, while others can be used across
multiple pipeline runs. Furthermore, CI/CD tools can be configured to have
separate caches for protected and not-protected branches. This functionality is
useful to address security concerns but may limit the benefits of the pattern by
doubling the number of times certain assets are built or downloaded.

Besides availability, the cache location determines the speed to access it. For
dynamic runners, a distributed cache can be more effective than a runner’s local
cache by reducing the time of the warming phase.

Example In GitLab CI/CD, two caching strategies are available. Assets can be
saved to be used across multiple pipeline runs or only across jobs of the same
pipeline run. The former strategy is available with the cache19 keyword, while
the latter with artifacts20.

In the GitLab CI/CD pipeline code excerpt below, the cache settings are
defined under the clause cache. When a job is completed, GitLab saves the
specified cache paths in its caching system. In subsequent pipeline runs, GitLab
attempts to restore the cache with the specified key. If a cache matching the
key is found, the cache files are downloaded and extracted to the job’s working
directory before the job scripts are executed.

build -job:
phase: build
script:

- gradle clean build --build -cache
cache:

key: "$CI_COMMIT_REF_SLUG"
paths:

- .gradle/
- build/

policy: pull -push

19 https://docs.gitlab.com/ee/ci/yaml/index.html#cache: accessed May 2025
20 https://docs.gitlab.com/ee/ci/yaml/index.html#artifacts: accessed May 2025

https://docs.gitlab.com/ee/ci/yaml/index.html#cache
https://docs.gitlab.com/ee/ci/yaml/index.html#artifacts

Performance Patterns for CI/CD Pipelines 15

Consequences The application of the pattern Pipeline Asset Caching presents
the following consequences:
(+) The pipeline becomes faster and more efficient thanks to fewer repeated

tasks across multiple runs.
(+) The jobs can scale better when the workload is increased.
(−) Cached assets have to be consistent with the state of the codebase. Invali-

dation strategies must be implemented to avoid issues with inconsistency.

Related Patterns Pipeline Asset Caching complements Incremental Builds
by storing build outputs and dependencies. Caching test results or setups can
complement Selective Testing by storing information on code changes required
to execute the tests selectively. It also complements Pipeline Test Ordering, as
necessary artifacts, test configurations, and test environments can be cached for
later phases or future pipeline runs.

Known Uses All 5 investigated repositories apply caches for at least one type
of asset. inkscape and fdroidclient configure a cache to use across multiple
pipeline runs with the cache clause. The remaining 3 projects only apply the
artifacts functionality, caching assets only for the duration of a pipeline. Table
4 illustrates in detail the type of cached artifacts for each repository.

Table 4: Summary of Cached Artifacts by Repository
Project
Name

Build
Results

Documentation
Pages

Docker
Layers

inkscape X X
openrgb X
fdroidclient X
veloren X
baserow X

4.4 Pattern: Incremental Build

Context Many CI/CD projects commit often and do not apply significant
changes in a single commit.

Problem Building the entire codebase from scratch for each pipeline run, re-
gardless of the actual scope of changes, leads to unnecessary time and resource
consumption. This is particularly inefficient for projects where only small por-
tions of the code change between commits. Development teams need strategies
that limit the build scope to changed components to maintain fast feedback
loops.

16 F. Urdih et al.

Forces Although the forces for the Incremental Build pattern are the same as
the Pipeline Asset Caching pattern, they differ by focusing on the build process
and its dependency analysis:
– Accurate change detection and dependency tracking are required to deter-

mine which components need rebuilding, which can introduce computational
overhead.

– There is a tension between the need for fast builds and the potentially costly
analysis needed to detect the minimal required rebuild scope.

Solution Implement incremental builds by configuring the build system to rec-
ognize changes in the code base and recompile only the changed components and
their dependencies. This approach uses tools and scripts to analyze changes and
determine the minimum necessary rebuilding components.

Solution Details Incremental builds require the setup of a build system, such
as make or gradle, that supports change detection and dependency management.
These systems track file changes and dependency graphs to identify only the
affected components.

Developers must ensure proper configuration and maintenance of build scripts
to capture dependencies accurately and employ caching mechanisms between
CI/CD pipeline runs to store build artifacts for reuse.

Example gradle is a popular technology supporting Incremental Builds per
default. The command gradle jar in the example below specifies that gradle
should build a jar file of the application. gradle tracks changes in dependencies
and input files and only rebuilds targets that have changed since the last build.
This means that if a file has not changed, gradle will reuse the output of previous
builds, speeding up the build process.

The example below uses the cache key APPLICATION_VERSION. This ensures
that the cache is used consistently for all builds of a certain version of the
application and that the integrity of the incremental build process is maintained.

build -job:
phase: build
script:

- gradle jar
cache:

key: "$APPLICATION_VERSION"
paths:

- .gradle/
- build/

policy: pull -push

Consequences The application of the pattern Incremental Build presents the
following consequences:

Performance Patterns for CI/CD Pipelines 17

(+) The pipeline becomes faster and more efficient thanks to fewer computations
for build jobs across multiple runs.

(+) The build jobs can scale better when the workload is increased.
(−) Incremental builds must correctly reflect the current state of the codebase.

This adds operational complexity because stale or inconsistent outputs can
arise if dependency tracking or change detection fails. Thus, invalidation
strategies must be implemented to ensure correctness.

Related Patterns Incremental Build benefits from Pipeline Asset Caching,
which can be used to store build outputs and dependencies.

Incremental Build can be combined with Selective Testing, as the impact
and dependency analyses performed for the build can be reused to select the
impacted tests.

Task Parallelization can be supported in the Incremental Build when builds
are run in parallel. Conditional Pipeline and Job Triggering complements Incre-
mental Build as it can decide whether to launch the build at all.

Known Uses Only 2 repositories build their application incrementally: inkscape
and fdroidclient. The former saves the ccache21 directory across multiple pipeline
runs, while the latter saves gradle’s cache.

Another example of the pattern is wireshark/wireshark22, where the ccache
folder is saved at the end of a pipeline.

4.5 Pattern: Pipeline Test Ordering

Context CI/CD requires frequent and automated testing23 to ensure the func-
tionality and quality of the committed code. In addition, some tests, such as
performance or user acceptance tests, are inherently longer running than other
tests, such as unit tests.

Problem As projects increase in complexity and team size, the number of tests
and quality controls also increases, leading to longer execution times for the
CI/CD pipelines. Thus, testing can become a bottleneck in the CI/CD pipeline
and seriously affect the overall performance and scalability of the CI/CD archi-
tecture.

Forces

21 https://ccache.dev/: accessed May 2025
22 https://gitlab.com/wireshark/wireshark/-/tree/12a9e2f2: accessed May 2025
23 The term testing is used broadly in this context, including all kinds of tests and

quality controls such as code linters, static code analysis, or security scans

https://ccache.dev/
https://gitlab.com/wireshark/wireshark/-/tree/12a9e2f2

18 F. Urdih et al.

– Feedback Speed vs Feedback Type: Tests that provide the most valuable
and actionable feedback should be prioritized to enable rapid detection and
correction of errors, but focusing solely on speed may lead to deprioritizing
broader test coverage, potentially allowing certain issues to go unnoticed
until later stages.

– Feedback Speed vs Efficiency: Limited computing resources necessitate
efficient utilization of infrastructure, particularly by minimizing resources
spent on failing pipelines. Nevertheless, aggressive optimization may com-
promise test completeness or delay the detection of non-critical but relevant
defects.

– Risk Management: Tests vary in their criticality and impact; prioritiz-
ing high-risk areas helps ensure that failures with significant consequences
are caught early. However, this approach may result in delayed feedback on
lower-risk components that can still affect overall software quality.

Solution Execute first the shorter-running and most critical tests and quality
controls to provide fast and relevant feedback. Categorize tests according to
runtime and criticality to optimize their ordering in the CI/CD pipeline.

Solution Details Tests and quality controls in CI/CD pipelines are categorized
into different groups, such as unit tests, integration tests, system tests, end-
to-end tests, security checks, code linting, security scans, static code analysis,
other code and design quality checks, performance tests, load tests, and user
acceptance tests. Each group serves a specific purpose and has different execution
times and resource requirements. Categorization helps to structure the pipeline
phases effectively according to some essential criteria.

From a performance and scalability point of view, running shorter-running
tests, such as unit tests, early in the pipeline avoids waiting a long time for basic
tests that may fail. This also gives developers quick feedback. These tests are
usually not resource-intensive and can quickly validate individual components
or functions. Early detection of problems enables faster troubleshooting and
resolution, reducing the overall cycle time of the pipeline.

A second important criterion is related to importance and risks. Running
critical tests early, ensures the application’s most important aspects are checked
before moving on to less critical tests. Critical tests often include those related
to core functionality, security scans, and high-risk areas that could halt the
pipeline in the event of failure to prevent further development of faulty software.
This is not necessarily the case for all tests or quality controls. For instance, a
performance or user acceptance test can have a non-optimal result but still lead
to production deployment – with improvements in later development iterations.
In contrast, a failed test of a core functionality or security aspect is critical and
thus should halt the pipeline.

When combining this pattern with Task Parallelization, several tests, quality
controls, and other pipeline phases are executed simultaneously and not one
after the other. This technique utilizes the available computing resources to

Performance Patterns for CI/CD Pipelines 19

reduce the time required to execute the tests. For instance, independent tests in
one category, like different unit tests, can be parallelized. Usually, this happens
outside the pipeline, e.g., in the test framework. In addition, independent tests
with similar running-time length, importance, or risks can be run in parallel, too.
This usually requires parallel pipeline steps. For instance, performance tests can
be run in parallel to load tests. Please note that there is a risk of wasting resources
due to parallelization, as the tests in a parallel branch may fail, meaning that
the other tests have run unnecessarily.

Selective Testing can help execute only tests related to the latest code changes.
While this is a complementary pattern, it is not the focus of Pipeline Test Or-
dering, which centers on structuring the execution order rather than deciding
test inclusion.

Example The CI/CD pipeline in Figure 1 is an example for Pipeline Test
Ordering. First, the unit tests are run, followed by the longer-running integration
tests. They are the two most critical kinds of tests in this pipeline. It usually
makes sense to run unit tests before integration tests, as a failed unit test would
report a localized problem quickly back to developers. In contrast, integration
tests might take longer to report back and provide less information on where a
problem might be. Furthermore, a failed unit test will likely cause an integration
test to fail, but the reverse is unlikely.

The quality controls also report back quickly and are critical, too. Thus, they
can be run in parallel with unit and integration tests. Some pipelines would run
security scans after unit tests to ensure the essential functionality works before
performing these scans.

The performance and user acceptance tests have a reasonably long runtime
and are likely similarly critical, so it is acceptable to run them in parallel. A
typical alternative is to run performance tests before user acceptance tests, as
the latter usually take longer.

Consequences The application of the pattern Pipeline Test Ordering presents
the following consequences:
(+) More relevant feedback becomes faster, thanks to job ordering based on

relevance.
(+) Less computations are spent on failing pipelines.
(−) Feedback for less critical components may be delayed, especially when the

ordering strategy is aggressive.

Related Patterns Pipeline Test Ordering often involves Conditional Pipeline
and Job Triggering to execute only the most relevant tests and potentially reduce
the total number of tests. Optimizing tests often means running them in parallel,
i.e., using Task Parallelization. Tests can be parallelized in the test framework
or via parallel pipeline phases.

20 F. Urdih et al.

Known Uses Across the 5 GitLab repositories we focused on, we have found
only 1 (fdroidclient) to be applying this pattern. In fdroidclient, a linting
phase is defined before the actual tests, while in all the other projects, there is
no prioritization between types of tests.

Other examples of the pattern are wireshark, where fuzzy testing is applied
after unit tests, and antora/antora24, where linting is done before testing.

4.6 Pattern: Selective Testing

Context Many CI/CD projects commit often and do not apply major changes in
a single commit. Therefore, the outcome of many tests does not change compared
to previous executions.

Problem Modern CI/CD pipelines must provide timely feedback to developers
to sustain high development velocity. However, executing the full test suite for
every code change leads to long feedback cycles, increased resource consumption,
and potential bottlenecks. The challenge lies in maintaining testing efficiency and
feedback speed as the codebase and number of tests grow.

Forces
– Feedback speed vs Complexity: Developers need rapid feedback to it-

erate quickly and catch errors early. Nevertheless, determining which tests
are affected by a commit requires complex analysis or accurate dependency
tracking, which is hard to implement.

– Efficiency vs Reliability: Developers must trust that test results reflect
the actual state of the system, but skipping relevant tests due to incomplete
impact analysis may cause bugs to slip through and reduce trust in the CI
pipeline.

– Scalability vs Maintenance: As tests are added to a growing repository,
selective testing can avoid execution times from considerably growing. This
requires constant maintenance of the tracking system.

Solution Implement Selective Testing by performing a Test Impact Analysis
[14] in your CI/CD pipeline to identify and execute only those tests relevant
to recent code changes. Integrate tools that automatically track code changes
and map them to specific tests. You can also prioritize tests based on risk and
historical data to optimize testing efforts further.

Solution Details Test impact analysis is a technique that identifies and exe-
cutes only tests relevant to the latest code changes. It helps to determine which
parts of the codebase are affected by the changes and selects the tests accordingly.
The analysis aims to minimize the number of tests performed by concentrating
24 https://gitlab.com/antora/antora/-/tree/12c615e6: accessed May 2025

https://gitlab.com/antora/antora/-/tree/12c615e6

Performance Patterns for CI/CD Pipelines 21

on the relevant tests, saving time and resources. As a downside, realizing a test
impact analysis can be complex.

There are various tools for test impact analysis. A simple option is to base the
analysis on an existing code coverage tool, such as JaCoCo, SonarQube, NCover, or
JSCoverage. We can assign code changes to specific tests by letting the coverage
tool capture metadata about code segments executed during the tests and log
this information for analysis. Using this data, the CI/CD pipeline can determine
which tests are affected by the changes in a pull request, enabling targeted test
execution. This approach mirrors the selective testing procedures that developers
often use locally.

This technique is based on static code analysis, analyzing the code structure
and dependencies to identify affected areas. A general alternative is dynamic code
analysis [19]. Dynamic code analysis uses runtime information to monitor the
actual execution of the program, track dependencies, and execution paths, and
determine which tests are affected by code changes. This approach can provide
more accurate insights as it observes the code’s behavior during execution and
captures dynamic interactions that static analysis may miss. However, it can also
be less precise, as any paths that are not executed will be missed by dynamic
analysis, and dynamic analysis is resource-intensive. Especially for the latter
reason, dynamic analysis or hybrid approaches are often not chosen over static
analyses if pipeline performance and fast feedback should be improved.

Integrating test impact analysis tools into existing CI/CD pipelines involves
configuring these tools to automatically detect code changes and trigger the ap-
propriate tests, ensuring seamless operations and reducing manual intervention.
Automation within the pipeline enables consistent and efficient execution of test
impact analysis with minimal disruption to the development workflow.

In addition to identifying affected tests, test impact analysis can increase
efficiency by prioritizing tests based on risk factors such as historical failure
rates, the susceptibility of tests to failure, or the criticality of the code being
tested. This approach helps to focus resources on the most important tests,
optimize testing efforts, and improve software reliability.

As the codebase grows, the test impact analysis needs to scale to handle the
increasing complexity and volume, which requires a robust infrastructure and
efficient algorithms. Regular maintenance of the test selection logic is essential
to adapting to changes in the code base and ensuring continuous accuracy. This
requires regular updates and validation to keep the system effective.

Example Figure 3 illustrates how the results of a test impact analysis are
stored in an artifact of a CI/CD pipeline so that subsequent phases can access
this information. This phase analyzes code changes, and the affected tests are
recorded in a file, which is then saved as an artifact. Both the Unit Tests and
Integration Tests phases retrieve this artifact to execute only the relevant tests.

Besides storing artifacts, the CI/CD cache can also support Selective Testing.
Bazel25 is an example of a technology supporting Incremental Builds per default,
25 https://bazel.build/: accessed May 2025

https://bazel.build/

22 F. Urdih et al.

Pipeline Artifacts

Test Impact Analysis Unit Tests Integration Tests

Write impact
analysis file

Read impact
analysis file

... ...

Read impact
analysis file

Fig. 3: Pipeline Excerpt Showing a Test Impact Analysis Stored in an Artifact
and Used by Two Tests

as well as Selective Testing and also the integration of the two. For instance, the
command bazel build //:TestGroup –disk_cache=bzcache in the example below
specifies that Bazel should build all targets in the bzcache directory and only run
tests for the code parts that have changed or are affected by changes to the code
base. This approach leverages Bazel’s ability to track dependencies and changes
and ensures that only relevant tests are executed, optimizing both build and test
times. Using an explicit –disk_cache argument, Bazel can maintain its cache in
a specific folder to persist across CI pipeline runs.

test:
phase: test
script:

- bazel build //: BazelProject --disk_cache=bzcache
- bazel test //: Tests1 --disk_cache=bzcache
- bazel test //: Tests2 --disk_cache=bzcache

cache:
key: "$BAZEL_VERSION$"
paths:

- bzcache

Consequences The application of the pattern Selective Testing presents the
following consequences:
(+) The pipeline becomes faster and more efficient, especially in pipelines with

large test suites, as only impacted tests are executed.
(+) Improved scalability, as the number of tests executed can grow proportion-

ally to the scope of each change rather than the overall size of the codebase.
(−) Increased pipeline complexity due to the integration and maintenance of

test impact analysis mechanisms.
(−) Risk of false negatives if the analysis fails to identify all relevant tests, po-

tentially decreasing reliability.

Performance Patterns for CI/CD Pipelines 23

(−) Limited tool support or inconsistent results depending on the programming
language, framework, or analysis approach.

Related Patterns Selective Testing benefits from Pipeline Asset Caching,
which can store information on code changes required to execute the tests selec-
tively.

Selective Testing can be combined with a prior Incremental Build, as the
impact and dependency analyses performed for the build can be reused to select
the impacted tests.

Selective Testing complements Pipeline Test Ordering, as only relevant tests
are executed in each optimized phase.

Conditional Pipeline and Job Triggering complements Selective Testing as it
can select pipeline triggers that decide whether to launch the test phase at all.

Known Uses When investigating the usage of the pattern, we have looked
for specific job triggers based on file changes26. Although multiple repositories
applied such rules, only fdroidclient uses them for selective testing.

Furthermore, we have investigated the usage of programming-language-specific
tools27 that run tests based on source code changes and searched their signatures.
We have found no evidence in any repository.

Additional known uses of the pattern are google/startup-os28, a tutorial
system using bazel to automatically detect test changes, and berty/berty29, a
monorepo defining file changes as rules to conditionally run the tests.

4.7 Pattern: Conditional Pipeline and Job Triggering

Context As projects become more complex in CI/CD environments, commits
are made for very distinct operations, such as adding comments, updating doc-
umentation, and testing new functionalities. Each of these operations requires
different tasks to be run when the commit is pushed.

Problem Triggering the whole CI/CD pipeline for every change can lead to
unnecessary pipeline runs or pipeline phase executions, increased resource con-
sumption, and longer feedback times. This inefficiency can overwhelm shared
resources and slow the development cycle.

Forces The forces related to this pattern are the same as the Selective Testing
pattern, but are related to the whole pipeline and not only the testing phase.
26 https://docs.gitlab.com/ee/ci/yaml/index.html#ruleschanges: accessed May 2025
27 As an example, pytest-testmon is a Python library which can run only tests related

to changes.
28 https://github.com/google/startup-os/tree/5f30a62: accessed May 2025
29 https://github.com/berty/berty/tree/e11e95a: accessed May 2025

https://docs.gitlab.com/ee/ci/yaml/index.html#ruleschanges
https://github.com/google/startup-os/tree/5f30a62
https://github.com/berty/berty/tree/e11e95a

24 F. Urdih et al.

Solution Configure pipeline and pipeline phase triggers so that the pipeline and
its phases run only under specific conditions, such as when changes are made to
specific files or directories or when changes are made to specific branches. This
selective triggering ensures that the pipeline and its phases are only executed
when required.

Solution Details Configure the CI/CD system to evaluate each commit or
merge request and determine if it meets the predefined pipeline triggering condi-
tions. For example, developers can use path-based rules to trigger pipelines only
when changes to files or directories are essential to the next production build.
Also, developers can restrict the execution of pipelines to specific branches, such
as development or release branches, where changes are more likely to impact the
system significantly.

Each pipeline phase can have a different optimization of its triggers, i.e., we
can optimize at the phase level. For instance, we can run basic building and
testing all the time, but later phases are only executed when committing to the
main branch.

Before considering Conditional Pipeline and Job Triggering, at the pipeline
level, encourage developers to use local scripts and tools to perform initial tests
and checks prior to committing changes to the version control repository.

Example The following example uses different trigger conditions in a build, test,
and deploy phase, expressed using Gitlab CI/CD rules. The build is triggered
for changes only in the config and src/core directories. The tests are executed
for the same directories, or if a commit to a main or release branch has been
made. Deployment is only triggered for a commit to the main branch.

build:
phase: build
script:

- echo "Building project ..."
rules:

- changes:
- config /**/*
- src/core /**/*

test:
phase: test
script:

- echo "Running tests ..."
rules:

- changes:
- config /**/*
- src/core /**/*

- if: ’$CI_COMMIT_BRANCH == "main" ||
$CI_COMMIT_BRANCH =~ /^ release \/.*/’

Performance Patterns for CI/CD Pipelines 25

deploy:
phase: deploy
script:

- echo "Deploying ..."
rules:

- if: ’$CI_COMMIT_BRANCH == "main"’

Consequences The application of the pattern Conditional Pipeline and Job
Triggering presents the following consequences:
(+) Improved speed and efficiency by running only the necessary jobs, if any.
(−) Added complexity to the pipeline configuration, requiring careful rule man-

agement. Risk of misconfiguration may lead to critical jobs or phases being
unintentionally skipped.

Related Patterns Incremental Build and Selective Testing complement Con-
ditional Pipeline and Job Triggering as they perform further selections of builds
and tests, respectively. Thus, these patterns can be applied in combination.

Known Uses Each repository we investigated applies this pattern, although
the trigger rules they apply differ. We have found logic based on trigger types
(e.g., commit push, merge request), file changes, branch name, commit message,
and runners available. Table 5 shows in detail which project applies which rules.

Furthermore, each project uses job-level rules, which choose whether a job
is executed or not, while 3 repositories (inkscape, fdroidclient, veloren) use
workflow-level rules, which may prevent the entire pipeline from running.

Table 5: Summary of Rules Used by Repository
Project
Name

Trigger
Type

Branch
Name

Files
Changed

Runners
Available

Commit
Message

inkscape X X X
openrgb X
fdroidclient X X X X
veloren X X X
baserow X X X X

4.8 Pattern: Comprehensive Pipeline Automation

Context Your teams run CI/CD pipelines, and humans perform some pipeline
tasks.

26 F. Urdih et al.

Problem Manual processes in CI/CD pipelines are prone to human error, are
time-consuming, and are inconsistent. These issues can lead to delays, failed de-
ployments, and lower software quality. There is a need for a method to streamline
and standardize these processes to improve the efficiency and reliability of the
pipeline.

Forces
– Performance vs Feasibility: Human intervention in CI/CD pipelines can

introduce significant delays, as it is neither immediate nor guaranteed to
occur promptly, but eliminating manual steps entirely may not be feasible
when human oversight is required for quality or compliance purposes.

– Efficiency and Scalability vs Effectiveness: Manual tasks depend on
specific resources such as interactive environments and notification mech-
anisms, which complicate scaling as the number of projects and pipeline
executions increases. Nevertheless, automating all such tasks may not be
cost-effective for every scenario, particularly those requiring human valida-
tion.

– Repeatability and Consistency vs Quality: Automated processes typ-
ically provide more consistent and repeatable results compared to manual
ones, but full automation may overlook context-sensitive issues or nuanced
decisions that human operators are better equipped to handle.

– Maintenance: Automated tasks require ongoing maintenance of scripts and
orchestration logic. However, retaining manual steps also entails maintaining
manual testing environments and tools, adding complexity and redundancy,
especially as automation remains an integral part of most pipelines.

Solution Aim to automate as many steps as possible in your CI/CD pipeline.
This includes automating the build, test, deployment, and monitoring processes.
Use tools and scripts to handle repetitive tasks, ensure consistency, and mini-
mize human involvement in routine operations. Integrate checkpoints or human
testing where human intervention is required for quality assurance.

Solution Details When implementing comprehensive automation within CI/CD
pipelines, companies often use various tools and frameworks to optimize and im-
prove their processes. Continuous integration tools such as Jenkins and GitLab
CI/CD are often used to automate software development’s build and test phases.
With these tools, teams can automatically trigger builds and run tests when
changes are made to the code base.

Infrastructure automation is another important component of the solution.
Infrastructure-as-Code (IaC) tools [16] such as Terraform and Ansible facilitate
the automated setup and management of deployment environments. By repre-
senting the infrastructure as code, these tools enable consistent and repeatable
environment configurations at different deployment pipeline phases, reducing the
risk of configuration mismatches and deployment errors.

Performance Patterns for CI/CD Pipelines 27

Automated testing frameworks such as JUnit for unit testing and Selenium
for UI testing ensure the software is tested consistently across different environ-
ments. These frameworks enable the execution of a wide range of tests, from unit
tests to integration and end-to-end tests, without manual intervention, speeding
up the testing process and improving reliability. However, not all kinds of user
acceptance testing are easy to automate.

Despite the many benefits of extensive automation, it is crucial to recognize
that human oversight is required at certain phases. Quality assurance reviews and
user acceptance testing are examples of processes that require human judgment
to ensure that the software not only functions correctly but also meets business
requirements and user expectations. These human-led assessments can serve as
critical checkpoints in the pipeline and ensure that the automated processes
comply with company standards and regulatory requirements.

Example The pipeline shown in Figure 4 is an end-to-end fully automated
pipeline. Contrary to that, the one depicted in Figure 1 contains a User Ac-
ceptance Test phase, which likely uses manual user acceptance testing steps.
Developers could consider replacing this with automated UI tests using tools
such as Selenium. They must consider how much effort would be required for
this and whether the required quality level of human testing can be achieved by
an automated solution. They could consider using Conditional Pipeline and Job
Triggering or decision gates not to run the manual test phase for each pipeline
run.

Consequences The application of the pattern Comprehensive Pipeline Au-
tomation presents the following consequences:
(+) Reduced human error and increased consistency and repeatability across

pipeline executions.
(+) Accelerated delivery speed by minimizing delays introduced by manual tasks.
(+) Enhanced scalability by lowering the need for human intervention in routine

processes.
(+) Improved traceability and compliance through codified and reproducible

procedures.
(−) Automation logic requires ongoing maintenance and may become complex

over time.
(−) Risk of over-reliance on automation can lead to blind spots in quality assur-

ance if human checkpoints are underused or removed.

Related Patterns Conditional Pipeline and Job Triggering can help to achieve
a compromise in Comprehensive Pipeline Automation by triggering human phases
only for selected pipeline runs.

Most of the other patterns in this paper complement Comprehensive Pipeline
Automation as they play a role in automation, for instance, by speeding up the
automated solution, enhancing its consistency, or improving its reliability.

28 F. Urdih et al.

Fig. 4: Fully Automatic Pipeline Building, Testing and Deploying an Application

Known Uses We have chosen to look for full pipeline automation (i.e., each job
runs automatically) to classify a repository as applying this pattern. The when:
manual30 option on GitLab determines whether a job runs manually. We have
not excluded jobs that are optionally manually, i.e., jobs that run automatically
but that can also be manually triggered. With this classification criteria, only
fdroidclient and veloren apply the pattern.

A third example is graphviz/graphviz31, a graph visualization tool.

4.9 Pattern: Mocked External Services

Context Connection with external services may be required to test an applica-
tion thoroughly.

Problem Configuring external services (e.g., HTTP servers, databases, etc.)
to be available while testing an application increases setup time, resource usage
(memory and network), and overall execution time.

Forces
– Performance vs Reliability and Maintenance: The setup time for ex-

ternal services —such as downloading and installing dependencies—can con-
stitute a significant portion of overall execution time during testing, but min-
imizing this setup may compromise the fidelity of the test environment or
delay service availability. Furthermore, mockups add maintenance overhead
as they must keep mimicking the services when these are updated.

– Reliability: Mockups typically require only source code and can eliminate
the need for installing operating system-level libraries or full applications.
Nevertheless, over-reliance on mockups may reduce test coverage for inte-
gration scenarios, potentially leading to undetected issues in real-world de-
ployments.

30 https://docs.gitlab.com/ee/ci/yaml/index.html#when: accessed May 2025
31 https://gitlab.com/graphviz/graphviz/-/tree/90d36ca2: accessed May 2025

https://docs.gitlab.com/ee/ci/yaml/index.html#when
https://gitlab.com/graphviz/graphviz/-/tree/90d36ca2

Performance Patterns for CI/CD Pipelines 29

Solution Popular programming languages offer libraries to stub objects while
testing. For each test that requires external services, create a mockup and config-
ure it to behave as expected (e.g., returning a specific HTTP code to a request).
Then, inject the mockup into the tested classes.

Solution Details Write the application source code to allow mockups to be
introduced from tests. Depending on the programming language, this may be
done through IoC (Inversion of Control) or with class constructors. Furthermore,
define one single client class for the service, and connect only through this class.
In the tests, define stubs that replace the service client objects. A mockup class
inheriting from the client class may be a solution for simpler scenarios. A mocking
library is preferable for more complex scenarios (e.g., an HTTP server) as it
comes with many testing functionalities provided out of the box. Once the stubs
are created, inject them into the application source code and run the tests.

Most often mockup tests are fully contained in the application source code,
therefore in the pipeline it is enough to build the application and the tests, and
run a test command. Nevertheless, it may be necessary to define environment
variables in the pipeline job, to be used by the tests executed.

Although applying the pattern can improve the pipeline performance, mak-
ing the mockup behavior as close as possible to the real service is important.
Oversimplifications may increase the chances of undetected bugs in the applica-
tion code. An example could be a database that returns a maximum of 100 rows
per time while the configured mockups do not implement this limit.

Example A service is mocked and used in the application source code in the
following listing. The service is configured to return true on the ping request. The
test verifies that the application works without making HTTP ping requests.

public class TestWithMockups {
@Test
public void testUseServiceWithMockups () {

Service service = mock(Service.class);
when(service.ping()).thenReturn(true);
Application app = new Application(service);
assertTrue(app.run());

}
}

Consequences The application of the pattern Mocked External Services presents
the following consequences:
(+) Removal of the need for downloading, configuring, and launching external

services, which can significantly reduce the total execution time of the test
pipeline.

(+) Mockups reduce the variability associated with external dependencies (e.g.,
service downtime or network delays), leading to more stable and determin-

30 F. Urdih et al.

istic test executions. This can reduce test flakiness and improve confidence
in automated pipelines.

(+) Developers can run the tests without the overhead of configuring external
systems, making local development and debugging easier and more efficient.

(−) Mocked services may not fully replicate all the behaviors, limitations, or
error conditions of real services, which can lead to gaps in test coverage and
undetected integration issues in production.

(−) Mockups must be kept up to date as real service APIs evolve. Failure to
update mocks may cause discrepancies between test and production envi-
ronments, potentially introducing bugs that remain unnoticed until deploy-
ment.

Related Patterns Removing the configuration of services changes the nature of
the tests, reducing possible dependencies between them. For this reason, Mocked
External Services can often be combined with Task Parallelization.

Furthermore, since mockups may not behave exactly like the real services, it
makes sense to use them in feature branches rather than in production ones. To
achieve this functionality, the Conditional Pipeline and Job Triggering pattern
can be used.

Known Uses We have found evidence of mocked objects for all 5 reposito-
ries; nevertheless, only 2 of them were mocking external services: fdroidclient
mocked a database while baserow mocked a database, data providers, storages,
and a mail server. In addition, we have found that mudler/LocalAI mocks an
HTTP server and an ML model.

5 Conclusions

This paper has explored key performance patterns in CI/CD pipelines, focus-
ing on their application to enhance modern software delivery systems’ speed,
efficiency and scalability. We demonstrated how these strategies can improve
overall pipeline performance, reduce latency, and optimize resource utilization
by identifying and analyzing fundamental patterns based on modularity, paral-
lelism, and efficient dependency resolution. The case studies and examples from
widely used CI/CD tools like GitLab CI/CD illustrated the practical impact of
these patterns in real-world scenarios. Although our analysis mostly focused on
GitLab CI/CD, the results are generalizable to other technologies such as GitHub
Actions, CircleCI, etc.

We discussed the trade-offs in adopting these patterns, emphasizing the need
to carefully consider project-specific requirements, infrastructure constraints,
and team workflows. As the complexity of software development continues to
grow, the demand for more efficient and resilient CI/CD pipelines will only in-
crease. The patterns we have highlighted offer a robust foundation for addressing

Performance Patterns for CI/CD Pipelines 31

performance challenges in this context, providing actionable insights for DevOps
practitioners and software engineers seeking to optimize their pipelines.

Future research should focus on further refining these performance patterns
and exploring their interaction with emerging technologies such as machine
learning-driven optimization techniques. Moreover, investigating the long-term
impacts of CI/CD performance improvements on software quality and team pro-
ductivity could provide valuable insights for guiding future best practices and
tool development. Ultimately, a deeper understanding of CI/CD performance
patterns will help ensure that software systems continue to evolve in a fast,
reliable, and sustainable manner.

Acknowledgments. This research was funded in whole or in part by the Aus-
trian Science Fund (FWF) project CQ4CD, Grant-DOI: 10.55776/I6510. For
open access purposes, the authors have applied a CC BY public copyright li-
cense to any author accepted manuscript version arising from this submission.

References

1. Abdalkareem, R., Mujahid, S., Shihab, E., Rilling, J.: Which commits can be ci
skipped? IEEE Transactions on Software Engineering 47(3), 448–463 (2019)

2. Almeida, F., Pinho, D., Aguiar, A.: Validating pattern languages: A systematic
literature review. In: Proceedings of the 29th European Conference on Pattern
Languages of Programs, People, and Practices. pp. 1–8 (2024)

3. Chen, L.: Continuous delivery: Huge benefits, but challenges too. IEEE software
32(2), 50–54 (2015)

4. Corbin, J.M., Strauss, A.: Grounded theory research: Procedures, canons, and
evaluative criteria. Qualitative sociology 13(1), 3–21 (1990)

5. Da Gião, H., Flores, A., Pereira, R., Cunha, J.: Chronicles of ci/cd: A deep dive
into its usage over time. arXiv preprint arXiv:2402.17588 (2024)

6. Duvall, P.M.: Continuous integration: Patterns and anti-patterns. DZone, Incor-
porated (2010)

7. Gallaba, K., Ewart, J., Junqueira, Y., Mcintosh, S.: Accelerating continuous inte-
gration by caching environments and inferring dependencies. IEEE Transactions
on Software Engineering 48(6), 2040–2052 (2020)

8. Gallaba, K., McIntosh, S.: Use and misuse of continuous integration features: An
empirical study of projects that (mis) use travis ci. IEEE Transactions on Software
Engineering 46(1), 33–50 (2018)

9. Garousi, V., Felderer, M., Mäntylä, M.V.: Guidelines for including grey literature
and conducting multivocal literature reviews in software engineering. Information
and software technology 106, 101–121 (2019)

10. Garousi, V., Felderer, M., Mäntylä, M.V., Rainer, A.: Benefitting from the grey
literature in software engineering research. In: Contemporary Empirical Methods
in Software Engineering, pp. 385–413. Springer (2020)

11. Ghaleb, T.A., Da Costa, D.A., Zou, Y.: An empirical study of the long duration
of continuous integration builds. Empirical Software Engineering 24, 2102–2139
(2019)

32 F. Urdih et al.

12. Hentrich, C., Zdun, U., Hlupic, V., Dotsika, F.: An approach for pattern mining
through grounded theory techniques and its applications to process-driven soa
patterns. In: Proceedings of the 18th European Conference on Pattern Languages
of Program. pp. 1–16 (2013)

13. Humble, J., Farley, D.: Continuous delivery: Reliable software releases through
build. Test, and deployment automation. Pearson Education 1 (2010)

14. Jürgens, E., Pagano, D., Göb, A.: Test impact analysis: Detecting errors early
despite large, long-running test suites. Whitepaper, CQSE GmbH (2018)

15. Machalica, M., Samylkin, A., Porth, M., Chandra, S.: Predictive test selection. In:
2019 IEEE/ACM 41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). pp. 91–100. IEEE (2019)

16. Morris, K.: Infrastructure as code. O’Reilly Media (2020)
17. Munaiah, N., Kroh, S., Cabrey, C., Nagappan, M.: Curating github for engineered

software projects. Empirical Software Engineering 22, 3219–3253 (2017)
18. MUSTYALA, A.: Ci/cd pipelines in kubernetes: Accelerating software development

and deployment. EPH-International Journal of Science And Engineering 8(3), 1–11
(2022)

19. Orso, A., Apiwattanapong, T., Law, J., Rothermel, G., Harrold, M.J.: An em-
pirical comparison of dynamic impact analysis algorithms. In: Proceedings. 26th
international conference on software engineering. pp. 491–500. IEEE (2004)

20. Parris, D.: How do the holidays impact engineering productivity? a
statistical analysis. Blog (2022), https://www.statsignificant.com/p/
how-do-the-holidays-impact-engineering

21. Riehle, D., Harutyunyan, N., Barcomb, A.: Pattern discovery and validation using
scientific research methods. In: Transactions on Pattern Languages of Program-
ming V, pp. 226–253. Springer (2025)

22. Shahin, M., Babar, M.A., Zhu, L.: Continuous integration, delivery and deploy-
ment: a systematic review on approaches, tools, challenges and practices. IEEE
access 5, 3909–3943 (2017)

23. Ståhl, D., Bosch, J.: Experienced benefits of continuous integration in industry
software product development: A case study. In: The 12th iasted international
conference on software engineering,(innsbruck, austria, 2013). pp. 736–743 (2013)

24. Thatikonda, V.K.: Beyond the buzz: A journey through ci/cd principles and best
practices. European Journal of Theoretical and Applied Sciences 1(5), 334–340
(2023)

25. Vasilescu, B., Yu, Y., Wang, H., Devanbu, P., Filkov, V.: Quality and productivity
outcomes relating to continuous integration in github. In: Proceedings of the 2015
10th joint meeting on foundations of software engineering. pp. 805–816 (2015)

26. Vassallo, C., Proksch, S., Gall, H.C., Di Penta, M.: Automated reporting of anti-
patterns and decay in continuous integration. In: 2019 IEEE/ACM 41st Interna-
tional Conference on Software Engineering (ICSE). pp. 105–115. IEEE (2019)

27. Yin, M., Kashiwa, Y., Gallaba, K., Alfadel, M., Kamei, Y., McIntosh, S.:
Developer-applied accelerations in continuous integration: A detection approach
and catalog of patterns. In: Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering. pp. 1655–1666 (2024)

28. Zampetti, F., Vassallo, C., Panichella, S., Canfora, G., Gall, H., Di Penta, M.: An
empirical characterization of bad practices in continuous integration. Empirical
Software Engineering 25, 1095–1135 (2020)

https://www.statsignificant.com/p/how-do-the-holidays-impact-engineering
https://www.statsignificant.com/p/how-do-the-holidays-impact-engineering

	Performance Patterns for CI/CD Pipelines

