
AI-Powered Architecting for Industry 4.0
Cyber-Physical Production Systems: A Novel
Approach, Research Problems and Challenges

Stephen John Warnett1,2[0000−0003−0650−0981] and
Uwe Zdun1[0000−0002−6233−2591]

1 Research Group Software Architecture, Faculty of Computer Science,
University of Vienna, Vienna, Austria

2 UniVie Doctoral School Computer Science DoCS, Faculty of Computer Science,
University of Vienna, Vienna, Austria

{stephen.warnett|uwe.zdun}@univie.ac.at

Abstract. The integration of artificial intelligence (AI) into software ar-
chitecture has the potential to greatly support practitioners in architect-
ing machine learning (ML) and reinforcement learning (RL) systems. In
the context of Industry 4.0 cyber-physical production systems (CPPSs),
this work presents our approach, research problems, and open challenges
when designing ML and RL systems and applying AI-powered archi-
tecting to enhance automation and reduce manual effort. We describe a
novel approach with six advanced contributions: organising architectural
design decisions (ADDs) linked to the ML workflow and deployment, ex-
tending machine learning operations (MLOps) into reinforcement learn-
ing operations (RLOps), introducing formal architectural model develop-
ment, adding automatic conformance checks, using large language models
(LLMs) in RL conformance assessment and creating MLOps and RLOps
pipelines using LLMs and a low-code approach. We also describe how
earlier contributions in supporting the architecting process could be en-
hanced using AI. We discuss four further key open research challenges:
RL model versioning, the development of RL communication protocols,
working with agentic AI, and supporting RL within continuous integra-
tion and continuous delivery pipelines.

Keywords: artificial intelligence · MLOps · RLOps · machine learning
· reinforcement learning · software architecture · software engineering ·
cyber-physical production systems

1 Introduction

Integrating artificial intelligence (AI) into software architecture can catalyse
rapid advancements in how practitioners design, optimise, and maintain sys-
tems [1]. AI-driven techniques transform traditional practices by documenting
decision-making processes, refining architectural trade-offs, and enabling dynam-
ically adaptive systems capable of self-evolution [2,3].



2 S.J. Warnett and U. Zdun

AI’s role in overcoming long-standing issues in software architecture, includ-
ing complexity management, up-to-date documentation, and continuous evolu-
tion of systems, is becoming increasingly significant [1]. The manual expertise,
effort, and sophisticated reasoning required when applying traditional architect-
ing practices cannot keep up with the demanding architectural needs and opera-
tional uncertainty of AI-enabled systems [1]. Combined with the highly dynamic,
rapidly changing, and unpredictable nature of the domains in which architectures
are applied, for instance in cyber-physical production systems (CPPSs) [4], there
is an urgent need to investigate how AI can automate the architectural decision-
making process that caters for such domains [1,5,6] in machine learning (ML) [7]
and reinforcement learning (RL) [8]-based systems.

In this paper, we examine architecting ML and RL-based systems in the
context of our recent research. We identify open research challenges encountered
when architecting such systems and consider how AI may be applied to the
architectural process. We also report on how we have begun to utilise large
language models (LLMs) in addressing research problems to aid practitioners
when architecting ML and RL-based systems, present some forthcoming work,
and identify open research challenges we plan to address in future work.

We describe our overarching approach, covering topics including the cata-
loguing of architectural design decisions (ADDs) for the ML workflow and ML
deployment, as well as RL training strategies in an Industry 4.0 [9] setting, to-
gether with the analysis and assessment of quality aspects in machine learning
operations (MLOps) and reinforcement learning operations (RLOps) architec-
tures. We discuss how associated research problems and manual techniques de-
veloped to support ML and RL practitioners could be automated by leveraging
AI and how AI could replace these manual methods by generating MLOps ar-
chitectures and providing continuous and self-adapting architectural guidance
based on evolving needs. We also describe the problem of assessing projects for
RL ADDs and our first foray into LLMs. We describe forthcoming work that
utilises LLMs with a low-code approach and a human-in-the-loop to integrate
AI into MLOps and RLOps pipeline architecture generation and evolution for
open-source projects and an Industry 4.0 case study. Finally, we discuss open
challenges and new research opportunities where AI can be applied to software
architecting that we will address in the future in collaboration with our Industry
4.0 project partners.

The rest of the paper is structured as follows. In Section 2, we introduce key
concepts and terminology integral to the topics discussed in the paper. Section 3
describes our approach in the context of research problems and our contributions.
In Section 4, we introduce open research challenges that we plan to address in the
context of our Industry 4.0 project collaboration, and in Section 5, we discuss
specific aspects of our approach and contributions. We conclude the paper in
Section 6.



AI-Powered Architecting for Industry 4.0 CPPSs 3

2 Key Concepts and Terminology

This section briefly describes key relevant concepts and terminology, and how
they are correlated.

Architectural design decisions (ADDs) are concerned with the series
of decisions upon which software architecture is based. Making architectural
decisions has a long-term impact on the system and covers decisions that are
costly to change. Architects must prioritise, since making an architectural deci-
sion involves trade-offs concerning requirements. ADDs are essential for software
architecting, since they capture the architectural choices made during the early
design process [10,11].

MLOps [12,13] represents a foundational paradigm in contemporary AI
engineering that has evolved to address the complexities of deploying and
maintaining ML systems in production environments. It constitutes a holistic
approach to the ML workflow, applies DevOps [14] and continuous integra-
tion/continuous delivery (CI/CD) [15] principles to ML, and involves training,
deploying, and managing supervised and unsupervised ML models in production
environments [16,17].

RLOps [18] has emerged as a distinct but related paradigm that still rep-
resents a critical gap in current academic literature and industrial practice [5].
The extent to which MLOps practices apply to RL, particularly due to major
differences between ML and RL concerning model deployment and model train-
ing, is still not fully understood. We addressed this deficiency and demystified
RLOps by investigating how MLOps principles can be extended to RL contexts
through an empirical Industry 4.0 case study focusing on CPPSs [5] with our
Industry 4.0 project partners.

Large language models (LLMs)3 are trained using methods that do not
require explicit labelling of the training data. Self-attention in transformer struc-
tures helps models deal with long sequences of data by processing it in bulk so
that models can use a large number of parameters and access large datasets [19]4.

Industry 4.0 and cyber-physical production systems (CPPSs) [9,20]
represent a combination of digital technologies symbolising a significant devel-
opment in modern manufacturing. Smart factories in Industry 4.0 combine the
Internet of Things, AI, and Cloud Computing and are efficient networks inter-
acting automatically and sharing data in real time.

A systematic alignment of technical decisions and operational strategies can
be achieved by utilising ADDs as a basis for the architectural generation process
for MLOps [21]. Involving LLMs in the architectural generation process increases
its efficiency by automating various aspects of architectural synthesis, documen-
tation, and adaptation to changing needs [22]. Such strengths are particularly
impactful when transferred to RLOps since RL requires a flexible and resilient
architecture [18]. Implemented in the context of Industry 4.0 and CPPSs, these
strengths can be used to architect intelligent and interconnected manufacturing

3 https://en.wikipedia.org/wiki/Large_language_model
4 https://www.nvidia.com/en-us/glossary/large-language-models

https://en.wikipedia.org/wiki/Large_language_model
https://www.nvidia.com/en-us/glossary/large-language-models


4 S.J. Warnett and U. Zdun

environments quickly and continuously improve the development of operational
excellence and innovation in complex digital-physical ecosystems [23].

3 Approach

We followed a systematic approach to understand and support how practitioners
can better design, build, and manage ML/RL systems in an automated fashion,
using AI where appropriate. Our approach has evolved, starting with asking fun-
damental questions about practitioners’ understanding of architectural decisions,
and developing into implementing tools in an Industry 4.0 context for CPPSs
that utilise AI and can help practitioners make better decisions and automate
specific tasks.

Fig. 1. Overview of Our Approach.

Figure 1 depicts our overarching approach, which consists of several con-
tributions. Fundamental to the overall strategy was the initial consolidation of



AI-Powered Architecting for Industry 4.0 CPPSs 5

Architectural Knowledge in the form of ADDs for ML and RL and an under-
standing of emerging paradigms, such as RLOps. We then used this knowledge to
develop a System Architecture Modelling method, and tools for automat-
ing the assessment of Architectural Conformance using detectors and LLMs.
Architectural Knowledge is also applied to an Architectural Generation
technique that we developed, using LLMs in a low-code approach. Below, we
discuss the various research problems we have addressed so far and outline the
details of our contributions.

ADDs for ML and RL
Problem P1 Productionising ML models is technically challenging. This chal-
lenge is compounded by knowledge gaps on the level of the individual practi-
tioner and the lack of formalised, reusable architectural knowledge sources. For
RL, practitioners have many training, deployment, and coordination strategies
to choose from.
Contribution C1 We systematically studied architectural knowledge by con-
ducting three Straussian grounded theory [24] studies of practitioner (grey) liter-
ature in various subfields of AI, including the ML workflow, ML deployment, and
RL training strategies [16,17,25]. The aim was to catalogue ADDs and current
practices and provide design guidance for practitioners since existing practitioner
guidelines and best practices are often informal and inconsistent. We developed
a novel ADD model and established reusable architectural knowledge in the
form of ADDs, which form the foundation of our overarching approach and help
bridge the gap between science and practice. Our formal ADD Python models
are visualised in automatically generated UML-based model diagrams.

What is RLOps?
Problem P2 The extent to which MLOps and architectural practices apply to
RL is poorly understood.
Contribution C2 We conducted an exploratory, qualitative, deductive-inductive
industry case study [5] on an Industry 4.0 CPPS and performed content analy-
sis [26] of CPPS artefacts like architectural schematics and source code to under-
stand their relation to known ADDs and associated decision options. In doing
so, we fostered an initial understanding of RLOps architectures and provided a
reference for practitioners that can be used as design guidance.

MLOps, ML and RL System Architecture Modelling and Understand-
ability
Problem P3 How to model ML and RL-based systems so that they are under-
standable, can be reasoned about, and programmatically analysed?
Contribution C3 We developed a modelling method for ML and RL-based
systems by defining a formal metamodel with appropriate stereotype extensions
in Python and automatically generating UML-based visualisations of the mod-
elled systems. We systematically developed the metamodel and modelled freely
available system architectures, open source projects, and relevant aspects of our



6 S.J. Warnett and U. Zdun

Industry 4.0 partner’s CPPS. We conducted user studies in the form of con-
trolled experiments [27,28] to validate how well UML diagrams generated from
our models aid system architecture and design comprehension.

Assessing Support for Quality Aspects in MLOps System Architec-
tures
Problem P4 Ensuring conformance to ADDs, patterns, practices, and decision
options in MLOps systems is a laborious and error-prone manual task. Objective
measures, like metrics, for assessing the ADD options are also lacking.
Contribution C4 To avoid manual validation of architectural conformance,
we implemented detectors and novel, technology-agnostic metrics to automati-
cally calculate conformance of modelled MLOps system architectures to known
ADDs in the context of quality criteria, such as the level of support for automa-
tion practices, in given architectures [29]. We statistically validated our solution,
showing that it can be used to assess MLOps architectures programmatically.

Assessing RL Practices Using LLMs
Problem P5 As RL-based systems become increasingly complex, there is a need
for standardised and automated detection of conformance to best practices, no-
tably concerning training methods.
Contribution C5 We implemented a rule-based framework that integrates
LLMs and heuristic-based code detectors to ensure compliance with best prac-
tices in RL training pipelines [30]. Our architectural rules focus on best prac-
tices in RL-based architectures that are particularly relevant to CPPSs, like
checkpoints, hyperparameter tuning, and agent configuration. We validated our
solution via open-source projects and an Industry 4.0 CPPS case study.

Generating MLOps and RLOps Pipelines Architectures using Low-
Code and LLMs
Problem P6: Automating the ML/RL workflow requires specialist expertise
and considerable manual effort to write and maintain pipeline configurations in
an error-prone process that hinders scalability and rapid deployment.
Contribution C6 In forthcoming work, which has been completed but not
yet published, we present a new solution for generating pipelines for MLOps
and RLOps. Our solution is a low-code, template-based approach that leverages
LLMs and a human-in-the-loop to automate pipeline generation, validation, and
deployment. We evaluated our solution against seven LLMs, four usage scenarios,
three open source projects, and an Industry 4.0 CPPS case study, achieving very
low error rates across several metrics. Our solution has the potential to enable
rapid scaling and deployment of reliable RLOps pipelines and negates the need
for practitioners to have advanced software engineering or DevOps skills.

3.1 Placement of Our Approach in a CI/CD Pipeline

Figure 2 shows how our overall approach fits into the context of CI/CD pipelines
for ML and RL. The figure depicts high-level essential steps in a CI/CD pipeline



AI-Powered Architecting for Industry 4.0 CPPSs 7

common to ML and RL, which are coloured blue, orange, green, and purple,
augmented by contributions from our approach, which are coloured yellow.

Fig. 2. Placement of Our Approach in a CI/CD Pipeline.

The basis for the entire process C1+C2 Consolidation of Architectural
Knowledge. It is an activity that only needs to be performed rarely, as new
practices and patterns are not likely to be documented in grey literature very
often. Initially, the pipeline is triggered in the usual way, such as when changes
to the source code are made or an external component triggers the pipeline, for
example, on model performance drift (Source and Trigger). In an Industry
4.0 CPPS setting, where frequent changes are made to pipeline configurations,
and new pipelines need to be rapidly generated at scale, we can trigger a new
pipeline with C6 CICD Pipeline Generation when our LLM-based low-code
tool generates a new pipeline configuration and commits it, for instance, to a
GitLab repository.

Following the Build and Test phase, both Model Training and Valida-
tion and C3 Architectural Model Generation can run in parallel. The latter
phase uses C1+C2 Consolidation of Architectural Knowledge as a basis.
Currently, C3 Architectural Model Generation is a manual activity due to
the distributed and polyglot nature of ML/RL-enabled systems, which makes
it hard to create formal models from source code or architectural schematics
using traditional methods such as source code parsing and requires considerable
expertise in a time-consuming process. However, with modern AI tools, we think
system architecture model generation could be automated, and we discuss this
further in Section 5.



8 S.J. Warnett and U. Zdun

The next step is C4 MLOps+RLOps Architectural Conformance
Check, which is an automated task that checks for architectural conformance,
based on the provided system model, to specific quality attributes under consid-
eration of specific ADDs and associated practices and patterns. This task is man-
ually programmed, but we envisage an enhancement using similar techniques to
the next step, C5 RL Architectural Practices Conformance Check, where
we use LLMs combined with the consolidated Architectural Knowledge. We
describe this proposed improved process in Section 5. C5 RL Architectural
Practices Conformance Check runs on RL source code and checks for the
presence of specific architectural practices. Assuming the conformance checks,
model training, and validation succeeded, we reach the Deployment stage, and
the pipeline can deploy the model.

4 Open Research Challenges

In collaboration with our Industry 4.0 partners, we have identified several open
research challenges that must be addressed. Due to the combination of ML,
RL, and Industry 4.0 technologies, software architecture obstacles demand new
solutions. This section examines four significant challenges for building reliable
and scalable architectures for intelligent manufacturing systems and how AI may
help.

Model Versioning for RL in CPPSs
Challenge Traditional methods for managing model versions are not suited to
RL in smart factories due to continuous learning by the agents, and this calls for
more advanced tools to oversee model updates, track policy changes, and update
models to fit the smart factory environment whilst maintaining operational sta-
bility. Difficulties arise when several agents are distributed across different parts
of a production line and require simultaneous, jointly managed version updates
and rollbacks.
Strategy In prior work, we noted the use of a hybrid MLOps-RLOps solution
that updates model registries with RL policy metadata, exploration strategies,
and environment interaction history [5]. The solutions involve using distributed
version control to track model parameters and learned policies, and the setup
of rollback mechanisms [31]. AI-powered automated version management might
choose the most effective model using AI meta-learning techniques and analysing
prior performance records and the current context.

Communication Protocols for RL in Industry 4.0
Challenge Current communication schemas, such as the Model Context Pro-
tocol (MCP)5, whilst useful for AI-tool interactions, do not cover necessary ar-
chitectural designs used in industrial fields where critical operations, real-time
constraints, and legacy systems predominate. Protocol implementations mostly
handle desktop applications and simple AI assistants, and they do not cover the
5 https://www.anthropic.com/news/model-context-protocol

https://www.anthropic.com/news/model-context-protocol


AI-Powered Architecting for Industry 4.0 CPPSs 9

needs of industry, which require reliability, rigid response times, and compati-
bility with current manufacturing systems.
Strategy One strategy is to work on system architectures built for industry,
adding real-time guarantees, secure authentication and manufacturing-oriented
MCP-like protocol architectures6. A solution could build federated networks that
cross multiple security domains in a factory, use special tools for data transfer
over industrial networks and facilitate interoperability of networks with other
popular industrial protocols. AI could also help facilitate protocol optimisation
as network and production changes occur.

Agentic AI Architecture for CPPSs
Challenge Using agentic AI in CPPSs means building architectures that can
handle complex decisions on their own, whilst making sure the AI is secure,
reliable and works with previous control systems [32]7. Currently, agentic sys-
tems mainly concentrate on software environments and fail to include industry-
relevant error handling, latency assurances and reliability guarantees8. It is es-
sential to ensure that changing behaviours of autonomous agents do not disrupt
the orderly operations of manufacturing [33].
Strategy A strategy could emphasise architectures that ensure safety-related
functions are under separate control from autonomous agents, using advanced
verification techniques on agent systems and developing hybrid human-agent su-
pervision models [32]. Some ways to reduce risks are to precisely define agent
human responsibilities, standardise interfaces between agent systems and stan-
dard industrial controls, and to include continuous monitoring and intervention
methods [31]. AI-assisted optimisation in architecture could influence agent au-
tonomy according to risks and outcomes in production.

Support for RL in CI/CD Pipelines
Challenge Existing frameworks for CI/CD fail to adequately support RL sys-
tems since they do not support many of the unique needs of RL, like those
described in the challenges above (versioning for RL models, support for RL com-
munication protocols, and agentic AI systems). The need is for CI/CD pipelines
that understand complex deployment environments and can learn system evo-
lution [31] since traditional software deployment methods do not consider the
unique demands of learning and adaptation after release [5].
Strategy One strategy is to build multi-step deployment systems for RL arte-
facts, create automated systems to test agent skills, and design monitoring tools
that notice changes in production environments [31]. AI-supported pipeline con-
figuration can bootstrap the appropriate deployment methods given the model
type, risks, and production needs, with feedback loops that improve the system
in controlled production settings [5].
6 https://www.linkedin.com/pulse/securing-model-context-protocol-mcp-architectur

e-best-srivastava-v4hgf
7 https://techcommunity.microsoft.com/blog/machinelearningblog/baseline-agentic

-ai-systems-architecture/4207137
8 https://www.ibm.com/think/topics/agentic-architecture

https://www.linkedin.com/pulse/securing-model-context-protocol-mcp-architecture-best-srivastava-v4hgf
https://www.linkedin.com/pulse/securing-model-context-protocol-mcp-architecture-best-srivastava-v4hgf
https://techcommunity.microsoft.com/blog/machinelearningblog/baseline-agentic-ai-systems-architecture/4207137
https://techcommunity.microsoft.com/blog/machinelearningblog/baseline-agentic-ai-systems-architecture/4207137
https://www.ibm.com/think/topics/agentic-architecture


10 S.J. Warnett and U. Zdun

5 Discussion

In Section 3, we described our overall approach. We noted that some of the
solutions we developed to address specific challenges earlier in our research could
potentially be enhanced due to recent progress that has been made in AI. This
section discusses how AI could improve some residual manual aspects of our
approach. Concrete details, such as pipeline examples, architectures, controlled
experiment results, limitations of our approach, and threats to validity for each
contribution, are discussed in the respective papers. We also reference replication
packages for our prior contributions in the corresponding papers.

ML models can now scan technical documentation, find architectural pat-
terns and decisions made in the design, and group system elements based on
source code and architectural diagrams910. Recent studies show that LLMs and
generative AI can significantly improve grounded theory analysis by automating
coding, finding patterns, and extracting themes without compromising the ac-
curacy of qualitative work. For example, Übellacker [34] describes AcademiaOS,
which is an initial attempt to automate grounded theory using LLMs by apply-
ing the understanding, generation, and reasoning capabilities of LLMs to aug-
ment humans in qualitative research. Yue et al. [35] apply ChatGPT-4 Turbo
to grounded theory and describe how LLMs can enhance the efficiency of text
coding and qualitative analysis in grounded theory. When gathering Architec-
tural Knowledge (C1 and C2), rather than periodically manually performing
grounded theory and content analysis studies, which can be time-consuming, we
could consider reducing manual work by using AI tools to implement alternative
solutions. An advantage is that this knowledge-gathering step could be more
easily automated within a CI/CD pipeline. The gathered knowledge is more fre-
quently updated to use in later CI/CD steps that implement our approach and
make use of this knowledge, such as C3 Architectural Model Generation
and the C4 MLOps+RLOps Architectural Conformance Check.

LLMs can now build structural and behavioural models for systems with-
out relying on human-written code. Latest findings also suggest that LLMs now
allow systems to be modelled, for example, with SysML11 diagrams automati-
cally, helping lower the need to do this work manually. Apvrille and Sultan [36]
describe how LLMs can make sense of natural text descriptions and generate
content fitting predefined formats, supporting the automation of model gener-
ation. They introduce a framework where LLMs automatically construct struc-
tural and behavioural SysML diagrams from system specifications. Contribu-
tion C3 Architectural Model Generation in Figure 2 is currently a manual
process in which the practitioner models the system architecture in Python us-
ing our extensible MLOps/RLOps metamodel. This formal system model can
then be processed in later stages of the pipeline, for instance during the C4
MLOps+RLOps Architectural Conformance Check. Rather than gener-

9 https://www.westat.com/machine-learning-nlp
10 https://mindthegraph.com/blog/automated-content-analysis
11 https://sysml.org

https://www.westat.com/machine-learning-nlp
https://mindthegraph.com/blog/automated-content-analysis
https://sysml.org


AI-Powered Architecting for Industry 4.0 CPPSs 11

ating diagrams directly, we envisage an enhanced solution that would make use
of generative AI to write Python code, based on our CodeableModels12 meta-
model, to generate the formal system architecture models. This automated stage
would dramatically reduce the required modelling effort in the early stages of
a project. Optionally, the tool could subsequently generate UML visualisations
from the Python models using PlantUML13 as it currently does.

Contribution C4 (MLOps+RLOps Architectural Conformance
Check) substantially reduces the need for manual assessment of MLOps/RLOps
architectures for conformance to known ADDs and decision options and allows
for automation in a CI/CD pipeline. However, some manual effort is still in-
volved in implementing the detectors that analyse the models, and the metrics
that evaluate the support for quality aspects based on the applied decision op-
tions. An upgraded solution could use LLMs similarly to our implementation
of C5 RL Architectural Practices Conformance Check by examining
the Python models generated using C3 Architectural Model Generation
based on the Architectural Knowledge from C1+C2 Consolidation of Ar-
chitectural Knowledge. Recent related work describes applying LLMs to ar-
chitectural conformance checking. Keshri et al. [37] present a novel system for
verifying code implementations against the algorithms and methodologies from
corresponding research papers. Their solution uses retrieval-augmented genera-
tion [38] to extract relevant details from both the research papers and code bases,
and compares them using LLMs to reduce manual effort, enhance research cred-
ibility, and advance the state of the art in code verification.

6 Conclusion

This paper outlines our approach towards using AI for architecting ML and RL-
based systems, particularly for Industry 4.0 CPPSs. We outlined six research
problems and how we addressed them through Straussian grounded theory-
based grey literature studies, the development of a novel ADD metamodel in
Python, an exploratory industry case study on an Industry 4.0 CPPS, the devel-
opment of a novel, formal metamodel for modelling ML and RL-based systems,
controlled experiments testing whether providing semi-formal system and archi-
tecture representations as UML diagrams helps understanding of MLOps system
architectures compared to informal system architecture diagrams, a method for
automatically checking conformance of MLOps architectures to known ADDs,
the assessment of conformance to RL best practices in RL code using LLMs, and
the generation of MLOps and RLOps pipeline architecture using low-code and
LLMs. We showed where we have already applied AI techniques, and described
how we could further enhance our approach with AI.

Using our approach in CI/CD pipelines helps automate much of the process.
Still, some significant open challenges remain: advanced ways to version mod-
els for distributed RL agents, effective communication protocols for industrial
12 https://github.com/uzdun/CodeableModels
13 https://github.com/plantuml/plantuml

https://github.com/uzdun/CodeableModels
https://github.com/plantuml/plantuml


12 S.J. Warnett and U. Zdun

applications, safe integration of agents in AI systems, and RL integration into
CI/CD pipelines. We described these four open challenges and possible strate-
gies to address them. Future work will address the identified open challenges and
further automate our approach in collaboration with industry partners. Our re-
search helps to form a basis for intelligent, adaptive systems that can constantly
adapt to fit the dynamic demands of modern production systems and lead to
functional AI implementation in industry when architecting ML and RL-based
systems.

Acknowledgements. This work was supported by the FFG (Austrian Re-
search Promotion Agency) project MODIS (no. FO999895431). This research
was funded in whole or in part by the Austrian Science Fund (FWF) project
CQ4CD, Grant-DOI: 10.55776/I6510. For open access purposes, the authors have
applied a CC BY public copyright licence to any author-accepted manuscript
version arising from this submission.

References

1. Bucaioni, A., Weyssow, M., He, J., Lyu, Y., Lo, D.: Artificial Intelligence for Soft-
ware Architecture: Literature Review and the Road Ahead. In: 2030 Software En-
gineering - 2025 (June 2025), http://www.ipr.mdu.se/publications/7175-

2. Zhou, X., Li, R., Liang, P., Zhang, B., Shahin, M., Li, Z., Yang, C.: Using LLMs
in Generating Design Rationale for Software Architecture Decisions (2025), https:
//arxiv.org/abs/2504.20781

3. Gheibi, O., Weyns, D., Quin, F.: Applying Machine Learning in Self-adaptive Sys-
tems: A Systematic Literature Review. ACM Trans. Auton. Adapt. Syst. 15(3)
(Aug 2021). https://doi.org/10.1145/3469440

4. Monostori, L.: Cyber-physical Production Systems: Roots, Expectations and R&D
Challenges. Procedia CIRP 17, 9–13 (2014). https://doi.org/10.1016/j.procir.201
4.03.115, https://www.sciencedirect.com/science/article/pii/S2212827114003497,
Variety Management in Manufacturing

5. Warnett, S.J., Zdun, U.: Bridging the Gap Between MLOps and RLOps: An In-
dustry 4.0 Case Study on Architectural Design Decisions in Practice. In: 2025
IEEE 22nd International Conference on Software Architecture (ICSA). pp. 232–
242 (2025). https://doi.org/10.1109/ICSA65012.2025.00031

6. Ramic, A., Kugele, S.: A Systematic Mapping Study on Software Architecture for
AI-based Mobility Systems (2025), https://arxiv.org/abs/2506.01595

7. Jordan, M.I., Mitchell, T.M.: Machine learning: Trends, perspectives, and
prospects. Science 349(6245), 255–260 (2015)

8. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press
(2018)

9. Singh, H., Singh, B.: Industry 4.0 technologies integration with lean production
tools: a review. The TQM Journal (02 2024). https://doi.org/10.1108/TQM-02-2
022-0065

10. Jansen, A., Bosch, J.: Software Architecture as a Set of Architectural Design
Decisions. In: 5th Working IEEE/IFIP Conference on Software Architecture
(WICSA’05). pp. 109–120 (2005). https://doi.org/10.1109/WICSA.2005.61

http://www.ipr.mdu.se/publications/7175-
https://arxiv.org/abs/2504.20781
https://arxiv.org/abs/2504.20781
https://doi.org/10.1145/3469440
https://doi.org/10.1145/3469440
https://doi.org/10.1016/j.procir.2014.03.115
https://doi.org/10.1016/j.procir.2014.03.115
https://doi.org/10.1016/j.procir.2014.03.115
https://doi.org/10.1016/j.procir.2014.03.115
https://www.sciencedirect.com/science/article/pii/S2212827114003497
https://doi.org/10.1109/ICSA65012.2025.00031
https://doi.org/10.1109/ICSA65012.2025.00031
https://arxiv.org/abs/2506.01595
https://doi.org/10.1108/TQM-02-2022-0065
https://doi.org/10.1108/TQM-02-2022-0065
https://doi.org/10.1108/TQM-02-2022-0065
https://doi.org/10.1108/TQM-02-2022-0065
https://doi.org/10.1109/WICSA.2005.61
https://doi.org/10.1109/WICSA.2005.61


AI-Powered Architecting for Industry 4.0 CPPSs 13

11. Shahin, M., Liang, P., Li, Z.: Do architectural design decisions improve the un-
derstanding of software architecture? two controlled experiments. In: Proceed-
ings of the 22nd International Conference on Program Comprehension. p. 3–13.
ICPC 2014, Association for Computing Machinery, New York, NY, USA (2014).
https://doi.org/10.1145/2597008.2597139

12. Kreuzberger, D., Kühl, N., Hirschl, S.: Machine Learning Operations (MLOps):
Overview, Definition, and Architecture. ArXiv abs/2205.02302 (2022)

13. Hewage, N., Meedeniya, D.: Machine Learning Operations: A Survey on MLOps
Tool Support (2022). https://doi.org/10.48550/ARXIV.2202.10169

14. Bass, L., Weber, I., Zhu, L.: DevOps: A Software Architect’s Perspective. Addison-
Wesley Professional, 1st edn. (2015)

15. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Addison-Wesley Professional, 1st edn.
(2010)

16. Warnett, S.J., Zdun, U.: Architectural Design Decisions for the Machine Learning
Workflow. Computer 55(3), 40–51 (2022). https://doi.org/10.1109/MC.2021.3134
800

17. Warnett, S.J., Zdun, U.: Architectural Design Decisions for Machine Learning De-
ployment. In: 2022 IEEE 19th International Conference on Software Architecture
(ICSA). pp. 90–100 (2022). https://doi.org/10.1109/ICSA53651.2022.00017

18. Li, P., Thomas, J., Wang, X., Khalil, A., Ahmad, A., Inacio, R., Kapoor, S.,
Parekh, A., Doufexi, A., Shojaeifard, A., et al.: RLOps: Development life-cycle of
reinforcement learning aided open RAN. IEEE Access 10, 113808–113826 (2022).
https://doi.org/10.1109/ACCESS.2022.3217511

19. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N.,
Kaiser, L., Polosukhin, I.: Attention is all you need. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems. p. 6000–6010.
NIPS’17, Curran Associates Inc., Red Hook, NY, USA (2017)

20. Khdoudi, A., Masrour, T., El Hassani, I., El Mazgualdi, C.: A Deep-Reinforcement-
Learning-Based Digital Twin for Manufacturing Process Optimization. Systems
12(2) (2024). https://doi.org/10.3390/systems12020038, https://www.mdpi.com
/2079-8954/12/2/38

21. Leest, J., Gerostathopoulos, I., Raibulet, C.: Evolvability of Machine Learning-
based Systems: An Architectural Design Decision Framework. In: 2023 IEEE 20th
International Conference on Software Architecture Companion (ICSA-C). pp. 106–
110 (2023). https://doi.org/10.1109/ICSA-C57050.2023.00033

22. Dhar, R., Vaidhyanathan, K., Varma, V.: Can LLMs Generate Architectural Design
Decisions? - An Exploratory Empirical Study. In: 2024 IEEE 21st International
Conference on Software Architecture (ICSA). pp. 79–89 (2024). https://doi.org/
10.1109/ICSA59870.2024.00016

23. Fischbach, A., Strohschein, J., Bunte, A., Stork, J., Faeskorn-Woyke, H., Moriz, N.,
Bartz-Beielstein, T.: CAAI—a cognitive architecture to introduce artificial intelli-
gence in cyber-physical production systems. The International Journal of Advanced
Manufacturing Technology 111, 1–18 (11 2020). https://doi.org/10.1007/s00170
-020-06094-z

24. Corbin, J., Strauss, A.L.: Grounded theory research: Procedures, canons, and eval-
uative criteria. Qualitative Sociology 13, 3–20 (1990)

25. Ntentos, E., Warnett, S.J., Zdun, U.: Supporting Architectural Decision Making
on Training Strategies in Reinforcement Learning Architectures. In: 2024 IEEE
21st International Conference on Software Architecture (ICSA). pp. 90–100 (2024).
https://doi.org/10.1109/ICSA59870.2024.00017

https://doi.org/10.1145/2597008.2597139
https://doi.org/10.1145/2597008.2597139
https://doi.org/10.48550/ARXIV.2202.10169
https://doi.org/10.48550/ARXIV.2202.10169
https://doi.org/10.1109/MC.2021.3134800
https://doi.org/10.1109/MC.2021.3134800
https://doi.org/10.1109/MC.2021.3134800
https://doi.org/10.1109/MC.2021.3134800
https://doi.org/10.1109/ICSA53651.2022.00017
https://doi.org/10.1109/ICSA53651.2022.00017
https://doi.org/10.1109/ACCESS.2022.3217511
https://doi.org/10.1109/ACCESS.2022.3217511
https://doi.org/10.3390/systems12020038
https://doi.org/10.3390/systems12020038
https://www.mdpi.com/2079-8954/12/2/38
https://www.mdpi.com/2079-8954/12/2/38
https://doi.org/10.1109/ICSA-C57050.2023.00033
https://doi.org/10.1109/ICSA-C57050.2023.00033
https://doi.org/10.1109/ICSA59870.2024.00016
https://doi.org/10.1109/ICSA59870.2024.00016
https://doi.org/10.1109/ICSA59870.2024.00016
https://doi.org/10.1109/ICSA59870.2024.00016
https://doi.org/10.1007/s00170-020-06094-z
https://doi.org/10.1007/s00170-020-06094-z
https://doi.org/10.1007/s00170-020-06094-z
https://doi.org/10.1007/s00170-020-06094-z
https://doi.org/10.1109/ICSA59870.2024.00017
https://doi.org/10.1109/ICSA59870.2024.00017


14 S.J. Warnett and U. Zdun

26. DeFranco, J., Laplante, P.: A content analysis process for qualitative software
engineering research. Innovations in Systems and Software Engineering 13, 1–13
(09 2017). https://doi.org/10.1007/s11334-017-0287-0

27. Warnett, S.J., Zdun, U.: On the Understandability of MLOps System Archi-
tectures. IEEE Transactions on Software Engineering 50(5), 1015–1039 (2024).
https://doi.org/10.1109/TSE.2024.3367488

28. Ntentos, E., Warnett, S.J., Zdun, U.: On the understandability of machine learning
practices in deep learning and reinforcement learning based systems. Journal of
Systems and Software 222, 112343 (2025). https://doi.org/10.1016/j.jss.2025.112
343, https://www.sciencedirect.com/science/article/pii/S0164121225000111

29. Warnett, S.J., Ntentos, E., Zdun, U.: A model-driven, metrics-based approach to
assessing support for quality aspects in MLOps system architectures. Journal of
Systems and Software 220, 112257 (2025). https://doi.org/10.1016/j.jss.2024.112
257, https://www.sciencedirect.com/science/article/pii/S0164121224003017

30. Ntentos, E., Warnett, S.J., Zdun, U.: Rule-Based Assessment of Reinforcement
Learning Practices Using Large Language Models. In: 2025 IEEE/ACM 4th Inter-
national Conference on AI Engineering – Software Engineering for AI (CAIN). pp.
1–11 (2025). https://doi.org/10.1109/CAIN66642.2025.00009

31. Faubel, L., Schmid, K.: MLOps: A Multiple Case Study in Industry 4.0. In: 2024
IEEE 29th International Conference on Emerging Technologies and Factory Au-
tomation (ETFA). pp. 01–08 (2024). https://doi.org/10.1109/ETFA61755.2024.1
0711136

32. Baldoni, M., Baroglio, C., Ditano, V., Micalizio, R., Tedeschi, S.: Agents for In-
dustry 4.0: the Case Study of a Production Cell. In: Workshop From Objects to
Agents (2023), https://api.semanticscholar.org/CorpusID:266211460

33. Kegyes, T., Süle, Z., Abonyi, J.: The Applicability of Reinforcement Learning
Methods in the Development of Industry 4.0 Applications. Complexity 2021(1),
7179374 (2021). https://doi.org/10.1155/2021/7179374

34. Übellacker, T.: AcademiaOS: Automating Grounded Theory Development in Qual-
itative Research with Large Language Models (2024), https://arxiv.org/abs/2403
.08844

35. Yue, Y., Liu, D., Lv, Y., Hao, J., Cui, P.: A Practical Guide and Assessment on
Using ChatGPT to Conduct Grounded Theory: Tutorial. J Med Internet Res 27,
e70122 (May 2025), https://doi.org/10.2196/70122

36. Apvrille, L., Sultan, B.: System Architects Are not Alone Anymore: Automatic
System Modeling with AI. In: Mayo, F.J.D., Pires, L.F., Seidewitz, E. (eds.) Pro-
ceedings of the 12th International Conference on Model-Based Software and Sys-
tems Engineering, MODELSWARD 2024, Rome, Italy, February 21-23, 2024. pp.
27–38. SCITEPRESS (2024)

37. Keshri, R., Zachariah, A., Boone, M.: Enhancing Code Consistency in AI Research
with Large Language Models and Retrieval-Augmented Generation (02 2025). ht
tps://doi.org/10.48550/arXiv.2502.00611

38. Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H.,
Lewis, M., Yih, W.t., Rocktäschel, T., Riedel, S., Kiela, D.: Retrieval-augmented
generation for knowledge-intensive NLP tasks. In: Proceedings of the 34th Inter-
national Conference on Neural Information Processing Systems. NIPS ’20, Curran
Associates Inc., Red Hook, NY, USA (2020)

https://doi.org/10.1007/s11334-017-0287-0
https://doi.org/10.1007/s11334-017-0287-0
https://doi.org/10.1109/TSE.2024.3367488
https://doi.org/10.1109/TSE.2024.3367488
https://doi.org/10.1016/j.jss.2025.112343
https://doi.org/10.1016/j.jss.2025.112343
https://doi.org/10.1016/j.jss.2025.112343
https://doi.org/10.1016/j.jss.2025.112343
https://www.sciencedirect.com/science/article/pii/S0164121225000111
https://doi.org/10.1016/j.jss.2024.112257
https://doi.org/10.1016/j.jss.2024.112257
https://doi.org/10.1016/j.jss.2024.112257
https://doi.org/10.1016/j.jss.2024.112257
https://www.sciencedirect.com/science/article/pii/S0164121224003017
https://doi.org/10.1109/CAIN66642.2025.00009
https://doi.org/10.1109/CAIN66642.2025.00009
https://doi.org/10.1109/ETFA61755.2024.10711136
https://doi.org/10.1109/ETFA61755.2024.10711136
https://doi.org/10.1109/ETFA61755.2024.10711136
https://doi.org/10.1109/ETFA61755.2024.10711136
https://api.semanticscholar.org/CorpusID:266211460
https://doi.org/10.1155/2021/7179374
https://doi.org/10.1155/2021/7179374
https://arxiv.org/abs/2403.08844
https://arxiv.org/abs/2403.08844
https://doi.org/10.2196/70122
https://doi.org/10.48550/arXiv.2502.00611
https://doi.org/10.48550/arXiv.2502.00611
https://doi.org/10.48550/arXiv.2502.00611
https://doi.org/10.48550/arXiv.2502.00611

	AI-Powered Architecting for Industry 4.0 Cyber-Physical Production Systems: A Novel Approach, Research Problems and Challenges

