Architectural Design Decisions and Best
Practices for Fast and Efficient CI/CD Pipelines

Francesco Urdih!-2[0009—0000—-3507—5043] '} e0doros
Theodoropoulos! [0000-0002-4618-4891] ;1§ Uye Zcun? [0000-0002—6233-2591]

1 Software Architecture Research Group, Faculty of Computer Science, University of
Vienna, Vienna, Austria
firstname.lastname@univie.ac.at
2 UniVie Doctoral School Computer Science DoCS, Faculty of Computer Science,
University of Vienna, Vienna, Austria

Abstract. Continuous Integration/Deployment (CI/CD) pipelines are
critical for integrating developer changes and maintaining high-quality
software deployments. The increasing frequency of commits and deploy-
ments places significant demands on CI/CD systems, requiring improved
speed and efficiency. While numerous tools and techniques have been
proposed to increase the velocity of CI/CD pipelines, there is a notable
gap in architectural guidance for developers on key design decisions and
best practices. To address this, we conducted a grey literature review
using Straussian Grounded Theory to develop a UML-based model to
guide software architects and developers in their decision-making. Our
research focuses on identifying architectural design decisions (ADDs) and
best practices as decision options that improve the speed and efficiency
of CI/CD pipelines. The study analyses 38 sources, building a formal
model comprising 6 ADDs and 30 best practices. This work contributes
a structured, architecturally guided approach to optimizing CI/CD sys-
tems.

Keywords: CI/CD - Software Architecture - Design Decisions - Speed
- Efficiency

1 Introduction

Continuous Integration and Continuous Deployment (CI/CD) [7] pipelines en-
able seamless integration of code changes, enhancing feedback speed and ensur-
ing high-quality releases [1]. Speed and efficiency are crucial in CI/CD systems,
as slow pipelines delay the development of new features [10] and overall de-
ployments. With frequent commits and rapid releases becoming standard, the
performance of CI/CD pipelines faces increasing pressure.

Several studies have proposed tools and techniques to enhance CI/CD per-
formance [4,5,11]. However, there is no comprehensive approach guiding devel-
opers through the key architectural design decisions, available design options,
and their interrelations. This lack of guidance is problematic as CI/CD pipelines

2 F. Urdih et al.

and their surrounding systems have evolved into complex infrastructures critical
for building, testing, and deploying software.

To address this, we conducted a grey literature (GL) study [6] using Straus-
sian Grounded Theory (GT) [2] to formalize UML-based models guiding software
architects in their decision-making. More formally, we investigated:

— RQ1: Which best practices are practitioners using to improve the speed and
efficiency of CI/CD pipelines?

— RQ2: What are the relations between the identified best practices?

— RQ3: Which ADDs are related to improving performance in CI/CD systems,
and how are the design options (i.e., the identified best practices) connected
with the ADDs?

The primary contributions of this work are: (1) a grey literature study on CI/CD
best practices for speed and efficiency, analyzing 38 sources in-depth; (2) a formal
model containing 6 ADDs, and 30 best practices.

2 Methodology

Figure 1 summarizes the research approach used in this work. We applied Straus-
sian Grounded Theory to analyze 38 grey literature!' sources. GT is a systematic
method that, through iterative analysis, enables theory discovery from empir-
ical data. Stol et al. [8] discussed its application in Software Engineering and
proposed domain-specific guidelines.

We used popular search engines (e.g., Google, Bing, DuckDuckGo) to collect
sources, starting with queries like “speeding up CI/CD pipelines" and “CI/CD
pipelines performance." Following GT’s theoretical sampling, additional GL was
added based on analysis of previous sources. We also employed backward snow-
balling—examining references in already selected sources. Literature collection
ended upon reaching theoretical saturation, i.e., when new sources stopped con-
tributing to the developed model. We excluded sources deemed irrelevant (e.g.,
only discussing CI/CD benefits/challenges), of poor quality (e.g., lacking discus-
sion), or heavily promotional. Sources that only briefly mentioned their product
were retained. All the sources can be found in the replication package [9].

In line with Straussian GT, our analysis involved open, azial, and selective
coding, all performed manually. In open coding, data fragments (e.g., sentences)
were assigned concepts. Axial coding linked these concepts. Selective coding
then grouped them under a central category. While coding, we applied a key GT
technique: memoing—writing notes/sketches to clarify concepts, categories, and
relationships, and to support theory development. Memos aid in the GT practice
of constant comparison—comparing existing and new data to refine theory. Since
GT analysis begins before data collection ends, we analyzed sources as we found
them. All memos can be found in the replication package [9].

To model the ADDs, we used the meta-model in the replication package
[9]. Each design decision can involve multiple design option combinations. We
highlighted especially beneficial ones using the «can be combined withs relation.

1 Grey literature [6] includes practitioner books, videos, blogs, presentations, etc.

ADDs and Best Practices For Fast and Efficient CI/CD Pipelines 3
Open Axial Selective
Coding Coding Coding
Constant
Comparison

Theoretical |_
sampling |

Theoretical
Saturation

Initial
Queries

Fig. 1. The methodology applied in our paper.

Number of | Addresses | Addresses

Best Practice ‘

Mentions Speed Efficiency
Shared Across ADDs
Pipeline Observability [20 [v [v
ADD: Tasks Reduction

Pipeline Asset Caching 22 v %4
Conditional Pipeline and Job Triggering 17 v v
Interruptible Pipelines 9 v v
Selective Testing 8 v v
Incremental Build 5 v v
Minimal Image Design 4 v v
Mocked External Services 4 v v
Asset Retention Policy 4 v
Single Build 3 v

ADD: Tasks and Resources Organization
Task Parallelization 28 v
Task Splitting 16 v
Custom Runner Classes 13 v
CI/CD Architecture Scaling Strategy 11 v
Automatic Task Splitting 9 v
Manual Task Splitting 8 v
Pipeline Test Ordering 8 v
Task Merging 3 v v

ADDs: Conditional Triggering
File Changes Condition 10 v v
Job-Level Condition 9 v v
Pipeline-Level Condition 9 v v
Branch Condition 8 v v
Trigger Type Condition 6 v v
Commit Message Condition 3 v v
ADD: Task Parallelization
Intra-Pipeline Parallelism 24 v
Inter-Jobs Parallelism 19 v
Independent Jobs 13 v
Job Matrix 10 v
Inter-Pipelines Parallelism 5 v
Intra-Job Parallelism 4 v
Table 1. The best practices presented in this work, grouped by ADD and sorted by

the number of mentions across grey sources.

3 Architectural Design Decisions

This section presents the study results as an Architectural Design Decision
model. Table 1 overviews all the decision options, as well as how many sources
reference them. A detailed mapping (e.g., the degree to which a source mentions
a practice) is included in the replication package [9]. Given the space restrictions,
we included only one model’s view in Figure 2, leaving all the other views in the
replication package [9].

ADD: Tasks Reduction. Improving the speed and efficiency of a CI/CD
pipeline can be achieved by reducing the number of tasks, without compromising
its core purpose, such as building, testing, and deploying applications. Figure 2
shows all related options. Notably, monitoring the pipeline, as promoted by
the Pipeline Observability best practice, supports task reduction by revealing
performance issues and bottlenecks.

4 F. Urdih et al.

One key option for this ADD is Pipeline Asset Caching [4], where assets
(e.g., dependencies, build artifacts) are cached for reuse within the current and
future pipeline runs. This reduces the need to re-download assets from external
services or re-compute them locally (e.g., binary packages), thus saving time and
resources. However, cache management (e.g., restoring or validating cache data)
has a performance overhead. Among other things, defining a Retention Strat-
egy is crucial to choosing how long assets are kept before deletion. Three other
options depend on cached assets: Single Build, Incremental Build, and Selec-
tive Testing. In the build phase, Single Build improves efficiency by building the
application once, caching the result, and reusing it in subsequent jobs instead
of rebuilding. Incremental Build further improves performance by saving build
results and rebuilding only components (and their dependencies) affected by a
commit—especially useful with frequent commits. Similarly, Selective Testing [5]
reduces testing time by running tests only on files impacted by a commit, of-
ten leveraging cached code coverage data. Given the importance of testing for
ensuring correctness, reliability, and performance, skipping tests may be an anti-
pattern if the version reaches production. The best practice Conditional Pipeline
and Job Triggering can help avoid this by running the pipeline or specific jobs
based on custom conditions, adding flexibility. In addition to Selective Testing,
Interruptible Pipelines can also benefit from Conditional Triggering. Interrupt-
ible Pipelines suggests stopping a pipeline if a new commit is pushed to the same
branch, reducing workload. One example combines these: run all tests without
interruption in the main or master branches, but run change-affected tests and
allow interruptions on others.

The seven design options discussed so far can be applied to any existing
pipeline, with many possible combinations. In contrast, two additional options
may not always be applicable: Mocked FExternal Services and Minimal Image
Design. The former involves using mock-ups instead of real tools or services
during tests, saving time and resources. The latter reduces container images
to the essentials (e.g., via multi-stage builds), lowering the time and resources
needed to build and pull images in subsequent jobs.

ADD: Tasks and Resources Organization. Organizing tasks and re-
sources effectively can accelerate a CI/CD pipeline. This ADD includes eight
design options: two focused on resources (Custom Runner Classes and CI/CD
Architecture Scaling Strategy), five on tasks (Pipeline Task Ordering, Task Merg-
ing, Task Splitting, and its two variants), and one on both (Task Parallelization).
Custom Runner Classes suggests using runner types with different specs (e.g.,
memory, CPU) for tasks with distinct resource needs. CI/CD Architecture Scal-
ing Strategy adjusts system resources by scaling them based on workload.

Task Parallelization boosts throughput by increasing task concurrency. More
on it is detailed in the corresponding ADD, presented below. Task Parallelization
is especially effective when paired with Task Splitting, the practice of dividing
large tasks—manually or automatically—into smaller jobs or workflows. This
option depends on parallelization to enhance performance. Note that each exe-
cuted job has a starting cost (e.g., loading a container image). For this reason,

ADDs and Best Practices For Fast and Efficient CI/CD Pipelines 5

<<option>>
. consider when .
Pipeline <<can use>> building containers Minimal Image
Observability Design
:Practice :Practice
<<option>>
T | consider when
[; | testing external Mocked Ext |
<<option>> tools and services locked External
Dpion «”pi""» Services
<<can be <<option>> <<option>> R
combined
Single Build with>> Incremental Build ¢ <<option>> L
:Practice :Practice
| Selective Testing Interruptible
:Practice ipeli
| cereqires>> Pipelines
<<requires>> X :Practice
<<option>> [
Pipeline and Job
. <<may Triggerin
Pipeline Asset require>> <<can be .P?gmceg <<can be
Caching combined with>> : combined with>>

:Practice <<consider if

not decided yet>>

T
<<can use>>

How to implement a
conditional
triggering?

Decision

Asset Retention
Policy
:Practice

Fig. 2. Decision for reducing the number of tasks in a CI/CD pipeline.

when too many small jobs are present, Task Merging should be applied to com-
bine them. Finally, Pipeline Test Ordering aims to reduce wasted computation
(if the pipeline fails) by sequencing tests wisely: running resource-intensive ones
(e.g., end-to-end tests) only after initial checks (e.g., linting, unit tests).

ADDs: Conditional Triggering. We previously introduced Conditional
Pipeline and Job Triggering as a way to reduce tasks in a CI/CD pipeline. In
the grey literature, we found several applications of this practice and identified
three ADDs with six decision options. Architects must first decide where to apply
conditions: at the pipeline level or job level. The former determines whether to
trigger the entire pipeline, while the latter targets specific jobs, offering greater
flexibility. Both approaches were common in practitioner sources and can be used
together. After selecting the condition granularity, the next step is choosing the
triggering rules. The most frequent is based on committed File Changes, but
Trigger Type and Branch are also widely used. Finally, Commit Message content
can serve as a trigger, though this rule is prone to human error (e.g., typos,
forgetfulness) and should be applied with caution.

ADD: Task Parallelization. The most frequently mentioned practice in
the examined sources is Task Parallelization. Thus, we modeled an ADD on how
to apply it. We identified six design options, four of which are variants. Paral-
lelism can be achieved by running multiple pipelines (Inter-Pipeline Parallelism)
or within a single pipeline (Intra-Pipeline Parallelism). The latter is more widely
cited in the grey literature, likely because not all CI/CD tools support defining
multiple workflows per repository. Within a pipeline, parallelism can occur in-
side a job using multiple threads (Intra-Job Parallelism) or by executing several
jobs concurrently (Inter-Jobs Parallelism). The latter includes two variants: In-
dependent Jobs and Job Matriz. Independent Jobs are widely used, as CI/CD
systems automatically run jobs in parallel if no explicit dependencies exist. This
practice can also support Manual Task Splitting. Job Matrizes enable automatic

6 F. Urdih et al.

task distribution across workers and offer better maintainability than Indepen-
dent Jobs, though they are unsuitable when tasks are highly interdependent or
require strict sequencing.

4 Discussion

RQ1. Table 1 summarizes 30 best practices for improving CI/CD pipeline
speed and efficiency, identified through analysis of 38 practitioner sources. These
practices span various areas of CI/CD pipelines, including task parallelization,
asset caching, and job/workflow triggering. Nine practices are particularly fre-
quent, mentioned in at least one-third of the sources: Task Parallelization, Pipeline
Asset Caching, Pipeline Observability, Conditional Pipeline and Job Triggering,
Task Splitting, Custom Runner Classes, and three more related to Task Paral-
lelization. Notably, several of the practices present multiple variants.

RQ2. We found several connections between best practices, including: «re-
quirey from Incremental Build to Pipeline Asset Caching, «can usey from Pipeline
Asset Caching to Asset Retention Policy, «has varianty from Inter-Jobs Paral-
lelism to Independent Jobs, and «can be combined withy from Job Matrixz to
Automatic Task Splitting. The «can be combined withs relation reflects only the
most effective combinations, not all possibilities. A key insight is the central role
of Pipeline Observability. While it does not directly improve speed or efficiency,
it enables the adoption of many other practices. This was noted in over half (20
of 38) of the grey literature sources.

RQ3. We identified 6 architectural design decisions, each associated with
multiple best practices. Not all options are universally applicable; for instance,
Minimal Image Design can reduce enacted tasks only when containers are built in
the pipeline. Furthermore, as highlighted for RQ2, some design options depend
on others to function or are more effective when combined. Finally, we also
discovered a «can use» relation linking the ADDs to Pipeline Observability.

5 Threats to Validity

Construct Validity. The construct validity of this study is influenced
by the use of GL and GT, both of which pose potential risks. Grey literature
varies in quality and credibility, but prior research supports its value in capturing
practitioner perspectives [6]. We addressed issues by systematically selecting and
analyzing 38 sources. For Grounded Theory, threats stem from the complexity
and potential inconsistencies in its application. Stol et al. [8] identify essential
steps—coding, memoing, and theoretical saturation—which we rigorously fol-
lowed to ensure methodological rigor.

Internal Validity. This study faces two main threats: selection bias in GL
and researcher bias in modeling ADDs. Selection bias could cause the omission
of relevant sources. We mitigated this by using theoretical saturation as the
stopping criterion, halting model development only when new sources added no
design options. As shown in the replication package [9], no new options appeared

ADDs and Best Practices For Fast and Efficient CI/CD Pipelines 7

after 811, yet 27 additional sources were included for robustness. Design options
were included only if mentioned in at least three sources—all but three options
met this after analyzing half of the sources. More details are in the replication
package. Researcher bias in modeling ADDs is another threat. While unavoid-
able, we minimized it through independent reviews of each ADD.

External Validity. A key threat to external validity is generalizability.
To address this, we analyzed both technology-agnostic and technology-specific
sources (spanning seven CI/CD tools), as detailed in the replication package [9].
This diversity enhances external validity, though applicability to less conven-
tional setups may still be limited.

6 Related Work

Certain best practices presented in our work have already been analyzed in other
studies. Gallaba et al. [4] proposed a framework to automatically cache depen-
dencies across pipeline runs based on system calls. Memon et al. [5] presented
a technique to apply Selective Testing by reversing the dependencies of the files
modified in a commit. Although these works propose tools to help use the studied
practice, their application is limited to that single practice.

Other works have studied more than one practice proposed in our study. Yin
et al. [11] have cataloged practices to reduce tasks in pipelines, mining 7795 open-
source repositories. Their findings present several practices related to Conditional
Pipeline and Job Triggering. Contrary to our work, their paper focuses on one
specific technology and provides only one class of practices. Additionally, Duvall
et al. [3] mentioned in their book on Continuous Integration some techniques to
improve the pipelines, such as: Task Parallelization, Mocked External Services,
Pipeline Observability, Pipeline Test Ordering.

None of these works proposes formal models incorporating design decisions,
decision options, and their relationships regarding speed and efficiency for CI/CD
pipelines. To the best of our knowledge, no current work does that. In addition,
despite the benefits of GL to analyze practitioners’ views [6], none of the listed
studies systematically utilized these knowledge sources.

7 Conclusions and Future Work

In this study, we used Straussian GT to analyze 38 GL sources focused on im-
proving CI/CD pipeline speed and efficiency. Our findings are summarized in
a model comprising ADDs, decision options, and their relationships. We aimed
to answer three research questions. In RQ1, we identified 30 best practices for
enhancing CI/CD workflows. For RQ2, we linked these practices, specifying pos-
sible, required, and variant combinations. In RQ3, we uncovered 6 ADDs along
with their corresponding design options. Practitioners can apply the proposed
model to better understand CI/CD pipeline best practices for performance or
to revise existing architectures. Finally, our model can serve as a starting point
for future extensions and validations of the proposed best practices.

8

F. Urdih et al.

Data Availability

All artifacts produced in this study are available in the replication package [9],
including the memos from the coding phase and tables summarizing our find-
ings. We used the Wayback Machine to archive each grey source indefinitely and
included both the original and archived links.

Acknowledgments This research was funded in whole or in part by the Aus-
trian Science Fund (FWF) project CQ4CD, Grant-DOI: 10.55776/16510. For
open access purposes, the authors have applied a CC BY public copyright li-
cense to any author accepted manuscript version arising from this submission.

References

10.

11.

Chen, L.: Continuous delivery: Huge benefits, but challenges too. IEEE software
32(2), 50-54 (2015)

. Corbin, J., Strauss, A.: Basics of qualitative research: Techniques and procedures

for developing grounded theory. Sage publications (2014)

Duvall, P.M., Matyas, S., Glover, A.: Continuous integration: improving software
quality and reducing risk. Pearson Education (2007)

Gallaba, K., Ewart, J., Junqueira, Y., Mcintosh, S.: Accelerating continuous inte-
gration by caching environments and inferring dependencies. IEEE Transactions
on Software Engineering 48(6), 2040-2052 (2020)

Memon, A., Gao, Z., Nguyen, B., Dhanda, S., Nickell, E., Siemborski, R., Micco,
J.: Taming google-scale continuous testing. In: 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering: Software Engineering in Practice Track
(ICSE-SEIP). pp. 233-242. IEEE (2017)

Rainer, A., Williams, A.: Using blog-like documents to investigate software prac-
tice: Benefits, challenges, and research directions. Journal of Software: Evolution
and Process 31(11), 2197 (2019)

Shahin, M., Babar, M.A., Zhu, L.: Continuous integration, delivery and deploy-
ment: a systematic review on approaches, tools, challenges and practices. IEEE
access 5, 3909-3943 (2017)

Stol, K.J., Ralph, P., Fitzgerald, B.: Grounded theory in software engineering re-
search: a critical review and guidelines. In: Proceedings of the 38th International
conference on software engineering. pp. 120-131 (2016)

Urdih, F., Theodoropoulos, T., Zdun, U.: ADDs and best practices for fast and
efficient CI/CD pipelines. https://doi.org/10.5281/zenodo.15639753 (2025)
Widder, D.G., Hilton, M., Késtner, C., Vasilescu, B.: A conceptual replication of
continuous integration pain points in the context of travis ci. In: Proceedings of
the 2019 27th acm joint meeting on european software engineering conference and
symposium on the foundations of software engineering. pp. 647-658 (2019)

Yin, M., Kashiwa, Y., Gallaba, K., Alfadel, M., Kamei, Y., Mclntosh, S.:
Developer-applied accelerations in continuous integration: A detection approach
and catalog of patterns. In: Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering. pp. 1655-1666 (2024)

